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Abstract. This paper addresses the problems appearing in component-
based development of safety-critical systems. We aim at efficient reason-
ing about safety at system level while adding or replacing components.
For safety-related reasoning it does not suffice to consider functioning
components in their ”intended” environments but also the behaviour of
components in presence of single or multiple faults.
Our contribution is a formal component model that includes the notion of
a safety interface. It describes how the component behaves with respect
to violation of a given system-level property in presence of faults in its
environment. We also present an algorithm for deriving safety interfaces
given a particular safety property and fault modes for the component.
Moreover, we present compositional proof rules that can be applied to
reason about the fault tolerance of the composed system by analyzing
the safety interfaces of the components. Finally, we evaluate the above
technique in a real aerospace application.

1 Introduction

Component-based software development [30, 9] uses various models and methods
to capture different attributes of a system, or emphasise phases of the develop-
ment cycle [4, 28, 8, 27, 10]. This paper addresses efficient assurance of depend-
ability in a system built from components and with several upgrades in its life
cycle, an aspect not widely studied so far in the components literature [11].

Modifying a component or replacing it with another is an especially costly
process for safety-critical systems, as much of the analysis and review of the
safety arguments at the certification stage has to be repeated for every signifi-
cant change to the system. We believe that tool support in this sector needs to
make component changes cost-efficient by addressing safety-specific issues, e.g.
resilience of the system with respect to single and multiple faults as new com-
ponents are plugged in. The model we propose covers digital components, with
a built-in declaration of their behaviour under faults in assumed environments.
This component model captures the logic of the design at a high abstraction
level, and could be applied to software or (reconfigurable) hardware designs.

Traditional risk assessment techniques such as Fault-tree analysis (FTA) and
Failure modes and effects analysis (FMEA) [16] deal with the effect of inde-
pendent faults. Although assessing fault tolerance at system level is an impor-
tant part of safety analysis, rigorous methods are only in their infancy when



it comes to systems with significant digital components [15, 13]. Our goal is to
provide a formal means to support the system integrator. When acquiring a new
component for inclusion into a system, the integrator is informed whether the
component can potentially threaten the system-level safety (in the same spirit
as FMEA). The integrator is also supported in analysis of fault tolerance at
system level, the result of which will indicate all single or multiple component-
level faults that will necessarily lead to violation of safety (in the same vein as
FTA). Unlike functional correctness analysis, here the goal is to focus on risks
associated with external faults, not to eliminate design faults.

The contributions of this paper are as follows. We present a component model
that includes safety interfaces. These describe how a component behaves with
respect to a given system-level safety property in presence of (a defined set of)
faults in its environment. We show how to perform a system-level safety analysis
by using the safety interfaces of components. This goal is supported in two ways.
First, we provide an algorithm that derives the safety interface of a component
given a particular safety property and set of fault modes. The interface includes
the single and multiple faults that this component is resilient to, as well as
environment restrictions that can contain the faults. This analysis is intended
to be performed by the developer of the component. Second, we support the
system integrator to reason compositionally about safety in presence of single
and multiple faults at system level by referring to the safety interfaces. Once the
relevant fault-failure chains are rigorously identified, they can be handled using
standard assessment routines, fault forecasting and containment techniques [20].

1.1 Related work

To our knowledge, there is no previous formal work on safety interfaces for
components.

Current engineering practice includes two parallel activities for safety-related
studies (hazard analysis, FTA and FMEA) and functional design and analysis.
Recent research efforts have tried to combine these separate tracks by augment-
ing the system design model with specific fault modes. Åkerlund et al. [2] have
to our knowledge the first attempt to integrate the separate activities of design
and safety analysis and support them by common formal models. Hammarberg
and Nadjm-Tehrani extend this work to models at a higher level of abstraction
and characterise patterns for safety analysis of digital modules [15]. That work,
however, does not build on a notion of encapsulation as in components. It verifies
the entire composed system in Esterel using a SAT model checker and iteratively
analyses all fault modes at system level. The ESACS project [7] applies a similar
approach to Statechart models using a BDD-based verification engine.

Papadopolous et. al. [24] extend a functional model of a design with Interface-
Focused FMEA. The approach follows a tabular (spread sheet) editor layout.
The formalised syntax of the failure classes allows an automatic synthesis of a
fault tree and incorporation of knowledge about the architectural support for
mitigation and containment of faults. However, it suffers from combinatorial
explosion in large fault trees and lacks formal verification support.



Rauzy models the system in a version of mode automata and the failure of
each component by an event that takes the system into a failure mode [26]. The
formal model is compiled into Boolean equations and partial order techniques
are suggested for reducing the combinatorial explosion. However, it has not been
applied to component-based development or compositional reasoning.

Strunk and Knight define the system and its reconfiguration elements explic-
itly using RTL (temporal logic) notation and provide guidelines for reconfigura-
tion assurance. Reconfiguration is mainly used here when the system is adapting
to lower service levels that may in particular be due to failure scenarios [29].

Jürjens defines an extension of the UML syntax in which stereotypes, tags,
and values can be used to capture failure modes of components in a system (cor-
ruption, delay, loss) [19]. The merit of the model is to narrow the gap between a
system realised as a set of functions and a system realised as a set of components.

Li et al. [21] define feature-oriented interfaces for modules that encapsulate
crosscutting system properties. The focus of this work is feature interaction
including features that introduce a new vocabulary.

A recent approach for formal treatment of crosscutting concerns in recon-
figurable components is given by Tesanovic et al. [31] where extended timed
automata are used to capture models of components with an interface for char-
acterising the essential traces for supporting a given timing property.

Assume-guarantee-style compositional reasoning has a long history originat-
ing with the work by Misra and Chandy [23] and Jones [18] in the context of
concurrent systems. It has been applied to deductive reasoning about specifica-
tions [1] as well as model checking for various automata formalisms. Here, the
notion of refinement is usually trace inclusion, but can also be simulation [17].
Our rules are derived from those of Alur and Henzinger for reactive modules [3].

2 Components and fault models

A component is an independent entity that communicates through well-defined
interfaces. In most component models, the interfaces are only functional, defining
input and output ports at a syntactic level. For efficient safety analysis at system
level, these simple interfaces are insufficient. More behaviour information must
be provided to make interfaces usable for analysis of failures in presence of faults.

We propose a formal component model with two elements: its functional
behaviour and a safety interface, which describes the behaviour in presence of
faults in the environment. This safety interface can then be used to perform
safety analysis at system level, such as analysis for fault tolerance. We next
present the basic definitions, the fault modes and the employed formalism.

2.1 Modules and basic definitions

Our general formalism for modules is based on the notion of reactive modules [3],
of which we give only a brief overview. We present a special class of reactive



modules with synchronous composition, finite variable domains and non-blocking
transitions that we call synchronous modules (by default, simply modules).

A module is defined by its input, output and private variables and the rules
for updating and initializing them. Variables are updated in a sequence of rounds,
each once per round. To model synchrony, each round is divided into subrounds,
and the system and the environment take turns in executing and updating vari-
ables. Events, such as a tick, can be modelled by toggling boolean variables.

Definition 1 (Module). A synchronous module M is a tuple (V,Q0, δ) where

– V = (Vi, Vo, Vp) is a set of typed variables, partitioned into sets of input
variables Vi, output variables Vo and private variables Vp. The controlled
variables are Vctrl = Vo ∪ Vp and the observable variables are Vobs = Vi ∪ Vo;

– A state over V is a function mapping variables to their values. The set of
controlled states over Vctrl is denoted Qctrl and the set of input states over
Vi as Qi. The set of states for M is QM = Qctrl ×Qi;

– Q0 ⊆ Qctrl is the set of initial states;
– δ ⊆ Qctrl ×Qi ×Qctrl is the transition relation.

The successor of a state is obtained at each round by updating the controlled
variables of the module. The execution of a module produces a state sequence
q̄ = q0 . . . qn. A trace σ̄ is the corresponding sequence of observations on q̄, with
σ̄ = q0[Vobs] . . . qn[Vobs], where q[V ′] is the projection of q onto a set of variables
V ′ ∈ V . The trace language of M , denoted LM , is the set of traces of M .

A property ϕ on a set of variables V is defined as a set of traces on V . A
module M satisfies a property ϕ, written M |= ϕ, if all traces of M belong to ϕ.
This work focuses on safety properties [22, 14] as opposed to liveness properties.

Composing two modules into a single module creates a new module whose
behaviour captures the interaction between the component modules.

Definition 2 (Parallel composition). Let M = (V M , QM
0 , δM ) and N =

(V N , QN
0 , δN ) be two modules with V M

ctrl ∩ V N
ctrl = ∅. The parallel composition of

M and N , denoted by M ‖ N , is defined as

– Vp = V M
p ∪ V N

p

– Vo = V M
o ∪ V N

o

– Vi = (V M
i ∪ V N

i ) \ Vo

– Q0 = QM
0 ×QN

0

– δ ⊆ Qctrl×Qi×Qctrl where (q, i, q′) ∈ δ if (q[V M
ctrl], (i∪q)[V M

i ], q′[V M
ctrl]) ∈ δM

and (q[V N
ctrl], (i ∪ q)[V N

i ], q′[V N
ctrl]) ∈ δN .

We extend Definition 2 to a pair of modules with shared outputs, provided
the resulting transition relation δ is nonblocking, i.e., has a next state for any
combination of current state and inputs. In this case, we call the two modules
compatible and distinguish nonblocking composition by denoting it ‖̂ .

We relate modules via trace semantics: a module M refines a module N if N
has more behaviours than M , i.e., all possible traces of M are also traces of N .



Definition 3 (Refinement). Let M = (V M , QM
0 , δM ) and N = (V N , QN

0 , δN )
be two synchronous modules. M refines N , written M ≤ N , if (1) V N

o ⊆ V M
o ,

(2) V N
obs ⊆ V M

obs and (3) {σ̄[V N
obs] : σ̄ ∈ LM} ⊆ LN .

2.2 Fault mode models

To analyse the behaviour of a component in presence of faults in its environ-
ment it is important to identify all possible ways that the environment can fail.
Low-level fault modes are generally application and platform dependent, how-
ever faults can be classified into high-level categories. Bondavalli and Simoncini
classify faults into omission faults, value faults and timing faults [6]. We adopt
a classification in which faults fall into the following categories [12, 25, 24]:
Omission failure i.e., absence of a signal when the signal was expected.
Commission failure i.e., unexpected emission of a signal.
Value failure i.e., failure in the value domain such as signal out of range or a

signal stuck at some value etc.
Timing failure i.e., failure in the time domain such as late or early delivery.

Timing properties have been addressed in other work, for example interfaces
to capture timing properties in the absence of faults are given by Tesanovic et
al. in timed automata [31] and could be further extended to cover resilience to
timing failures. In this work we focus on untimed models and value failures.

We model faults in the environment as delivery of faulty input to the com-
ponent and call each such faulty input a fault mode for the component. A value
failure is modelled by modifying the input signals that in turn might affect pri-
vate variables. A commission failure is modelled by unforced emission of signals
to the component. The input fault of one component thereby captures the output
fault of a component connecting to it, with the exception of “edge” components
that need to be treated separately, e.g. in accordance to earlier methods [15].

Definition 4 (Input Fault Mode). An input fault mode Fj of a module M

is a module with an input variable vf
j 6∈ V M , an output variable vj ∈ V M

i , both
of the same type D, and an unconstrained transition relation δ = D ×D ×D.

A fault mode Fj on the input vj from environment E to module M can be
viewed as replacing the original output vj of E with the input vf

j of Fj , which
produces the faulty output vj to M . We model this formally as a composition
of Fj and E, which has the same variables as E and can then be composed with
M . Free inputs to M are viewed as unconstrained outputs of E.

Definition 5 (Composition with Fault). Let E be a module with vj ∈ V E
o

and Fj a fault mode with output vj and input vf
j . Denote Fj ◦E = Fj ‖ E[vj/vf

j ]
where E[vj/vf

j ] is the module E with the variable substitution vf
j for vj.

Our fault modes are unrestricted and can affect their output in an arbitrary
way. Other types of fault modes can be modelled by appropriate logic in their
transition relation. We can naturally extend this definition to multiple faults.



2.3 Components and safety interfaces

Given a module, we wish to characterize its fault tolerance in an environment
that represents the remainder of the system together with any external con-
straints. Whereas a module represents an implementation, we wish to define an
interface that provides all information about the component that the system in-
tegrator needs. Traditionally, these interfaces do not contain information about
safety of the component. In this paper we propose a safety interface that captures
the behaviour of the component in presence of faults in the environment.

Definition 6 (Safety Interface). Given a module M , a system-level safety
property ϕ, and a set of fault modes F for M , a safety interface SIϕ for M is
a tuple 〈Eϕ, single, double〉 where

– Eϕ is an environment in which M ‖ Eϕ |= ϕ.
– single = 〈F s, Es〉 where F s ⊆ P(F ) is the single fault resilience set and Es

is a module composable with M , such that ∀Fk ∈ F s,M ‖ (Fk ◦ Es) |= ϕ
– double = {〈F d

1 , Ed
1 〉, . . . , 〈F d

n , Ed
n〉} with F d

k =〈F 1
k , F 2

k 〉, F 1
k ,F 2

k ∈ F , F 1
k 6= F 2

k

such that M ‖ ((F 1
k ‖ F 2

k ) ◦ Ed
k) |= ϕ

The safety interface makes explicit which single and double faults the compo-
nent can tolerate, and the corresponding environments capture the assumptions
that M requires for resilience to these faults. For single faults, we specify one
environment assumption Es under which the component is resilient to any fault
from a given set of interest. For double faults, we are more fine-grained and
specify for each fault pair of interest an environment in which the module is re-
silient to their joint occurrence. Multiple faults could be handled similarly. The
safety interface need not cover all possible faults (and in fact could be empty):
the provider of a component only specifies what is explicitly known about it.

Definition 7 (Component). Let ϕ be a system-level safety property, M a mod-
ule and SIϕ a safety interface for M . A component C is the tuple 〈M,SIϕ〉.

We wish to deliver a component with precomputed information about the set
of tolerated fault modes. To check safe use of the component one verifies that the
actual environment satisfies the component assumptions which guarantee safety
under faults.

3 Deriving safety interfaces

In this section we provide guidelines for how a component developer creates the
safety interface. The developer needs to characterise environments in which a
module functions correctly in the presence of a given set of faults. We first derive
such an environment (in fact, the most general one) in the ideal case without
faults. Next, we use the obtained environment abstraction to determine more
restrictive environments under which the module is resilient, first to a chosen set
of single faults and then for the occurrence of fault pairs.



3.1 Generating a constraining environment

If M is a module such that M 2 ¬ϕ, the weakest (least restrictive) environment
Eϕ

w in order to satisfy ϕ can be generated as shown in Figure 1. The algorithm
uses a model checker to check whether the module M in parallel with an envi-
ronment E satisfies the safety property ϕ; i.e. M ‖ E |= ϕ.

Fig. 1. The abstraction algorithm.

Initially, the algorithm starts out with an empty constraint E0 on the envi-
ronment and at each iteration i, the algorithm strengthens the constraints Ei

by analysing the counter-example generated by the model checker and removing
the forbidden states. This corresponds to removing behaviour from (or strength-
ening) the environment. In the next iteration, the environment Ei+1 should at
least not exhibit the behaviour reflected by the counter-example at iteration i.
The algorithm stops at a fixpoint when Ei+1 = Ei = Eϕ

w.

Proposition 1. The environment Eϕ
w generated by the algorithm is the least

restrictive environment in which M satisifies the property ϕ. That is, for any
environment E, M ‖ E |= ϕ iff E ≤ Eϕ

w.

The proof can be done by adapting the reasoning by Halbwachs et. al. [14],
that synthesise a necessary and sufficient environment for an I/O machine M .

3.2 Identification of fault behaviours

Let M be a module that satisfies a safety property ϕ when placed in an environ-
ment E, assuming the ideal case without faults: M ‖ E |= ϕ. Let Fj be a fault
mode on variable vj which is an input to M from E. Denote by E′ = ∀vj E the
module with V E′

= V E \ vj , QE′

0 = ∀vj QE
0 and δE′

= ∀vj ∀v′
j δE .

Proposition 2. If M ‖ E |= ϕ and ∀vi E exists, then M ‖ (Fi ◦ ∀vi E) |= ϕ,
i.e., M is resilient to fault Fi in the environment ∀vi E.

By definition of ∀vi E, any state can be extended to a state of E with an arbitrary
value of vi. Thus, Fi ◦∀vi E ≤ E and the result follows by composing with M . In
particular, if Eϕ

w is the least restrictive environment for M and ϕ, then ∀vi Eϕ
w

is the least restrictive environment in which module M is resilient to fault Fi.
This result gives an environment in which a module is resilient to a single

fault. For the safety interface, we need an environment Es which makes the
module resilient to any one fault from the single fault resilient set. The desired
environment must be at least as restrictive as the environment required for
resilience of each of the individual fault modes. This is ensured by their parallel
composition.



Proposition 3. If M ‖ (Fi ◦ Ei) |= ϕ and M ‖ (Fj ◦ Ej) |= ϕ, and Ei, Ej are
compatible, then M ‖ (Ei ‖̂Ej) is resilient to any fault Fi or Fj individually.

This follows since any trace of Ei ‖̂Ej under fault Fi or Fj is either a trace
of Fi ◦ Ei or of Fj ◦ Ej . In particular, we can take Ei = ∀vi Eϕ

w with Eϕ
w the

least restrictive environment as determined in the previous section. Successive
application to each fault in the selected set yields Es = ∀vi Eϕ

w ‖̂ . . . ‖̂ ∀vn Eϕ
w as

the desired environment for the single element of the safety interface.
For resilience to double faults Fi and Fj , the environment must be restricted,

analogously to Proposition 2, to behaviours allowed for all values of vi and vj :

Proposition 4. If M ‖ E |= ϕ, and Fi, Fj are faults such that ∀vi∀vj E exists,
then M ‖ ((Fi ‖ Fj) ◦ ∀vi∀vj E) |= ϕ . That is, M is resilient to simultaneous
faults Fi and Fj in the environment ∀vi∀vj E.

Thus, if ∀vi∀vj E is nonempty, the pair 〈〈Fi, Fj〉,∀vi∀vj E〉 can be included
in the double fault resilience portion of the safety interface. Moreover, if Eϕ

w is the
least restrictive environment for M and ϕ, then ∀vi∀vj Eϕ

w is the least restrictive
environment in which M is simultaneously resilient to Fi and Fj .
Example: Suppose module M guarantees the safety property ϕ if the environ-
ment E ensures that of the two boolean inputs v1 and v2, at least one is set to
1: v1 ∨ v2 = 1. Then, the faulty environments become E1 = F1 ◦ E ≡ ∀v1 E ≡
∀v1 . v1 ∨ v2 = 1 ≡ v2 = 1 and E2 = F2 ◦ E ≡ v1 = 1. The environment which
is resilient to either fault is E1 ‖̂E2 ≡ v1 = 1 ∧ v2 = 1. There is no environment
under which the module is resilient to a double fault.

4 Component-based analysis of fault tolerance

We next describe the methodology of applying the above component model in
system safety analysis. Unlike component models that capture functional con-
tracts as interfaces, and then apply assume-guarantee reasoning for ensuring that
the system behaves functionally correct when built from given components, our
model does not aim to prove the satisfaction of a property. Rather, the purpose
of our analysis is to focus on sensitive faults. In other words, both resilience and
non-resilience information are interesting in the follow-up decisions. If the sys-
tem safety is indeed threatened by a single fault, then the systems engineer may
or may not be required to remove the risk of that fault by additional actions.
This typically implies further qualitative analysis of the risk for the fault and its
consequence, and is outside the scope of this paper. Combinations of multiple
faults typically bear a lower risk probability but as important to quantify and
analyse. If the safety of the system is not sensitive to a fault (pair), then the
engineer can confidently concentrate on other combinations of potential faults
that are a threat. In general, it is likely that none of these faults appear in
actual operation, and the whole study is only hypothetical in order to provide
arguments in preparing the safety case for certification purposes.

With this introduction, we will now proceed to explain the steps needed to
ascertain the sensitivity of the system to single (respectively multiple) faults.



4.1 General setup

Consider a system safety property ϕ and a component with safety interface SIϕ.
As delivered by the component provider, SIϕ specifies an environment in which
the component is safe, assuming no faults; another environment in which the
component is resilient to a set of single faults, and a safe environment for each
considered pair of simultaneous faults. Consider proving M1 ‖ M2 ‖ ... ‖ Mn |= ϕ
in the presence of a fault Fj in M1. If a safety interface SIϕ of M1 is known, with
single = 〈F s

1 , Es
1〉, and Fj ∈ F s

1 , it suffices to show that M2 ‖ . . . ‖ Mn ≤ Es
1 .

However, composing all modules is against the idea of modular verification.
This can be overcome using circular assume-guarantee rules [3], for which we
first derive an n-module version. The rule requires that every module in its envi-
ronment (an abstraction of the other modules) refines each other environment.
We can then infer that the system refines the composition of the environments
without paying the price of an expensive overall composition, and without having
to redo the entire analysis each time a component changes.

Lemma 1. Let Mj and Ej, 1 ≤ j ≤ n be modules and environments such that
the compositions I = M1 ‖ . . . ‖ Mn and E = E1 ‖̂ . . . ‖̂En exist and V E

j ⊆ V I
obs.

Then, if ∀i∀j Mj ‖ Ej ≤ Ek we have M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En.

In concise rule form:
∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En

The proof follows that of Proposition 5 in [3], showing inductively that every
step of the implementation I can be extended to a step of the specification E.
Requiring nonblocking composition guarantees soundness despite circularity.

To reason compositionally about safety, we add n premises stating that each
module in its given environment satisfies the safety property: ∀i Mi ‖ Ei |= ϕ.
Together with the premises above, we can then prove safety for the composition:

Proposition 5. If Mj and Ej, 1 ≤ j ≤ n satisfy the conditions of Lemma 1 and
in addition Mj ‖ Ej |= ϕ for 1 ≤ j ≤ n then we have M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ.

In concise form:
∀j Mj ‖ Ej |= ϕ ∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ

Proof. Composing Mj ‖ Ej |= ϕ for j = 1...n we get I ‖̂E |= ϕ. By Lemma 1,
M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En, or I ≤ E. Thus I ‖̂ I |= ϕ or I |= ϕ.

This rule provides a generic assume-guarantee framework, independent of
faults. We need to discharge n2 premises to prove the global property ϕ, but each
of those involves only one module, and at most two environment abstractions,
assumed to be much smaller than the global composition. To use the rule, we
need to find appropriate environments Ei, and to apply it to system safety,
the environments must make the premises hold even with the analyzed fault(s)
occurring. We derive these environments from the component safety interfaces.



4.2 Single faults

We assume that single faults affect only one component. Using the environments
Eϕ and Es, we check safety compositionally showing the premises of Prop. 5:
– a module in a faulty environment still provides an environment that guarantees
the safety of each other module in absence of another fault
– a module in a non-faulty environment provides for each other module the
environment of the SI which makes it resilient to single faults.
Thus, we need to show premises (a) Mj ‖ F ◦Es

j ≤ Eϕ
k and (b) Mk ‖ Eϕ

k ≤ Es
j ,

ranging over modules Mj with potential faults F , and non-faulty modules Mk.
If the interface provides the weakest environment Eϕ

w, the fault-specific premises
(a) can be jointly replaced by Mj ‖ Eϕ

j ≤ Eϕ
k , with fewer obligations to discharge.

4.3 Multiple faults

Next we study whether two faults Fa and Fb appearing in different components
can, together, violate system safety. In Proposition 5 we use different environ-
ments for each component, depending on how they are affected by faults:
– for a module Mi affected by both faults, we check whether the double part of
the safety interface contains a tuple 〈〈Fa, Fb〉, Eab

i 〉, and use environment Eab
i .

– for a module Mj with only one fault Fa, we use environment Ea = ∀vaEϕ
j .

– for a module Mk not affected by faults, we use the environment Eϕ
k .

Here, we have more fault-specific premises, but since environments for double
faults are more restrictive, some premises can subsume or be subsumed by those
for single faults. Thus, Mi ‖ Eab

i ≤ Eϕ
k follows from Mi ‖ Ea

i ≤ Eϕ
k , and checking

Mk ‖ Eϕ
k ≤ Eab

i subsumes checking for single faults Fa or Fb.

5 Application: JAS Leakage Detection Subsystem

As a proof of concept we have applied our method to the leakage detection sub-
system of the hydraulic system of the JAS 39 Gripen multi-role aircraft, obtained
from the Aerospace division of SAAB AB [15]. Both the original system model
and our component-based version are described in Esterel [5], a synchronous
language whose compiler ensures the nonblocking property upon composition.

5.1 Functionality and safety

The system’s purpose is to detect and stop potential leakages in two hydraulic
systems (HS1 and HS2) that provide certain moving parts of the aircraft with
mechanical power. Leakages in the hydraulic system could in the worst case lead
to such a low hydraulic pressure that the aircraft becomes uncontrollable. To
avoid this, four shut-off valves protect some of the branching oil pipes to ensure
that at least the other branches keep pressure and supply the moving parts with
power if a leakage is detected. However, closing more than one shut-off valve at
the same time could result in locking the flight control surfaces and the landing
gear which could have disastrous effects. Thus, overall aircraft safety depends
on the property ϕ: no more than one valve should be closed at the same time.



5.2 Architectural view

The electronic part of the leakage detection subsystem consists of three electronic
components (H-ECU, PLD1 and PLD2), four valves and two sets of sensors
(see Figure 2). The H-ECU continually reads the oil reservoir levels of the two
hydraulic systems, determines if there is a leakage, and if so, initialises a shut-
off sequence of the valves. To ensure that the overall property is satisfied, two
programmable logic devices, PLD1 and PLD2, continually read the status of the
valves and send signals to them as well. If the readings indicate that more than
two valves will close, PLD1 and PLD2 will disallow further closing of any valves.
Thus, PLD1 and PLD2 increase the fault tolerance of the shut-off subsystem
implemented in the H-ECU.

Each valve is controlled by two electrical signals, one signal on the high side
from the PLD2 and one on the low side from the H-ECU. Both of these signals
need to be present in order for the valve to close. In this study, we only consider
the three components H-ECU, PLD1 and PLD2. Thus, due to the functionality
of the valves, the property ϕ can be replaced by ϕ′: no more than one valve
should receive signals on both the high side and the low side at the same time.

Fig. 2. The hydraulic leakage detection system.

5.3 Analysis of fault tolerance

Modules: PLD1, PLD2 and HECU are represented as synchronous modules.
Fault modes: A set of fault modes FPLD1, FPLD2 and FHECU for each component
has been identified. Every input to the components has been analysed and the
possible faults have been modelled as corresponding fault modes.
Safety interface generation: The least restrictive environments Eϕ

PLD1, Eϕ
PLD2,

Eϕ
HECU of the components were generated by the algorithm of Section 3.1 using

a SAT-based model checker (Prover plugin of the Esterel environment).
The least restrictive environment Eϕ

PLD1 of PLD1 that makes the system
satisfy ϕ′ leaves all the inputs to PLD1 unconstrained. By Prop. 2, PLD1 in the
environment Eϕ

PLD1 is also resilient to all faults in FPLD1. Analysis shows that
due to their fault-tolerant design, HECU and PLD2 satisfy the property ϕ′ with
no constraints on their environment whatsoever, i.e., Eϕ

PLD2 = Eϕ
HECU = True.



Since none of Eϕ
PLD1, E

ϕ
PLD2 and Eϕ

HECU constrain any of the input variables
of their corresponding component, these components are resilient to all single
faults. Hence, the single fault resilience set of each safety interface will contain
every fault mode in the corresponding fault mode set. The generated minimal
environments also show that the components are resilient to all double faults,
creating a safety interface that includes all pairs of faults in the double fault
resilience portion of the safety interface.
Single-component faults: After computing the safety interfaces for the three com-
ponents in the application (w.r.t. single and double faults), the single component
fault analysis becomes trivial. No single or double fault of a single component
will cause a threat to system-level safety, since all faults are included in the
single fault resilience portion and all pairs of faults are included in the double
fault resilience portion of the safety interface.
Multiple-component faults: By checking ∀j Mi ‖ Fk ◦ Ei ≤ Ej for all module-
fault pairs (Mi, Fk) where Mi ∈ {PLD1, PLD2,HECU } and Fk ∈ FPLD1 ∪
FPLD2 ∪ FHECU we could conclude that no double fault on input signals would
make a threat to system-level safety.

5.4 Results

By generating safety interfaces as described in Section 3 and using the compo-
sitional techniques of Section 4 on the aerospace application we concluded that:
– All components in the system are resilient to single faults with respect to

the system level safety property ϕ′.
– All components in the system are resilient to double input value faults with

respect to the system level safety property ϕ′.
– No pair of faults in the system are a threat to system level safety.
– By analysing the components individually and generating the safety inter-

faces using Propositions 2-4, we were able to perform the fault tolerance
analysis without composing the whole system.

6 Conclusions

This paper extends component-based development, which has so far focused
on efficient system development, to efficient analysis of safety. Certification of
safety-critical systems includes providing evidence that a system satisfies certain
properties even in presence of undesired faults. This process is especially costly
since it has to be repeated for every component change in a system with a long
life cycle. We have provided formal models and methods to support this process
while hopefully reducing the burden of proof on the system integrator.

Any system will break if there are sufficient numbers of faults in its com-
ponents at run-time, either due to environment effects or due to inconsistencies
in designing interfaces. Safety analyses for industrial products typically assume
a number of independent faults and consider the effects of single and poten-
tially double faults. Triple and higher number of faults are typically shown to



be unlikely and not studied routinely. Our component interfaces capture what
an integrator can assume about the resilience that a component offers with re-
spect to single and double faults. The model could be extended to multiple faults
(triple and more) but then the combinatoric complexity would hamper the auto-
matic support for formal analysis. Already with this granularity, we believe that
there are enough gains in efficiency for the analysis performed at system level.

This paper uses a general fault model that covers arbitrary value changes at
component inputs. While this model is a powerful, for some cases it may be too
general and modelling specific faulty behaviour may improve analysis efficiency.
The use of reactive modules as generic base allows for more specific models in
future studies, such as handling transient faults with given behaviours.

The entire approach has so far had a qualitative nature. Many safety-critical
systems have to estimate a quantitative (probabilistic) measure of reliance on
a particular analysis. The study of the extensions of this model to quantitative
analyses is a topic for future work.

We have assumed that the misbehaviour of a component’s environment can
be captured by a discrete model (based on value domains with finite range). An
extension could consider more specific fault modes arising from interactions with
a physical environment given a continuous model. Also common mode failures
were excluded at this stage. Another future direction is efficient generation of
environment models. The naive approach presented here can be used as a proof
of concept and can obviously be improved by more advanced techniques.
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