
Intents, Upgrades and Assurance in Model-Based Development 
 
 

Jonas Elmqvist, Simin Nadjm-Tehrani 
Dept. of Computer and Information Science 

Linköping University, Sweden 
[jonel,simin]@ida.liu.se 

 
Abstract 

This position paper addresses topic 1 of the 
workshop: MoDES challenges in industrial practice. 
It highlights lessons learnt from three applications of 
model-driven development for software embedded in 
vehicular safety restraints, aerospace and secure 
radio communication systems. While our experiences 
in these three fields of application are compared and 
contrasted the emphasis will be placed on the specific 
requirements of safety-critical software in aerospace 
systems with the three characteristics:  long life, high 
level of assurance, and necessity of efficient upgrades 
of individual components. A typical application in 
this class is also large, complex, and heterogeneous. 

1. Introduction 
Model-based development of embedded software 

is promoted as a means to achieve cost-efficient 
development of code, and platform independent 
design. In this paper we summarise our experiences 
from three case studies in the past year and point out 
the important aspects that need to be strengthened in 
today’s tools before the vision of model-driven 
embedded system development can be a reality in 
high assurance systems. All three applications were 
in domains that some element of assurance is present: 
a future car airbag system being developed at the 
Swedish subsidiary of the company Autoliv [1], an 
encryption terminal (Tiger XS) for secure 
communication on top of any communication 
equipment at the company Sectra [2], and a sanitised 
version of an unmanned vehicle with multi-mode 
control (also human operated) at Saab Aerospace [3]. 
All three case studies were aiming to ascertain the 
benefit of the current modelling environments to the 
developers of these systems.   

The three application areas also have 
characteristics that are distinctive for each. In the 
airbag system the main goal was to enable rapid 
product development amid changing technology. 
Thus, the company requires a faster and more reliable 
means of porting a subsystem that was e.g. developed 
for a 16 bit processor that has 128kb ROM to a 32 bit 
processor with 256kb ROM. For them, automatic 

code generation was studied as a means to increase 
efficiency in product development. Another main 
characteristic was the timeliness requirements – 
having 30ms between the crash detection and firing 
of a restraint implies that some algorithms have to be 
computed predictably (and within 500Ps).  

In the Tiger XS communication platform the main 
requirement is support for platform independence and 
security assurance. Tiger XS acts as a component in 
defence systems.  It acts as a bridge that makes any 
secure application (e.g. encrypted phone calls or 
encrypted SMS) to run on top of any communication 
hardware (e.g. PDA or phone), and transforms 
“black” clear text data to “red” encrypted data. 
Hence, automatically generated code that refers to 
operating system primitives has to be easily adaptable 
to new underlying platforms. Moreover, the security-
intrinsic applications demand that the generated code 
should follow a predefined coding style and be 
suitable for human inspection.    

Both of above applications have small footprint 
requirements and thus essentially expect the size of 
the automatically generated code to be comparable to 
the hand-written code (the airbag system being at the 
extreme with its byte-optimal handwritten code). In 
the third category of systems, the aerospace related 
case study, footprint is a less dominant requirement. 
Instead the long life time and the safety-critical 
requirements of the system imply that any upgrades 
made to the system over its lifetime should be easily 
traceable to the original intent specifications, and 
efficiency in code generation has to be followed by 
efficiency in the verification process, assuring that 
component upgrades do not jeopardise system level 
safety requirements.  

2. Essential properties 
From the three case studies one could conclude 

that automatic code generation (to enhance shorter 
time to development) is an essential property of all 
tools that intend to bridge the gap between user level 
requirements and the implemented code. Safety-
critical code, has however, the additional 
characteristic that the original sources of its 



requirements, often linked to system level hazard 
analysis and mitigation of fault/error scenarios by 
architectural solutions, need to be clearly documented 
as intents, and traced to any future changes in the 
design or implemented code. Moreover, all changes 
to the design are followed by studying their impact 
on the documentation of the safety case. Supporting 
formal verification by a modelling tool makes the 
extra difference in this context. Our study of the tools 
that could be applied within each application domain 
rests on the above properties.  

In what follows we give a short exposure to the 
sanitised example of the unmanned vehicle that was 
provided by Saab. This example, although much 
simpler than any realistic aerospace application has 
some elements that illustrate the need for (1) support 
for intent specifications and tracing the system level 
requirements over a long lifetime, including the need 
for tracing changing requirements all the way down 
to new design models of upgraded components, and 
(2) the necessity of support for formal verification to 
achieve efficient verification of safety-related 
properties; in particular, incremental verification of 
such properties upon component upgrades. 
 
3. Support for upgrades  

The development process followed by most 
companies today, at least in the safety-critical arena, 
follows what can be considered as a variant of V 
method. It essentially assumes a strict control of the 
integrator company over the developed components 
(in-house or subcontracted). 

Model-driven tools and specially the UML-based 
support have grown from the world of software 
development, with the advent of object-oriented 
design in the last two decades. The safety 
requirements of aerospace systems can, however, 
hardly be traced to a software component alone. 
Software is typically not harmful to the environment 
and can only contribute to violation of safety. 
Achieving safety is typically ensured by a mix of 
architectural decisions [4] and rigorous process for 
system development based on functional 
decomposition. Examples of architectural decisions 
are incorporation of fault tolerance via redundancy, 
hardware interlocks as a backup for software failure, 
watchdogs, monitors, and so on. An interesting 
question is: how to support the engineers who 
primarily perform system development in the old 
worlds of structured design, to encompass the “new” 
world of software design, and link the two in the 
systems and safety engineering process? An 
orthogonal question is how to support the process of 
upgrading an existing component when new 
functional or safety requirements arise? 

In current system development processes all the 
safety analyses, including fault-tree analysis (FTA), 
failure modes and effects analysis (FMEA), and 
component-level and system level verification has to 
be redone for every upgrade in the life cycle of the 
system. Model-based development needs to address 
how this process can be “shortened” by making an 
efficient analysis that assures preservation of safety 
properties. 

Elmqvist [3] presents the Sigma development 
metaphor as a model for system level upgrades based 
on component updates (see Figure 1). 
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Figure 1. The Sigma development process model 

The model captures the iterative upgrade process 
of existing components as well as the analysis 
processes that are essential during a system’s life-
cycle.  

3.1 Example: unmanned vehicle 
The unmanned vehicle is controlled by the 

Remote Vehicle Control Unit (RVCU). The vehicle 
operates inside a closed area (see Figure 2) consisting 
of a work area, a parking area and (stationary) 
obstacles. The vehicle can be controlled by the 
operator either hands-on with a joystick or by 
planning missions. Once leaving the parking area, the 
vehicle is not allowed to stop. 
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Figure 2. A possible environment with obstacles 
for the unmanned vehicle. 
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Figure 3. The RVCU architecture. 

The role of the RVCU is to make sure that the 
vehicle is controlled safely inside the area i.e. 
avoiding collisions with obstacles and avoiding the 
vehicle to navigate outside the closed area. 

The Dynamic Window Approach by Fox et al [5] 
was used for obstacle avoidance.  The algorithm 
calculates an optimal trajectory by reducing the 
search space of possible velocities based on the 
dynamics of the vehicle and the position of the 
obstacles. The algorithm was slightly modified to fit 
in the context of the unmanned vehicle example. 

The five components of the RVCU are presented 
in the architectural model in Figure 3: 

x� The Human Machine Interface is the 
interface between the operator and the 
system 

x� The Map and Obstacle Database (MODB) 
provides a representation of the map and the 
obstacles 

x� The Planner takes care of high-level mission 
planning during unmanned missions 

x� The Navigation System handles the final 
control of the vehicle by using the Modified 
Dynamic Window Algorithm 

x� The Control System is the coordinating 
module that besides interacting with both 
Planner and Navigation system also 
communicates with the robot 

The RVCU can be considered a safety-critical 
real-time system as the collisions with the obstacles 
or moving outside the designated area can be 
considered to result in harming people or 
environment.  

To illustrate life-time changes we have added a 
new system requirement, and considered the effects 
of an upgrade to satisfy that requirement on the 
existing design. The stationary obstacles in the first 
design are considered to be moving objects in the 
new upgraded version. 

4. Intent Specifications 
Intent Specifications [6] is a new approach for 

specifying and designing systems that is based on 
research both in system engineering and psychology. 
The primary difference from other approaches is the 
structure (see Figure 4). An intent specification is 
structured in six levels, each level answering the 
question “why?”  i.e. providing intentions about the 
level below, as opposed to traditional specification 
methods where levels are divided into answering 
what to do from how to do it. Each level is mapped to 
levels below providing traceability of system goals 
and high-level requirements down to implementation 
and vice versa. Each level has its own view of the 
system and is a different model of the system [7]. 

x� Level 0 is the project management’s view of 
the system. 

x� Level 1 is the customers view, includes 
system goals, high-level requirements, 
hazards, design constraints, assumptions and 
system limitations. 

x� Level 2 is the system engineer’s view of the 
system and it describes the system design 
principles. 

x� Level 3 describes the black box behaviour of 
the system and its modules. Formal analysis 
methods can be used on this level. 

x� Level 4 – 6 provides information of physical 
and logical representation of the system 
down to implementation and maintenance 
information. These levels were not the focus 
of this study. 

The tool used for implementing an intent 
specification was SpecTRM (Specification Toolkit 
and Requirements Methodology), a commercial tool 
from Safeware Engineering [8]. It is a document-
oriented tool that works more or less as an advanced 
word processor and uses the intent specification 
methodology as a foundation with the seven levels as 
different chapters in the specification. The black box 
models in Level 3 are written in a specification and 
modelling language called SpecTRM-RL based on 
the state-based specification language RSML that 
essentially summarise state transitions using 
AND/OR trees [9]. 

The tool provides simulation and some static 
analysis of the SpecTRM-RL models. 



 

Figure 4. The structure of an Intent Specification [10]. 

5. From specification to Design 
The third level of intent specifications is quite 

close to a design model but does not (yet) have the 
ambition of supporting model-driven development. 
The level 3 in SpecTRM provides an input-output 
interface for each component, and a description of the 
internal states and externally visible modes of the 
system. In addition, it gives a human readable logic 
for state transition conditions in terms of AND/OR 
tables.  However, to go from intents to 
implementations, and in particular via designs whose 
dynamic properties are formally analysable, we need 
a bridge to a tool that supports both code generation 
and formal analysis. 

In the RVCU case study we chose the Esterel 
Studio programming environment for further 
development of the model [11].  The choice was 
primarily motivated by the support for formal 
verification in Esterel, using the Prover plugin model 
checker that can deal with systems with large state 
spaces using Stålmarck’s method [12]. It also 
exemplifies a tool that is suitable for this class of 
applications due to its ability to deal with 
heterogeneity. Esterel designs have Mealy machines 
as formal semantics and are as such suitable for 
hardware/software codesign. A high-level description 
of an application can after formal analysis be 
translated to code that is the basis of a software 
implementation (C code) or hardware implementation 
(VHDL code). 

Another benefit of using this environment in our 
safety-related case study was that the same 

environment  (the same design model) can in fact be 
used as a test bed for study of fault tolerance and 
failure mode analyses by systematically plugging in 
failure modes for various inputs or outputs of a 
component and studying the effects of single or 
multiple faults in terms of violations of safety at 
system level [13]. This combines model-based 
development with formal analysis of safety (in the 
spirit of FTA/FMEA) using the same design model, 
and without building fault trees. 
 
6. Results and lessons learnt 

This section outlines the results of application of 
model-driven development to all the three application 
domains, and in each case summarises the remaining 
challenges facing the application developer. We 
begin by the unmanned vehicle example as it was 
described in more detail here, and then briefly 
describe the comparison with the other two studies 
mentioned in section 1. 

6.1 Upgraded unmanned vehicle  
An upgrade of the requirement was done after the 

initial design and verification of the unmanned 
vehicle control system. Instead of having static 
obstacles inside the closed area, the vehicle should be 
able to avoid moving obstacles. 

The study proved SpecTRM (the version of 
summer 2003) to be a rather immature tool and more 
suitable for the design of control-handling modules 
such as the Control System than data-intensive 
modules such as the Navigation System. Further, 
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SpecTRM does not yet provide any automatic traces 
or any overview of the traces i.e. the traceability must 
be created explicitly by the developer. A more 
sophisticated support for traces would be appropriate 
in order to make the tool suitable for industrial use. 

By manually converting the SpecTRM-RL 
models to Esterel modules, Esterel Studio could be 
used to verify the system and its components. Esterel 
Studio and its built-in model checker were able to 
prove a majority of the control properties of the 
RVCU. However, Esterel Studio does not provide 
any framework for modular or compositional 
verification. After the upgrade, the original 
verification process had to be redone. Furthermore, 
dealing with numerical properties in the current 
version of the Prover plugin was insufficient for our 
purposes. 

A tool environment aiding the developer 
beginning with a specification language such as 
SpecTRM-RL down to code generation is needed. 
The unmanned vehicle example presents such a 
framework that combines SpecTRM and Esterel 
Studio, but with lack of automatic translation 
between the tools, the environment is still 
incomplete. A positive aspect of the SpecTRM 
implementation is its use of the Java-based Eclipse 
[14] environment that allows plugin translators to be 
added conveniently. A trial plugin, SpecTerel, that 
automatically translates very simple SpecTRM-RL 
models to very simple Esterel models was 
implemented within a few days as a proof of concept. 

6.2 Secure communication platform 
The Tiger XS module is a software platform that 

provides a middleware function in a larger software 
system development. Here it was obvious that tools 
that support the object-oriented design process are the 
main candidates. Among the UML based tools for 
code generation two representatives were studied in 
terms of the requirements of the case study: 
Rhapsody from iLogix [15] and Visual State from 
IAR systems [16]. However, in both cases it was 
found that both tools provide both too much and too 
little support.  

Rhapsody provides too much support in the sense 
that it has a powerful extended UML language 
having a comparatively steeper learning curve. 
However, the primary reason for not being 
considered as a candidate for tool generation at 
Sectra was that it targets complete systems and some 
difficulty was experienced in merging existing 
(legacy) C-code for other parts of the application and 
the automatically generated Target XS code. 

Visual state, on the other hand, was a light-weight 
tool with little extra functionality. In particular, it was 
possible to adjust the coding style to that required by 

Sectra by implementing the translation of the action 
language (the part that defined effects of state 
transitions in terms of new value assignments to 
variables) so that it suits the in-house requirements. 
The main weakness of the tool in this specific case 
was the support for integration of the generated C-
code with other legacy code, and in particular, that it 
was cumbersome to use user-defined types. Also, the 
automatically generated code was organised in terms 
of a number of arrays that were not so human-
readable and satisfactory for security assurance-
related inspections.  

Although both tools were considered to generate 
small enough footprint compared to the Sectra hand-
written code, they were not adopted due to the above 
reasons. To suit the needs of this case study, in the 
end, an interpreter-based translation scheme was 
deemed the most useful. It resulted in an in-house 
code generator based on a subset of Statecharts [2]. 

6.3 Airbag software 
Rhapsody was also tested as a candidate for code 

generation for the air bag software. Here, the 
architecture of the system was clearly divided in two 
types of modules: those that were control intensive 
and those that were data intensive. For the control 
intensive parts the abstract modelling in Rhapsody in 
C, both in terms of class diagrams and Statecharts 
were found useful, and the automatically generated 
code was tested on a target micro controller (TX 
19A). For the data intensive parts, the code that 
implements signal processing algorithms to detect 
when the vehicle is in crash, another tool that is 
closer to the data flow abstractions used by the 
control engineer was deemed useful. The tool Scade 
[11] was studied for code generation in this part of 
the application. Another useful feature of Scade was 
the formal verification support with the Prover plugin 
that was tested to a limited extent on the crash 
algorithm model. 

The use of both modelling languages was found 
to reduce the time for development of code (after 
excluding the learning time). For a particular airbag 
function, this gain was quantified as a 60% decrease 
compared to the estimated time taken for hand 
written code. The main drawback for the Rhapsody-
generated code was the code size, still a significant 
factor in choosing such technology in the air bags 
systems. The low cost constraints of the ROM 
violates this option, as the size of the generated code 
was twice as large as the optimised hand-written 
code. In both cases support for timing analysis of the 
air bag software was missing, and needs to be 
performed separately. 
   



6.4 Final remarks 
Our studies support the claim by providers of 

tools for model-based development in that these tools 
do indeed reduce the time taken for development of 
executable target code from high-level models that 
are easier to inspect, to communicate, and to use as a 
documentation of a complex system. The needs of 
various application areas in terms of requirements on 
the generated code were illustrated by three examples 
ranging from very tough code size (memory) 
restrictions in the air bag system to less demanding 
requirements on code size in the secure 
communication support and the unmanned vehicle 
case.  

Support for documentation of upgrades in a long 
life time, and in particular when the traceability of 
the rationale of early design decisions and intents is a 
prerequisite to maintaining safety arguments is an 
obvious shortcoming of the pure “code-generators” in 
model based development today. Where intents can 
be documented and traced (e.g. SpecTRM), the 
support for code generation, formal verification, and 
compositional analysis of upgrade effects are still 
missing. Where design level models were the starting 
point (Rhapsody, VisualState, Esterel, Scade), no 
such support for component upgrade verification or 
longer term documentation of intents and safety-
related arguments were part of the picture. In two of 
the applications we observed the dichotomy between 
data-flow abstraction and the state-based control 
abstraction. These issues still need to be addressed in 
tools that aim to support development of complex 
and heterogeneous systems. In particular, combining 
the worlds of structural design (hardware and 
mechanics) and object-oriented design (software) is a 
key to model-based development of high assurance 
systems. 
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