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Summary. This chapter addresses challenges for model-driven development of em-
bedded systems in industrial practice. These are rooted in the necessity of flexible
development of new functionality at low development cost. Where a dependabil-
ity requirement is added, e.g. support for assurance of safety requirements, then
extending functionality by pluging in a new component, or modifying an existing
component, without extensive safety-related and fault tolerance tests, is far from
today’s industrial practice.

The chapter highlights lessons learnt from three applications of model-driven
development for high-assurance software components. The components were em-
bedded in vehicular safety restraints, aerospace, and secure radio communication
systems respectively. While our experiences in these three fields of application are
compared and contrasted, the emphasis will be placed on the specific requirements of
safety-critical software in aerospace systems with the following three characteristics:
long life, high level of assurance, and forthcoming demands on efficient upgrades of
assemblies of components. We discuss the need for relating intent specifications to
formally verified design models from which safety-critical code is generated.
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1 Introduction

Model-based development of embedded software is promoted as a means to
achieve cost-efficient development of code, and platform independent design.
If successful, the model-based approach is a means of realising the ”correct
by construction” philosophy whereby flaws in a product design are discovered
early at the design stage. Once adequate analysis on the design models assures
adherence to system requirements, generating executable code is a system-
atic process that translates models to platform-independent and platform-
dependent parts respectively. The idea is very attractive amid the increas-
ing drive for higher efficiency in producing embedded software. Software is
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undoubtedly the essential ingredient in introducing flexibility in product up-
grades and achieving shorter time-to-market for novel products. The questions
that are central to the studies in this chapter are: does model-based devel-
opment of software aid in developing embedded software that has specific
extra-functional requirements such as dependability and small footprint, and
does it support future upgrades including integration with legacy code?

The chapter summarises experiences from three case studies performed
during year 2003 and points out the important aspects that need to be
strengthened in today’s tools before the vision of model-driven embedded
system development can be a reality in high-assurance systems. All three ap-
plications were in domains that some element of assurance is present: a future
car airbag system being developed at the Swedish subsidiary of the company
Autoliv [Eri04], an encryption terminal (Tiger XS) for secure communication
on top of any communication equipment at the company Sectra [Gra04], and
a sanitised version of an unmanned vehicle with multi-mode control (also hu-
man operated) at Saab Aerospace [Elm03]. All three case studies aimed to
ascertain the benefit of the current modelling environments to the developers
of these systems, including the above criteria: efficient generation of usable
code, ease of assuring dependability requirements, and support for system
upgrades and integration.

The three application areas also have individual characteristics that are
distinctive for the different classes. In the airbag system the main goal is
to enable rapid product development amid changing technology. Thus, the
company requires a faster and more reliable means of porting a subsystem
that was e.g. developed for a 16 bit processor that has 128kb ROM to a 32
bit processor with 256kb ROM. For them, automatic code generation was
studied as a means to increase efficiency in product development. Another
main characteristic was the timeliness requirements - having 30ms between
the crash detection and firing of a restraint implies that some algorithms have
to be computed predictably (and within 500 µs).

In the Tiger XS communication platform the main requirements are inte-
gration with legacy code, platform independence and security assurance. Tiger
XS acts as a component in defence systems. It acts as a bridge that makes
any secure application (e.g. encrypted phone calls or encrypted SMS) to run
on top of any communication hardware (e.g. PDA or phone), and transforms
”black” clear text data to ”red” encrypted data. Hence, automatically gener-
ated code that refers to operating system primitives has to be easily adaptable
to new underlying platforms. Moreover, the security-intrinsic applications de-
mand that the generated code should follow a predefined coding style and be
suitable for human inspection.

Both of above applications have small footprint requirements and thus
essentially expect the size of the automatically generated code to be com-
parable to the hand-written code (the airbag system being at the extreme
with its byte-optimal handwritten code). In the third category of systems,
the aerospace related case study, footprint is a less dominant requirement.
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Instead the long life time and the safety-critical requirements of the system
imply that any upgrades made to the system over its lifetime should be easily
traceable to the original intent specifications. Since an aerospace product has
to go through well-established assurance prcedures and the certification of
the new generation of a product is as strict as the certification of the earlier
generation, the upgrade verification has a special status. Efficiency in code
generation has to be followed by efficiency in the verification process, assuring
that component upgrades do not jeopardise system level safety requirements.
This requirement is the one that is least covered by the literature on model-
based development and therefore deserves special attention in the current
chapter.

2 Intents and upgrades

From the three case studies one could initially deduce that automatic code
generation (to enhance shorter time to development) is an essential property
of tools that intend to bridge the gap between user level requirements and
the implemented code. Safety-critical code has, however, the additional char-
acteristic that the original sources of its requirements, often linked to system
level hazard analysis and mitigation of fault/error scenarios by architectural
solutions, need to be clearly documented as intents, and traced to any future
changes in the design or implemented code. Moreover, all changes to the de-
sign are followed by studying their impact on the documentation of the safety
case. Also, a modelling tool that supports formal verification makes the extra
difference in this context.

Upgrades necessitate replacing one component with another, or modify-
ing one component in some respect. The upgrade process is specially costly
for safety-critical systems as much of the analysis and review of the safety
arguments has to repeated for every significant change to the system. We be-
lieve that tool support in this industrial sector needs not only to encompass
fast time-to-market and support for formal analysis, but also to support cost-
effective upgrades. In this section we briefly review the potential approaches
for developing high-assurance systems that are built from components. These
may range over components that are acquired off-the-shelf (no source code) to
components that are developed in accordance with model-based development
techniques with design specifications and automatically generated code. We
briefly cover two broad areas that are gaining attention in recent years: the
component-based approach to development of software-intensive systems, and
the approach that can be labelled as ”constructing the correct”.

2.1 Dependability and Components

The software engineering community [Szy02, CSSW04] is promoting methods
for development of systems from components and is, to begin with, trying
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to define the notion of components by providing a number of examples (e.g.
[vOvdLKM00]). However, the emphasis in the works up to now has been on
the efficiency in the development process as opposed to assurance procedures.
Specially, the compositionality of the extra-functional properties has only re-
cently gained attention. The problem with extra-functional properties is that
they are typically defined at the system or service level. It is therefore not
trivial to pin down the properties that a component should have in order to
satisfy the system level properties when placed in the context of other com-
ponents. In some sense there is an inherent conflict between separation of
concerns (thereby restricting some design analyses to component level) and
overall guarantees for system/service level properties.

Let us consider a few examples of non-functional properties. A prime con-
cern in most high-assurance embedded systems is adherence to end-to-end
timing constraints, and the two specific attributes of dependability [ALR01],
namely reliability and safety. Real-time properties are cross-cutting concerns
and it is not possible to assure a real-time service by a system assembled from
components unless the component model captures the parameters needed for
real-time analysis in a well-defined manner [TNHN04, AT05]. This is an area
of work that has recently attracted attention with some progress in sight. But
what can be said about component assemblies and assessing the safety of the
system from characteristics of the components? The first obstacle that one
meets is that assessing system safety and reliability has been predominant
in hardware-intensive systems, thereby many approaches to assessment are
hardware-oriented. Extending these methods in a systematic way to software
components is only at early stages of research [Sch03].

A widespread myth about software is that the smaller the software unit the
higher its reliability is. A study by Jones shows for example that the number
of delayed and cancelled projects dramatically increases as the number of
function points (a measure of size) increases beyond 5000 [Jon95]. At this
level of complexity (roughly corresponding to 500k lines of code in languages
like Fortran) 79% of the projects are cancelled or delayed by over 6 months.
Thus, the ability to deliver a software intensive product that satisfies the
specification efficiently is obviously a major problem.

A valid question is therefore: can we increase the reliability of a system
by breaking it down to small manageable components? A follow-up question
being: if we have demonstrated/estimated the reliability for a component how
can we derive the reliability for the whole system based on a composition of
the reliability measures for the parts. There are some initial attempts for an-
swering these questions based on historical studies of modular designs. Hatton
shows for example that size-complexity-fault frequency relation is not linear
and there are some medium sized components that exhibit higher reliability
compared to both smaller and larger components [Hat97]. With regard to ag-
gregation at system level, Hamlet et.al. propose a theory for compositional
calculation of reliability metrics based on component metrics. Nevertheless,
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they contend that the theory needs to be validated in experimental settings
[HMW01].

Safety is the ability of a system to avoid harm to people and environment.
Hence, a car that never starts may seem to be safe by definition (although not
quite reliable!). However, a car that does not start can indeed pose a threat
to safety if it happens to stall on a railway crossing. In both cases the car fails
to meet its reliability requirements. In the latter case it creates a potential
threat to safety. Thus, safety is a property that intrinsically emerges from the
behaviour of the system under design and the conditions in its environment.

Since there is no way that software on its own harms people or envi-
ronment, it is incoherent to allocate attributes such as safety to a piece of
software or digital hardware. Software or digital hardware can only be exam-
ined in terms of the ways they may contribute towards appearance of hazards.
Hazards are failures that may potentially lead to violation of safety. Hence,
traditional analysis of system safety starts by considering the potential unsafe
scenarios, characterizing the risks for the hazard to take place (both in terms
of probability and in terms of severity of consequences), and make a quantified
decision on which scenario to consider as one that should never happen - no
matter how the constituent components in the system are designed developed
or operated.

Traditional analysis of system safety rests on techniques that focus specif-
ically on ”things that may go wrong”. Fault-tree analysis (FTA) and Failure
modes and events analysis (FMEA) are old techniques that grew within the
era of building systems from hardware (mainly mechanical) components. One
can contrast FTA and FMEA by considering one a top-down and the other as
bottom-up. In other words, in FTA analysis one is interested to know given a
potential failure in the system (a top level event) what are the combinations
of conditions that necessarily cause that event. In FMEA one tries to con-
sider each and every constituent of the system, and trace the effects of errors
manifesting in that constituent. An interesting area of work is to extend the
traditional safety analysis techniques so that they can indeed be applied to
software-based systems too [HNT04, GKR05].

According to aerospace experts most errors are found in the interface be-
tween components; either because the original specification was incomplete
(had forgotten to specify some aspect), or that it simply made wrong assump-
tions. A typical case is that one forgets the dependencies between several com-
ponents, and when one component is updated/changed, the potential changes
in other subsystems are not fully considered, or corresponding changes intro-
duced there. An example is an attribute such as measured wheel velocity. If
one reduces the number of pulses per rotation the resolution of the measure-
ment is decreased. This might be favourable in terms of costs in the landing
gear system, but the change might affect other consumers of the information.
So the supplier of the landing gear system may move on to a cheaper realisa-
tion not considering the changes implied in the flight control system or pilot
information system. The way such changes are propagated in the system are
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by administrative processes: meetings, agreements, reviews. Thus, we are in-
terested in studying whether component-based or model-based development
paradigms can support the assurance procedures for a system that is upgraded
by changing one or more of its components.

2.2 Constructing the correct

The traditional formal development process that can be labelled ”correct
by construction” has a natural extension in the model-based development
paradigm. The claim is: if the design can be formally analysed, one can demon-
strate that the known causes of failures that may violate safety, as identified
by hazard and risk analysis, have been removed. Such a design model can
thus be a sound basis from which automatic code generation can produce
high-assurance components. A seemingly opposite approach that may be la-
belled by the slogan ”constructing the correct” amounts to applying formal
verification techniques directly to source code. Since this approach is gaining
momentum in recent years, we believe that the proponents of model-based
development need to consider the impact of these techniques in future devel-
opment processes.

The ”constructing the correct” school is both old and new. Early versions
of the idea can be traced back to the works by Hoare and Floyd on formal
analysis of programs (late 60’s). In those years, the ability to reason about
the behaviour of a structured program in terms of assertions at entry and exit
points, based on deductions after execution of every program statement was
put forward as a fundamental argument for constructing correct programs.
One might argue that the early structured languages of 70’s were equivalent
to the high level modelling notations (e.g. UML family of languages) of today.
Thus, early proponents of ”constructing the correct” were indeed acting as
today’s proponents of the model-based formal verification (and thereby cor-
rect by construction idea). However, high level programming languages are
no longer at the top of the abstraction hierarchy today. Instead, one could
characterise the proponents of this approach by goal to find errors in real
executable software in an efficient manner. The claim is that in the end what
is running in the system to be delivered is the code. So, high assurance sys-
tems have to find a way to guarantee a predicable behaviour by the control
software.

A good overview of the recent trend in program verification can be found
in articles by Havelund, Visser, and co-authors [HV02, VHBP00] where it is
clearly emphasised that the purpose of investigating verification techniques for
program code is not that design verification is fruitless. Rather, it is recognised
that many software engineers instead of detailing construction decisions in a
design prefer to write the code directly. Also, tools that support design models
e.g. UML allow the modeller to include code fragments in a UML model.
Hence, verifying the code is promoted as an efficient assurance method. This
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approach is followed for several programming languages, among them Java,
C, Ada and hardware design languages e.g. [CCO02, BCC+02, CCG+04].

2.3 Dependable assemblies of correct components

Based on the short review above we believe that upgrading dependable sys-
tems based on updating and replacing components is an area that model-
based development needs to address in the future. The overall methodology
can be sketched as follows. Each developed component need to carry with it
information about its effect on overall system behaviour with respect to extra-
functional properties. These could be interfaces that capture timing behaviour
of the component, or interfaces that tell what behaviour can be expected from
a component if the assumptions on its environment are invalidated by exter-
nal (unintended) faults. The latter can be used in a similar manner that
FTA/FMEA analysis is carried out on assemblies of hardware components.
How the interfaces are derived and how they are used in an upgrade process
is an interesting field of study, but it seems that there will be potential use for
both paradigms, correct-by-construction using model-based development, and
constructing-the-correct where the source code of a component is assured to
satisfy its contracted interfaces by its team of developers. In either case, the
remaining step would be to assure that given certain interfaces the assembly of
(upgraded) components satisfy its system level properties, e.g. safety-related
requirements. This requires proof techniques that build up incremental proofs
based on earlier analyses and thus achieve the overall assurance in an effcient
manner.

None of the tools and environments for model-based development are ma-
ture enough to satisfy the above needs. We use the details of three case studies
to illustrate this gap and hopefully provide a benchmark for future studies.
Two of the case studies concentrate on the needs related to the automatic
generation of code. Since there is more maturity on the tool front in those
respects, we will report on these in less detail. The third case study, a sani-
tised example of an unmanned vehicle that was provided by Saab Aerospace,
serves to illustrate the need for tracing intents to formally verified component
code. This example, although much simpler than any realistic aerospace ap-
plication, has some elements that illustrate the need for (1) support for intent
specifications and tracing the system level requirements over a long lifetime,
including the need for tracing changing requirements all the way down to
new design models of upgraded components, and (2) the necessity of support
for formal verification to achieve efficient verification of safety-related proper-
ties; in particular, incremental verification of such properties upon component
upgrades.



8 Jonas Elmqvist and Simin Nadjm-Tehrani

Fig. 1. The structure of an Intent Specification [Cor03a]

3 Intent Specifications

Intent Specifications [Lev00] is a new approach for specifying and designing
systems that is based on research both in system engineering and psychology.
The primary difference from other approaches is the structure (see Fig. 1).
An intent specification is structured in six levels, each level answering the
question ”why?” i.e. providing intentions about the level below, as opposed
to traditional specification methods where levels are divided into answering
what to do from how to do it. Each level is mapped to levels below providing
traceability of system goals and high-level requirements down to implementa-
tion and vice versa. Each level has its own view of the system and is a different
model of the system [GHA02].

• Level 0 is the project management’s view of the system.
• Level 1 is the customers view, includes system goals, high-level require-

ments, hazards, design constraints, assumptions and system limitations.
• Level 2 is the system engineer’s view of the system and it describes the

system design principles.
• Level 3 describes the black box behaviour of the system and its modules.

Formal analysis methods can be used on this level.
• Level 4 - 6 provides information of physical and logical representation of

the system down to implementation and maintenance information. These
levels were not the focus of this study.
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In the unmanned vehicle case study below, the tool used for implementing
an intent specification was SpecTRM (Specification Toolkit and Requirements
Methodology), a commercial tool from Safeware Engineering [Cor03a]. It is
a document-oriented tool that focuses on system requirements and specifica-
tion. The tool works more or less as an advanced word processor and uses
the intent specification methodology as a foundation with the seven levels as
different chapters in the specification. The black box models in Level 3 are
written in a specification and modelling language called SpecTRM-RL based
on the state-based specification language RSML that essentially summarise
state transitions using AND/OR trees [HL96]. The primary goal of the lan-
guage were readability and reviewability, completeness with respect to safety,
and assisting with system safety analysis of the requirements [LW04].

SpecTRM provides simulation and some static analysis of the SpecTRM-
RL models and also a limited support for traceability. By executing the models
and simulating the system, the engineer can study the behavior of the system
before the actual implementation. The formal analysis tools availiable are
robustness and determinism analysis. By analysing robustness it is meant
that SpecTRM checks if the modelled system has a specified response for
every sequence of inputs to the system. By analysing determinism it is meant
that the tool checks if several behaviors are specified for the same sequence of
inputs. However, both of these analysis tools are conservative, thus generating
false alarms as possible examples of nondeterminism and nonrobustness.

4 Support for Upgrades

The development process followed by most companies today, at least in the
safety-critical arena, follows what can be considered as a variant of V method.
It essentially assumes a strict control of the integrator company over the
developed components (in-house or subcontracted).

Model-driven tools and specially the UML-based support have grown from
the world of software development, with the advent of object-oriented design
in the last two decades. The safety requirements of aerospace systems can,
however, hardly be traced to a software component alone. Software is typ-
ically not harmful to the environment and can only contribute to violation
of safety. Achieving safety is typically ensured by a mix of architectural deci-
sions [LH94] and rigorous process for system development based on functional
decomposition. Examples of architectural decisions are incorporation of fault
tolerance via redundancy, hardware interlocks as a backup for software failure,
watchdogs, monitors, and so on. An interesting question is: how to support
the engineers who primarily perform system development in the old worlds
of structured design, to encompass the ”new” world of software design, and
link the two in the systems and safety engineering process? An orthogonal
question is how to support the process of upgrading an existing component
when new functional or safety requirements arise?
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In current system development processes all the safety analyses, including
FTA and FMEA mentioned in Section 2.1, and component-level and system
level verification have to be redone for every upgrade in the life cycle of the
system. Model-based development needs to address how this process can be
”shortened” by making an efficient analysis that assures preservation of safety
properties.

Fig. 2. The Sigma development process model

Elmqvist [Elm03] presents the Sigma development metaphor as a model
for system level upgrades based on component updates (see Fig. 2).The model
captures the iterative upgrade process of existing components as well as the
analysis processes that are essential during a system’s life-cycle.

4.1 Example: Unmanned Vehicle

The unmanned vehicle is controlled by the Remote Vehicle Control Unit
(RVCU). The vehicle operates inside a closed area (see Fig. 3) consisting
of a work area, a parking area and (stationary) obstacles. The vehicle can
be controlled by the operator either hands-on with a joystick or by planning
missions. Once leaving the parking area, the vehicle is not allowed to stop.

The role of the RVCU is to make sure that the vehicle is controlled safely
inside the area i.e. avoiding collisions with obstacles and avoiding the vehicle
to navigate outside the closed area.

The Dynamic Window Approach by Fox et al [FBT97] was used for ob-
stacle avoidance. The algorithm calculates an optimal trajectory by reducing
the search space of possible velocities based on the dynamics of the vehicle
and the position of the obstacles. The algorithm was slightly modified to fit
in the context of the unmanned vehicle example.
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Fig. 3. A possible environment with obstacles for the unmanned vehicle

Fig. 4. The RVCU architecture

The five components of the RVCU are presented in the architectural model
in Fig. 4:

• The Human Machine Interface is the interface between the operator and
the system

• The Map and Obstacle Database (MODB) provides a representation of
the map and the obstacles

• The Planner takes care of high-level mission planning during unmanned
missions

• The Navigation System handles the final control of the vehicle by using
the Modified Dynamic Window Algorithm
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• The Control System is the coordinating module that besides interacting
with both Planner and Navigation system also communicates with the
robot

The RVCU can be considered a safety-critical real-time system as the
collisions with the obstacles or moving outside the designated area can be
considered to result in harming people or environment.

To illustrate life-time changes we have added a new system requirement,
and considered the effects of an upgrade to satisfy that requirement on the
existing design. The stationary obstacles in the first design are considered to
be moving objects in the new upgraded version.

5 From Specification to Design

The third level of intent specifications described in Section 3 is quite close to a
design model but does not (yet) have the ambition of supporting model-driven
development. The level 3 in SpecTRM provides an input-output interface for
each component, and a description of the internal states and externally visible
modes of the system. In addition, it gives a human readable logic for state
transition conditions in terms of AND/OR tables. However, to go from intents
to implementations, and in particular via designs whose dynamic properties
are formally analysable, we need a bridge to a tool that supports both code
generation and formal analysis.

In the RVCU case study we chose the Esterel Studio programming en-
vironment for further development of the model [Tec03, BG92]. The choice
was primarily motivated by the support for formal verification in Esterel, us-
ing the Prover plugin model checker that can deal with systems with large
state spaces using St̊almarck’s method [SS98]. It also exemplifies a tool that
is suitable for this class of applications due to its ability to deal with hetero-
geneity. Esterel designs have Mealy machines as formal semantics and are as
such suitable for hardware/software codesign. A high-level description of an
application can after formal analysis be translated to code that is the basis
of a software implementation (C code) or hardware implementation (VHDL
code).

Another benefit of using this environment in our safety-related case study
was that the same environment (the same design model) can in fact be used as
a test bed for study of fault tolerance and failure mode analyses by systemat-
ically plugging in failure modes for various inputs or outputs of a component
and studying the effects of single or multiple faults in terms of violations of
safety at system level [HNT03]. This combines model-based development with
formal analysis of safety (in the spirit of FTA/FMEA) using the same design
model, and without building fault trees.
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6 Results and lessons learnt

This section outlines the results of application of model-driven development to
all the three application domains, and in each case summarises the remaining
challenges facing the application developer. We begin by the unmanned vehicle
example as it was described in more detail here, and then briefly describe the
comparison with the other two studies mentioned in Section 1.

6.1 Upgraded unmanned vehicle

An upgrade of the requirement was done after the initial design and verifica-
tion of the unmanned vehicle control system. Instead of having static obstacles
inside the closed area, the vehicle should be able to avoid moving obstacles.

The study proved SpecTRM (version 1.0.14) to be a rather immature tool
and more suitable for the design of control-handling modules such as the
Control System than data-intensive modules such as the Navigation System.
Further, SpecTRM does not yet provide any automatic traces or any overview
of the traces i.e. the traceability must be created explicitly by the developer as
hypertext links. A more sophisticated support for traces would be appropriate
in order to make the tool suitable for industrial use.

One could question what is the use of an intent specification tool when
there are already more mature requirements engineering tools (such as CORE
[Cor03b] and DOORS [Tel03]) available on the market. The reason we thought
a tool like SpecTRM was interesting in the context of the case study was that
the tool was supposed to support the hierarchy of models described in Figure
1 that is well-suited for the safety-critical systems development. Also, earlier
experience with the SpecTRM-RL language had proven to be positive in terms
of communication with non-experts and thereby ease of validation of the early
requirements. In contrast to the structure of the above level 3 models, that
are quite understandable to engineers from different disciplines, the software
engineering oriented tools like DOORS that build upon the object-oriented
notation have so far been less accessible to other engineers. However, the
SpecTRM tool was not able to provide convincing support to the involved
engineers to justify its use in the current status.

By manually converting the SpecTRM-RL models to Esterel modules, Es-
terel Studio could be used to verify the system and its components. Esterel
Studio and its built-in model checker were able to prove a majority of the
control properties of the RVCU. However, Esterel Studio does not provide
any framework for modular or compositional verification. After the upgrade,
the original verification process had to be redone. Furthermore, dealing with
numerical properties in the 2003 version of the Prover plug-in was insufficient
for our purposes.

We conclude that a tool environment that aids the developer beginning
with a specification language such as SpecTRM-RL down to verified code is
needed but is not fully available today. The unmanned vehicle example was
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indeed tried on a tool chain that combines SpecTRM and Esterel Studio, but
with lack of automatic translation between the tools, any of the tools could
be replaced by another alternative. A case study by Leveson and Weiss also
address the use of SpecTRM and intent specifications in model-based devel-
opment [LW04]. However, their focus is on reuse at the software behavioral
specification level and they do not address the issue of generating and verifying
code.

A positive aspect of the SpecTRM implementation is its use of the Java-
based Eclipse [Ecl03] environment that allows plug-in translators to be added
conveniently. A trial plug-in, SpecTerel, that automatically translates very
simple SpecTRM-RL models to very simple Esterel models was implemented
within a few days as a proof of concept.

6.2 Secure communication platform

The Tiger XS module is a software platform that provides a middleware func-
tion in a larger software system development. Here it was obvious that tools
that support the object-oriented design process are the main candidates.
Among the UML based tools for code generation two representatives were
studied in terms of the requirements of the case study: Rhapsody from iLogix
[ILo04] and Visual State from IAR systems [IAR04]. However, in both cases
it was found that both tools provide both too much and too little support.

Rhapsody provides too much support in the sense that it has a power-
ful extended UML language having a comparatively steeper learning curve.
However, the primary reason for not being considered as a candidate for tool
generation at Sectra was that it targets complete systems and some difficulty
was experienced in merging existing (legacy) C-code for other parts of the
application and the automatically generated Target XS code.

Visual state, on the other hand, was a light-weight tool with little extra
functionality. In particular, it was possible to adjust the coding style to the
style required by Sectra by implementing the translation of the action lan-
guage (the part that defined effects of state transitions in terms of new value
assignments to variables) so that it suits the in-house requirements. The main
weakness of the tool in this specific case was the support for integration of
the generated C-code with other legacy code, and in particular, that it was
cumbersome to use user-defined types. Also, the automatically generated code
was organised in terms of a number of arrays that were not human-readable
and satisfactory for security assurance-related inspections.

Although both tools were considered to generate small enough footprint
compared to the Sectra hand-written code, they were not adopted due to the
above reasons. To suit the needs of this case study, in the end, an interpreter-
based translation scheme was deemed the most useful. It resulted in an in-
house code generator based on a subset of Statecharts [Gra04].
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6.3 Airbag software

Rhapsody was also tested as a candidate for design and code generation of the
air bag software. Here, the architecture of the system was clearly divided in
two types of modules: those that were control-intensive and those that were
data-intensive. For the control-intensive parts the abstract modelling in Rhap-
sody in C, both in terms of class diagrams and Statecharts were found useful,
and the automatically generated code was tested on a target micro controller
(TX 19A). For the data-intensive parts, the code that implements signal pro-
cessing algorithms to detect when the vehicle is in crash, another tool that is
closer to the data flow abstractions used by the control engineer was deemed
useful. The tool Scade [Tec03] was studied for code generation in this part of
the application. Another useful feature of Scade was the formal verification
support with the Prover plug-in that was tested to a limited extent on the
crash algorithm model. Scade is a tool that is based on the language Lustre
[HCRP91] with a formal semantics, and has a history of usage in European
aerospace applications (the code is generated by a DO-178B certified compiler
that makes the tool an appropriate candidate for safety-critical applications).

The use of both modelling languages was found to reduce the time for de-
velopment of code (after excluding the learning time). For a particular airbag
function, this gain was quantified as a 60% decrease compared to the estimated
time taken for hand written code. The main drawback for the Rhapsody-
generated code was the code size, still a significant factor in choosing such
technology in the air bag systems. The low cost constraints of the ROM vi-
olate this option, as the size of the generated code was twice as large as the
optimised hand-written code. In both cases support for timing analysis of the
air bag software was missing, and this needs to be performed separately.

6.4 Final remarks

Our studies support the claim by providers of tools for model-based develop-
ment in that these tools do indeed reduce the time taken for development of
executable target code from high-level models that are easier to inspect, to
communicate, and to use as a documentation of a fairly complex system. The
needs of various application areas in terms of requirements on the generated
code were illustrated by three examples ranging from very tough code size
(memory) restrictions in the air bag system to less demanding requirements
on code size in the secure communication support and the unmanned vehicle
case. None of the tools however, have a component-based support. This is per-
haps not expected from tools like Esterel and Scade that have a state-based
or data-flow oriented style, close to the environment that other engineering
disciplines are used to (state machine or function blocks). But the enhance-
ment from object-oriented tools like Rapshody to component-based modelling
is needed if compositional analysis of upgrades is to be supported.
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Support for documentation of upgrades in a long life time, and in particu-
lar when the traceability of the rationale of early design decisions and intents
is a prerequisite to maintaining safety arguments is an obvious shortcoming of
the pure ”code-generators” in model based development today. Where intents
can be documented and traced (e.g. SpecTRM), the support for code genera-
tion, formal verification, and compositional analysis of upgrade effects are still
missing. Where design level models were the starting point (Rhapsody, Visual-
State, Esterel, Scade), no such support for component upgrade verification or
longer term documentation of intents and safety-related arguments were part
of the picture. In two of the applications we observed the dichotomy between
data-flow abstraction and the state-based control abstraction. UML diagrams
syntactically host both styles of modelling, but the semantic gaps still need
to be addressed in tools that aim to support development of high-assurance
heterogeneous systems. In particular, combining the worlds of structural de-
sign (hardware and mechanics) and object-oriented design (software) is a key
to model-based development of component-based high-assurance systems.
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