
Intents, Upgrades and Assurance in Model-Based Development

Jonas Elmqvist, Simin Nadjm-Tehrani
Dept. of Computer and Information Science

Linköping University, Sweden
[jonel,simin]@ida.liu.se

Abstract

This position paper addresses topic 1 of the
workshop: MoDES challenges in industrial practice.
It highlights lessons learnt from three applications of
model-driven development for software embedded in
vehicular safety restraints, aerospace and secure
radio communication systems. While our experiences
in these three fields of application are compared and
contrasted the emphasis will be placed on the specific
requirements of safety-critical software in aerospace
systems with the three characteristics: long life, high
level of assurance, and necessity of efficient upgrades
of individual components. A typical application in
this class is also large, complex, and heterogeneous.

1. Introduction
Model-based development of embedded software

is promoted as a means to achieve cost-efficient
development of code, and platform independent
design. In this paper we summarise our experiences
from three case studies in the past year and point out
the important aspects that need to be strengthened in
today’s tools before the vision of model-driven
embedded system development can be a reality in
high assurance systems. All three applications were
in domains that some element of assurance is present:
a future car airbag system being developed at the
Swedish subsidiary of the company Autoliv [1], an
encryption terminal (Tiger XS) for secure
communication on top of any communication
equipment at the company Sectra [2], and a sanitised
version of an unmanned vehicle with multi-mode
control (also human operated) at Saab Aerospace [3].
All three case studies were aiming to ascertain the
benefit of the current modelling environments to the
developers of these systems.

The three application areas also have
characteristics that are distinctive for each. In the
airbag system the main goal was to enable rapid
product development amid changing technology.
Thus, the company requires a faster and more reliable
means of porting a subsystem that was e.g. developed
for a 16 bit processor that has 128kb ROM to a 32 bit
processor with 256kb ROM. For them, automatic

code generation was studied as a means to increase
efficiency in product development. Another main
characteristic was the timeliness requirements –
having 30ms between the crash detection and firing
of a restraint implies that some algorithms have to be
computed predictably (and within 500Ps).

In the Tiger XS communication platform the main
requirement is support for platform independence and
security assurance. Tiger XS acts as a component in
defence systems. It acts as a bridge that makes any
secure application (e.g. encrypted phone calls or
encrypted SMS) to run on top of any communication
hardware (e.g. PDA or phone), and transforms
“black” clear text data to “red” encrypted data.
Hence, automatically generated code that refers to
operating system primitives has to be easily adaptable
to new underlying platforms. Moreover, the security-
intrinsic applications demand that the generated code
should follow a predefined coding style and be
suitable for human inspection.

Both of above applications have small footprint
requirements and thus essentially expect the size of
the automatically generated code to be comparable to
the hand-written code (the airbag system being at the
extreme with its byte-optimal handwritten code). In
the third category of systems, the aerospace related
case study, footprint is a less dominant requirement.
Instead the long life time and the safety-critical
requirements of the system imply that any upgrades
made to the system over its lifetime should be easily
traceable to the original intent specifications, and
efficiency in code generation has to be followed by
efficiency in the verification process, assuring that
component upgrades do not jeopardise system level
safety requirements.

2. Essential properties
From the three case studies one could conclude

that automatic code generation (to enhance shorter
time to development) is an essential property of all
tools that intend to bridge the gap between user level
requirements and the implemented code. Safety-
critical code, has however, the additional
characteristic that the original sources of its

requirements, often linked to system level hazard
analysis and mitigation of fault/error scenarios by
architectural solutions, need to be clearly documented
as intents, and traced to any future changes in the
design or implemented code. Moreover, all changes
to the design are followed by studying their impact
on the documentation of the safety case. Supporting
formal verification by a modelling tool makes the
extra difference in this context. Our study of the tools
that could be applied within each application domain
rests on the above properties.

In what follows we give a short exposure to the
sanitised example of the unmanned vehicle that was
provided by Saab. This example, although much
simpler than any realistic aerospace application has
some elements that illustrate the need for (1) support
for intent specifications and tracing the system level
requirements over a long lifetime, including the need
for tracing changing requirements all the way down
to new design models of upgraded components, and
(2) the necessity of support for formal verification to
achieve efficient verification of safety-related
properties; in particular, incremental verification of
such properties upon component upgrades.

3. Support for upgrades

The development process followed by most
companies today, at least in the safety-critical arena,
follows what can be considered as a variant of V
method. It essentially assumes a strict control of the
integrator company over the developed components
(in-house or subcontracted).

Model-driven tools and specially the UML-based
support have grown from the world of software
development, with the advent of object-oriented
design in the last two decades. The safety
requirements of aerospace systems can, however,
hardly be traced to a software component alone.
Software is typically not harmful to the environment
and can only contribute to violation of safety.
Achieving safety is typically ensured by a mix of
architectural decisions [4] and rigorous process for
system development based on functional
decomposition. Examples of architectural decisions
are incorporation of fault tolerance via redundancy,
hardware interlocks as a backup for software failure,
watchdogs, monitors, and so on. An interesting
question is: how to support the engineers who
primarily perform system development in the old
worlds of structured design, to encompass the “new”
world of software design, and link the two in the
systems and safety engineering process? An
orthogonal question is how to support the process of
upgrading an existing component when new
functional or safety requirements arise?

In current system development processes all the
safety analyses, including fault-tree analysis (FTA),
failure modes and effects analysis (FMEA), and
component-level and system level verification has to
be redone for every upgrade in the life cycle of the
system. Model-based development needs to address
how this process can be “shortened” by making an
efficient analysis that assures preservation of safety
properties.

Elmqvist [3] presents the Sigma development
metaphor as a model for system level upgrades based
on component updates (see Figure 1).

Requirement
Analysis

Specification Design
Component

Selection and/or
Implementation

Component
Integration

T
est and validation

Maintenance

U
pg

ra
de

 a
n a

ly
si

s

Figure 1. The Sigma development process model

The model captures the iterative upgrade process
of existing components as well as the analysis
processes that are essential during a system’s life-
cycle.

3.1 Example: unmanned vehicle
The unmanned vehicle is controlled by the

Remote Vehicle Control Unit (RVCU). The vehicle
operates inside a closed area (see Figure 2) consisting
of a work area, a parking area and (stationary)
obstacles. The vehicle can be controlled by the
operator either hands-on with a joystick or by
planning missions. Once leaving the parking area, the
vehicle is not allowed to stop.

Work Area

Parking
Area

Figure 2. A possible environment with obstacles
for the unmanned vehicle.

Vehicle

Control System

Human Machine
Interface

Navigation
System

Planner

Operator

MODB

Figure 3. The RVCU architecture.

The role of the RVCU is to make sure that the
vehicle is controlled safely inside the area i.e.
avoiding collisions with obstacles and avoiding the
vehicle to navigate outside the closed area.

The Dynamic Window Approach by Fox et al [5]
was used for obstacle avoidance. The algorithm
calculates an optimal trajectory by reducing the
search space of possible velocities based on the
dynamics of the vehicle and the position of the
obstacles. The algorithm was slightly modified to fit
in the context of the unmanned vehicle example.

The five components of the RVCU are presented
in the architectural model in Figure 3:

x� The Human Machine Interface is the
interface between the operator and the
system

x� The Map and Obstacle Database (MODB)
provides a representation of the map and the
obstacles

x� The Planner takes care of high-level mission
planning during unmanned missions

x� The Navigation System handles the final
control of the vehicle by using the Modified
Dynamic Window Algorithm

x� The Control System is the coordinating
module that besides interacting with both
Planner and Navigation system also
communicates with the robot

The RVCU can be considered a safety-critical
real-time system as the collisions with the obstacles
or moving outside the designated area can be
considered to result in harming people or
environment.

To illustrate life-time changes we have added a
new system requirement, and considered the effects
of an upgrade to satisfy that requirement on the
existing design. The stationary obstacles in the first
design are considered to be moving objects in the
new upgraded version.

4. Intent Specifications
Intent Specifications [6] is a new approach for

specifying and designing systems that is based on
research both in system engineering and psychology.
The primary difference from other approaches is the
structure (see Figure 4). An intent specification is
structured in six levels, each level answering the
question “why?” i.e. providing intentions about the
level below, as opposed to traditional specification
methods where levels are divided into answering
what to do from how to do it. Each level is mapped to
levels below providing traceability of system goals
and high-level requirements down to implementation
and vice versa. Each level has its own view of the
system and is a different model of the system [7].

x� Level 0 is the project management’s view of
the system.

x� Level 1 is the customers view, includes
system goals, high-level requirements,
hazards, design constraints, assumptions and
system limitations.

x� Level 2 is the system engineer’s view of the
system and it describes the system design
principles.

x� Level 3 describes the black box behaviour of
the system and its modules. Formal analysis
methods can be used on this level.

x� Level 4 – 6 provides information of physical
and logical representation of the system
down to implementation and maintenance
information. These levels were not the focus
of this study.

The tool used for implementing an intent
specification was SpecTRM (Specification Toolkit
and Requirements Methodology), a commercial tool
from Safeware Engineering [8]. It is a document-
oriented tool that works more or less as an advanced
word processor and uses the intent specification
methodology as a foundation with the seven levels as
different chapters in the specification. The black box
models in Level 3 are written in a specification and
modelling language called SpecTRM-RL based on
the state-based specification language RSML that
essentially summarise state transitions using
AND/OR trees [9].

The tool provides simulation and some static
analysis of the SpecTRM-RL models.

Figure 4. The structure of an Intent Specification [10].

5. From specification to Design
The third level of intent specifications is quite

close to a design model but does not (yet) have the
ambition of supporting model-driven development.
The level 3 in SpecTRM provides an input-output
interface for each component, and a description of the
internal states and externally visible modes of the
system. In addition, it gives a human readable logic
for state transition conditions in terms of AND/OR
tables. However, to go from intents to
implementations, and in particular via designs whose
dynamic properties are formally analysable, we need
a bridge to a tool that supports both code generation
and formal analysis.

In the RVCU case study we chose the Esterel
Studio programming environment for further
development of the model [11]. The choice was
primarily motivated by the support for formal
verification in Esterel, using the Prover plugin model
checker that can deal with systems with large state
spaces using Stålmarck’s method [12]. It also
exemplifies a tool that is suitable for this class of
applications due to its ability to deal with
heterogeneity. Esterel designs have Mealy machines
as formal semantics and are as such suitable for
hardware/software codesign. A high-level description
of an application can after formal analysis be
translated to code that is the basis of a software
implementation (C code) or hardware implementation
(VHDL code).

Another benefit of using this environment in our
safety-related case study was that the same

environment (the same design model) can in fact be
used as a test bed for study of fault tolerance and
failure mode analyses by systematically plugging in
failure modes for various inputs or outputs of a
component and studying the effects of single or
multiple faults in terms of violations of safety at
system level [13]. This combines model-based
development with formal analysis of safety (in the
spirit of FTA/FMEA) using the same design model,
and without building fault trees.

6. Results and lessons learnt

This section outlines the results of application of
model-driven development to all the three application
domains, and in each case summarises the remaining
challenges facing the application developer. We
begin by the unmanned vehicle example as it was
described in more detail here, and then briefly
describe the comparison with the other two studies
mentioned in section 1.

6.1 Upgraded unmanned vehicle
An upgrade of the requirement was done after the

initial design and verification of the unmanned
vehicle control system. Instead of having static
obstacles inside the closed area, the vehicle should be
able to avoid moving obstacles.

The study proved SpecTRM (the version of
summer 2003) to be a rather immature tool and more
suitable for the design of control-handling modules
such as the Control System than data-intensive
modules such as the Navigation System. Further,

L e ve l 0

L e ve l 1

L e ve l 2

L e ve l 3

L e ve l 4

L e ve l 5

L e ve l 6
O p e ra tio
n s

P ro je c t m a n a ge m e n t p la n s , s ta tu s in fo rm a tio n , sa fe ty p la n e tc .

S ys te m go a ls , h igh -le ve l
re q u ire m e n ts , d e s ign

co n s tra in ts , lim ita tio n s

L o g ic p rin c ip le s , co n tro l
la w s , fu n c tio na l

d e co m p o s itio n an d
a llo ca tio n

A ssu m p tio n s
C o n s tra in ts

E xte rn a l
in te rfa ce s

E n v iro n m en t
m o d e ls

A u d it
p ro ce d u re s

R esp o n s ib ilit ie s
R e qu ire m e n ts
In te rfa ce re q .

T a sk a n a lyse s
T a sk a llo ca tio n

C o n tro ls , d isp la ys

O p era to r T a sk
m o d e ls

B la ckb o x fu nc tio n a l
m o d e ls

In te rfa ce sp e c if ica tio n s

H aza rd A n a lys is

V a lid a tio n p la n
a n d re su lts

A n a lys is p la ns
a n d re su lts

T e s t p la n s a n d
re su lts

S o ftw a re a n d ha rd w a re
d e s ign sp ec ifica tio n s

S o ftw a re co de , h a rd w a re
a ssem b ly ins truc tio n s

E rro r re p o rts , ch a n ge
re qu e st, u p g ra de s e tc .

T e s t p la n s a n d
re su lts

P e rfo rm a n ce
m o n ito rin g

H C I d e s ign

G U I d e s ign ,
p h ys ica l co n tro l

d e s ig n

O p e ra to r m a nu a ls ,
m a in te n a n ce

S ys te m
P u rp ose

S ys te m
P rin c ip le s

B la ckb o x
M o de ls

D e s ig n
re p r.

P hys ica l
re p r.

V & V
S yste m a n d
c o m p o n e n tsO p e ra to rE n viro n m en t

D ec o m p o s itio n

R e fin e m e n t

In te n t

SpecTRM does not yet provide any automatic traces
or any overview of the traces i.e. the traceability must
be created explicitly by the developer. A more
sophisticated support for traces would be appropriate
in order to make the tool suitable for industrial use.

By manually converting the SpecTRM-RL
models to Esterel modules, Esterel Studio could be
used to verify the system and its components. Esterel
Studio and its built-in model checker were able to
prove a majority of the control properties of the
RVCU. However, Esterel Studio does not provide
any framework for modular or compositional
verification. After the upgrade, the original
verification process had to be redone. Furthermore,
dealing with numerical properties in the current
version of the Prover plugin was insufficient for our
purposes.

A tool environment aiding the developer
beginning with a specification language such as
SpecTRM-RL down to code generation is needed.
The unmanned vehicle example presents such a
framework that combines SpecTRM and Esterel
Studio, but with lack of automatic translation
between the tools, the environment is still
incomplete. A positive aspect of the SpecTRM
implementation is its use of the Java-based Eclipse
[14] environment that allows plugin translators to be
added conveniently. A trial plugin, SpecTerel, that
automatically translates very simple SpecTRM-RL
models to very simple Esterel models was
implemented within a few days as a proof of concept.

6.2 Secure communication platform
The Tiger XS module is a software platform that

provides a middleware function in a larger software
system development. Here it was obvious that tools
that support the object-oriented design process are the
main candidates. Among the UML based tools for
code generation two representatives were studied in
terms of the requirements of the case study:
Rhapsody from iLogix [15] and Visual State from
IAR systems [16]. However, in both cases it was
found that both tools provide both too much and too
little support.

Rhapsody provides too much support in the sense
that it has a powerful extended UML language
having a comparatively steeper learning curve.
However, the primary reason for not being
considered as a candidate for tool generation at
Sectra was that it targets complete systems and some
difficulty was experienced in merging existing
(legacy) C-code for other parts of the application and
the automatically generated Target XS code.

Visual state, on the other hand, was a light-weight
tool with little extra functionality. In particular, it was
possible to adjust the coding style to that required by

Sectra by implementing the translation of the action
language (the part that defined effects of state
transitions in terms of new value assignments to
variables) so that it suits the in-house requirements.
The main weakness of the tool in this specific case
was the support for integration of the generated C-
code with other legacy code, and in particular, that it
was cumbersome to use user-defined types. Also, the
automatically generated code was organised in terms
of a number of arrays that were not so human-
readable and satisfactory for security assurance-
related inspections.

Although both tools were considered to generate
small enough footprint compared to the Sectra hand-
written code, they were not adopted due to the above
reasons. To suit the needs of this case study, in the
end, an interpreter-based translation scheme was
deemed the most useful. It resulted in an in-house
code generator based on a subset of Statecharts [2].

6.3 Airbag software
Rhapsody was also tested as a candidate for code

generation for the air bag software. Here, the
architecture of the system was clearly divided in two
types of modules: those that were control intensive
and those that were data intensive. For the control
intensive parts the abstract modelling in Rhapsody in
C, both in terms of class diagrams and Statecharts
were found useful, and the automatically generated
code was tested on a target micro controller (TX
19A). For the data intensive parts, the code that
implements signal processing algorithms to detect
when the vehicle is in crash, another tool that is
closer to the data flow abstractions used by the
control engineer was deemed useful. The tool Scade
[11] was studied for code generation in this part of
the application. Another useful feature of Scade was
the formal verification support with the Prover plugin
that was tested to a limited extent on the crash
algorithm model.

The use of both modelling languages was found
to reduce the time for development of code (after
excluding the learning time). For a particular airbag
function, this gain was quantified as a 60% decrease
compared to the estimated time taken for hand
written code. The main drawback for the Rhapsody-
generated code was the code size, still a significant
factor in choosing such technology in the air bags
systems. The low cost constraints of the ROM
violates this option, as the size of the generated code
was twice as large as the optimised hand-written
code. In both cases support for timing analysis of the
air bag software was missing, and needs to be
performed separately.

6.4 Final remarks
Our studies support the claim by providers of

tools for model-based development in that these tools
do indeed reduce the time taken for development of
executable target code from high-level models that
are easier to inspect, to communicate, and to use as a
documentation of a complex system. The needs of
various application areas in terms of requirements on
the generated code were illustrated by three examples
ranging from very tough code size (memory)
restrictions in the air bag system to less demanding
requirements on code size in the secure
communication support and the unmanned vehicle
case.

Support for documentation of upgrades in a long
life time, and in particular when the traceability of
the rationale of early design decisions and intents is a
prerequisite to maintaining safety arguments is an
obvious shortcoming of the pure “code-generators” in
model based development today. Where intents can
be documented and traced (e.g. SpecTRM), the
support for code generation, formal verification, and
compositional analysis of upgrade effects are still
missing. Where design level models were the starting
point (Rhapsody, VisualState, Esterel, Scade), no
such support for component upgrade verification or
longer term documentation of intents and safety-
related arguments were part of the picture. In two of
the applications we observed the dichotomy between
data-flow abstraction and the state-based control
abstraction. These issues still need to be addressed in
tools that aim to support development of complex
and heterogeneous systems. In particular, combining
the worlds of structural design (hardware and
mechanics) and object-oriented design (software) is a
key to model-based development of high assurance
systems.

Acknowledgements

This work was supported by the Swedish strategic
research foundation project SAVE on component-
based safety-critical vehicular systems, and the
national aerospace research program NFFP3. The
lessons learnt were partly based on the work of two
Masters students Andreas Eriksson and Anders
Grahn who did their final year projects under the
supervision of the second author. The experimental
SpecTerel plugin translator was developed by Erik
Sundvall.

References
[1] A. Eriksson. Model-based Development of an Airbag

Software. Thesis number LiTH-IDA-EX--04/025--SE.
Dept. of Computer and Information Science,
Linköping University, March 2004.

[2] A. Grahn. Code Generation from High-level Models of
Reactive and Security-intrinsic Systems. Thesis
number LiTH-IDA-EX--04/030--SE. Dept. of
Computer and Information Science, Linköping
University, April 2004.

[3] J. Elmqvist. Analysis of Intent Specification and
System Upgrade Traceability. Thesis number LiTH-
IDA-EX--03/074--SE. Dept. of Computer and
Information Science, Linköping University, Dec 2003.

[4] J. H. Lala and R. E. Harper. “Architectural Principles
for Safety-Critical Real-Time Applications”,
Proceedings of the IEEE, 82(1):25—40, Jan. 1994.

[5] D. Fox, W. Burgard, and S. Thrun. The Dynamic
Window Approach to Collision Avoidance, IEEE
Robotics & Automation Magazine, 4(1): 23—33,
March 1997.

[6] N. Leveson. Intent Specifications, An approach to
Building Human-Centered Specifications. IEEE
Transactions on Software Engineering, 26(1):14—35,
Jan. 2000.

[7] L. Grady, J Howard, and P. Andersson. Safety-Critical
Requirements Specification and Analysis Using
SpecTRM. In Proceedings of the 2nd Meeting of the
US Software System Safety Working Group, Feb 2002.

[8] SpecTRM, http://www.safeware-eng.com, accessed
14th April 2004.

[9] M. P. E. Heimdahl and N. Leveson. Completeness and
Consistency in Hierarchical State-Based
Requirements. IEEE Transactions on Software
Engineering, 22(6):363—377, 1996.

[10] Safeware Engineering. SpecTRM User Manual, 2003.

[11] Esterel Technologies. http://www.esterel-
technologies.com, accessed 14th April 2004

[12] M. Sheeran and G. Stålmarck. A Tutorial on
Stålmarck’s Proof Procedure for Propositional Logic.
In Proceedings of International Conference on Formal
Methods in Computer-Aided Design (FMCAD).
Springer Verlag, 1998.

[13] J. Hammarberg and S. Nadjm-Tehrani. Development
of Safety-Critical Reconfigurable Hardware with
Esterel. In Proceedings of the 8th International
Workshop on Formal Methods for Industrial Critical
Systems (FMICS). Elsevier, June 2003.

[14] Eclipse. http://www.eclipse.org, accessed April 2004.

[15] ILogix. http://www.ilogix.com, accessed March 2004.

[16] IAR. http://www.iar.com, accessed March 2004.

