
Data Management in Real-Time Systems: a Case of On-Demand Updates in
Vehicle Control Systems∗

Thomas Gustafsson and Jörgen Hansson

Department of Computer Science, Linköping University, Sweden
E-mail:{thogu,jorha}@ida.liu.se

Abstract

Real-time and embedded applications normally have
constraints both with respect to timeliness and freshness of
data they use. At the same time it is important that the re-
sources are utilized as efficient as possible, e.g., for CPU
resources unnecessary calculations should be lowered as
much as possible. This is especially true for vehicle control
systems, which are our targeting application area. The con-
tribution of this paper is a new algorithm (ODTB) for up-
dating data items that can skip unnecessary updates allow-
ing for better utilization of the CPU. Performance evalua-
tions on an engine electronic control unit for automobiles
show that a database system using the new updating algo-
rithm reduces the number of recalculations to zero in steady
states. We also evaluate the algorithm using a simulator and
show that the ODTB performs better than well-established
updating algorithms (up to 50% more committed transac-
tions).

1. Introduction
In a vehicle (in this particular case a car), computing

units are used to control several functional parts of the
car. Every such unit is denoted an electronic control unit
(ECU). The software in the units is becoming more com-
plex due to increasing functionality that is possible because
of additional available resources such as memory and com-
puting power. This functionality is also needed because of
stricter law regulations that are put on the car industry. Ex-
amples are lower pollution, detection of evaporation of gas
through a hole in the gas hose, and detection of malfunc-
tioning components within a limited time. Since such func-
tionality requires additional data, the amount of data han-
dled by the ECUs is constantly increasing. Moreover, the
data has to be fresh when used to make correct calcula-

∗ This work was funded by ISIS (Information Systems for Industrial
Control and Supervision) and CENIIT (Center for IndustrialInforma-
tion Technology) under contract 01.07.

tions of control variables and accurate diagnosis of the sys-
tem. Data freshness in an ECU is guaranteed by updating
data items with fixed frequencies. Previous work [12, 16, 9]
proposes ways of determining fixed updating frequencies
on data items to fulfill freshness requirements. This means
that a data item is recalculated when it is about to be stale,
even though the new value of the data item is exactly the
same as before. Hence, the recalculation is unnecessary. We
collected statistical data from an engine ECU (EECU) that
shows most of such periodic recalculations are unneces-
sary at steady states, i.e., when sensor values are not chang-
ing. To avoid doing unnecessary updates another updating
mechanism than periodic updates is needed. Adelberg et al.
[2] found that on-demand installation of updates of data
items gives the best performance with respect to meeting
deadlines and usage of fresh data. Data freshness is defined
in the time domain by setting a maximum allowed age be-
fore which the data item is considered to be fresh [14].

On-demand updating algorithms — On-Demand Depth-
First Traversal (ODDFT) [7], On-Demand Optimistic op-
tion (ODO) [4], and On-Demand Knowledge-Based option
(ODKB) [4] — decide on necessary updates based on the
order data items are read, i.e., bottom-up in a precedence
graph of relationships of data items. Furthermore, the up-
dating algorithms also assume that a recalculation of a data
item always gives a new result. However, if calculations are
deterministic, i.e., given the same inputs the same output is
always produced, a more intelligent decision can be made
of which updates are needed. Based on this we propose a
new algorithm On-Demand Top-Bottom traversal with rele-
vance check (ODTB) that is based on the on-demand strat-
egy and is able to skip unnecessary calculations and, thus,
utilize the CPU better. A freshness check that checks if an
update is needed is added to ODDFT and ODKB resulting
in the algorithms ODDFTC and ODKBC, where C de-
notes that the freshness check is done in the value domain
of data items.

In this paper, a description of a database system im-
plementation in an EECU software is presented. Perfor-
mance evaluations of ODTB, using the database system on

Fuel

I/O

Scheduler

gd
1

gd
2

ad
2

ad
1

Air

gd
3

ad
1

To other applications
Applications

...

...

Figure 1. The software in the EECU.

an EECU, show that ODTB reduces the number of times pe-
riodic calculations need to be executed to zero when the sys-
tem enters a steady state. Performance evaluations on a sim-
ulator show that ODTB, ODDFTC, and ODKBC give im-
proved performance (up to 50% more committed transac-
tions) than ODDFT and ODKBV (V is data freshness in
value domain without freshness check).

The outline of the paper is as follows. An EECU soft-
ware description, the data and transaction model, and a
database implementation are given in section 2. Section 3
covers ODDFT and algorithms from [4]. The new algorithm
ODTB and extensions to ODDFT are described in section
4. Performance evaluations, related work, and finally con-
clusions are given in sections 5, 6, and 7, respectively.

2. A Real-Time Embedded System
This section describes an EECU and the requirements of

the software on the data and transaction model of the EECU.
Here we also discuss the implementation of a database sys-
tem in the EECU.

2.1. Electronic Engine Control Unit (EECU)

An EECU is used in vehicles to control the engine such
that the air/fuel mixture is optimal for the catalyst, the en-
gine is not knocking, and the fuel consumption is as low
as possible. To achieve these goals the EECU consists of
software that monitors the engine environment by reading
sensors, e.g., air pressure sensor, lambda sensor in the cat-
alyst, and engine temperature sensor. Control loops in the
EECU software derive values that are sent to actuators,
which are the means to control the engine. Examples of ac-
tuators are fuel injection times that determine the amount
of fuel injected into a cylinder and ignition time that deter-
mines when the air/fuel mixture should be ignited. More-
over, the calculations have to be finished within a given
time, i.e., they have deadlines.

The EECU software is layered, which is depicted in fig-
ure 1. Black boxes represent tasks, labeled boxes represent
data items, and arrows indicate inter-task communication.
The bottom layer consists of I/O functions such as reading

raw sensor values and transforming raw sensor values to en-
gineering quantities, and writing actuator values. On top of
the I/O layer is a scheduler that schedules tasks both peri-
odically and sporadically based on crank angles. The tasks
are organized into applications that constitute the top layer.
Each application is responsible for maintaining one particu-
lar part of the engine. Examples of applications are air, fuel,
ignition and diagnosis of the system, e.g., check if sensors
are working. Tasks communicate results by storing them ei-
ther in an application-wide data area (ad, application data
in figure 1) or in a global data area (gd in figure 1). The to-
tal number of data items in the EECU software is in the or-
der of thousands.

Data items have freshness requirements and these are
guaranteed by invoking the task that derives the data item
often enough. This way of maintaining data results in un-
necessary updates of data items, thus leading to worse per-
formance for the overall system.

Based on the description of the EECU software above,
and the experiences of our industrial partners (Mecel AB
and SAAB Fiat-GM Powertrain), the following require-
ments on the software have been identified.

R1 A way to maintain and organize data is needed because
the storing of data using global and application-wide
data areas makes it complex and expensive to main-
tain the software. Due to the vast amount of data items
stored in different places, it is easy to introduce the
same data item again, duplicating memory and CPU
consumption.

R2 Utilize available CPU resources efficiently in order to
be able to choose as cheap as possible CPU and also
extend the lifetime of the CPU.

R3 Calculations have to be finished before a deadline and
data items have freshness requirements.

A real-time database system divided into a central storage of
data with meta-information and a data management system,
making data items up-to-date when they are used, solves re-
quirements R1–R3.

2.2. Data and Transaction Model

Figure 1 shows that a calculation in a task uses one or
several data items to derive a new value of a data item.
Hence, every date item is associated with a calculation that
produces the value of the data item. The calculation is de-
noted a transaction,τ . Hence, a data item is associated with
one value, the most recently stored, and a transaction that
produces a value of the data item. The set of all data items
in the EECU software can be classified as base items (B)
and derived items (D). The base items are sensor values,
e.g., engine temperature, and the derived data items are ac-
tuator values or intermediate values used by several calcula-
tions, e.g., a fuel compensation factor based on temperature.
The relationship between data items can be described in a

b
5

b
6

d
2 d

3
d
4

d
8

d
7

d
6

b
1

d
9

* Enr. = enrichment

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

Basic fuel factor

Lambda status variable

Lambda status for lambda ramp

Enable lambda calculations

Fuel adaptation

Number of combustions

Airinlet pressure

Engine speed

Engine temperature

b
7

b
8

b
9

d
5

b
2

b
3

b
4

d
1

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

Lambda factor

Hot engine enr. factor

Enr.* factor one started engine

Enr. factor two started engine

Temp. compensation factor

Basic fuel and lambda factor

Start enrichment factor

Temp. compensation factor

Tot. mult. factor TOTALMULFAC

Figure 2. Data dependency graph.

directed acyclic graphG = (V, E), where nodes (V) are
the data items, and an edge from nodex to y shows thatx is
used by the transaction that derives values of data itemy. In
this paper we refer toG as the data dependency graph. Fig-
ure 2 shows the data dependency graph on a subset of data
items in the EECU software. This graph is used through-
out the paper. All data items read by a transaction to derive
a data itemd are denoted the read setR(d) of d. The value
of a data itemx stored in the database at timet is given by
vt

x.
There are three types of transactions: (i) sensor transac-

tions (ST) that only write monitored sensor values, (ii) user
transactions (UT) that are requests of calculations from the
system, and (iii) triggered updates (TU) that are generated
by the database system to make data items up-to-date. A
user transaction derives data itemdUT , a sensor transaction
derivesbST , and a triggered update derivesdTU .

2.3. Implementation of Database System

This section contains a description of our implementa-
tion of a database system in the EECU software. In the im-
plementation of the database system, a real-time operating
system, Rubus, is used as means for scheduling and com-
munication between tasks. The database system including
a concurrency control (CC) algorithm and the earliest dead-
line first (EDF) scheduling algorithm is implemented on top
of Rubus. The concurrency control algorithm is Optimistic
Concurrency Control Broadcast Commit (OCC-BC) [1].
The implementations of OCC-BC and EDF in the EECU
software are presented in [6]. We are using the periodic
tasks of the EECU software.

All the functionality of the original EECU software is
kept. The database system is added to the EECU software
and it runs in parallel to the tasks of the original EECU soft-

void TotalMulFac(s8 mode){
s8 transNr = TRANSACTIONSTART;
while(BeginTransaction(&transNr,

10000, 10, HIGHPRIORITY QUEUE,
mode, TOTALMULFAC)){

ReadDB(&transNr, FAC125, &fac12 5);
/* Do calculations */
WriteDB(&transNr, TOTALMULFAC,

local fac, &TotalMulFac);
CommitTransaction(&transNr);

}}

Figure 3. Example of a transaction.

ware. Hence, it is possible to compare the number of needed
updates of data items between the existing EECU software
and the added database system. All data items are stored
in one data area and access to the data items is possible
through a well-defined interface.

An example of a transaction in this system is given in fig-
ure 3. BeginTransaction starts a transaction with a relative
deadline of 10000µs that derives data item TOTALMUL-
FAC, d9 in figure 2. Read and write operations are handled
by ReadDB and WriteDB, and CommitTransaction notifies
the database system that the transaction commits. The next
invocation of BeginTransaction either breaks the loop due to
a successful commit or a deadline miss, or restarts the trans-
action due to a lock-conflict. Detailed elaboration of the in-
terface is presented in [6].

3. Existing On-Demand Updating Algorithms
This section describes existing on-demand algorithms.

Section 3.1 covers previous work on on-demand algorithms
using time domain for data freshness. Section 3.2 introduces
data freshness in the value domain and section 3.3 gives a
discussion of staleness of data items. Section 3.4 describes
ODDFT, and how on-demand algorithms using time domain
for data freshness can use value domain for data freshness.

3.1. Updating Algorithms and Data Freshness in
Time Domain

An on-demand updating algorithm checks a triggering
criterion every time a resource is requested (e.g., a data
item). If the triggering criterion evaluates to true, a certain
action is taken. When a read operation accesses a stale data
item, an update updating the data item is triggered. Stale-
ness can be decided in the time domain by using a max-
imum allowed age given by the absolute validity interval
(avi) [14], i.e.,

current time − timestamp(x) ≤ avi(x), (1)

wherex is a data item, andtimestamp(x) is the time when
x was last written to the database.

Every time a data item is requested condition 1 is
checked. The on-demand algorithm using condition 1 is de-
noted OD. The triggering criterion can be changed to
increase the throughput of UTs. In [4] three options of trig-
gering criteria are presented. These are (i)no option, which
represents OD, (ii)optimistic option, where an update is
only triggered if it can fit in the slack time of the trans-
action that does the read operation (denoted ODO), and
(iii) knowledge-based option, where an update is trig-
gered if it can fit in the slack time when the remaining
response time of the transaction has been accounted for (de-
noted ODKB).

3.2. Data Freshness in Value Domain

Data freshness of a data itemd can be defined in the
value domain, i.e., the freshness depends upon how much
data items inR(d) have changed sinced was previously cal-
culated and stored in the database [7].

We now define data freshness in the value domain of
data items by using definitions 3.1–3.3. These definitions
are used throughout the rest of the paper.

Definition 3.1. Each pair(d, x) whered is a derived data
item andx is an item fromR(d) has a data validity bound,
denotedδd,x, stating how much the value ofx can change
before the value ofd is affected.

The freshness of a data item with respect to one of its
read set members is defined as follows.

Definition 3.2. Let d be a derived data item andx a data
item fromR(d), andvt

x, vt′

x be values ofx at timest andt′

respectively. Thend is fresh with respect tox when|vt
x −

vt′

x | ≤ δd,x.

Definition 3.3. Letd be a derived data item derived at time
t using values of data items inR(d). Thend is fresh at time
t′ if it is fresh with respect to all data items fromR(d), i.e.,

∧

∀x∈R(d)

{

|vt
x − vt′

x | ≤ δd,x

}

(2)

evaluates to true.

3.3. Example of Data Freshness in Value Domain

An update of a data itemd is only needed if the data
item is stale, i.e., some of its parents have changed such
that the new values of the parents result in a different value
of data itemd compared to what is stored in the database.
A data item can have several ancestors on a path to a base
item in a data dependency graphG. For instance, one possi-
ble path denotedPd9−b6 from d9 to b6 in figure 2 is:d9, d7,
d2, b6. When a data item is updated it may make its neigh-
bors inG stale (this can be checked using equation 2). If
the update makes a data itemd stale, then all descendants
of d are possibly stale since a recalculation ofd may result

ODDFT(d)

for all x ∈ R(d) in prioritized orderdo
if changed(d) ∧ error(x, t) > δd,x then

Putτx in schedule
ODDFT(x)

end if
end for

Figure 4. Simplified version of ODDFT.

in a new value ofd that does not affect its descendants. Us-
ing the pathPd9−b6 , consider an update ofb6 makingd2

stale. Data itemsd7 andd9 are possibly changed and a re-
calculation ofd2 is needed and when it has finished it is
possible to determine ifd7 is stale.

3.4. Updating Algorithm Based on Data Freshness
in Value Domain

This section describes the ODDFT algorithm and the up-
dating scheme used with ODDFT [7].

When a UT starts to execute the data items it uses need
to be made fresh before it continues. Only data items that
can affectdUT need to be considered. A top-down traver-
sal of G cannot decide if a data item affectsdUT , thus, a
bottom-up traversal is needed. Possibly changed data items
need to be considered for being updated since it is not possi-
ble to conclude if a data item is fresh or stale in a bottom-up
approach. The data items are investigated in a depth-first or-
der (see figure 4) if an update is needed, and an update of
a data item is put as late as possible in the schedule of up-
dates. In this way, precedence constraints are obeyed. In or-
der to know which data items that are possibly changed the
following update scheme that consists of three steps is used.

In the first step (S1) all base items are updated with fixed
frequencies such that the base items are always fresh. When
a base itemb is updated, the freshness according to defini-
tion 3.2 is checked for each child ofb in G. Thus, in our
example, base itemsb1–b9 from figure 2 are updated with
fixed frequencies, e.g., base itemb3 is updated, thend1 is
checked if it is still fresh.

The second step (S2) is performed when a data itemd is
found to be stale due to the new value of base itemb. The
child d of b is marked as changed and all derivatives ofd

in G are also marked as changed. A derivative ofd is ac-
tually possibly changed (see section 3.3). An error function
was introduced in [7] to estimate the error of a data item at
a given timet. This time is the deadline of the UT. The esti-
mated error can together with the stored value andchanged

determine if a particular data item makes one of its chil-
dren stale at a given future timet.

The third step (S3) occurs every time a UT starts to ex-
ecute. The freshness of a data itemd that can be directly

or indirectly read by the UT is deduced using the follow-
ing equation:

∃x ∈ R(d)(changed(d) = true∧error(x, t) > δd,x) (3)

Data itemd is stale if equation 3 evaluates to true. A
schedule of updates is built with ODDFT during this step
using the algorithm in figure 4. For an ODDFT scheduling
example we refer to [7] due to space limitations.

Every update is tagged with the latest possible release
time and deadline by accounting for WCETs of added up-
dates in the schedule. When no more updates can be placed
in the schedule the algorithm terminates and the database
system starts triggering updates from the schedule. The up-
dates are executed with the same priority as the UT. If the
calculated release time of an update is earlier than the cur-
rent time, then the update is not executed since it is con-
sidered not to finish within its deadline. When a transac-
tion commits (user or triggered) thechanged flag of the in-
stalled data item is set to false and a freshness check is done
for its children. If a child is stale thenchanged flags are
set as in S2. It is possible that duplicates of an update are
put in the schedule. Such duplicates are checked for every
time an update is put in the schedule, and the ones clos-
est todeadline(τdUT

) are removed.
The algorithms OD, ODO, and ODKB can use freshness

in the value domain as defined in section 3.2. The updating
scheme, steps S1–S3, is used and S3 occurs for every read
operation in a UT or TU. The triggering criterion becomes
equation 3 and the chosen option (no option, optimistic op-
tion or knowledge-based option). These versions of the al-
gorithms are denoted ODV, ODO V, and ODKB V where
V indicates that the value domain is used for data fresh-

ness.

4. On-Demand Updating Algorithms With
Relevance Check

This section introduces a check before the triggering
of an update that makes it possible for ODDFT, ODV,
ODO V, and ODKB V to skip updates that would not pro-
duce a value different from the value stored in the database.
The new algorithm On-Demand Top-Bottom with relevance
check, ODTB, is described and a scheduling example is
given.

4.1. Enhancement to Existing Algorithms

Requirement R2 states that the CPU should be effi-
ciently utilized, i.e., unnecessary updates should be avoided.
All the updates that ODDFT puts in the schedule are ex-
ecuted (exceptions are described in section 3.4). The as-
sumption of deterministic calculations is valid for an EECU
since all data items are derived from sensor values and
these are time-invariant. Some of the updates scheduled by

d
6

d
1

d
7

d
4

d
3

d
2

d
8

d
5

d
9

43210 5 6 7 8Index

Schedule

Figure 5. Schedule S for G in figure 2.

ODDFT might produce the same result already stored in
the database, i.e., the CPU could be better utilized by skip-
ping such updates and using the value already stored in the
database. When an update is about to start, the data fresh-
ness of the data item can be checked with equation 2. If the
data item is fresh then the update is not needed. ODDFT
and ODKBV with such a check are denoted ODDFTC and
ODKB C.

4.2. ODTB algorithm

The ODTB algorithm is a top-bottom traversal of a
schedule generated by ODDFT. By traversing the data de-
pendency graph top-bottom it is possible to decide if needed
updates in a branch can fit in the schedule. Moreover, in
ODTB thechanged flag indicates a stale data item and not
a possibly changed data item.

In order to traverse updates top-bottom and decide which
ones to use, the schedule has to be already generated or
be generated every time updates need to be scheduled. The
proposed ODTB algorithm uses a pregenerated schedule by
ODDFT. The reason is that in an EECU the data items are
fixed, i.e., no data items are added or removed, and, thus,
the schedule is also fixed.

To obtain a pregenerated schedule that can be used by
ODTB, we add a bottom node, denotedbottom, to V and
connect all leaf nodes to it by adding edges toE. Now we
can generate an ODDFT schedule for the added node and
denote itS. Branches are chosen by the following order
b1 < bi < d1 < dj , wherei, j > 1. If some data items
are highly important then weights on the edges can be used.

Theorem 4.1. It is always possible to find a sub-schedule
of S that is identical with respect to elements and order of
the elements to a scheduleSd generated by ODDFT, and
which starts in noded.

Proof. Assume the generation ofS by ODDFT has reached
noded. Start a generation of a schedule atd and denote it
Sd. ODDFT only considers outgoing edges from a node.
Assume two invocations of ODDFT, which origin from the
same node, always pick branches in the same order. ODDFT
has no memory of which nodes that have already been vis-
ited. Hence, the outgoing edge that is picked by ODDFT
generatingS is the same as ODDFT generatingSd and,
thus, there exists a sub-schedule ofS that has the same ele-
ments and the same order asSd.

For data dependency graph in figure 2, the pregenerated
schedule is shown in figure 5.

ODTB(dUT)

at = deadline(τUT) − release time(τUT)
−WCET (τdUT

)
for all x ∈ R(dUT) do

Get schedule forx, Sx, fromS

for all u ∈ Sx do
if changed(u) = true then

wcet u x =WCET of path fromu to x

if wcet u x ≤ at then
Add data itemsu to x to scheduleUpdates

at = at − wcet u x

else
Break

end if
end if

end for
end for

Figure 6. ODTB algorithm.

Corollary 4.2. A scheduleSd generated by ODDFT for
data itemd with l number of updates can be found inS from
indexstartd to indexstopd wherel = |startd − stopd|.

Proof. Follows immediately from theorem 4.1.

By corollary 4.2 it is always possible to fetch fromS
a sub-schedule of all possibly needed updates for data item
dUT that a UT derives. Every data item has start and stop in-
dexes indicating where its ODDFT schedule starts and stops
within S. Every data item also knows about its neighbors
(parents and children) inG.

ODTB is shown in figure 6. Every time a UT,τUT , is
started the algorithm ODTB is executed. Updates are placed
in the queueUpdates. When ODTB has finished then the
first update fromUpdates is executed. The second step S2
of the updating scheme is changed to mark the children that
are stale due to the newly stored value. The third step S3 oc-
curs every time an update is started. If the data item it de-
rives haschanged set to true then the update is executed,
otherwise it is skipped. Hence, by using ODTB and the
update scheme it is possible to skip unnecessary updates
and instead read the value directly from the database. If
Updates is empty this means there are no updates to ex-
ecute because all ancestors ofdUT are fresh or the given
time is too small to be able to execute the first necessary
update and the descendants of this data item. In either case,
there is no meaning in executing the user transaction.

Next we give an example of using ODTB. A UTτd7
ar-

rives to a system having data dependency graph in figure 2.
The fixed scheduleS is given in figure 5. Indexes for finding
Sd7

in S are 2 and 5, i.e., scheduleSd7
is the sub-schedule

that spans indexes 2 through 5 inS. For every parentx of
d7 (d2, d3, andd4) the scheduleSdx

is investigated from the

top for a data item withchanged set to true (see figure 6). If
such a data item is found, the WCET for the data itemu and
the remaining data items inSx, denotedwcet u x, has to fit
in the available timeat of τd7

. For each update, the cumula-
tive execution time of all updates up to that point is stored.
By taking the difference between two updates fromSd the
cumulative part of the update ford is cancelled and the re-
sult is the execution time between the updates. When ODTB
is finished the scheduleUpdates contains updates that can
be executed between the current time and the deadline of
the UT.

5. Evaluation

Section 5.1 contains simulations conducted on a simu-
lator to show the performance of OD, ODKB, ODKBV,
ODDFT, ODKB C, ODDFT C, and ODTB. The engine
simulator and the EECU is used in section 5.2 to show that
it is possible to use the database system in a real-life sys-
tem. The section finishes with a discussion on some issues
related to overhead for ODTB.

5.1. Consistency and Throughput

This experiment measures consistency and throughput of
committed UTs. The number of committed UTs within their
deadlines is affected by the number of updates generated by
the system. If it is important to have transactions that only
use fresh data items then the consistency is more impor-
tant than transaction throughput. A balance between con-
sistency and throughput must be found. This balance is pri-
marily system specific and the constructor of the system has
to choose the updating algorithm that gives the desired be-
havior. This section shows how the different algorithms be-
have with respect to these properties.

We now describe the simulator setup of the discrete event
simulator RADEx++ that is also used in [7]. RADEx++ is
set up to simulate a main-memory real-time database. A
data dependency graphG is generated randomly. The size
of G is |B|× |D| whereB is the set of base items andD the
set of derived items. A derived data item has one to six par-
ents and the likelihood that a parent is a base item is60%.
All experiments using the same database size are using the
same data dependency graph.

Transactions arrive aperiodically with exponentially dis-
tributed arrival times and every simulation is executed for
100 s of simulated time. The transactions are scheduled
by EDF. The arrival rates range from 0 to 100 UTs per
second with steps of 5 and the simulator runs 5 times for
each arrival rate. Confidence intervals for experiments are
given in figure captions. The data item an arriving UT
derives is uniformly distributed among data items inD.
The value of a data itemx is changed with a value from
U(0,max change), wheremax change is 800, and this
change only happens ifx is stale due to a change of any of

its parents. The absolute validity interval of a data item is
taken from the distribution U(0,800) and the unit is ms. Pe-
riodic STs update base items based on theiravi. STs have
higher priority than UTs.

The execution time of an operation of a transaction is de-
termined during run-time by randomly picking a value from
the distribution N(̄e,2.5) until a value in the interval (0,10]
is achieved for UTs and TUs; STs always have an execution
time of 1 ms. The average execution timeē of an opera-
tion is randomly determined at initialization of the database
and is in the range (0,10] ms for UTs and TUs.

The random execution times of operations (read and
write) models the EECU software well, since differ-
ent branches in a calculation can give rise to different
execution times. The randomly generated data depen-
dency graph might not fully resemble a data dependency
graph in an EECU software. Further, the uniform proba-
bility for a UT to derive any derived data item might not
be correct for an EECU software, but we think the sim-
ulator gives an accurate enough simulation platform for
results to also apply to an EECU. This is confirmed by re-
sults from two transient and steady state experiments. One
in section 5.2 for an EECU, and one in [7] simulating us-
ing the same simulator and settings as in this work. Both
results show a clear reduction of number of generated trig-
gered updates at a steady state.

Figure 7(a) shows the total number of committed UTs
within their deadlines for value domain based updating al-
gorithms (ODKBV, ODDFT, and ODTB), time domain
based updating algorithms (OD and ODKB), and without
updates. In this experiment, the algorithms OD, ODKB,
ODKB V, and ODDFT have no relevance check and, thus,
try to execute as many of the updates as possible even
though some of them might be unnecessary. The total num-
ber of transactions executed by the system is the lowest pos-
sible when no triggered updates are generated. At around
45 UTs per second the system becomes overloaded since
the number of committed UTs stagnates when no updates
are generated. ODDFT and OD are consistency-centric and
generate more updates than the throughput-centric ODKB
and ODKB V. That can be seen in figure 7(a) where ODKB
and ODKBV have nearly as many committed UTs as
when no updates are generated while ODDFT and OD let
a smaller amount of UTs to commit. The load on the sys-
tem can be decreased by using ODTB since it lets unnec-
essary updates and UTs to be skipped. The value stored in
the database can be used without recalculating it. Thus, this
enables resources to be reallocated to other tasks, e.g., the
diagnosis application of an EECU. Figure 7(b) shows the
number of committed UTs that are valid, i.e., the data item
that the transaction writes has no updated ancestor at com-
mit time that affects the value of the data item. ODDFT lets
more valid UTs to commit up to 45 UTs per second com-

pared to throughput-centric algorithms. OD has the worst
performance under all arrival rates. ODTB excels the other
updating algorithms in this respect as well. From 15 UTs
per second ODTB lets the most valid UTs to commit and
during overload (above 45 UTs per second) the difference
is in the order of thousands committed UTs or more than
a 50% increase in number of committed UTs. The consis-
tency, i.e., the ratio of number of valid committed UTs and
committed UTs (the ratio of values in figure 7(b) and figure
7(a)), is highest for ODDFT with a ratio of 0.85. Executing
UTs without any updates give the worst consistency and for
throughput-centric algorithms (ODKB and ODKBV) the
ratio is 0.60–0.70, whereas for ODTB the ratio is 0.70.

The results of comparing ODTB to ODDFTC and
ODKB C are in figure 8. Both value domain based up-
dating algorithms (ODDFTC and ODKBC) can now let
more UTs commit at high load. This is because many of
the updates can be skipped because executing them pro-
duces only the same result as the one already stored in the
database, i.e., unnecessary updates are skipped. The to-
tal load on the system is thus decreased.

From figure 8 we see that ODKBC lets slightly more
UTs commit than ODTB, but more UTs are valid for
ODTB. ODTB also has more valid committed UTs than
ODDFT C. This is possible because ODTB checks for up-
dates top-bottom and can therefore distinguish needed
updates from unnecessary updates.

5.2. Transient and Steady States in EECU

In many cases an embedded and real-time system is in-
stalled in a dynamically changing environment meaning
that the system has to respond to these changes. Since tasks
use data that should be fresh, state changes in the environ-
ment also affects the need to update data. This experiment
treats steady and transient states and the number of required
updates in each state. The number of updates is contrasted
between an updating algorithm using value domain for data
freshness and periodic updates, i.e., time domain for data
freshness.

We evaluate the algorithms on the EECU using the im-
plementation of a database system. In the performance eval-
uations, we use the engine simulator to adjust engine speed.
The EECU reacts upon the sensor signals as if it controlled
a real engine. The performance evaluation shows how the
updating algorithms react on state changes (transient and
steady states).

The derived data item TOTALMULFAC is requested pe-
riodically by a task in the EECU software. The request is
transformed into a UT that arrives to the database system
(see figure 3). All calculations on data items in the database
produce deterministic results, i.e., the same result is always
produced given the same input. Moreover, small changes in
values of data items do not affect the result on derived data

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns

Database size 45*105. Valid transactions, Validity bounds

Without updates
OD
ODKB
ODKB_V
ODDFT
ODTB

(a) Number of committed UTs. 95% con-
fidence interval is±321.5

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105. Valid transactions, Validity bounds

Without updates
OD
ODKB
ODKB_V
ODDFT
ODTB

(b) Number of valid committed UTs.
95% confidence interval is±231.9

Figure 7. Consistency and throughput of UTs with no relevanc y control on ODDFT and ODKB V.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns

Database size 45*105. Valid transactions, Validity bounds

Without updates
OD
ODKB
ODKB_C
ODDFT_C
ODTB

(a) Number of committed UTs. 95% con-
fidence interval is±321.5

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105. Valid transactions, Validity bounds

Without updates
OD
ODKB
ODKB_C
ODDFT_C
ODTB

(b) Number of valid committed UTs.
95% confidence interval is±254.1

Figure 8. Consistency and throughput of UTs with a relevancy control on ODDFT and ODKB V.

items. Hence, one of the updating algorithms using value
domain for data freshness should be feasible to use in this
setting. ODTB is used in the EECU software, i.e., relevance
checks are done if calculations are needed.

Recalculations of TOTALMULFAC are needed when the
engine speed changes. Figure 9 shows how the requests
for calculations are serviced only when the system is in
a transient state, i.e., when the engine speed is changing.
The plots in the bottom graph are cumulative number of re-
quests. The number of requests is increasing linearly since
the requests are periodic (remember that all time-based
tasks are executed with fixed periods) and in the original
EECU software each such request is processed. However,
when using ODTB only some of the requests need to be pro-
cessed. The number of serviced requests shows how many
of the requests need to be processed. In steady states, none
of the requests need to be processed, and the stored value

in the database can be used immediately (e.g., the steady
state in the time interval 2–7). Hence, during a steady state
a considerable amount of requests can be skipped. Notice
also that the data validity bounds allow the database system
to accept a stored value if changes to the engine speed are
small (in this case±50 rpm). This can be seen in the time
interval 17-22, where the small changes in engine speed do
not result in recalculations of the TOTALMULFAC vari-
able. The number of serviced requests does not increase in
this interval.

5.3. Overhead in EECU

The memory overhead for storing the pregenerated
schedule is low. For instance, the schedule in figure 5 con-
sists of 9 elements and a schedule for 150 data items (the
graph used in section 5.1) consists of 246 elements. In-
cluding execution times for each data item in the sched-

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500
Engine speed

time 0.1 s

rp
m

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450
EECU and ODTD

time 0.1 s

C
um

ul
at

iv
e

re

qu
es

ts

Number of requests
Number of serviced requests

Figure 9. Number of requests of calculation
of fuel compensation factor in EECU.

ule, 18 and 492 bytes of memory is needed respectively to
store the schedules. However, in the worst case, the sched-
ule takes exponential amount of memory since a graph
can be constructed that contains a node that ODDFT vis-
its an exponential amount of times, but for practical exam-
ples the size is linear in the size of the graph. In the database
implementation, 500 bytes of flash memory is used to rep-
resent the schedule and data relationships, and 1.5 Kb of
RAM for data items, meta-information, queues for EDF
and CC, and statistics. The code size is 10 Kb and 8 Kb
for the database system and Rubus respectively. Mem-
ory pools for database functions, mutexes, stacks for the
periodic tasks take 19 Kb of RAM.

The algorithm ODTB traverses a pregenerated schedule
top-bottom and if a stale data item is found the remaining
part of the schedule is put in a schedule of updates. Some of
these items might be fresh and unrelated to the found stale
data item, i.e., they are unnecessary updates. Duplicates of
a data item can be placed in the schedule. Checks for de-
tecting these two issues can be added to the algorithm but
this is not done in this work since the overhead should be
kept as low as possible in an EECU.

ODTB takes the longest time to execute when none of
the data items in the schedule is stale. One way to address
this is to have twochanged flags, one that indicates a stale

data item and one that indicates that none of the parents are
changed. These two markings are a combination of the sec-
ond step of the updating scheme from section 3.4 and 4.2.
Hence, more time is spent marking data items when they
change, but when data items do not change a fresh data item
can immediately be detected.

The performance evaluation on the EECU also indicates
that the extra processing time due to the added functional-
ity imposed on the system is acceptably low, as the opera-
tional envelope of the system is equal to that of the origi-
nal EECU software. This is confirmed as the EECU with a
database is able to process transactions, meeting their dead-
lines, during transient states at the required peak load of the
system. During overloads, i.e., beyond required peak load,
the performance of the system decays similarly to the orig-
inal EECU.

6. Related Work

In order to utilize the CPU resource as efficient as pos-
sible unnecessary updates must be avoided. Fixed updat-
ing schedules as in [12, 16, 9] cannot achieve this. Ham-
daoui and Ramanathan introduced(m, k)-firm deadlines in
[8], wherem deadlines out ofk consecutive invocations of
a task have to be met. A task invocation can be skipped dur-
ing an overload to increase the possibility for tasks to meet
m out ofk invocations. However, tasks that update data can-
not be skipped as is possible with ODDFTC, ODKB C,
and ODTB when data values are unchanged.

Another technique for skipping calculations is impre-
cise computations [13], where computations are split into
a mandatory part and an optional part. The optional part
can be skipped and the task produces an approximate result.
In the case of overload, optional parts can be skipped and
freed CPU resources are used to complete as many manda-
tory tasks as possible. ODKBC, ODDFT C, and ODTB
skip calculations based on the staleness of a data value. No
approximate results are produced, and calculations can be
skipped at steady states.

A freshness concept is introduced in [11], where a sim-
ilarity relation is used to define freshness in the value do-
main. The similarity relation states that a read operation
can use a stored value as long as a concurrent write of the
data item writes a similar value. A time interval, similarity
bound, is introduced where all accesses to a data item within
this similarity bound are similar. Hence, the data freshness
is in practice defined in the time domain. Wedde et al. uses
validity bounds in [15]. Base items are updated continu-
ously and a data manager marks transactions based on va-
lidity bounds in a fixed schedule. Marked transactions are
executed. However, a decision whether a UT can be ser-
viced within its deadline cannot be made as in this work.

Kao et al. define data freshness in the time domain for
discrete data items [10]. Absolute and relative systems are

introduced, where, in an absolute system, all data items used
by a transaction need to be fresh when the transaction com-
mits, whereas in a relative system, the data items need to
be relatively consistent (including an allowance for slightly
outdated data items) at the start of the transaction. Relative
systems perform better than absolute systems. However, up-
dates cannot be skipped.

Adelberg et al. [3] found that it is possible to delay re-
computations and thereby allow more updates of data items
to arrive before the recomputation is started. The data valid-
ity bounds work like a delay since several small changes do
not trigger updates of data items. When the change is large
enough an update is triggered.

Blakely et al. show how it is possible to decide which up-
dates to data objects affect views, i.e., derived data objects,
and which updates do not [5]. They assume that a data ob-
ject is a relation, i.e., contains several columns of data. In
this paper, however, a data item is a scalar value and the
freshness of a data item can easily be tested with an inequal-
ity. By doing a top-bottom traversal of a graph it is possible
to determine stale data items.

7. Conclusions and Future Work

In this paper we have studied different updating algo-
rithms that maintain data freshness such that transactions
read fresh data when deriving new values on data items.
There are two families of updating algorithms, those that
use the time domain and those that use the value domain on
data items to measure data freshness. We show that the al-
gorithms that use the value domain can adapt the required
number of updates, when the system changes state, with-
out introducing state-changes in the database system. More-
over, by assuming deterministic calculations a new updating
algorithm with a relevance check of updates (ODTB) has
been defined that outperforms well-established updating al-
gorithms. A simple check on the necessity of an update gen-
erated by well-established updating algorithms (ODDFT
and ODKBV) improves the performance of these algo-
rithms (with up to 50%), but ODTB has the best perfor-
mance overall. ODTB is tested on an engine electronic con-
trol unit (EECU). We found that under a steady state no up-
dates of data items are needed whereas in the original im-
plementation of the EECU software these data items are re-
calculated periodically resulting in many unnecessary recal-
culations during a steady state. The CPU resources can be
reallocated to, for instance, more detailed diagnosis of the
system.

For future work we plan to look into concurrency control
issues in electronic control units for vehicles.

Acknowledgments

The authors would like to thank Aleksandra Tešanović
and Mehdi Amirijoo for valuable comments on the paper.

References
[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time

transactions: a performance evaluation.ACM Trans. on
Database Systems, 17(3):513–560, 1992.

[2] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying up-
date streams in a soft real-time database system. InProc. of
the 1995 ACM SIGMOD, pages 245–256, 1995.

[3] B. Adelberg, B. Kao, and H. Garcia-Molina. Database sup-
port for efficiently maintaining derived data. InProc. of Ex-
tending Database Technology ’96, pages 223–240, 1996.

[4] Q. N. Ahmed and S. V. Vbrsky. Triggered updates for tem-
poral consistency in real-time databases.Real-Time Systems,
19:209–243, 2000.

[5] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating
derived relations: Detecting irrelevant and autonomously
computable updates.ACM Trans. on Database Systems,
14(3):369–400, 1989.

[6] M. Eriksson. Efficient data management in engine control
software for vehicles - development of a real-time data repos-
itory. Master’s thesis, Linköping University, Feb 2003.

[7] T. Gustafsson and J. Hansson. Dynamic on-demand updat-
ing of data in real-time database systems. InProc. of ACM
SAC ’04. ACM, March 2004.

[8] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with(m,k)-firm deadlines.
IEEE Trans. on Computers, 44(12):1443–1451, December
1995.

[9] S.-J. Ho, T.-W. Kuo, and A. K. Mok. Similarity-based load
adjustment for real-time data-intensive applications. InProc.
of RTSS ’97, pages 144–154. IEEE Computer Society Press,
1997.

[10] B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee.
Maintaining temporal consistency of discrete objects in soft
real-time database systems.IEEE Trans. on Computers,
52(3), March 2003.

[11] T.-W. Kuo and A. K. Mok. Real-time data semantics and
similarity-based concurrency control.IEEE Trans. on Com-
puters, 49(11):1241–1254, November 2000.

[12] C.-G. Lee, Y.-K. Kim, S. Son, S. L. Min, and C. S. Kim. Ef-
ficiently supporting hard/soft deadline transactions in real-
time database systems. InProc. of Third International Work-
shop on RTCSA’96., pages 74–80, 1996.

[13] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y.
Chung. Imprecise computations.Proceedings of the IEEE,
82(1):83–94, January 1994.

[14] K. Ramamritham. Real-time databases.Distributed and Par-
allel Databases, 1(2):199–226, 1993.

[15] H. F. Wedde, S. Böhm, and W. Freund. Adaptive concur-
rency control in distributed real-time systems. Technicalre-
port, University of Dortmund, Lehrstuhl Informatik 3, 2000.

[16] M. Xiong and K. Ramamritham. Deriving deadlines and pe-
riods for real-time update transactions. InProc. of the 20th
IEEE RTSS’99, pages 32–43, 1999.

