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Abstract

Several applications, such as web services and e-
commerce, are operating in open environments where the
workload characteristics, such as the load applied on the
system and the worst-case execution times, are inaccu-
rate or even not known in advance. This implies that trans-
actions submitted to a real-time database cannot be subject
to exact schedulability analysis given the lack of a pri-
ori knowledge of the workload. In this paper we propose
an approach, based on feedback control, for manag-
ing the quality of service of real-time databases that
provide imprecise and differentiated services, given in-
accurate workload characteristics. For each service
class, the database operator specifies the quality of ser-
vice requirements by explicitly declaring the precision
requirements of the data and the results of the transac-
tions. The performance evaluation shows that our ap-
proach provides reliable quality of service even in the
face of varying load and inaccurate execution time esti-
mates.

1. Introduction

Lately the demand for real-time data services, provided
by real-time databases (RTDBs), has increased and appli-
cations used in, e.g. manufacturing, web servers, and e-
commerce, are becoming increasingly sophisticated in their

� This work was funded, in part by CUGS (the National Graduate
School in Computer Science, Sweden), CENIIT (Center for Indus-
trial Information Technology) under contract 01.07, NSF grants CCR-
0098269 and IIS-0208758, and ISIS (Information Systems for Indus-
trial Control and Supervision).

data needs. In these applications it is desirable to pro-
cess user requests within their deadlines using fresh data.
In dynamic systems, such as web servers and sensor net-
works with non-uniform access patterns, the workload of
the databases cannot be precisely predicted and, hence, the
databases can become overloaded. As a result, deadline
misses and freshness violations may occur during the tran-
sient overloads. To address this problem we propose a qual-
ity of service (QoS) sensitive approach, based on impre-
cise computation [13], to guarantee a set of requirements
on the behavior of the database, even in the presence of un-
predictable workloads.

In this paper we employ the notion of imprecise com-
putation [13] on transactions as well as data, i.e., we allow
data objects to deviate, to a certain degree, from their corre-
sponding values in the external environment. However, only
using imprecise computations will not by itself solve the
problems caused by transient overload, as there is an up-
per limit of the amount of resources that can be traded off
for QoS. Instead of attempting to provide service to all the
workload submitted to the RTDB we may service only a
subset, representing the most important parts, of that work-
load. Previous work in service differentiation in real-time
systems [3] and RTDBs [10, 8] focus on the importance or
criticality of the transactions. Transactions are usually clas-
sified into classes with regard to their importance and it is
assumed that the more important classes receive the best
QoS. We consider the importance of a class and the QoS
that the class requires to be disjoint and, hence, importance
and QoS are two orthogonal entities. This is in contrast to
less general approaches, e.g. value-driven scheduling [3],
where deadline miss ratio of important transactions is lower
than less important transactions. For example, consider an
embedded vehicle control application [7] where there is a
set of tasks with different importance. The fuel ignition task
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is very important whereas engine monitoring tasks are con-
sidered to be less important. However, the fuel ignition task
may require less precise data as compared to the engine
monitoring tasks which may require very precise data. Con-
sequently, the QoS demand of the monitoring tasks is higher
although they are less important compared to the ignition
task.

In this paper we present an architecture to manage QoS,
defined in terms of data precision and transaction preci-
sion, to support service differentiation of multiple classes.
To the best of our knowledge this is the first paper describ-
ing performance management of multiple classes in real-
time databases that support imprecise computation at trans-
actions and data object level. As the first contribution we
present a QoS specification model supporting orthogonal-
ity between importance and QoS. The expressive power of
the QoS specification model allows a database operator1 or
database designer to specify not only the desired nominal
system performance, but also the the worst-case system per-
formance and system adaptability in the face of unexpected
failures or load variation. The second contribution is an ar-
chitecture and two algorithms, based on feedback control
scheduling [16, 14], for managing the QoS as given by the
QoS specification. The performance studies show that the
suggested algorithms give a robust performance of RTDBs,
in terms of transaction and data precision, even for transient
overloads and with inaccurate execution time estimates of
the transactions. We achieve resource isolation among the
different classes, and we show that during overloads trans-
actions are rejected in a strictly hierarchical fashion based
on importance. Finally, the experimental results show that
our approach supports orthogonality between class impor-
tance and class QoS needs.

The rest of this paper is organized as follows. A prob-
lem formulation is given in section 2. In section 3, the as-
sumed database model is given. In section 4, we present
an approach for QoS management and in section 5, the re-
sults of performance evaluations are presented. In section
6, we give an overview on related work, followed by sec-
tion 7, where conclusions and future work are discussed.

2. Problem Formulation

In our database model, data objects in an RTDB are
updated by update transactions, e.g. sensor values, while
user transactions represent user requests, e.g. complex read-
write operations. We apply the notion of imprecision at data
object and user transaction level. Increasing the resources
allocated to the update transactions results in greater qual-
ity of data (QoD) as the imprecision of the data objects de-

1 By a database operator we mean an agent, human or computer, that
supervises and operates the database, including setting the QoS.

creases. Similarly, increasing the resources for user trans-
actions results in greater quality of user transactions, for
brevity referred to as quality of transaction (QoT), as the
imprecision of the results produced by user transactions de-
creases. Intuitively, sufficiently precise data values stored in
the database are regarded to have no effect on the result of
a transaction. If temporal consistency constraints are satis-
fied then such imprecision is admissible.

Let SV C � fsvc�� � � � � svcc� � � � � svcjSV Cjg denote
the set of service classes and jSV Cj denote the number of
service classes. User transactions are classified into service
classes based on their importance, where the first level svc�

holds the most important or critical transactions, the sec-
ond level svc� holds the less important transactions and so
on. We introduce the notion of transaction error (denoted
tei), inherited from the imprecise computation model [13],
to measure the quality of a transaction Ti. Here, the quality
of the result given by a transaction depends on the process-
ing time allocated to the transaction. The transaction returns
more precise results, i.e. lower tei, as it receives more pro-
cessing time. Further, for a data object stored in the RTDB
and representing a real-world variable, we can allow a cer-
tain degree of deviation compared to the real-world value. If
such deviation can be tolerated, arriving updates may be dis-
carded during transient overloads. To measure data quality
we introduce the notion of data error (denoted dei), which
gives an indication of how much the value of a data ob-
ject di stored in the RTDB deviates from the corresponding
real-world value, which is given by the latest arrived trans-
action updating di. Note that the latest arrived transaction
updating di may have been discarded and, hence, di may
hold the value of an earlier update transaction.

For a service class svcc we can then specify the desired
QoS of svcc in terms of tei that the transactions in svcc

produce and the data error of the data objects that transac-
tions in svcc read. We observe that a data object may be
accessed by several transactions in different service classes
and, hence, there may be different precision requirements
put upon the data item. It is clear that we need to ensure that
the data error of the data object complies with the needs of
all transactions and, consequently, any data error conflicts
must be resolved by satisfying the needs of the transaction
with the stronger requirement. If the access patterns of the
transactions are known in advance we may use that infor-
mation to keep the data objects precise. However, in dy-
namic systems with unpredictable access patterns we must
rather predict the access patterns of the transactions during
run-time and adapt the precision of the data objects such
that the transactions accessing them have precise readings.

Finally, it is important that the tei of terminated trans-
actions in the same service class does not vary significantly
from one transaction to another. Here it is emphasized that
large deviations between tei must be minimized to ensure
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QoS fairness. In summary the goal of this work is to: (i) es-
tablish a model for expressing QoS requirements in terms
of data error and transaction error for each service class,
(ii) develop an architecture and a set of algorithms for man-
aging data error and transaction error such that given QoS
specifications for each service level are satisfied, and (iii)
minimize the variation of transaction error among admitted
transactions, i.e., maximize QoS fairness.

3. Data and Transaction Model

We consider a main memory database model, where
there is one CPU as the main processing element. We con-
sider the following data and transaction models. In our data
model, data objects can be classified into two classes, tem-
poral and non-temporal [17]. For temporal data we only
consider base data, i.e., data objects that hold the view of the
real-world and are updated by sensors. A base data object
di is considered temporally inconsistent or stale if the cur-
rent time is later than the timestamp of di followed by the
absolute validity interval avii of di, i.e. currenttime �

timestampi � avii. For a data object di, let data error
dei � ��cvi� vj� be a non-negative function of the current
value cvi of di and the value vj of the latest arrived trans-
action that updated di or that was to update di but was dis-
carded. The function � may for example be defined as the
absolute deviation between cvi and vj , i.e., dei � jcvi�vj j,

or the relative deviation as given by dei �
jcvi�vj j
jcvij

. To cap-
ture the QoD demands of the different service classes we
model the data error as perceived by the transactions in svcc

with dei � defc where def c denotes the data error factor
of the transactions in svcc. The greater def c is, the greater
does the transactions in svcc perceive the data error. We de-
fine the weighted data error as wdei � dei � defd�i, where
defd�i is the maximum data error factor of the transactions
accessing di.

Update transactions arrive periodically and may only
write to base data objects. User transactions arrive aperiod-
ically and may read temporal and read/write non-temporal
data. User and update transactions (Ti) are composed of one
mandatory subtransaction mi and jOij � � optional sub-
transactions oi�j , where oi�j is the jth optional subtransac-
tion of Ti. For the remainder of the paper, we let ti�j de-
note the jth subtransaction of Ti. Since updates do not use
complex logical or numerical operations, we assume that
each update transaction consists only of a single manda-
tory subtransaction, i.e., jOij � �. We use the milestone
approach [13] to transaction imprecision. Thus, we divide
transactions into subtransactions according to milestones.
A mandatory subtransaction is completed when it is com-
pleted in a traditional sense. The mandatory subtransaction
gives an acceptable result and must be computed to com-
pletion before the transaction deadline. The optional sub-
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Figure 1. Contribution of jCOSij to tei.

transactions may be processed if there is enough time or re-
sources available. While it is assumed that all subtransac-
tions of a transaction Ti arrive at the same time, the first op-
tional subtransaction (if any) oi�� becomes ready for execu-
tion when the mandatory subtransaction, mi, is completed.
In general, an optional subtransaction, oi�j , becomes ready
for execution when oi�j�� (where � � j � jOij) completes.
We set the deadline of every subtransaction ti�j to the dead-
line of the transaction Ti. A subtransaction is terminated if
it has completed or has missed its deadline. A transaction Ti
is terminated when oi�jOij completes or one of its subtrans-
actions misses its deadline. In the latter case, all subtransac-
tions that are not completed are terminated as well.

For a user transaction Ti, we use an error function [5]
to approximate its corresponding transaction error given by

tei�jCOSij� �
�
�� jCOSij

jOij

�ni

where ni is the order of the

error function and jCOSij denotes the number of completed
optional subtransactions. By choosing ni we can model and
support multiple types of transactions showing different er-
ror characteristics (see Figure 1).

4. Approach

Below we describe an approach for managing the perfor-
mance of an RTDB in terms of transaction and data qual-
ity. First, we start by defining QoS and how it can be spec-
ified. An overview of the feedback control scheduling ar-
chitecture is given, followed by issues related to modeling
of the architecture and design of controllers. We refer to
the presented approach as Robust Quality Management of
Differentiated Imprecise Data Services (RDS).

4.1. Performance Metrics and QoS specification

We apply the following steady-state and transient
state performance metrics [14] to each service class.
Terminatedc�k� denotes the set of terminated transac-
tions in service class svcc during the interval ��k���T� kT 	,
where T is the sampling period. For the rest of this pa-
per, we sometimes drop k where the notion of time is not
important.
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� The average transaction error of admitted user transac-
tions,

atec�k� � ����

P
i�Terminatedc�k� tei

jTerminatedc�k�j
���

gives the precision of the results produced by user
transactions.

� The data precision requirement of user transactions is
given using def c.

� Data precision is manipulated by managing the data er-
ror of the data objects, which is done by considering an
upper bound for the weighted data error given by the
maximum weighted data errormwde. An update trans-
action Tj is discarded if the weighted data error of the
data object di to be updated by Tj is less or equal to
mwde (i.e. wdei � mwde). If mwde increases, more
update transactions are discarded, degrading the qual-
ity of data. Setting mwde to zero results in the high-
est data precision, while setting mwde to one results
in lowest data precision allowed.

� Overshoot M c
p is the worst-case system performance

in the transient system state (see Figure 2) and it is
given in percentage. Overshoot is applied to atec.

� Settling time T c
s is the time for the transient overshoot

to decay and reach the steady state performance (see
Figure 2), hence, it is a measure of system adaptability,
i.e., how fast the system converges towards the desired
performance. Settling time is applied to atec.

� To measure QoS fairness among admitted transactions,
we introduce the standard deviation of transaction er-
ror,

sdtec�k� �sP
i�Terminatedc�k� ����� tei � atec�k��

�

jTerminatedc�k�j � �
�

which gives a measure of how much the transaction er-
ror of terminated transactions deviates from the aver-
age transaction error.

� Admission Percentage, apc �
jAdmittedc�k�j
jSubmittedc�k�j ���,

where jAdmittedc�k�j is the number of admit-
ted transactions and jSubmittedc�k�j is the number
of submitted transactions in svcc.

We define QoD in terms of mwde and an increase in
QoD refers to a decrease in mwde, while a decrease in QoD
refers to an increase in mwde. Similarly, we define QoT
for a service class svcc in terms of atec. QoT for a ser-
vice class svcc increases as atec decreases, while QoT de-
creases as atec increases. The QoS specification is given in
terms of def c and a set of target levels in the steady-state

p
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+-

M

T

va
lu

e

time
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Figure 2. Definition of settling time (Ts) and
overshoot (Mp)

or references atecr for atec. Turning to QoD requirement
specification, for service class svcc we want that dei � �,
where � is an arbitrary data error. Assume that several trans-
actions, including those in svcc, with different precision re-
quirements access di. Then it must hold that defd�i � defc,
since defd�i is the maximum data error factor of the trans-
actions accessing di. di is least precise when mwde is
equal to one and, hence, dei � defc � dei � defd�i �
wdei � �. From this we conclude that dei � �

defc
. So

by setting def c to �
�

we satisfy the QoD requirement of
the transactions in svcc. The following example shows a
specification of QoS requirements: fate�r � ���� def� �
�� T �

s � ��s�M�
p � ���g� fate�r � 	��� def� � �� T �

s �
��s�M�

p � ���g� fate�r � 
��� def� � ���� T �
s �

��s�M�
p � ���g� fate�r � ���� def� � ���� T �

s �
��s�M�

p � ���g. Note that the transactions in svc� are
more important than the transactions in svc�, however, the
QoS requirement for svc� is less than the QoS requirement
for svc�, i.e., ate� � ate� and def� � def�. This shows
the orthogonality of importance and QoS requirements.

4.2. QoD Classes

We need to make sure to meet the data precision require-
ments of the transactions in all service levels. An initial ap-
proach would be to simply block a transaction accessing a
data object that does not satisfy the precision requirement.
However, this may lead to many deadline misses and, hence,
decreased performance. To lower the blocking time we must
rather classify the data objects according to the precision re-
quirements of the transactions accessing them, where each
class of data objects represents a data precision requirement.
The data classification must be adaptive since the access
patterns of the transactions may change during run-time. A
sporadic transaction with high precision requirement may
access a data object only once during the entire operation
of the RTDB. Keeping the precision of that data object at a
high level may result in a waste of resources, since few or
no update transactions are discarded.

Conceptually, when a user transaction with a very high
data precision requirement accesses a data object, we clas-
sify the data object to a higher QoD class representing

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004) 

1052-8725/04 $20.00 © 2004 IEEE



def
d,i

time

Figure 3. QoD classification of the data ob-
ject di

….

Monitor

QoD Manager

server1

server|SVC|

Transaction

Handler

FM BSCC

Capacity Allocator /

Overload Resolver

c
ATE

1

c
ATE

|SVC|….

c1

c|SVC|

….

….

ate1 …. ate|SVC|
Precision

Controller

mwde

Update

Transactions

AC1

AC|SVC|

svc1

svc|SVC|

r1

r|SVC|

ATE Controllers
SVC1

….
SVC|SVC|

UpdateC

User

Transactions

….

c
AC

1 c
AC

|SVC|

Figure 4. QoS management architecture us-
ing feedback control

greater precision. If after a while, no transaction with equal
or greater precision requirement accesses that data object,
then we move the data object to a lower QoD class, rep-
resenting a lower precision requirement. Once a transaction
Ti accesses a data object di where the data error factor def c

of Ti is greater than the current data error factor defd�i of di,
then we set defd�i to def c. Hence, di is raised to the QoD
class representing def c. The data error factor defd�i then
decreases linearly over time, moving to lower QoD classes
until a transaction with a higher data error factor accesses
di, as shown in Figure 3. At time � a transaction in svcc ac-
cesses di with def c greater than defd�i and, hence, defd�i
is set to def c in order to adapt to the new precision require-
ment. After time � no more transactions with higher pre-
cision requirements than defd�i access di and therefore the
precision requirement of di is relaxed by lowering defd�i.
This way the system is adaptive to changes in access pat-
terns.

4.3. Feedback Control Scheduling Architecture

The architecture of our QoS management scheme is
given in Figure 4. Update transactions have higher prior-
ity than user transactions and are upon arrival ordered in

an update ready queue according to the earliest deadline
first (EDF) scheduling policy (for an elaborate discussion
on EDF see e.g. [3]). To provide individual QoS guaran-
tees for each user transaction class we have to enforce iso-
lation among the classes by bounding the execution time
of the transactions in each class. This is achieved by us-
ing deferrable servers [3], which enables us to limit the re-
source consumption of transactions, while lower average re-
sponse time is enforced for the transactions in higher ser-
vice classes. Let serverc denote the server for svcc and
cc denote the capacity of serverc. We assign priorities to
the servers according to their importance, i.e., serverc has
higher priority than serverc��. Upon activation serverc

serves any pending user transactions in its ready queue
within the limit of cc or until no more user transactions
are waiting, at which point serverc becomes suspended and
serverc�� becomes active. Note, serverc is reactivated if
new user transactions arrive and cc is greater than zero. The
capacity is replenished with the sampling period T .

The transaction handler manages the execution of the
transactions. It consists of a freshness manager (FM), a unit
managing the concurrency control (CC), and a basic sched-
uler (BS). The FM checks the freshness before accessing
a data object, using the timestamp and the absolute valid-
ity interval of the data. We employ two-phase locking with
highest priority (2PL-HP) [1] for concurrency control. 2PL-
HP is chosen since it is free from priority inversion and has
well-known behavior. We consider two different scheduling
algorithms as basic schedulers: (i) Earliest Deadline First
(EDF), where transactions are processed in the order deter-
mined by their absolute deadlines, and (ii) Highest Error
First (HEF) [2], where transactions are processed in the or-
der determined by their transaction error, i.e., the next trans-
action to run is the one with the greatest transaction error.
For both basic schedulers (EDF and HEF) the mandatory
subtransactions have higher priority than the optional sub-
transactions and, hence, scheduled before them. We refer
to RDSEDF when EDF is used as a BS, correspondingly to
RDSHEF when HEF is used as BS.

At each sampling instant kT , the controlled variables
atec are monitored and fed into the ATE Controllers, which
compare the performance references atecr with atec to get
the current performance errors. Based on this each ATE
Controller computes a requested change �ccATE to cc. If
atec is higher than atecr, then a positive �ccATE is returned,
requesting an increase in the capacity so that atec is low-
ered to its reference. The requested changes in capacities
are given to the Capacity Allocator, which distributes the
capacities according to the class level. During overloads it
may not be possible to accommodate all requested capac-
ities. Instead, the QoD is lowered, resulting in more dis-
carded update transactions, hence, more resources can be
allocated for user transactions. If the lowest data quality
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is reached and no more update transactions can be dis-
carded, the amount of capacity rc that is not accommo-
dated is returned to the admission controller, which rejects
transactions with a total execution time of rc. Now, a con-
troller computes a change in capacity such that atec�k���
equals atecr. This change in capacity is based on an observed
atec�k�, which depends on the admitted load and cc�k�.
However, due to the unpredictable workload applied on the
database, the admitted load may increase (for example con-
sider the most important service class where no transactions
are rejected). To suppress large overshoots we react in ad-
vance by informing the Overload Resolver to modify the ca-
pacities when the current admitted load is greater than the
admitted load during the previous sampling interval. If for a
service class svcc, the execution time of the admitted trans-
actions in the current period is greater than the previous pe-
riod then an increase in capacity �ccAC equal to the differ-
ence in admitted execution time is requested for svcc. The
capacities of svcc� � � � � svcjSV Cj are then recomputed if the
increase in capacity can be accommodated. If �ccAC can-
not be accommodated then more transactions in svcc, cor-
responding to �ccAC are rejected.

We have modeled the controlled system using Z-
transform theory [6]. The transfer function of the
model describing ate in terms of �ccATE is given by
P �z� � ate�z�

�cc
ATE

�z� � Gc

z�� , where Gc is the deriva-
tive of the function relating atec and cc at the vicinity of
atecr. We have tuned Gc by measuring ate for different ca-
pacities and taking the slope at ater. The ATE Controller
is implemented using a P-controller tuned with root lo-
cus [6].

4.4. Data and Transaction Error Management

4.4.1. Capacity Allocation Figure 5 shows how cc, rc,
andmwde are computed. To simplify the presentation of the
algorithms we denote the execution time of update transac-
tions with the capacity of the update transactions, although
there is no server for update transactions. Let cUpdate�k�
denote the capacity, or equivalently the execution time, of
the update transactions. Since the arrival patterns of the up-
date transactions are varying, we take the moving average of
the update transaction capacity to smoothen out great vari-
ations (line 1). We start allocating capacities with respect to
the service levels, starting with svc�. The requested capac-
ity ccreq�k��� of service class svcc is the sum of the previ-
ously assigned capacity cc�k� and the requested change in
capacity �ccATE�k��� (line 4). If the total available capacity
is less than the requested capacity then we degrade QoD by
calling ChangeUpdateC along with how much update ca-
pacity to free (lines 5-7). See Section 4.4.2 for an elaborate
description on ChangeUpdateC. If the requested capacity
still cannot be accommodated, we enforce the capacity ad-

justment by rejecting more transactions (lines 10-11). One
key concept in the capacity allocation algorithm is that we
employ an optimistic admission policy. We start by admit-
ting all transactions and in the face of an overload we reject
transactions until the overload is resolved. This contrasts
against pessimistic admission policy where the admission
percentage is increased as long as the system is not over-
loaded. We believe that the pessimistic admission policy is
not suitable as some critical transactions, i.e. the transac-
tions in higher service classes, are initially discarded. Con-
tinuing with the algorithm description, if the requested ca-
pacity can be accommodated, we try to reduce the number
of rejected transactions (lines 12-21). Finally, after the ca-
pacity allocation we check to see whether there is any spare
capacity cs, and if so we upgrade QoD within the limits of
cs. If QoD cannot be further upgraded, i.e. mwde � �, then
we distribute cs among the servers (lines 23-30).

4.4.2. QoD Management The precision of the data is
controlled by the QoD Manager by setting mwde�k�
depending on the requested change in update capac-
ity �cUpdate�k�. Rejecting an update results in a de-
crease in update capacity. We define the gained capac-
ity, gc�k� �

P
Ti�Discarded�k� eeti, as the capacity gained

due to the result of rejecting one or more updates dur-
ing period k. Discarded�k� is the set of discarded up-
date transactions during the period ��k � ��T� kT � and
eeti is the estimated execution time of the update trans-
action Ti. In our approach, we profile the system and
measure gc for different mwdes and linearize the relation-
ship between these two, i.e. mwde � � � gc. Further,
since RTDBs are dynamic systems such that the behav-
ior of the system and environment is changing, the re-
lation between gc and mwde is adjusted on-line. This
is done by measuring gc�k� for a given mwde�k� dur-
ing each sampling period and updating �. Having the
relationship between gc and mwde, we introduce the func-
tion h��cUpdate�k�� � � � �gc�k� � �cUpdate�k��, which
returns an mwde given �cUpdate�k� and the linear re-
lation between gc and mwde. Since mwde cannot be
greater than one and less than zero we use the func-
tion,

f��cUpdate�k�� ���
�

�� h��cUpdate�k�� � �
h��cUpdate�k��� � � h��cUpdate�k�� � �
�� h��cUpdate�k�� � �

to enforce this requirement. Now that we have arrived at
f it is straightforward to compute mwde, as shown in
Figure 6. The function ChangeUpdateC returns the esti-
mated change in update capacity given the requested change
�cUpdate�k�.
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ComputeCapacity(�c�ATE �k���� � � � � �c
jSVCj
ATE �k���)

1: cUpdate�k�� �� cUpdate�k� � �� � �� � cUpdate�k � ��
2: c�k � �� � cUpdate�k� fthe total capacity is set to the update ca-

pacityg
3: for c � � to jSV Cj do
4: ccreq�k � �� � max

�
�� cc�k� � �ccATE�k � ��

�
fcompute the

requested capacityg
5: if T � c�k��� � ccreq�k��� then fif the total available capacity

if less than the requested capacityg
6: c�k � ��� c�k � ���ChangeUpdateC�T � c�k � ���

creq�k � ��� ftry to degrade QoD to free capacityg
7: end if
8: cc�k � �� � min�T � c�k � ��� ccreq�k � ��� fassign capacity

to servercg
9: c�k � ��� c�k � �� � cc�k � �� fupdate the total capacityg

10: if cc�k � �� � ccreq�k � �� then fif the assigned capacity is less
than the requested capacityg

11: rc�k � �� � rc�k� � ccreq�k � �� � cc�k � �� freject more
transactionsg

12: else if rc�k� � � then fif the requested capacity was accommo-
dated and we rejected transactions during the previous periodg

13: if T � c�k � �� � rc�k� then fif the available capacity is less
than the rejected capacity in the previous periodg

14: c�k���� c�k����ChangeUpdateC(T�c�k����rc�k�
ftry to degrade QoD to reject as few transactions as possibleg

15: end if
16: rc�k��� � max��� rc�k�� T � c�k���� flower the trans-

action rejectiong
17: cc�k � �� � cc�k � �� � rc�k� � rc�k � �� fallocate more

capacity to accommodate decrease in transaction rejectiong
18: c�k � �� � c�k � �� � rc�k� � rc�k � �� fupdate the total

capacityg
19: else fif the requested capacity is accommodated and we did not re-

ject transactions during the previous periodg
20: rc�k � �� � � fdo not reject transactions during the next pe-

riodg
21: end if
22: end for
23: cs�k � �� � T � c�k � �� fcompute the spare capacity that is not

used by the classesg
24: if cs�k � �� � � then fif there is spare capacityg
25: cs�k � �� � max��� cs�k � ���ChangeUpdateC(cs�k � ����

ftry to upgrade QoD as much as possibleg
26: for c � � to jSV Cj do
27: fif there is still spare capacity left after the QoD upgrade then

give more capacity to the class serversg

28: cc�k � �� � cc�k � �� � cs�k���
jSV Cj

fdivide the spare capacity

evenly between the classesg
29: end for
30: end if

Figure 5. The capacity allocation algorithm.

5. Performance Evaluation

5.1. Experimental Goals

The performance evaluation is undertaken by a set of
simulation experiments, where a set of parameters have
been varied. These are: (i) load (load), as computational
systems may show different behaviors for different loads,
especially when the system is overloaded, and (ii) execu-

ChangeUpdateC(�cUpdate�k�)
mwde�k � ��� f��cUpdate�k��

Return �
�
�mwde�k� � mwde�k � ��� freturn the estimated

change in update transaction capacityg

Figure 6. The QoD management algorithm.

tion time estimation error (esterr), since often exact execu-
tion time estimates of transactions are not known.

5.2. Simulation Setup

The simulated workload consists of update and user
transactions, which access data and perform virtual arith-
metic/logical operations on the data. In the experiments, one
simulation run lasts for 10 minutes of simulated time. For all
the performance data, we have taken the average of 10 sim-
ulation runs and derived 95% confidence intervals. We use
the QoS specification given in Section 4.1. The workload
model of the update and user transactions are described as
follows. We use the following notation where the attribute
xi refers to the transaction Ti, and xi�ti�j � is associated with
the subtransaction ti�j of Ti.

Data and Update Transactions. The database holds
1000 temporal data objects (di) where each data object is
updated by a stream (streami, � � i � ����). The pe-
riod (pi) is uniformly distributed in the range (100ms,50s),
i.e. U � ����ms� ��s�, and estimated execution time (eeti)
is given by U � ��ms� �ms�. The average update value
(avi) of each streami is given by U � ��� ����. Upon a
periodic generation of an update, streami gives the up-
date an actual execution time given by the normal distri-
bution N � �eeti�

p
eeti� and a value (vi) according to N �

�avi�
p
avi � varfactor�, where varfactor is uniformly

distributed in (0,0.5). The deadline is set to arrivaltimei�
pi. We define data error as the relative deviation between
cvi and vj as given by dei 	 ���� jcvi�vj j

jcvij
�
�.

User Transactions. Each sourcei generates a transac-
tion Ti, consisting of one mandatory subtransaction and
jOij, uniformly distributed between 1 and 10, optional sub-
transaction(s). The estimated (average) execution time of
the mandatory and the optional (eeti�ti�j �) subtransactions
is given by U � ��ms� �ms�. The estimation error esterr is
used to introduce execution time estimation error in the av-
erage execution time given by aeti�ti�j � 	 �� � esterr� �
eeti�ti�j �. Further, upon generation of a transaction, sourcei
associates an actual execution time to each subtransaction
ti�j , given by N � �aeti�ti�j ��

p
aeti�ti�j ��. The deadline is

set to arrivaltimei � eeti � slackfactor. The slack fac-
tor is uniformly distributed according to U � ���� ���. In the
performance evaluation we consider four service classes,
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where 20�, 20�, 30�, and 30� of the workload is dis-
tributed to svc�� � � � � svc�, respectively.

5.3. Baseline

To the best of our knowledge, there has been no ear-
lier work on techniques for managing data imprecision and
transaction imprecision, satisfying QoS or QoD require-
ments for differentiated services. For this reason we com-
pare RDSEDF and RDSHEF with a baseline, called Admit-
All, where all transactions are admitted and scheduled with
EDF, and no QoD management is performed. This way we
can study the impact of the workload on the system, e.g.,
how ate is affected by increasing workload.

5.4. Experiment 1: Results of Varying Load

We measure ate, ap, mwde, and sdte and apply loads
from 40� to 700�. The execution time estimation error
is set to zero (i.e. esterr � �). Figure 7 shows ate, ap,
and mwde. The dashed lines indicate references, while the
dashed-dotted lines give the overshoot. The confidence in-
tervals for ap and ate are less than �������, the confi-
dence interval for mwde is less than ������, and the con-
fidence interval for sdte is less than ������.

As we can see from Figure 7(a), ate of the service classes
increases with increasing load. Admit-All violates the QoS
specification as atec is greater than atec

r
� ���� � Mp	,

while RDSEDF and RDSHEF produce ate reaching the ref-
erences and, hence, satisfying the QoS specification. As
the load increases the admission percentage of the lowest
service class svc� decreases and more transactions are re-
jected. This means that when ap� becomes zero then ate� is
equal to zero as we always measure the average transaction
error over admitted transactions. From Figure 7(a) we see
that ate� starts decreasing at loads equal to 180�, but starts
increasing again at 240� load. We have tuned the ATE Con-
trollers for loads around 100�; the effect of this is a delay
until ap� reaches zero as the load increases. As the capacity
assigned to the server in svc� is zero for loads greater than
�
�� and ap� does not decrease to zero instantaneously,
then average ate� becomes greater than zero. This is further
shown in Section 5.6 where we discuss the transient perfor-
mance of the algorithms.

Turning to admission percentage in Figure 7(b), we ob-
serve the strict hierarchic admission policy where the low-
est service class suffers at the expense of the higher ser-
vice classes. ap� starts decreasing at 140� load and when
all transactions in svc� are rejected, ap� starts decreasing.
Note that the graphs show the average ap over the entire run
and we cannot have zero ap as we start with ���� admis-
sion percentage at the start of the run. If we would take the
average of ap� at steady-state then we would observe a zero

100 200 300 400 500 600 700
0

50

100

load (%)

at
e1  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)

at
e2  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)

at
e3  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)

at
e4  (

%
)

RDS
EDF

RDS
HEF

Admit−All

(a)

100 200 300 400 500 600 700
0

50

100

load (%)

ap
1  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)

ap
2  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)

ap
3  (

%
)

100 200 300 400 500 600 700
0

50

100

load (%)
ap

4  (
%

)

RDS
EDF

RDS
HEF

Admit−All

(b)

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

load (%)

m
w

de

RDS
EDF

RDS
HEF

Admit−All

(c)

Figure 7. Experiment 1: Varying load

average ap� for loads greater than 240�. Turning to Fig-
ure 7(c) we see that mwde starts increasing at 100� load,
trying to lower the update load so that no user transactions
are rejected. Studying sdte we note that the difference be-
tween RDSHEF and RDSEDF is not significant. However
in all cases RDSHEF provides a lower sdte than RDSEDF,
with the maximum difference of ����� observed.

From the QoS specification (see Section 4.1) we see that
the transactions in svc� are more important than the transac-
tions in svc�, however, the QoS requirement for svc� is less
than the QoS requirement for svc�, i.e., ate� � ate�. Figure
7 shows that ate� is greater than ate� (i.e. the QoS require-
ment of svc� is lower than the QoS requirement of svc�)
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and at the same time the admission percentage of svc� is
greater or equal to the admission percentage of svc� (i.e.
transactions in svc� are rejected in favor of the transactions
in svc�). This result clearly shows that RDS supports or-
thogonality between importance and QoS requirement. In
summary we have shown that RDSHEF and RDSEDF pro-
vide robust and reliable performance that is consistent with
the QoS specification for varying load, as ate of all classes
has been less than the specified overshoot. The admission
mechanism enforces the desired strict hierarchic admis-
sion policy, and RDSHEF provides more QoS fairness than
RDSEDF. The latter is consistent with observations from the
experiments where service differentiation was not used [2].

5.5. Experiment 2: Results of Varying esterr

In Experiment 1 (Section 5.4) we examined the behav-
ior of the algorithms for varying load and we assumed that
we had no execution time estimation error. In reality ex-
act execution times are not available and for this reason we
evaluate the behavior of the algorithms when increasing the
execution time estimation error. We measure ate, ap, and
mwde and apply 300� load. The execution time estimation
error esterr is varied between -0.4 and 3 with steps of 0.2.
This way we examine the effects of both overestimation and
underestimation of the execution time. Figure 8 shows ate,
ap, and mwde. The confidence interval for ap is less than
�����, the confidence interval for ate is less than������,
and the confidence interval for mwde is ������. Ideally,
the performance of the RTDB should not be affected by ex-
ecution time estimation errors. This corresponds to no or lit-
tle variations in ate, ap, and mwde as esterr changes. As
shown in Figure 8, ate, ap, and mwde do not change signif-
icantly with varying esterr. From above we conclude that
RDSHEF and RDSEDF are insensitive to changes to exe-
cution time estimation error as ate, ap, and mwde do not
change significantly with varying esterr. This means that
RDS conforms to inaccurate execution times, satisfying the
QoS specification.

5.6. Experiment 3: Transient Performance

Studying the average performance is often not enough
when dealing with dynamic systems. Therefore we study
the transient performance of RDSEDF. We do not include
the performance of RDSHEF as it has similar behavior to
RDSEDF. We measure ate, ap, and c. The load is set to
���� and esterr set to zero. Figure 9 shows the transient
behavior of RDSEDF. The dash-dotted line indicates over-
shoot, whereas the dashed lines represent references. The
overshoot for ate�� � � � � ate� are measured to be 2.18�
(ate� equal to 30.65� at time 20s), 33.24� (ate� equal to
26.65� at time 15s), and 38.21� (ate� equal to 55.28�
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Figure 8. Experiment 2: Varying execution
time estimation error

at time 10s), while the overshoot requirement by the QoS
specification is 35� for all classes. Hence, the overshoot
requirement for the most important service classes svc�

and svc� are satisfied. The overshoot for svc� is undefined,
since the steady-state value of ate� is zero.

As we can see, ate� reaches 100� and it takes a while
until ate� becomes zero. Using feedback control we are
able to react to changes only when the controlled variable
has changed and, hence, when ate� is greater than ate�r,
the ATE Controller for svc� computes a positive �c�

ATE
,
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Figure 9. Experiment 3: Transient perfor-
mance

requesting for more capacity. As the assigned capacity of
server� is less than the requested capacity (c� is near zero),
transactions are rejected instead according to the capac-
ity allocation algorithm (see Figure 5). The rejection rate
increases as �c�

ATE
increases and, hence, a larger �c�

ATE

results in improved suppression of ate
� and faster con-

vergence to zero. The magnitude of �c�
ATE

increases as
the magnitude of P-controller parameter increases. Now,
we have tuned the controllers when the load is ���� and
considering the applied load in the experiment is 200�,

the magnitude the P-controller parameter is not sufficiently
large to efficiently suppress ate�.

In other experiments, not presented in this paper, we have
observed a significant improvement in ate� suppression and
faster QoS adaptation when the applied load is equal to the
load at which the controllers were tuned. By increasing the
magnitude of the P-controller parameter as the applied load
increases, better QoS adaptation is achieved. One way to
deal with changing system properties, e.g. the load applied
on the system, is to use gain scheduling or adaptive control
[18], where the behavior of the controlled system is mon-
itored at run-time and controllers adapted accordingly. In
our case, the RTDB reacts to the higher applied load by in-
creasing the magnitude of the P-controller parameter such
that faster QoS adaptation is achieved. We believe that using
gain scheduling, where the parameter of the P-controllers
changes according to the current applied load, results in
a substantial performance gain with respect to faster QoS
adaptation. In our future work we plan to use gain schedul-
ing to update the control parameters.

6. Related Work

Liu et al. [13] and Hansson et al. [9] presented algo-
rithms for minimizing the total error and total weighted er-
ror of a set of tasks. The latter cannot be applied to our
problem, since we want to control a set of performance
metrics such that they converge towards a set of references
given by a QoS specification. A query processor, APPROX-
IMATE [19], produces monotonically improving answers
as the allocated computation time increases. The relational
database system, called CASE-DB, can produce approxi-
mate answers to queries within certain deadlines [15]. Lee
et al. studied the performance of real-time transaction pro-
cessing where updates can be skipped [12]. In contrast to
the above mentioned work, we have introduced impreci-
sion at both data object and transaction level and presented
QoS in terms of data and transaction imprecision. Rajku-
mar et al. presented a QoS model, called Q-RAM, for ap-
plications that must satisfy requirements along multiple di-
mensions such as timeliness and data quality [11]. How-
ever, they assume that the amount of resources an applica-
tion requires is known and accurate, otherwise optimal re-
source allocation cannot be made. Kang et al. used a feed-
back control scheduling architecture to balance the load of
user and update transactions for differentiated services [10]
where the database operator can specify miss ratio and uti-
lization requirements. However, in this work performance
isolation between classes is not implemented and, conse-
quently, orthogonality in class priority and class QoS re-
quirements cannot be realized. In this paper we have ex-
tended our previous work [2] on managing QoS to support
service differentiation, including a new QoS specification
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model that supports orthogonality between importance and
QoS requirements, and a new QoS management algorithm.
Feedback control scheduling has been receiving special at-
tention in the past few years [14, 16, 4]. However, none of
them have addressed QoS management of imprecise real-
time data services.

7. Conclusions and Future Work

In this paper we have argued for the increasing need of
RTDBs that are able to react to changes in their environment
in a timely manner. In this paper we present an approach for
specifying and managing QoS, in terms of transaction and
data precision, for differentiated and imprecise real-time
data services. The expressive power of the QoS specifica-
tion model allows a database operator or database designer
to specify not only the desired nominal performance, but
also the worst-case system performance and system adapt-
ability in the face of unexpected failures or load variation.
Further, the QoS specification model allows the database
operator to specify the importance and the QoS requirement
of the transactions independently. The presented QoS man-
agement algorithms, RDSHEF and RDSEDF, give a robust
and controlled behavior of RTDBs in terms of transaction
and data precision, even for transient overloads and with in-
accurate run-time estimates of the transactions.

In the current work all transactions in a service class have
the same QoS requirement. In our future work we extend the
transaction and service model such that each service class
may have multiple QoS requirements. We also plan to im-
plement gain scheduling [18] to update the parameter of the
P-controllers such that the control action can be adapted de-
pending on the system properties.
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