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Chapter 19 

Safeguarding Critical Infrastructures 
David Gamez, Simin Nadjm-Tehrani, John Bigham, 
Claudio Balducelli, Kalle Burbeck, Tobias Chyssler  

1. Introduction 
Large complex critical infrastructures play a key role in modern life, providing services 

such as telecommunications, electricity, gas and water within and between countries. In 

recent years, far reaching changes to these infrastructures has made them increasingly 

vulnerable to attacks, failures and accidents. The most significant transformation has 

been the deregulation of these industries. This may have increased their efficiency, but it 

has also increased the mobility of their workforces and made them less familiar with their 

working environment and arguably more likely to take revenge if cost-cutting leads to 

redundancies. Furthermore, new regulations, such the requirement to give precedence to 

sellers of renewable energy in the power generation and distribution industry (such as 

wind power with its spiky generation behavior) make control of the infrastructure and the 

co-ordination of the monitoring and diagnostic functions more difficult.  

Adding to these problems is the increased interconnectivity and interdependence 

between critical infrastructures. Cascading failures can now propagate internationally, as 

happened when a failure in a Swiss transmission line caused a widespread blackout in 
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Italy [1]. There is also a rising risk of cascading effects between infrastructures of 

different types. Although the interdependency between telecommunications and 

electricity has been around for some time, now that electricity suppliers provide 

communication services, it is possible that the failure of a transmission line could impact 

telecommunications directly. The increased interconnectivity has also made malicious 

attacks much easier. In the past a telecommunications switching station or electricity 

plant could only be sabotaged through direct physical contact; now terrorists can attack 

critical infrastructures from anywhere the world. 

Safeguard [2] is a system that aims to improve the dependability and survivability 

of large complex critical infrastructures by monitoring and protecting them with 

autonomous agents. At present the availability and integrity of critical infrastructures are 

usually monitored and maintained by human operators. Safeguard uses agent technology 

to improve the capabilities of the automatic control functions while also helping the 

human operators to make the right decisions at the right time. 

This chapter will introduce some of the threats to critical infrastructures and the 

agent-based solution that we have developed to tackle these threats. Although the 

Safeguard project has focused on electricity and telecommunications networks as its 

practical examples, the aim is to produce a generic solution that can be adapted to other 

forms of large complex critical infrastructure. 

2. Attacks, Failures and Accidents 
In general, critical infrastructures can be divided into the following three layers: 
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1. The physical layer. This is the network of pipes, lines, cables, etc. that delivers the 

essential services. In the telecommunications domain the physical layer consists of 

the routers, switches and copper and fiber-optic lines that carry the 

telecommunications data. In the electricity domain the physical layer is the network 

of transmission lines, transformers, breakers and generators that create and transport 

the electrical energy.  

2. The cyber layer. This is the computers, networks and data gathering sensors that are 

used to monitor and control the physical layer. In the telecommunications domain, the 

cyber infrastructure is used to monitor and control the many routers and switches 

within the system. In electricity, the cyber infrastructure gathers information about 

power flows and breaker states and transmits the operators’ control signals to the 

breakers and transformers. Although the cyber layer may share communications 

channels with the physical layer – in telecommunications, for example – the data that 

is transmitted within the cyber layer has a very different function from that within the 

physical layer. 

3. Human operations layer. All the information gathered by the cyber layer is passed 

on to the human operators, who use it to manage the physical and cyber layers. The 

organizational processes that are in place for management, security enforcement, and 

recovery from failures are part of this layer. 

 

In the past it has generally been the physical and human operations layers that 

have been the most vulnerable to attacks, failures and accidents. Accidents and failures in 
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the physical layer have always been part of the daily running of the network and this 

layer has occasionally been subject to physical attacks as well. Within the human 

operations layer, operators inevitably make mistakes and they also have the specialized 

tools and knowledge that are needed to carry out malicious actions. It has also always 

been possible for attackers to gain physical access to the control room or to manipulate 

operators by social engineering. None of these problems have gone away in recent years, 

but a number of factors have contributed to a dramatic rise in the vulnerability of the 

cyber-layer, which has been the main area of focus for the Safeguard project. 

2.1 Telecommunications Vulnerabilities 

In most European countries traditional circuit-switched telecommunication networks are 

being replaced by packet-based IP networks. It is therefore the manifestation of attacks, 

failures and accidents in IP networks that constitutes the most significant threat to 

telecommunications infrastructures. In recent years the dependability of IP infrastructures 

has decreased, due to the proliferation of worms, denial of service attacks, buffer 

overflow vulnerabilities and viruses. One study [3] estimates that the number of intrusion 

attempts over the entire Internet is in the order of 25 billion each day and increasing. 

Furthermore, many of these types of attack are getting more sophisticated and more 

automated, which means that the skills needed to launch them are reduced (see 

McHugh’s discussion of this [4]). There are also the inevitable problems of hardware 

failures and software crashes. All of these problems are being exacerbated by the rapid 

deployment of hardware and software that has been designed primarily for other contexts 

(e.g. personal computing) within the patchwork that constitutes modern complex systems. 
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This spread of commercial off-the-shelf hardware and software can also lead to a 

monoculture within which it is easy for malicious processes to spread.  

To ensure that the system is delivering its essential services,1 network 

administrators rely on large numbers of diagnosis and detection programs distributed 

across the cyber infrastructure. Some of these programs are part of intrusion detection 

systems (IDS), others monitor the general state of processes, processors, file systems, and 

so on. These devices are collectively referred to as INFOSEC devices. It might be 

thought that INFOSEC devices, such as intrusion detection systems and virus checkers, 

would be enough to protect modern systems, but the problem with these “protective” 

devices is the extremely large number of alarms that they generate. An initial study in a 

test network set up by Safeguard showed that even in the presence of few attacks and 

very little normal activity on the machines, there were over two million alarms generated 

in a 50-host network over a two week period.  

Another problem encountered by the security managers of IP networks is the false 

alarm rate of some INFOSEC devices, such as intrusion detection systems. To see why 

even an apparently low false alarm rate is a significant problem consider a hypothetical 

situation where an INFOSEC device has a 1% false alarm rate and a 100% detection rate. 

During one day, 1 million benign events and 20 malicious events are presented to this 

system. The INFOSEC device will detect all 20 attacks, but also classify 10,000 of the 

benign events as attacks [6]. The operator has to investigate 10,020 alarms, of which only 

about 0.2% of them are true. 

                                                 
1 See [5] for a definition of essential services. 
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A third problem faced by telecommunications operators is that the systems they 

are monitoring are in a constant state of change. This makes it very hard to identify the 

normal behavior of the system and detect when it is going wrong. If one could fix the 

topology of the network and define the traffic patterns that will appear in it over time, 

there would be some hope of detecting deviations from this behavior. Unfortunately in 

the evolving world of telecommunication services this is an unrealistic assumption, and 

solutions for enhancing the survivability of such networks need to be able to adapt to a 

changing normality. 

To reduce the vulnerabilities in a telecommunications management network, we 

therefore need to have defense mechanisms that operate in a meaningful way in the 

presence of component failures (processors and software crashes), overloads (data 

overloads, alarm overloads), and attacks. These defense mechanisms must also interact in 

an effective way with the security administrator and adapt to legitimate changes in the 

underlying network operations. 

2.2 Electricity Vulnerabilities 

The electricity cyber layer contains a number of control centers running workstations, 

energy management software (EMS) and databases over a local area network. These 

control centers interact with the Supervisory Control and Data Acquisition (SCADA) 

system that consists of a software interface and specialized hardware units (RTUs), which 

monitor sensors and interface with breakers and transformers (see Figure 
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1).

 

Figure 1. Electricity cyber infrastructure 

Traditionally this cyber infrastructure was protected by its relative isolation and 

the non standard protocols that were used to communicate over it. However, with the 

deregulation of the electricity industry it no longer makes sense for each company to 

develop its own hardware and design proprietary protocols, and companies are 

increasingly looking to commercial products to solve their communication needs. A 

second consequence of this market orientation is the increased interconnectivity between 

the electricity management networks and other networks, most problematically between 

the corporate network and the control center network. The dangers of this standardization 

and interconnection became apparent in the recent Ohio nuclear incident [7] when the 

Slammer worm copied itself across from the corporate network into the plant network 

and disabled a safety monitoring system for nearly five hours, forcing the operators to 
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switch to an analogue backup. In a separate incident the propagation of Slammer blocked 

SCADA traffic and impeded the ability of operators to monitor and control the electricity 

system [8].  

In addition to these problems that are linked to the increasing use of TCP/ IP in 

electricity management, SCADA systems are also subject to specific vulnerabilities of 

their own. One possibility is that an attacker could directly connect to intelligent 

electronic devices over a telephone line and open breakers or disrupt safety systems [9]. 

Another possibility is that a failure or attack could alter the operators’ picture of the 

electricity network. This could lead them to take incorrect actions with potentially 

damaging consequences. This was one of the contributing factors to the recent U.S. 

blackout, when a bug in the state estimation software led to First Energy operators using 

outdated information about the status of the electricity network for over an hour [10].2 

As these examples show, the key problem in the management of electricity 

networks today is the impact of attacks, failures and accidents on the monitoring and 

control of the electricity grid. What is needed is a system that can evaluate the reliability 

of the electricity data and carry out a rapid automatic response when necessary. 

3. Solutions 
Within the Safeguard project we have aimed to produce a solution that can tackle some of 

these challenges, using an open architecture that can be extended to cope with emerging 

threats. At the center of this Safeguard solution is an agent system, which facilitates the 

distributed gathering and filtering of information from a number of different sources and 
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the execution of a rapid response to attacks, failures and accidents. In this section we will 

describe the motivation behind the Safeguard approach. Section 4 will then cover the 

Safeguard architecture in more detail. 

3.1 Agents 

Agents are semi-autonomous software entities that perceive their local environment, 

process this information in some way and carry out actions. By communicating with one 

another they can develop collective solutions to problems. Agents run on agent 

middleware that separates their generic services (such as communication capability, 

service discovery, heart beat emissions) from the specific “business” logic used for 

detection, correlation or action. This paradigm offers a number of advantages over a 

single centralized intelligence: 

Scalability. With a centralized system, communication bottlenecks can build up around 

the central controlling node as the network increases in size. Within a decentralized 

system the communication overhead depends upon the degree of coupling between 

the distributed components. However, since this overhead is distributed over the 

whole of the network, even quite tightly coupled distributed systems can generally be 

scaled more easily. For example, in the management of IP networks it has been found 

that although there may be a higher growth in signal traffic if flooding is employed to 

inform all other nodes of state change, this represents only a small percentage of link 

                                                                                                                                                 
2 The state estimator is a program that runs in the electricity control center and uses the known electrical 
properties of the network to calculate a best-fit hypothesis about its current state. 
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bandwidth [11]. The processing of information is also distributed across many nodes 

in agent systems. 

Local detection and response. The remoteness of centralized intelligence systems 

makes them useless in the event of a partial or complete network failure. On the other 

hand, a distributed agent system can carry out an autonomous rapid response in 

isolated parts of the network, which can perform definitive repair actions or simply 

“buy time” before a more lasting remedy is found. This is a substantial advantage in 

critical infrastructures, which are generally managed using a central control room 

(with backup control available at different locations).3  

Robustness. Agent systems ideally do not have a single point of failure and can continue 

to operate even if a number of them are attacked or fail. This is a useful feature in 

dependability applications, where graceful degradation rather than rapid collapse is 

the optimal behavior.  

Emergent behavior. A lot of work has been done on the way in which certain forms of 

intelligence can emerge through large numbers of local interactions. A number of 

relatively simple agents can self-organize to perform tasks that would very difficult to 

create and coordinate from a central point. 

Modularization. Whilst the object-oriented paradigm does facilitate a reasonable amount 

of modularization, agent systems take this even further since each agent operates as 

an independent functioning system. Different agents can be designed by different 

                                                 
3 This true even in mobile networks, where regional control centers manage traffic from many base stations.  
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people to handle specific tasks and only the messages between them need to be 

agreed. This makes it is easy to set up communications between agent systems made 

by different companies for diverse critical infrastructures.  

 

These advantages of agent-based systems make them the best choice for the 

monitoring and protection of large critical infrastructures. However, it is the intelligence 

inside the agents that enables them to identify problems and react to them appropriately. 

The Safeguard approach to this will now be covered in the next two sections. 

3.2 Detection 

We have already outlined some of the INFOSEC devices that are used to gather data 

about the critical infrastructure that is being protected. For fault detection there are many 

expert-based diagnostic systems that classify symptom sets to identify causes. For 

security diagnosis virus checkers and intrusion detection systems apply knowledge-based 

techniques (typically signature-based misuse detection), or behavior-based techniques to 

identify malicious attacks on the system. There are also general tools that simply act as a 

probe and facilitate the subsequent use of an intrusion detection system, either by data 

mining log results, or by collecting alerts for further examination by a human operator 

[12].  

Although all of this data is extremely useful for reaching conclusions about the 

system, the central problem is that most of these devices rely on signatures of the 

problems that are looking for and are unable to detect novel kinds of attack or failure. 

The only way in which they can manage this limitation is through frequent updates, 
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which often arrive after a worm or virus has already spread. To address this limitation of 

signature-based detection there has been considerable research over the last five years 

into anomaly detectors that learn a model of the normal behavior of users or the protected 

system. This model of the normal behavior of the system is then compared with its actual 

behavior to identify anomalies. Since no knowledge of attacks is needed to train the 

normality model, anomaly detection has the ability to detect previously unknown attacks. 

Typical examples of anomaly detection are the statistical profile-based anomaly detection 

in EMERALD [13] and Forrest’s models of system calls inspired by the immune system 

[14]. The disadvantage of anomaly detection is that it can suffer from high rates of false 

alarms and it can be difficult to adapt a normal model to gradual changes in the system 

over time.  

In Safeguard we combine knowledge-based and behavior-based detection into a 

hybrid detection model that leverages existing knowledge and also looks for significant 

deviations from normality in the system. This hybrid detection is carried out by agents 

tuned to the data types of the telecommunications and electricity domains. For example, 

one agent monitors IP packets, another looks at timing differences in SCADA signals and 

another examines the power readings from the electricity network. The modularity of the 

agent architecture also enables us to integrate new kinds of anomaly detector as the need 

arises.  

The detection that has been described so far takes place at the lower levels of the 

system. The second phase in the identification of problems is the correlation of this 

information to bring it together into a single picture that can form the basis of a 

coordinated response. In conventional systems, very little correlation takes place and the 
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operator has to sort through and integrate the large number of alarms. A key part of the 

Safeguard strategy is to take advantage of the distributed agent architecture to do this 

correlation for the operator. 

3.3 Response 

Distributed agent architectures are good at gathering and processing information. They 

are also an effective way to deliver a rapid local response to problems within the system. 

When worms like Slammer can infect most vulnerable machines within ten minutes of 

their release [15], an automatic response is essential because there is no time for 

operators to sift through thousands of alarms and halt the spread of the problem. The 

danger with autonomous action is that agents can create more problems than they solve. 

This risk can be reduced if the agents’ autonomous actions are only implemented when it 

is judged to be more risky for them to delay than to act on their limited information. If the 

response is not time-critical, or if there is a danger that they could damage essential 

functions, it is safer to make the agents wait for approval from the human operator. 

4. The Safeguard Architecture 
Now that we have covered the motivation and general outline of the Safeguard approach 

we will describe the way in which the Safeguard agent system has been implemented 

within the telecommunications and electricity domains. The key to a generic solution that 

is applicable in many infrastructures is the definition of a number of different types of 

agent, each of which carries out a different role. These are common to the defense of 

many different infrastructures, but in some cases their functionality is optimized for a 
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particular domain. The agent types and the communications between them are depicted in 

Figure 2.  

 

Figure 2. The Safeguard agent architecture  

Wrapper agents. Interface with other applications running on the system, for example 

the intrusion detection system, firewall, virus checker and diagnostic software. Their 

task is to filter and normalize information from these applications and then pass it on 

to the correlation agents. 

Topology agents. Gather dynamic network topology information, such as host type, 

operating system, services provided and known vulnerabilities.  

Hybrid detector agents. Identify potential problems in the cyber infrastructure. These 

agents use domain specific knowledge about the behavior of the system and compare 

the system’s current behavior with a learnt normal profile. 



Wiley STM / Professor Hassan B. Diab & Professor Albert Y. Zomaya /Dependable Computing 
Systems: Paradigms, Performance Issues, and Applications / Chapter 19 / Authors David Gamez, 
Simin Nadjm-Tehrani, John Bigham, Claudio Balducelli, Kalle Burbeck, Tobias Chyssler / filename: 
ch??.doc 

page 15

Correlation agents. Identify problems by bringing together information from the 

wrapper, topology and hybrid detector agents. The tasks of these agents include 

ordering and filtering alarms to provide a focus for the operators and diagnosing 

specific problems in the network.  

Action agents. Automatically or semi-automatically respond to problems in the network 

that have been identified by the correlation agents.  

Negotiation agents. Communicate with agents in other critical infrastructures to request 

services and pass on information about major security alerts. 

Human-Machine Interface agents. Provide an appropriate interface for one or many 

system operators. This allows the human operators to monitor the agent system, view 

the cyber infrastructure and approve the agents’ actions.  

Actuator agents. Wrapper that enables the action agents to interact with the lower layer 

of software and hardware (the firewall, for example). 

 

All of these agents run on a platform, which provides generic services such as 

discovery and messaging. This is an implementation, developed by Aplicaciones en 

Informática Avanzada (AIA),4 of the Java Agent Services (JAS) specification. This is an 

industry standard for the development of Java agent and service architectures.5  

Within this architecture the functionality of agents that operate at a high level of 

abstraction from the critical infrastructure is generic to the electricity and 

                                                 
4 This is one of the Safeguard project partners. 
5 See [16] for a comparison between the Safeguard agent platform, JADE and Tryllian. 

http://www.elec.qmul.ac.uk/safeguard/pages/participants.html#Aplicaciones en Inform�tica Avanzada (AIA)#Aplicaciones en Inform�tica Avanzada (AIA)
http://www.elec.qmul.ac.uk/safeguard/pages/participants.html#Aplicaciones en Inform�tica Avanzada (AIA)#Aplicaciones en Inform�tica Avanzada (AIA)
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telecommunications domains. Agents working closer to the cyber infrastructure have 

been designed to take into account the specific requirements of the domain that they are 

operating in. In the management systems of telecommunications networks there are 

upwards of 50 machines and very large quantities of alarms. One type of correlation 

agent in the telecommunications domain performs static and adaptive filtering to reduce 

the alarm rates. In the electricity domain there are problems with the corruption and loss 

of data. A hybrid detector agent has been built to detect anomalies in the electricity data 

and improve the operators’ view of the network. 

This section starts with a brief description of some of the agents that are common 

to both domains. It then covers the agents that have been developed to address specific 

problems within the telecommunications and electricity cyber infrastructures. Since the 

majority of the research effort within Safeguard has been dedicated to the development of 

the domain-specific agents, these will be covered in more detail. 

4.1 Generic Agents 

The functionalities of the agents in this section are generic to all critical infrastructures. 

4.1.1 Topology Agent 

The topology agent stores information about the cyber infrastructure and makes it 

available for the other agents running on the system. This information is gathered from 

databases and human operators and includes the hardware and software components, their 

interconnections, importance and vulnerabilities, the services they are running and the 

people responsible for them. This agent also provides a measure of health for the 
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components that it is monitoring – a computer with a high CPU load and high 

temperature is rated as less healthy than one that has a low load and is cool running. 

4.1.2 Human-Machine Interface Agent 

The Safeguard agents’ autonomous actions are carried out under the supervision of a 

human operator. In some situations the agents will need to ask human operators for 

permission to carry out actions. In other situations the agents will be unable to take action 

and alarms or requests for help need to be sent to the human operators. The human-

machine interface agent manages all these forms of communication between Safeguard 

and the human operator. It displays the ranking of the filtered alarms that were processed 

by the correlation agent and enables the human operator to monitor and control the 

autonomous actions of the agents. The human-machine interface agent also displays the 

information gathered by the topology agent about the cyber infrastructure. 

4.1.3 Negotiation Agent 

The negotiation agent handles the interactions with other critical infrastructures. As was 

mentioned in Section 2, one of the emerging problems with critical infrastructures is their 

increasing interdependency and the negotiation agent’s main task is to minimize the risk 

of cascading failures by keeping the operators and agents in other critical infrastructures 

informed about attacks, failures and accidents. The negotiation agent also exchanges 

information that can help in the day-to-day running of the networks.  

In the event of a significant failure, the negotiation agent can also request services 

from other critical infrastructures of a similar or different type. For example, if a 

telecommunications network experiences a major failure, the negotiation agent can 
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arrange for its calls to be switched through the most suitable alternative network at an 

appropriate price. If the data communications in an electricity network fail, more services 

can be requested from a telecommunications network. 

4.2 Telecommunication Agents 

This section describes some of the agents that were specifically designed to operate in the 

telecommunications domain. 

4.2.1 Network Hybrid Anomaly Detection Agent 

As explained in section 3.2, the Safeguard hybrid detector agents use a combination of 

knowledge-based and behavior-based techniques to identify problems in the cyber 

infrastructure. In this agent, the anomaly detecting part uses an algorithm called 

ADWICE (Anomaly Detection With fast Incremental Clustering), a new adaptive 

anomaly detection scheme built on BIRCH clustering [17]. This behavior-based data 

mining approach is combined with a knowledge-based white-list engine, resulting in a 

hybrid anomaly detector. Although this agent is designed primarily for detecting 

anomalies among network packets, its algorithms are general enough to be applied to any 

data provided that a small class is implemented to access the data source and normalize 

the data.  

The white-list engine implements simple specification-based intrusion detection 

[18], where data known to be normal is described by manually constructed signatures. In 

our case, hosts and services that are known to produce abnormal behaviour (e.g. DNS 

server port 53) are filtered away, but rules for arbitrary features can be used. Data that is 
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classified as normal by the white-list engine is not fed into ADWICE, which reduces the 

size of the normality model without decreasing detection coverage. Normality is 

represented by a large number of small possibly overlapping clusters, where each cluster 

is represented by a compact cluster feature (CF). A cluster feature is a triple (n, S
r

, SS), 

where n is the number of data points in the cluster, S
r

 the linear sum of the n data points 

and SS the square sum of all data points. Given the cluster features for two clusters, the 

centroid v0 and radius R may be computed. ADWICE incrementally constructs a cluster 

feature tree which facilitates fast searching of the normality model.  

Once the cluster feature tree has been constructed it is used to identify anomalies 

in data from the network At detection time, the Euclidean distance between a new data 

point vi and the centroid of the cluster CFj closest to vi is calculated. If this is greater than 

a threshold, then it is unlikely that the data point belongs to any of the learnt clusters and 

it is classified as anomalous. This anomaly model can be incrementally expanded and 

contracted to accommodate the dynamic nature of telecom/IP networks [17]. 

Furthermore, the agent can adapt to new network circumstances by dynamically changing 

the threshold that is used for detection purposes. 

4.2.2 Wrapper Agent for Alarm Database  

The main objective of this agent is to encode the rules that are currently used by expert 

operators to reduce the volume of reported alarms. These rules are applied in three stages 

of static filtering, dynamic filtering and normalization (Figure 3). Expert operators 

generally do this kind of filtering on information from several INFOSEC devices and so 

this agent was constructed to process information from one network-based intrusion 
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detection system, Snort (a rule-based intrusion detector that inspects network packets), 

and two host-based systems, Samhain (a file integrity checker) and Syslog (system log 

messages).  

 

Figure 3. Functions in the bottom three rows are implemented in the wrapper agent for 

alarm database 

The filtering and normalization that this agent applies to the alarm data will now 

be covered in more detail. 

Filtering 

With static filtering simple rules are set up to remove uninteresting or irrelevant 

messages. However, the problem with applying static filters to misconfiguration 

messages is that it is not possible to foresee all future misconfigurations and so adaptive 

filtering algorithms are needed to update some of the filters. For the Syslog alerts an 

automatic filter detector based on Naïve Bayesian learning [19] was designed. This trains 

a Naïve Bayesian text classifier to classify messages by looking at the words that appear 
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in them. The Naïve Bayesian classifier is first trained by presenting a number of 

messages labeled as interesting or uninteresting. During training, a knowledge base is 

built up by counting the occurrences of the tokens (words) in the message. After training, 

messages are classified by computing the probability that they belong to a class based on 

how common the values of their attributes (words) are in that class within the training 

data. 

A more detailed workflow for the training of the adaptive filters is as follows: On 

a periodic basis, or on demand, the algorithm for adaptive filtering is launched. The 

human-machine interface agent then presents the algorithm’s classification to a human 

expert. In order not to overload the expert, only the top scoring messages are selected 

(e.g. messages with a high count, which are the ones with the most influence). The 

human expert then classifies the messages as interesting or uninteresting. An interesting 

message is one that is a useful indicator of an attack. For example, a message saying 

“telnetd[1]: Successful login as user root” or “File changed” is classified as interesting, 

but messages like “Syslog-ng: 54 Objects alive. Garbage collecting while idle” or “Could 

not resolve host name” will be classified as uninteresting (the last message is an example 

of a misconfiguration that should be detected and reported separately from the intrusion 

detection process). The human expert’s reply is then used to optimize the training corpus 

(thus achieving on-line retraining). To our knowledge this is the first work in which text 

classification is used for adaptive filtering in intrusion detection systems.  
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Normalization 

Snort, Samhain and Syslog produce information and alarms in very different formats and 

to effectively correlate the information from these sources it is necessary to normalize the 

data in a standard way. 

 

More detail on the above techniques and the evaluation of this agent on the 

telecommunications test network are presented in [20]. 

4.2.3 Alarm Reduction Correlation Agent 

After filtering and normalization the output from Snort, Syslog and Samhain need to be 

correlated in order to identify the real attacks on the system. But before doing this we can 

reduce the number of alarms by correlating the output from each sensor within a time 

window. The next two subsections describe the combination of knowledge-based and 

behavioral-based techniques that we have employed to do this correlation. 

Aggregation 

Aggregation is used to integrate information that is of the same type or from the same 

source. For example, port scans generate a lot of messages in Snort and are not of 

primary interest. It reduces the information overload if each scan can be reduced to a 

single alarm (if possible, for example when the scan was performed from the same 

source). The source of a scan is also useful as an additional parameter when looking for 

other attacks, since it is known that network scans are often the first sign of an attack. 

Other alarms can also be aggregated if they are similar and occur within a certain time of 

each other. This kind of aggregation can be applied to all intrusion detection systems, but 
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the definition of which alarms should be treated as similar is specific to each intrusion 

detection system. For example, Snort alarms with the same source IP, destination IP and 

signature are aggregated if they fall within a given time window.  

Multi-sensor correlation 

Next we deal with correlation of alarms from several sources. At present this correlation 

is carried out by a security administrator who analyzes the output of these data sources to 

find the real attacks. In Safeguard we wanted to automate this process, but the difficulty 

is that the way in which a security expert analyses the information is complicated and 

cannot be written down as a simple collection of rules. A more sophisticated machine 

learning algorithm was needed to separate the true and false positives. For the alarm 

reduction correlation agent, three different correlation methods were explored and 

compared to each other.  

Before the alarms are correlated, they are integrated by taking all the alarms 

relating to one host during a period of time (i.e. the correlation parameters are time and IP 

address) and then plotting the sum of their severities against each other in three 

dimensions. Some typical alarms that are brought together in this way are illustrated in 

Figure 4.  
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Figure 4. Alarms appearing in two time slots 

The resulting three-dimensional vectors are then used as input to an additive 

correlator, a neural network and a K-nearest neighbor algorithm. The additive correlator 

is the most simple of these and it simply adds the three severities and generates an alarm 

if the sum is larger than the threshold. By varying the threshold different detection and 

false positive rates can be achieved. This provides a simple means by which adaptiveness 

can be build into the detection and analysis mechanism. When the operator is extremely 

overloaded the threshold can be automatically adjusted to deliver fewer alarms (trading 

off accuracy with fewer false positives and buying time). The other two correlation 

algorithms are first trained with some of the time slots and then used to classify new time 

slots. More details about the other two correlation algorithms can be found in the 

documents [20] and [6], which also contain a comparative evaluation of these techniques. 

To summarize the findings, the additive correlator was found to have the simplest 

deployment (no training) and was more adaptable than the other two. It had a reasonable 

detection rate (78%) with a high (5%) false positive rate in the chosen configuration. The 

neural network correlator had the best detection rate (95%) combined with a low false 

positive rate (1.5%), whereas the K-NN correlator had a low detection rate (44%) but 
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almost no false positives. The latter two were of course less adaptive to normality 

changes due to the need for retraining. 

Further work on the correlation of alarms from different sources and the 

integration of the alarm and topology data is in progress and will be evaluated on our test 

network. 

4.3 Electricity Agents 

In this section we describe some of the agents that were specifically designed to operate 

in the electricity domain. 

4.3.1 Electricity Data Hybrid Detector Agent 

This agent monitors the data from the electricity network and looks for corruptions in it 

using a mixture of knowledge-based and anomaly-detecting methods. This agent also has 

the ability to improve the quality of the data by adjusting the weights on different 

electricity readings or, in an emergency, by suggesting values for some of the readings. A 

number of different methodologies are used:  

Linear Equation Induction. This technique builds up a normal model of the data by 

looking for relationships between different data readings. In the data from electricity 

networks this approach is particularly effective since most of the data is interrelated 

in a systematic manner. For example, in the networks that we have experimented on, 

the relationship between the power flow readings at either end of a line are, to a high 

degree of accuracy, of the form P1 = kP2 + C, where k and C are constants.6 During 

                                                 
6 The true relationship is not linear, but the approximation is good enough to detect anomalies. 
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the training phase the data is examined for linear relationships by fitting an 

approximate model to the training data and computing its residual (e.g. least squares). 

During the monitoring phase, the data is checked to see if the equations still hold. If 

they do not, there could be data corruption or the manipulation of data by a malicious 

attacker. 

Range checking. This builds up a model of the normal data by learning the normal range 

for each electricity reading. If the data shows a significant deviation from this range 

during the detection phase, there could be a problem with the data. 

Bus zero sum. It is a known property of electricity networks that the sum of real and 

reactive powers entering a bus equals the sum of the real and reactive powers leaving 

a bus. If this does not hold, there is likely to be a problem with the power readings on 

the bus. 

Switch / power correlation. When a switch is open, the power readings on the line that 

the switch is linked to should be zero. If this is not the case, the information about the 

switch state could be wrong or the power reading could be incorrect. 

 

All of this information about the electricity data is integrated within a dynamically 

generated Bayesian network constructed using the topology of the electricity network. 

This Bayesian network works out the probability that each reading is correct and the 

probability that the switches are open or closed. Figure 5 shows an extract from this 

Bayesian network showing the nodes related to a single line reading. The final network 

within this agent is an interconnected combination of a large number of these nodes. 



Wiley STM / Professor Hassan B. Diab & Professor Albert Y. Zomaya /Dependable Computing 
Systems: Paradigms, Performance Issues, and Applications / Chapter 19 / Authors David Gamez, 
Simin Nadjm-Tehrani, John Bigham, Claudio Balducelli, Kalle Burbeck, Tobias Chyssler / filename: 
ch??.doc 

page 27

 

Figure 5. Bayesian network used to integrate information from different sources 

More information about this agent and some preliminary results can be found in a 

recent paper [21]. 

4.3.2 Event Course Hybrid Detector Agent 

This agent uses a case-based reasoning technique to recognize the most typical sequences 

of events coming from software modules inside the SCADA system. Initially it performs 

offline learning of the time constraints of event sequences. It then monitors the sequences 

online and associates them with an anomaly level. The sequences of events that are to be 

recognized are defined and edited inside the agent’s case base by an expert on SCADA 

systems [22]. 

To apply this methodology within a specific knowledge domain, it is necessary to 

define the following: 

 
• The structure of the individual cases. For each domain the case structures and 

working features must be specified. 
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• The metrics establishing the degree of similarity between cases. 

• The attributes on which the learning mechanisms must to be applied to modify or 

include different cases in the case base. 

 

These definitions will now be covered in detail for the application of case-based 

reasoning within SCADA systems. 

Structure of the Generic Case  

The generic case structure corresponds to a course of events captured inside the SCADA 

system. An example of a SCADA course of events is shown in Table 1.  

 
Case Name: X ES E1 E2 E3 E4 E5 E6 

Time Label 0 t1,dt1 t2,dt2 t3,dt3 t4,dt4 t5,dt5 t6,dt6 
Total Time 

T 

Table 1. Representation of a generic course of events case 

 
In this case T is the total time for which the course has to be considered and ES represents 

the starting event of the sequence, occurring at time 0. For every event following ES in 

the event course there is a corresponding record of the time elapsed since the starting 

event (t1, t2,…t6). However, in a real case each event’s time is only an average value that 

can vary with the system’s memory consumption and workload. For this reason, the 

maximum expected time deviations (dt1, dt2,…,dt6) are also given for every event. 
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Metrics Definitions and Similarity Concept 

During the case-based reasoning process, the above case, stored inside the case base, 

must be compared with a current case, X, acquired from software instrumentation 

installed in the SCADA devices. This case has the structure shown in Table 2. 

 
Current 

Case 
ES * * E1 E2 * * * E3 * E4 E5 * E6 * * 

Time Label 0 * * Tc1 tc2 * * * tc3 * tc4 tc5 * tc6 * * 

Table 2. Current case X acquired from SCADA instrumentation 

 
ES-E6 are the first occurrences of the events of the generic case, the “*” character 

represents other types of events or successive occurrences of the same types of events, 

and tc1-tc6 are the times of the events ES-E6. Now is possible to evaluate the distance or 

similarity between case X and the generic case using Equation 1.  

n
d

tct
S

n

i ti

ii∑
=

−
= 1

||

 

Equation 1. The distance or similarity between the current and generic case 

 
In Equation 1, n is the number of events belonging to the case and S represents the degree 

of similarity normalized to 1. This means that S=0 is a situation in which two cases are 

completely similar, whereas S=1 is a situation in which there is a complete lack of 

similarity.  
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Case Base Training Phase 

A training phase is also necessary to update the times of the generic cases. Although 

generic cases are initially defined by experts using an appropriate case editor, more 

specific values of the case attributes are added through training. During this training 

phase, the agent monitors the different event sequences for a time period which must be 

sufficient to obtain enough adequate data sets to calculate average time values for each 

event. One of the advantages of case-based systems is their ability to handle incomplete 

sets of cases. In other words, the case base does not have to cover all possible situations 

from the very beginning. The case base reasoning system can work with an incomplete 

case set, covering only a limited set of the most important events. With additional 

training this case base can be extended with new cases covering new situations and 

events. 

 

4.3.3 Electricity Correlation Agent 

The task of the correlation agent is to gather information from the other agents, come up 

with hypotheses about the state of the system and suggest an appropriate response. In the 

telecommunications domain most of the information is in the form of a large number of 

alarms relating to attacks on the IP infrastructure and the main challenge is to sort 

through these alarms and identify those which are most likely to indicate an attack. In the 

electricity domain, there is a lower volume of alarms and the behavior of the SCADA 

system, the output of the state estimator and the quality of the electricity data all have to 

be taken into account by the correlation process. The challenge with this kind of 

correlation in the electricity domain is the complexity of the system and the vast number 
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of possible scenarios. It also happens that several independent events contribute to a 

single observed phenomena and there is the further problem that many situations are not 

visible all at once, but unfold gradually over time. 

It is not feasible to try to address these challenges with a single expert system that 

can recognize any problem within the domain. Such systems are hard to create and 

difficult to test and maintain. Instead, we have developed a very modular probabilistic 

reasoning system that breaks the reasoning down into a number of ‘streams of thought’ or 

workflows, which model sequences of events within the cyber infrastructure. As the 

correlation agent runs it monitors messages from the other agents and uses Bayesian 

reasoning to determine whether one of these sequences of events is taking place. When 

this is the case, it activates the matching workflow, which can then be used to carry out 

further diagnosis, request actions, trigger an alarm, or send messages to other agents.  

Inside the correlation agent the modeling and tracking of workflows is handled 

using Petri nets. The transitions in these Petri nets are associated with nodes in a 

Bayesian network that carry out the probabilistic reasoning about whether an event is 

taking place. The observables in the Bayesian network are set using information from the 

other agents’ messages and the Petri net transitions become fireable when the Bayesian 

node associated with them has a probability over a certain threshold. When this happens, 

the workflow is activated and its temporal reasoning is brought into operation. The next 

transition or set of transitions in the workflow are anticipated by the agent and the 

transitions prior to the firing transition set the temporal context for the event represented 

by the firing transition. 
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This modular reasoning process will be made clearer through an example. 

Suppose that a worm enters the electricity control center’s local area network and starts to 

scan and copy itself onto other machines. The Safeguard agents will detect some of the 

consequences – network congestion, scanning, file modifications and so on - and pass 

this information on to the correlation agent. When the correlation agent receives this 

information it will use it to set the appropriate nodes in the Bayesian networks B1 and 

B3, shown in Figure 6.  

 

Figure 6. Simplified extract from a Bayesian workflow that is used to identify and 

respond to worms on the system. The clear squares are the Petri net transitions, the clear 

circles are Petri net places and the hatched circles are Bayesian network nodes. 

If the Bayesian reasoning in network B1 concludes that there is a high probability 

of a worm on the system, then the correlation agent activates this workflow and fires 

transition T1. This workflow predicts that the worm attack will lead to the loss of 

SCADA data. When this hypothesis has been confirmed by Bayesian network B2, 

transition T2 fires and the workflow attempts to take action to deal with the worm. One 

action is to send a message to the action agent requesting it to block the port that the 
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worm is propagating on (transition T3). The workflow also alerts a human operator about 

the problem (transition T4). The workflow then checks to see if the worm is still 

propagating on the system using Bayesian network B3, which in this case is the same as 

B1. If the worm is still present, transition T5 will fire and some other actions may be 

carried out. Otherwise transition T6 will fire and the agent may perform some clean up 

operations before closing the workflow. 

A large number of these Bayesian workflows can be active at the same time. They 

are very lightweight because they are implemented using the workflow engine, Bossa 

[23], rather than separate threads. This allows the agent to deal with an indefinite number 

of different workflows relating to different event sequences in the monitored system. It is 

also very easy to extend the reasoning of the correlation agent and adapt it to new 

situations by adding new Bayesian workflows.  

5. Future Work 
The Safeguard agent system has been built and is currently in the process of being tested. 

In the telecommunications domain it is being tested on a realistic IP network of around 

50 hosts with various hardware, switches, operating systems and levels of vulnerability. 

In the electricity domain, we are using a simulator developed by Aplicaciones en 

Informática Avanzada (AIA) to generate electricity data. A software emulation of a 

SCADA system is then used to transport this data across a real network to a number of 

machines connected together at the control centre. This arrangement allows us to explore 

electricity specific scenarios as well as the effects of an IP attack (a worm, for example) 

on the transportation of SCADA data. 

http://www.elec.qmul.ac.uk/safeguard/pages/participants.html#Aplicaciones en Inform�tica Avanzada (AIA)#Aplicaciones en Inform�tica Avanzada (AIA)
http://www.elec.qmul.ac.uk/safeguard/pages/participants.html#Aplicaciones en Inform�tica Avanzada (AIA)#Aplicaciones en Inform�tica Avanzada (AIA)
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The Safeguard project ends in May 2004 and in the longer term we are looking to 

develop our prototype into a commercial system through collaboration with industrial 

partners. We will also be looking at the application of Safeguard within other domains, 

such as the critical infrastructures that are used to transport water and gas. 

6. Conclusion 
This chapter has outlined the emerging challenges to the large complex infrastructures 

that are used to provide critical services, such as gas, water, electricity and 

telecommunications. Whilst the physical and human layers of these infrastructures have 

always been vulnerable to some extent, the deregulation and interconnection of these 

industries, combined with the move towards commercial off-the-shelf software, has 

increased the vulnerability of their cyber infrastructures and significantly raised the 

probability of uncontrollable cascading failures. 

Safeguard is an agent system that is designed to address these threats to the cyber 

infrastructure. In its first implementation it has focused on problems within the 

telecommunications and electricity domains. The Safeguard architecture is composed of a 

number of different types of agent, each with their own particular role. There are agents 

that detect anomalies in the cyber infrastructure, agents that filter and merge alarms, 

agents that diagnose problems and agents that carry out a healing response. Some of the 

functionality within the agents is identical across different domains, whilst other 

functionalities have had to be adapted to match the particular requirements of each 

domain.  
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Many of the individual agents have already undergone a substantial amount of 

testing. References to papers have been given where this is the case. At the time of 

writing the Safeguard system is undergoing testing as a whole. The next phase of the 

Safeguard project will be commercial exploitation and the application of its 

methodologies within other domains. 
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