
Scale-up and Performance Studies of Three Agent Platforms

Kalle Burbeck, Daniel Garpe, Simin Nadjm-Tehrani
Dept. of Computer and Information Science

Linköping University, Sweden
{kalbu, x03danga, simin}@ida.liu.se

Abstract

With maturing technology agents are now a

viable choice for distributed computing, also for
systems with requirements on dependability and
scalability. Agent platforms provide common services
to applications developed as agents. Given the
abundance of available platforms it is not easy to
select an agent platform given a set of applications
requirements. Evaluations of relevant properties of
agent platforms are therefore needed, but
unfortunately few up-to-date evaluations exist. In this
paper we introduce and evaluate the three recent
agent platforms JADE, Tryllian and SAP. Focus of
the evaluation is the important properties of
performance, security and scalability. We conclude
that all platforms perform very well, but that platform
architecture heavily influences the performance.

1. Introduction

In a multi-agent system (MAS), several agents

interact with one another to solve a problem where
interaction may consist exclusively of cooperation or
competition, or a mixture of both. The benefits of
using agents in distributed computing are for example
loose coupling, adaptability and support of
heterogeneous systems. The software agent
technology, at some point considered as hype, has
matured as a useful technology in many fields[1].
Agents have been used for a wide range of
applications, for example in mobile environments or
as adaptable control entities in large complex
networks. Regardless of the type of application every
agent needs some basic functionality. The agent
platform is the distributed middleware providing
common services required by MAS applications,
such as communication, security, agent life cycle
management and directory services.

When the activity and number of agents
deployed on the platform increases so does the

pressure and the need to distribute the shared
resources while keeping up the performance.
Comparisons[2] of these aspects of agent platforms
are rare and due to rapid development outdated. In
this work we will therefore compare three recent
agent platforms, with focus on the important
properties of performance, scalability, security.

Section 2 explains the initial selection of
platforms. The platforms chosen for experimental
evaluation is then presented in section 3 and relevant
properties analyzed. Section 4 describes the
experimental setup followed by the results and a
concluding discussion in section 5 and 6.

2. Initial selection of platforms

During the last few years at least 60 different

agent platforms[3] have been implemented. In our
evaluation a set of 18 platforms were initially
selected for further study. Existing surveys[4, 5]
supplied some guidance, but the surveys are partially
out-of-date with some platform projects abandoned
altogether, and newer platforms not included.

After an initial evaluation of material presented
in platform documentations, based on criteria such as
maturity, security, communication facilities,
footprint, scalability and performance, the Java Agent
Development Environment (JADE)[6] platform was
selected as one of the most promising. JADE is an
open source project that has been around since about
1998. Tryllian Agent Development Kit (Tryllian)[7]
was selected to be further evaluated together with
JADE since the two platforms share many
commonalities, but are built on different
technologies. Tryllian is a commercial product that
entered the market in 2002.

The alternative to use an existing general
platform that may or may not be suitable for a given
application is to develop a platform from scratch
given the application requirements. Safeguard Agent
Platform (SAP) is a new agent platform, developed in
the Safeguard project[8] during the first half of 2003,

to be simple, lightweight and have good performance.
The study that is presented here was initiated to
evaluate the strengths and weaknesses of SAP in
comparison with other available platforms, and to
potentially justify further development of the
platform. A fourth platform (Grasshopper 2) that
passed the other criteria, could not be included in this
study, since its license agreement restricted the
conducting of benchmarking tests for evaluation of
performance.

3. The evaluated platforms

3.1 Basic notions

Software agents have been defined in almost as
many ways as there are commentators in the field.
There is some consensus, however, about the key
features an intelligent software agent should exhibit:

• Autonomy – the ability to act without external
prompting by a human or another software
system.

• Pro-activity - the ability to be goal-oriented.
• Reactivity – the ability to perceive its

environment and act upon that same
environment in response to its perceptions and
goals.

• Communication – social ability is the key to
many agent functions, such as cooperating or
competing with other software agents. In order
to facilitate such interactions, an agent must be
able to communicate meaningfully with other
entities in the environment.

• Adaptability – the ability to learn is desirable
but not mandatory.

In this paper we consider the Agent objects
defined by the platforms as agents, also when they do
not fully exhibit all features above.

The Foundation for Physical Intelligent Agents
(FIPA)[9] is a non-profit organization setting up
standards for agent applications and systems. We
adopt the view of FIPA abstract platform and agent
management specifications here. Important
components are:

• The Agent Management System (AMS) is
responsible for agent activities such as agent
creation, lifecycle and deletion as well as
providing and keeping unique agent addresses.
The analogy with the phonebook’s ‘white
pages’ comes as no surprise. There can only be
one logical AMS on an agent-platform even if
it physically spans over multiple machines.

• The Directory Facilitator (DF) is a place
where agents can register their services for

other agents to search for. The facility is also
often named ‘yellow pages’ as in the
phonebook.

• The Message Transport System (MTS)
provides communication facilities between
agents.

• The agent container is the environment where
agents live. An instance of an agent platform
may consist of multiple containers, possibly
distributed over multiple hosts.

3.2 JADE

JADE is the platform with strongest
resemblance to the FIPA specification. This is clearly
reflected in the architecture with at least one DF for
each container, and one main container with the
AMS. The compliance with FIPA also defines the
limit of each JADE platform instance since even
though it is possible to distribute containers on
several hosts there has to be one shared main
container.

Communication - JADE supports both
synchronous and asynchronous agent
communication. Message passing between agents on
the JADE platform can be handled in three different
ways depending on the location of the two agents. If
both agents are placed in the same container, Java’s
event mechanism is used for in-process
communication without any message translation. If
the agents share the same platform but are placed in
different containers, RMI communication is used.
Finally if two different platforms are used the
standard IIOP protocol is used.

Concurrency - In JADE concurrency can be
viewed as a three level hierarchy. On the topmost
level the platform supports distribution of containers,
either on the same host or between several hosts.
Every container has its own Java virtual machine and
the independent behaviour of these at the platform
abstraction level is obvious. One step below in this
hierarchy is the agent where each agent is assigned its
own Java thread. At the lowest level the agent itself
supports concurrency in what JADE defines as agent
behaviours. JADE uses a round-robin non-pre-
emptive scheduling policy for executing multiple
behaviours inside an agent thread. Behaviours are
stateless which means that state variables must be
used when breaking up execution of behaviours.

Security - Security in JADE is not a built in
standard feature but rather as a plug-in. It provides a
security model based on principals, resources and
permissions, which enables authentication and
authorization of both agents and the owners. Secure
communication is also provided in the form of Secure

Socket Layer (SSL). For communication with agents
outside the platform border SSL cannot be used.

3.3 Tryllian ADK

The Tryllian platform is based on a peer-to-peer
(P2P) library called JXTA [10]. Project JXTA is a
P2P-based networking technology from Sun
Microsystems, Inc striving for platform
independence, interoperability and ubiquity. This
library is a dominant building block, pervading the
whole Tryllian system. Each platform instance is
considered a peer residing on a single host. The
platform border may be defined by the host or more
appropriately be considered unlimited due to the
absence of any main AMS.

Communication - The JXTA pipe is the basis
of communication between agent containers. If two
agents are located in the same container Java’s event
mechanism is used for local process communication.

Concurrency - Tryllian, similar to JADE,
provides an abstraction for parallel behaviours
internal to an agent; in Tryllian called task. Even
though the concept is basically the same as in JADE,
the two approaches have their dissimilarities. In
addition to the event model, where the task responds
to incoming messages, the task model has a proactive
behaviour in what is called the task’s heartbeat. This
means that every few milliseconds the task is given
an opportunity to initiate its own action. Based on the
completion of a task, i.e. success or failure, Tryllian
provides a logical task scheduler in which tasks can
be scheduled according to a state diagram. Besides
this logical scheduling ability the underlying task
scheduling policy is not explicitly stated. An
important feature of Tryllian is that each agent task is
run by a separate thread obtained from a common
thread pool.

Security – Transport Layer Security (TLS)
version 1.0 is used for secure communication
between containers. To improve performance only
one TLS connection is open between two peers even
if many JXTA pipes are used. Tryllian supports a
number of cipher suites but which one to use is
decided internally.

3.4 SAP

Similar to JADE, the SAP architecture is rather
close to the FIPA model but there are no pretensions
of complying with the standard specifications. Still
the SAP architecture has the basic parts such as
management system and name and directory services.
For agent name resolution a special lookup server is

used and it has to be started separately. This central
lookup server defines the platform border.

Communication - In contrast to the other two
platforms SAP does not provide any extra transport
abstraction layer for the agent communication. Plain
TCP/IP sockets are used between system instances
and the local in process communication is the choice
for agent conversation in the same virtual machine.
There exists an alternative with Java Message Service
(JMS) that uses a central message queue server but
the recommendation is to use sockets.

Concurrency - On the platform level every
agent runs in a separate Java thread and every
instance of the platform has its own Java virtual
machine. SAP does not provide any extra abstraction
corresponding to JADE behaviours or Tryllian tasks.
The agent developer may use multiple Java threads
internal to the agent for parallel behaviours.

Security - In the current version of the platform
(version 1.1) no message encryption option for agent-
to-agent communication exists yet.

4. Experiment set-up

4.1 Test scenarios

The scenarios centre on pair wise agent-to-agent
communication. Different scenarios are realized
through change of parameters, which are explained
below.

• Number of hosts - The most likely scenario for
an agent platform is a distribution of the
platform between several hosts. The parameter
is either one or two hosts.

• Number of agent pairs – By increasing the
number of agents communicating the general
behaviour of the platform MTS as well as
scalability are tested. Communication is
always considered as a conversation between
two agents. So when the numbers of agents are
increased it is always done in steps of agent
pairs.

• Message size – Depending on the usage of an
agent platform the size of message will vary.
Typically the communication is based on
interactions with relatively small messages and
therefore the tests with increasing number of
agents are using 2 KB messages. Cases with
messages of larger size are possible and this
has also been tested as single agent-pair
conversations with message sizes between 0
and 100 KB.

• Message encryption - This is one way to test
performance-security trade-offs.

Two additional parameters, Java configuration
and platform configuration, were considered in initial
experiments and suitable settings were established.
For the experiments presented here, those parameters
were fixed for each platform.

4.2 Test bed

The tests were done on a single computer and on
a Local Area Network (LAN) consisting of two
computers connected with a 100 Mbps cable. The
two computers share the same fundamental set-up
according to Table 1. A separate network was used to
avoid influence of other hosts.

Table 1: Hardware and software set-up of the
computers used in the experiments.

Operating
System

Microsoft Windows 2000
Professional

Java VM Java SDK 1.4.2
(1.3.1 for Tryllian)

CPU AMD Athlon-PECM
900 MHz

Memory 512 MB (SDRAM)
Network
card

3Com EtherLink XL 10/100

As all three agent platforms are implemented in

Java so were also the agents used for the
experiments. The latest Java SDK version 1.4.2 with
accompanied runtime environment was used but also
version 1.3.1, as one of the platforms, Tryllian, did
not support any later versions. The Java Virtual
Machine and platforms were restarted between each
experiment to avoid influence of previous
experiments.

4.3 Measurement

Round trip time (RTT) is used to measure
communication performance. The RTT is used
because of the asynchronous nature of an agent
platform, so time is always relative the same agent.
The clock used is Java’s System.currentTimeMillis()
method and the unit is milliseconds. The resolution of
the clock (10 ms) is considered good enough since
time is measured for 1000 and 10000 repetitions
rather than individual messages.

For each experiment the sender agent sends a
message to the receiver agent. The receiver agent
obtains the payload, and sends an equivalent message
back. This is repeated 1000 times for single agent
pairs and the mean RTT is used as result. To obtain

good confidence in the results, each experiment was
repeated ten times. The average is presented here.

Single pair experiment is straight-forward to
implement and test. With multiple agent pairs there is
a short period in the beginning (end) of each
experiment when not all agent pairs have started
(finished) exchanging messages. By increasing the
number of exchanged messages from 1000 to 10 000
for all experiments with multiple agent pairs the
influence on the results becomes insignificant.

5. Results

This section presents some of the results of the

experiments. Additional results are available [11] but
left out due to space restrictions.

5.1 Implications of agent location

In Figure 1 we use JADE to illustrate the
important choice of how to distribute agents. The
sender and receiver agent may be located in the same
container on one host, in separate containers on one
host or on different hosts.

JADE different locations

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Number of agent-pairs

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

Different Containers Different hosts
Same Container

Figure 1: RTT for multiple agent pairs in
different locations.

Containers may be used for separating groups of
agents in a multi agent application also when all
agents run on the same host. If performance is
considered this is not a wise choice due to the use of
RMI rather then events for communication. The
result of Figure 1 where communication over
network is faster then local communication between
containers is explained by the high bandwidth of the
network and that two computers share the processing
load in the case with network communication.
Naturally the RTT between agents in the same

container is significantly less due to use of events
rather than RMI.

5.2 Single agent pair comparison

When increasing the load the communication
time is expected to rise linearly. This is indeed the
case as shown in Figure 2 with sender and receiver
located on separate hosts.

Single agent pair comparison

0
50

100
150
200
250
300
350
400

0 50 100 150

Message size (kb)

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

Tryllian JADE SAP

Figure 2: RTT for single agent-pair on LAN.

5.3 Multiple agent pairs comparison

Figure 3 shows the results when increasing the
number of agent pairs from one to ten, with senders
and receivers distributed on separate hosts.

Multiple agent pairs comparison

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10

Nr of agent-pairs

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

Tryllian JADE SAP

Figure 3: RTT for multiple agent-pairs on
LAN.

As explained earlier all tests with multiple
agents imply conversations between agent pairs and
the round trip time is an average of the results from
all involved agent pairs. The tests with only a limited
number of agents give a good indication of how the

platforms perform in general when the number of
agents is increased for applications with a reasonably
small number of agents.

5.4 Scalability

To stress the platforms the number of agents was
further increased beyond ten as shown in Figure 4.
When testing 100 agents on each machine Tryllian
failed. The reason was not because of a platform
crash but rather a result of agents not finding each
other and this indicates a failure of JXTA rather than
the Tryllian platform implemented on top of JXTA.
This is also proved in the next graph presented where
agents are all located in the same platform instance
on a single host and 100 agent-pairs works fine.

Multiple agent pairs comparison

0

500

1000

1500

0 50 100 150

Nr of Agent-pairs
R

ou
nd

 tr
ip

 ti
m

e
(m

s)

Tryllian JADE SAP

Figure 4: RTT for multiple agent-pairs on
LAN.

Figure 5, with results from multiple agent pairs
on the same host, shows that the results for the
platforms relative each other is similar to the case
when the platforms are distributed over two hosts.

Same host multiple agent pairs

0
20
40
60
80

100

0 50 100 150

Number of Agent-pairs

R
on

d
tri

p
tim

e
(m

s)

Tryllian JADE SAP

Figure 5: RTT for multiple agent-pairs on
same host.

Due to the underlying communication
implementation with events and method invocations
the platforms handle this situation without any
failures. Due to the thread pool of Tryllian, the
platform is expected to handle a very large number of

agents as long as they are located on the same host
using the event mechanism rather then JXTA. The
tests for JADE and SAP worked without problem up
to 100 agents, which was the maximum used for this
parameter.

5.5 Performance and Security

Security and encryption naturally comes with a
performance penalty. Figure 6 shows the results for
one agent pair with increasing message size. We see
that adding security doubles the RTT for both
platforms. SAP is not included in this comparison
since the platform does not provide encryption yet.

Single agent pair encryption

0

200

400

600

800

1000

0 50 100 150
Message size (kb)

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

Tryllian Tryllian encr.
JADE JADE encr.

Figure 6: RTT for single agent-pair on LAN
with and without encryption.

RTT with and without encryption is also
presented in Figure 7. Now the message size is kept
constant while instead the number of agents
communicating is increased.

Multiple agent pairs encryption

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11

Nr of agent-pairs

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

Tryllian Tryllian encr.
JADE JADE encr.

Figure 7: RTT for multiple agent-pairs on
LAN with and without encryption.

The platforms handle the increasing number of
agents very well, and the slope of the test cases with
encryption are close to slope of the test cases without,
which must be regarded as good. This is explained by
the fact that both platforms use secure connections
between agent containers rather then individual
agents.

The initial handshake of a secure connection is
very expensive. The good result for both experiments
using encryption are due to the fact that both
platforms establish secure connection between
containers and keep the connection open to avoid
extensive handshaking.

6. Discussion

When the results from the three platforms are
compared it is not hard to see the general tendency of
SAP as the platform with better performance
followed by JADE and last Tryllian. In fact this
pattern, more or less, is found throughout the whole
test series. A more detailed analysis of the results and
the factors behind them is presented here.

The architectural differences between the three
platforms are certainly key factors from a
performance perspective. While Tryllian is built on
JXTA it has the advantage of being scalable in the
sense of distributing platform instances without any
limitations. This is not the case for the other two,
being restricted by the requirement of a central AMS
or a central lookup server. The term scalability was
not interpreted as being able to distribute the platform
over large networks though, but rather as the ability
to keep up good performance when the load is
increased. In this perspective the JXTA abstraction
cannot be considered as being advantageous.

The extra abstraction found in JADE with RMI,
and Tryllian with JXTA pipes compared to SAP with
Java sockets should be considered as a factor
contributing to the results produced. The RMI and
JXTA abstractions have benefits as in the
architectural aspect but for the communication
between platform instances the performance is
suffering. JXTA is still not very mature and when
new releases are integrated in Tryllian this could
prove beneficial for the platform.

Java 1.4 implements a number of performance
enhancements over version 1.3. SAP and JADE
benefit from this.

Both Tryllian and JADE provide multitasking
behaviours for the agents but not SAP. JADE uses
one thread per agent shared by all the agent
behaviours, while Tryllian executes each task in a
separate thread obtained from a thread pool. When

dealing with a very large number (thousands) of
agents, the lack of a thread pool will limit scalability
for JADE. For Tryllian the thread pool is beneficial
as long as extensive communication is not used
between different hosts, in which case JXTA will
limit scalability anyway. In many applications it
should be possible to locate agents with extensive
communication on the same host, to avoid scalability
problems due to JXTA. The JADE choice of
implementation may cause some gain in performance
since context switches are not necessary when
switching agent activities with behaviours inside the
same thread.

Tryllian provides the largest set of configuration
options, which makes the use of the platform more
flexible. The parameters were all set to provide
maximum resources to the platform under the
benchmarks but still the RTT was large compared to
the other platforms due to JXTA.

6.1 Limitations and future work

For some applications mobility, the ability of an
agent to move from one place to another may be an
important property. This is not considered in this
work due to the principal problems related to security
when using mobile agents.

The experiments presented here only considered
a network with two hosts. It would be interesting to
compare a true peer-to-peer based platform such as
Tryllian with platforms using a centralized directory
service using a more complex scenario. In a more
dynamic environment JXTA would prove more
beneficial with features such as automatic HTTP
tunnelling, handling of dynamic IP-addresses and a
graceful response to disconnected mode.

Even though most basic agent functionality is
implemented in all the platforms evaluated here, a
platform may of course have additional useful
functionality (e.g. the agent persistence of Tryllian).
However, these are not analyzed unless they are
related to performance, scalability or security
properties of the platforms.

During this work we realized that the selection
of an appropriate platform given a set of application
requirements is not easy. A more extensive study
including more agent platforms with more parameters
(e.g. usability and platform features) would be very
helpful for the application developer searching for a
suitable platform. This is outside the scope of this
paper and is left as future work.

Future work should also include evaluation of
additional platforms. Two platforms that deserve to
be mentioned are Cougar[12] and Lana[13]. Cougar
was developed in a DARPA project now continued as

open source with interesting related projects such as
UltraLog (concerning logistics information system
survivability) and Cougar Micro Edition. Lana is a
programming model for autonomous systems, which
may be used as an agent platform. Lana implements
many interesting features such as asynchronous
method calls between programs and protection of
programs from each other using protection domains.

Acknowledgements

The work presented in this paper has been

supported by the European Safeguard project
IST-2001-32685 [8].

References

1. EUTIST-AMI, http://www.eutist-ami.org/, accessed

4th Dec. 2003.
2. Silva, L.M., et al., Comparing the performance of

mobile agent systems: a study of benchmarking.
Computer Communications, 2000. 23(8): p. 769-778.

3. AgentBuilder - Agent Construction Tools,
http://www.agentbuilder.com/AgentTools/, accessed
4th Dec. 2003.

4. Perdikeas, M.K., et al., Mobile agent standards and
available platforms. Computer Networks, 1999.
31(19): p. 1999-2016.

5. Ricordel, P.-M. and Y. Demazeau. From analysis to
deployment: a multiagent platform survey. in 1st
International Workshop on Enginnering Societis in
the Agents World (ESAW). 2000. Berlin, Germany:
Springer Verlag.

6. JADE, http://sharon.cselt.it/projects/jade/, accessed
4th Dec. 2003.

7. Tryllian, http://www.tryllian.com, accessed 4th Dec.
2003.

8. Safeguard, http://www.ist-safeguard.org/, accessed
4th Dec. 2003.

9. FIPA, http://www.fipa.org/, accessed 4th Dec. 2003.
10. Eckstein, R., et al., JXTA in a nutshell. In a Nutshell,

ed. B. Eckstein. 2002: O´Reilly & Associates.
11. Garpe, D., Comparison of three agent platforms -

performance, scalability and security, Thesis number
LiTH-IDA-EX--03/070--SE Dept. of Computer and
Information Science. 2003, Linköping University.

12. Cougaar, http://www.cougaar.org, accessed 4th Dec.
2003.

13. Razafimahefa, C., C. Bryce, and M. Pawlak. Lana: An
Approach to Programming Autonomous Systems. in
European Conference on Object-Oriented
Programming (ECOOP). 2002. Malaga, Spain.

