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Abstract. In this paper we present a quality of service (QoS) adap-
tive framework for dynamic reconfiguration of component-based real-
time systems. Our framework is light-weighted enabling reconfiguration
in resource constrained embedded environments. Furthermore, it is pos-
sible to reconfigure both components and aspects of a system, hence,
enabling finer tuning of a real-time system. Real-time QoS guarantees
are maintained in the system and under reconfiguration by employing
feedback-based scheduling methods.

1 Introduction

A large majority of computational activities in modern society are performed
within embedded and real-time systems. For a real-time system, it is essential
that results produced by the system are both produced correctly and in a timely
manner. To ensure timeliness, tasks® in a real-time system are associated with
deadlines, and a number of real-time scheduling techniques have been developed
ensuring that tasks meet their respective deadlines (see [1]).

Successful deployment of real-time and embedded systems strongly depends
on low development costs, a short time to market, and a high degree of reconfig-
urability. One way to meet these requirements is to adopt the component-based
software development (CBSD) paradigm for real-time systems. This way systems
are developed out of pre-defined software components to fit a specific real-time
application. Component-based real-time system approaches, e.g., [2-4], do not
provide efficient support for crosscutting features such as concurrency control or
scheduling algorithms that typically crosscut the structure of the overall system.
Aspect-oriented software development (AOSD) [5] has emerged as a new prin-
ciple for software development that provides an efficient way of modularizing
crosscutting concerns in software systems in "modules", called aspects. Using
AOSD, systems can be built to contain only the required functionality, while
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other functional and non-functional crosscutting features encapsulated into as-
pects can be added to the system in a process called aspect weaving.

In an effort to integrate the two software engineering techniques, namely
AOSD and CBSD, into real-time system development we have developed an ap-
proach to aspectual component-based real-time system development, ACCORD
[6]. Given some system requirements ACCORD enables efficient system config-
uration from components and aspects from a library.

Most real-time component-based software systems, including our earlier work
on ACCORD, are pre-compiled. This implies that the resulting running system
is monolithic and not dynamically reconfigurable. Consequently, when updating
or maintaining these systems, they need to be shut down for recompilation. How-
ever, reconfiguring a system on-line is desirable for embedded real-time systems
that require continuous hardware and software upgrades in response to techno-
logical advancements, environmental change, or alteration of system goals during
system operation [7, 3]. For example, small embedded real-time sensor-based con-
trol systems must be designed and developed such that software resources, e.g.,
controllers and device drivers, change on the fly. Hence, a reconfiguration mech-
anism, enabling adding removing, and exchanging components on-line, is needed
to ensure that the software is updated without interrupting the execution of the
system.

However, dynamic reconfiguration of a real-time system changes the tem-
poral behavior of the system. For example, exchanging a component for a new
version could result in a task execution time that is higher than the execution
time obtained when using the existing component in the system. This in turn
influences the real-time performance of the system negatively. Hence, the dy-
namic reconfiguration mechanism should be capable of ensuring that the system
satisfies real-time performance guarantees, in terms of quality of service (QoS).

In this paper we present a QoS-adaptive framework for dynamic reconfigu-
ration of real-time systems. The QoS-adaptive framework is an extension of the
previous work on ACCORD to support exchange of components and aspects
during run-time while preserving real-time performance guarantees. The main
benefits introduced by this framework are as follows.

— The framework enables dynamic reconfiguration of real-time systems in em-
bedded environments. We have identified a list of requirements that dynami-
cally reconfigurable real-time and embedded systems need to satisfy, and we
show that our framework fulfills these requirements.

— The framework is novel in that it supports dynamic reconfiguration in two
dimensions: reconfiguration of components and reconfiguration of aspects.
Dynamic reconfiguration of both components and aspects provides higher
reusability and flexibility of a real-time system.

— The framework ensures that QoS guarantees are maintained even under re-
configuration. By employing feedback control structure we ensure that a
real-time system adapts to the changes in the temporal behavior of compo-
nents which occur during dynamic reconfiguration.



The paper is organized as follows. We formulate the problem in section 2.
Our QoS-adaptive framework for dynamic reconfiguration is presented in section
3. The paper finishes with main conclusions in section 4.

2 Problem Formulation

In this section we identify a number of requirements that the reconfiguration
framework needs to fulfill to ensure dynamic reconfigurability in a real-time
system and discuss to what degree these requirements are fulfilled by existing
approaches.

R1 A reconfiguration framework of a real-time system should be light-weight,
implying that in normal operation of the system this framework must not
introduce any significant overhead in the task execution and memory con-
sumption of the system. This is to ensure that the system is usable in an
embedded and real-time environment with sparse recourses in terms of CPU
and memory.

R2 There should not be a restriction on the number of components that could
be exchanged or added/removed from the system since reconfiguration may
affect the entire system.

R3 Reconfiguration may be requested at any time, and the system has no a
priori knowledge of the possible components that are to be reconfigured in
the system.

R4 Reconfiguration must be carried out efficiently in terms of the granularity of
exchangeable parts, implying that flexibility for fine-tuning of an embedded
real-time application should be ensured. One should be able to exchange both
functionality that is encapsulated into components and real-time algorithms
that typically crosscut several components.

Accurate temporal characteristics of software components that are being
added, removed, or exchanged in the system are not always available. More-
over, if temporal characteristics are available, the problem of determining exact
temporal characteristics of software on a target platform is known to be diffi-
cult due to, e.g., cache and branch prediction [8]. Therefore, we need to ensure
that, when reconfiguring the real-time system, the reconfiguration does not af-
fect the performance of the system negatively. That is, a real-time system under
reconfiguration should consider the varying temporal behavior of the software
components being reconfigured and adapt accordingly. The adaptation should
be such that specified performance requirements expressed in terms of a desired
QoS, bounded worst-case QoS, and timely adaptation are satisfied. Hence, the
following additional requirements on dynamically reconfigurable system arise.

R5 The system user must be able to specify the desired system QoS during
steady state, i.e., the state in which no reconfiguration is applied.

R6 In the face of a transient state during which reconfiguration is applied,
the worst-case system QoS and temporal adaptation must comply with the
specified requirements. More specifically, the QoS must satisfy worst-case



system QoS requirements and the QoS must converge towards and reach the
desired QoS within a certain specified time interval (also known as settling
time).

The majority of approaches enabling development of configurable real-time
systems is concerned with configuration of a real-time system in the design and
compilation phase and does not provide flexibility by dynamically reconfiguring
the system [9,4, 3]. Existing approaches [10, 11, 2] enabling dynamic reconfigu-
ration do not fulfill all of the identified requirements. The approach presented in
[11] does not satisfy requirement R1, and is not suitable for embedded environ-
ments. Approaches that do comply with R1, e.g., [10, 2], do not provide flexible
way of reconfiguration, e.g., system reconfiguration is done by pre-compiling pos-
sible configurations into the monolithic system, violating requirement R3 [2]. The
named approaches to dynamic real-time reconfiguration do not provide means
for exchanging algorithms and other crosscutting concerns in the system, and,
therefore, are not fulfilling requirement R4. There has been work on maintaining
performance guarantees under reconfiguration of real-time systems, addressing
requirements R5 and R6, but this has been done assuming that the worst-case
temporal behavior of components is known prior to the reconfiguration and/or
that the reconfiguration is done off-line [12, 11].

3 Approach

In this section we present our QoS-adaptive framework for dynamic reconfigu-
ration of real-time systems that fulfills identified requirements R1-R6. We first
review main characteristic of the ACCORD approach, as they were presented
in our previous work. Then we present extensions to the approach that enable
dynamic reconfiguration of a real-time system and discuss how QoS guarantees
are maintained under reconfiguration.

3.1 ACCORD

ACCORD |[6] prescribes that real-time systems should first be decomposed into
a set of components followed by decomposition into a set of aspects. Aspects are
properties of a system affecting its performance or semantics, and crosscutting
the functionality of a system.

ACCORD provides a real-time component model, denoted RTCOM, to sup-
port reconfigurability [6]. RTCOM components are “grey” as they are encap-
sulated in interfaces, while changes to their behavior can be performed in a
controlled way by aspect weaving. The process of weaving is typically done off-
line and it generates the modified source code of a component as specified by
aspects. An aspect consist of pointcuts, describing places in the code of compo-
nents where aspect should be woven, and advices, defining code that is to be
woven.

Each RTCOM component has two types of functional interfaces: provided
and required (see figure 1(a)). Provided interfaces reflect a set of operations



that a component provides to other components, while required interfaces re-
flect a set of operations that the component requires from other components.
Composition interfaces define reconfiguration locations in the component code.
Reconfiguration locations define the points in the component code where addi-
tional modification of components can be done by aspect weaving. These points
can be used by the component user (or component developer) to reconfigure a
component for a specific application. Reconfiguration locations are also used for
analysis purposes.
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Fig. 1. (a) Reconfigurable real-time component model (RTCOM), and (b) ACCORD
system configuration

Figure 1(b) illustrates the way a system is configured and deployed in the
underlying environment. Here, the composition and configuration of the system
via aspects and components is done at compile time. The final system deployed
in the environment is monolithic and cannot be reconfigured on-line.

3.2 Enabling Dynamic Reconfiguration

To enable dynamic reconfiguration we extend the original ACCORD approach
in two ways. Firstly, we extend the RTCOM component model to ensure preser-
vation of component and aspect states during reconfiguration. Secondly, we in-
troduce a middleware layer, denoted ACCORD component framework, which
handles communication among components and aspects.

Note that, in the context of ensuring real-time performance, an exchange of
a component encompasses all the dimensions of the dynamic reconfiguration as
it includes also a removal of the old version of a component and the addition of



a new version. Therefore, in the following, we focus primarily on explaining the
component exchange® part of the dynamic reconfiguration.

Extensions to RTCOM To be able to preserve the internal state of compo-
nents and aspects under reconfiguration, RTCOM is extended as follows. The
provided interface of a component is extended with two mandatory operations,
export and import. The export operation enables a component under recon-
figuration to export its state, i.e., to store its state outside its data space (in
the ACCORD component framework). The import operation ensures that the
exported state of a component, which is to be replaced, is correctly imported
into a new version of the component.

Enabling aspect exchange implies changing the way aspects are implemented
within RTCOM. To conform to the dynamic aspect reconfiguration, a feature
not supported by current aspect languages, and still enable general use of our
framework with any of the aspect and/or component languages, we augment as-
pects with provided and required interfaces. These interfaces play an important
role in communication and reconfiguration as we describe later in this section.
Observe also that having interfaces defined for each aspect provides better en-
capsulation of aspect functionality and still preserves the crosscutting nature of
an aspect.

System composition out of components and aspects now consists of the fol-
lowing steps (see figure 2(a)). First, aspects are woven off-line into components
they affect. Then, using information stored in interfaces of components and as-
pects, these are translated into run-time entities (shared objects) recognized by
the component framework. These run-time entities are then deployed onto the
component framework. Conceptually, this means that weaving and run-time en-
tity generation are done on a separate computer, and the obtained run-time
entities are uploaded in the system running on another computer. Having com-
ponents and aspects mapped into run-time entities that communicate via the
component framework enables easy reconfiguration of both components and as-
pects, satisfying requirement R4.

ACCORD Component Framework The ACCORD component framework
is a middleware layer between a run-time environment and the components,
which handles communication among components and aspects using jump tables
(inspired by [10]). The jump table contains the list of pointers to provided and
required interfaces of components and aspects. When exchanging a component
or an aspect, the jump table entries for the functional interface of a component
or an aspect are re-pointed to the new version of the component/aspect. As
mentioned, during reconfiguration the component framework temporarily stores
component and aspect internal states, using the export and import operations.

The component framework provides a user interface for reconfiguration. This
reconfiguration user interface consists of operations that enable adding, remov-

% A component exchange in the literature is also referred to as a live update of a
system.
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Fig. 2. (a) ACCORD system configuration revisited, and (b) an example of the relation
between tasks and components

ing, or exchanging components (see figure 3). During the system lifetime, recon-
figuration can be requested at any time using these operations, thus, fulfilling
requirement R3.

Before allowing reconfiguration to take place, the component framework al-
ways makes sure that the system can undergo reconfiguration without interrupt-
ing the task execution (line 2 in figures 3(a-c)). Tasks, which rely on operations
of components that are to be reconfigured, have to be completed before the re-
configuration is carried out. This is exemplified in figure 2(b), where there are
four components denoted by ci,...,c4, and three tasks denoted by ti,...,%3.
Task t1 uses operations of component ¢; and ¢z, while t5 uses ¢; and cy. Both ¢4
and t5 have to complete executing before ¢; can be exchanged. However, only ¢,
needs to be completed before c3 can be exchanged. Once the system can undergo
reconfiguration, the actual exchange of components is initiated.

1 exchange(c!,c2){ 1 remove(c){ 1 add(c){
2 makeSystemReady(); 2 makeSystemReady(); 2  makeSystemReady();
3 remove(cl); 3 if (c.hasStateO{ 3 if (statePresent){
4 redirect(ct,c?); 4 state=c.export(); 4 c.import(state);
5 add(c?); 5 statePresent=true; 5 statePresent=false;
6 ) 6 ) 6
7} 7}
(a) exchange (b) remove (c) add

Fig. 3. Reconfiguration of a component

For example, the exchange of an old version of a component ¢, denoted c',
with a new version, c?, is carried out after the system is prepared for exchange,
by first removing the component from the system (line 3 in 3(a)). The removal
is carried out by exporting the state of (an old version) of a component into the



framework (lines 3-5 in figure 3(a)). Then the jump table is re-pointed to the
functional interfaces of the new version, c?, of the component (line 4 in figure
3(b)). Finally, the new component is added to the system (line 5 in figure 3(a)).
The operation add restores states in the new version of the component using the
import operation (line 4 in figure 3(c)). The role of the statePresent variable
in remove and add operations is to ensure that the state of a component is
restored only if it is needed. Described reconfiguration mechanism is hidden in
the component framework and it enables fast and light-weight reconfiguration,
satisfying requirement R1.

The reconfiguration of any number of components can be done by a user,
which can either be the system user (human) or an application (requirement
R2). The component framework is aware of the version of a component, via the
version number of a component, in the current configuration. When a new version
is compiled into the run-time directory (the component is loaded in the memory
by the framework), this is detected during application self-inspection and the
component is exchanged with another version using the exchange operation of
the component framework (see figure 3(a)). If an arbitrary number of components
needs to be exchanged this can be done by invoking exchange operation for each
of the components. This also implies that components with dependencies can be
exchanged safely, in a sequence of appropriate exchange calls, since the tasks
using these components will be completed before the exchange takes place.

When wanting to exchange one of the algorithms that crosscut the overall
system, the reconfiguration can be done by exchanging aspects. Exchange is done
by first weaving the desired new aspect into affected components off-line, and
then employing the reconfiguration of affected components as described above®.
Note that it is not possible to exchange aspects if they are not encapsulated
into interfaces and translated into corresponding real-time entities. Although
the dynamic reconfiguration of aspects is done via component exchange, the
benefits of aspect-orientation are still fully retained as changes to the code that
crosscut many components are still done in an automated, efficient, and modular
way via aspect weaving.

3.3 Enabling QoS Adaptiveness
Recall requirements R5 and R6, stating that the system administrator must be
able to specify desired system QoS and transient state system QoS in terms
of worst-case QoS and how fast the QoS should converge toward the desired
QoS. To fulfill R5 and R6 and, therefore, provide QoS guarantees under system
reconfiguration we employ feedback control [14]. Applying feedback to control
the QoS of computer systems is referred to as feedback control scheduling (FCS),
and this technique has been introduced as a promising foundation for QoS control
of complex real-time systems [13-15].

The desired nominal system QoS is expressed in terms of a reference QoS,
which gives the level of QoS that the system must provide when it is in the steady

5 An aspect exchange can be, from the dynamic reconfiguration perspective, regarded
as exchange of a number of components with new (woven) versions.
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Fig. 4. Feedback control structure

state, i.e., when no reconfiguration is currently taking place and any effects of
previous reconfiguration have passed. When a reconfiguration is taking place the
system alternates to the transient state, which is characterized by fluctuations
in QoS. The desired transient state QoS is usually expressed in terms of the
maximum overshoot and the settling time [14]. The maximum overshoot M, is
the worst-case system QoS in a transient system state (under reconfiguration)
and it is given in percentage. Hence, the maximum performance degradation of
the system under reconfiguration is bounded by M,,. The settling time 7 is the
time for the transient overshoot to decay and reach the steady state QoS. Hence,
the settling time is a measure of system adaptability, i.e., how fast the system
converges toward the desired QoS in the face of reconfiguration.

Typically, one is interested in controlling the performance of real-time sys-
tems using the metric deadline miss ratio [15], which gives the ratio of tasks
that have missed their deadlines. We have employed a feedback-based QoS man-
agement method, referred to as FC-M [15], in the ACCORD dynamic reconfig-
uration framework. Using FC-M deadline miss ratio is controlled by modifying
the admitted load. We say that a task is terminated when it has completed
or missed its deadline. Let missedTasks(k) be the number of tasks that have
missed their deadline and terminatedTasks(k) be the number of terminated
admitted tasks in the time interval [(k — 1)T,kT]. The deadline miss ratio,

m(k) = te%fiiizd";szg)(m, denotes the ratio of tasks that have missed their

deadlines.

In figure 4, the performance error, e,,(k) = m,(k) — m(k), is computed to
quantize the difference between the desired deadline miss ratio, given by the
reference m,(k), and the measured deadline miss ratio m(k). The change to the
load ¢&;(k), which we denote as the manipulated variable, is derived using a P
controller, hence, ¢;(k) = Kpe,,(k), where Kp is a tunable variable. The load
target (k) is the integration of ¢;(k), i.e., l(k + 1) = I(k) + 0;(k). Admission
control is then used to carry out the change in load, where a task is admitted
into the system if the sum of the load of the task (that is waiting to be admitted)
and the load of the already admitted tasks is less than the load target I(k).

Consider the following example where the deadline miss ratio reference is
set to 0.1 and the load threshold at the 10" sampling instant is set to 0.9,
ie, m, = 0.1 and [(10) = 0.9. A component exchange during the previous
sampling interval has resulted in an increase in the execution time of the tasks,
and consequently the deadline miss ratio has increased to m(10) = 0.2. Clearly,
the component exchange has degraded the performance of the system. Therefore,



we need to reduce the deadline miss ratio to the reference value m,. = 0.1. This is
done by taking the measured value of the deadline miss ratio from the system and
computing the performance error e,,(10) = m,(10) —m(10) = (0.1—0.2) = —0.1
and then computing the change in load, i.e., §;(10) = —0.1Kp; following the
steps in the feedback structure from figure 4. The load threshold during the
next sampling interval is changed to {(11) = [(10) 4+ 6;(10) = 0.9 — 0.1Kp. The
admitted load is reduced as a result of a decrease in the load threshold and,
consequently, the deadline miss ratio for the 11" sampling instant is reduced.

System configuration Feedback control

T T T Y T T T

Component Framework

Jump

table Operating system ‘

Fig. 5. ACCORD system configuration revisited

QoS management related components and aspects are implemented accord-
ing to the extended RTCOM model and deployed into the ACCORD compo-
nent framework. The structure of the dynamically reconfigurable system that
guarantees QoS is depicted in figure 5. QoS guarantees are now satisfied in the
framework by having an actuator component (AC) that implements changes in
the manipulated variable and the feedback control component (FCC), which im-
plements the control loop by measuring the controlled variable and computing
the manipulated variable. The FC-M QoS algorithm is implemented as an as-
pect, crosscutting AC and FCC. For more details on how feedback loop can be
designed using aspects and components and configured statically, as well as what
types of possible QoS algorithms are supported, we refer interested readers to
[16].

4 Summary

The majority of the component-based real-time systems focuses on static re-
configuration of a real-time system. However, real-time systems that are tightly
coupled with their environment cannot be halted for reconfiguration to take
place as their continuous operation is of paramount importance. Even if a recon-
figuration takes place, affecting the temporal behavior of the system, the QoS
provided by these systems must remain unaltered.

We have addressed this problem by presenting a QoS-adaptive framework
for dynamic reconfiguration of real-time systems. Our framework is founded
on aspectual component-based real-time system development, an approach that
combines component-based and aspect-oriented software development with real-
time system development. Hence, the framework supports reconfiguration in



terms of components and aspects, which increases the granularity of exchange-
able parts. The framework also ensures that real-time performance guarantees
are maintained even when the system undergoes dynamic reconfiguration. Us-
ing the QoS-adaptive framework for dynamic reconfiguration results in efficient
development and software upgrading of real-time systems, conforming to strict
QoS requirements that are applied to performance-critical real-time systems.
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