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Abstract

Real-time applications such as e-commerce, flight con-
trol, chemical and nuclear control, and telecommunication
are becoming increasingly sophisticated in their data needs,
resulting in greater demands for real-time data services.
Since the workload of real-time databases (RTDBs), provid-
ing real-time data services, cannot be precisely predicted,
they can become overloaded and thereby cause temporal
violations, resulting in a damage or even a catastrophe. Im-
precise computation techniques address this problem and
allow graceful degradation during overloads. In this pa-
per, we present a framework consisting of a model for ex-
pressing QoS requirements in terms of data and transac-
tion preciseness, an architecture based on feedback control
scheduling, and a set of algorithms implementing different
policies and behaviors. Our approach gives a robust and
controlled behavior of RTDBs, even for transient overloads
and with inaccurate run-time estimates of the transactions.
Further, performance experiments show that the proposed
algorithms outperform a set of baseline algorithms, includ-
ing FCS-EDF that schedules the transactions using EDF
and feedback control.

1 Introduction

Lately the demand for real-time data services has in-
creased and applications used in manufacturing, web-
servers, e-commerce etc. are becoming increasingly so-
phisticated in their data needs. The data normally spans
from low-level control data, typically acquired from sen-
sors, to high-level management and business data. In these
applications it is desirable to process user requests within
their deadlines using fresh data. In systems, such as web-
servers and sensor networks with non-uniform access pat-
terns, the workload of the databases cannot be precisely pre-
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dicted and, hence, the databases can become overloaded. As
a result, deadline misses and freshness violations may oc-
cur during the transient overloads. To address this problem
we propose a quality of service (QoS) sensitive approach
to guarantee a set of requirements on the behavior of the
database, even in the presence of unpredictable workloads.
Further, for some applications (e.g. web service) it is desir-
able that the quality of service does not vary significantly
from one transaction to another. Here, it is emphasized
that individual QoS needs requested by clients and trans-
actions are enforced, and hence, any deviations from the
QoS needs should be uniformly distributed among clients
to ensure QoS fairness.

In earlier work [2, 3] we presented the algorithms FCS-
IC-1, FCS-IC-2, FCS-HEF, and FCS-HEDF for managing
QoS using imprecise computation [9] and feedback control
scheduling [10, 11]. An important feature of this class of
algorithms is their ability to adapt to various workloads and
tolerate inaccurate estimates of execution times, and still
conform to a given QoS specification. In this paper we
give an overview of FCS-IC-1 and FCS-IC-2. These al-
gorithms control the preciseness of the results, given by
transactions, by monitoring the system deadline miss per-
centage and adapt the system such that a QoS specification
in terms of miss percentage and data preciseness is satis-
fied. Furthermore, we present a more complex model of
transaction preciseness by presenting the notion of transac-
tion error, together with FCS-HEF and FCS-HEDF. These
two algorithms support QoS specifications given in terms of
transaction error and also address QoS fairness, i.e., they are
designed to minimize the deviation in QoS among admitted
transactions. In this paper we unify our earlier work into
a common framework consisting of a model for expressing
QoS requirements in terms of data and transaction precise-
ness, an architecture based on feedback control scheduling,
and a set of algorithms implementing different policies and
behaviors. Furthermore, we report new experimental results
that show that the proposed algorithms also adapt to various
QoS specifications and transaction sets showing different
transaction error characteristics.
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We have carried out a set of experiments to evaluate the
performance of the proposed algorithms. The studies show
that the suggested algorithms give a robust and controlled
behavior of RTDBs, in terms of transaction and data pre-
ciseness, even for transient overloads and with inaccurate
execution time estimates of the transactions.

The rest of this paper is organized as follows. The de-
tailed problem formulation is given in Section 2. In Section
3, the database model is given. In Section 4 we present our
approach, and in Section 5, the results of performance eval-
uations are presented. In Section 6 we give an overview on
related work, followed by Section 7, where conclusions and
future work are discussed.

2 Problem Formulation

In our database model, data objects in a RTDB are up-
dated by update transactions, e.g. sensor values, while user
transactions represent user requests, e.g. complex read-
write operations. The notion of imprecision may be applied
at data object and/or user transaction level. The data quality
increases as the imprecision of the data objects decreases.
Similarly, the quality of user transactions (for brevity re-
ferred to as transaction quality) increases as the imprecision
of the results produced by user transactions decreases. In
this work we model transaction quality and data quality as
orthogonal entities.

Starting with data impreciseness, for a data object stored
in the RTDB and representing a real-world variable, we can
allow a certain degree of deviation compared to the real-
world value. If such deviation can be tolerated, arriving
updates may be discarded during transient overloads. In or-
der to measure data quality we introduce the notion of data
error (denoted DEi), which indicates how much the value
of a data object di stored in the RTDB deviates from the
corresponding real-world value, which is given by the latest
arrived transaction updating di.1

The quality of user transactions is adjusted by manag-
ing the data error, which is done by considering an upper
bound for the data error given by the maximum data error
(denoted MDE). An update transaction Tj is discarded if
the data error of the data object di to be updated by Tj is
less or equal to MDE (i.e. DEi � MDE). If MDE in-
creases, more update transactions are discarded, degrading
the quality of data. Similarly, if MDE decreases, fewer up-
date transactions are discarded, resulting in improved data
quality.

The goal of our work is to derive algorithms for adjust-
ing data error such that the data quality and the transaction
quality satisfy a given QoS specification and the deviation

1Note that the latest arrived transaction updating di may have been dis-
carded and, hence, di may hold the value of an earlier update transaction.

of transaction quality among admitted transactions is min-
imized (i.e. QoS fairness is enforced). A major issue is
how to compute MDE, depending on the user transaction
quality.

3 Data and Transaction Model

We consider a main memory database model where there
is one CPU as the main processing element. In our data
model, data objects can be classified into two classes, tem-
poral and non-temporal [12]. For temporal data we only
consider base data, i.e., data that holds the view of the real-
world and are updated by sensors. A base data object di
is considered temporally inconsistent or stale if the current
time is later than the timestamp of di followed by the length
of the absolute validity interval of di (denoted AV Ii), i.e.
CurrentT ime � TimeStampi�AV Ii. For a data object
di, let data error, DEi � ��� �

jCurrentV aluei�Vj j
jCurrentV alueij

���,
where Vj is the value of the latest arrived transaction updat-
ing di and CurrentV aluei the current value of di.

Transactions are classified either as update transactions
or user transactions. Update transactions arrive periodically
and may only write to base data objects. User transac-
tions arrive aperiodically and may read temporal and read-
/write non-temporal data. User and update transactions
(Ti) are assumed to be composed of one mandatory sub-
transaction (denoted Mi) and �Oi optional subtransactions
(denoted Oi�j , where Oi�j is the jth optional subtransac-
tion of Ti). For the remainder of the paper, we let ti �
fMi� Oi��� � � � � Oi��Oi

g denote a subtransaction of Ti. We
use the milestone approach [9] to transaction impreciseness.
Thus, we have divided transactions into subtransactions ac-
cording to milestones. A mandatory subtransaction com-
pletes when it successfully finishes. The mandatory sub-
transaction is necessary for an acceptable result and it must
be computed to completion before the transaction deadline.
Optional subtransactions are processed if there is enough
time or resources available. While it is assumed that all sub-
transactions of a transaction Ti arrive at the same time, the
first optional subtransaction, i.e. Oi��, becomes ready for
execution when the mandatory subtransaction is completed.
In general, an optional subtransaction Oi�j becomes ready
for execution when Oi�j�� (� � j � �Oi) completes.
Hence, there is a precedence relation among the subtrans-
actions as given by Mi � Oi�� � Oi�� � � � � � Oi��Oi

.
We set the deadline of all subtransactions ti to the dead-

line of Ti. A subtransaction is terminated if it is completed
or has missed its deadline. A transaction is terminated when
its last optional subtransaction completes or one of its sub-
transactions misses its deadline. In the latter case, all sub-
transactions that are not yet completed are terminated as
well.
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Figure 1. Contribution of �COSi to TEi.

For update transactions we assume that there are no op-
tional subtransactions (i.e. �Oi � �). Each update trans-
action consists only of a single mandatory subtransaction,
since updates do not use complex logical or numerical op-
erations and, hence, normally have lower execution times
than user transactions.

In some applications it is possible to formally model the
preciseness of the answers given by transactions through
the use of error functions (e.g., closed systems where the
set of transactions that are processed are known in ad-
vance). For a transaction Ti, we use an error function to
approximate its corresponding transaction error given by,

TEi��COSi� �
�
�� �COSi

�Oi

�ni
, where ni is the order

of the error function and �COSi denotes the number of
completed optional subtransactions. This error function is
similar to the one presented in [4]. By choosing ni we can
model and support multiple classes of transactions showing
different error characteristics (see Figure 1).

4 Approach

Next we describe our approach for managing the perfor-
mance of a RTDB in terms of transaction and data quality.
First, we start by defining performance metrics and QoS. An
overview of the feedback control scheduling architecture is
given, followed by issues related to modeling of the archi-
tecture and the design of controllers. Finally, we present
the algorithms FCS-IC-1, FCS-IC-2, FCS-HEF, and FCS-
HEDF.

4.1 Performance Metrics

In this work we adapt both steady-state and transient-
state performance metrics [10]. We adapt the following no-
tation of describing discrete variables in the time domain:
A�k� refers to the value of the variable A during the time
window ��k � ��W�kW �, where W is the sampling pe-
riod and k is the sampling instant.2 Let jTerminated�k�j
be the number of terminated transactions, whereas
jTerminatedM�k�j and jTerminatedO�k�j are the num-
ber of terminated mandatory and optional subtransactions,

2For the rest of this paper, we sometimes drop k where the notion of
time is not of primary interest.
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Figure 2. Definition of settling time (Ts) and
overshoot (Mp)

respectively. The number of transactions that have missed
their deadline is denoted by jDeadlineMiss�k�j, and the
number mandatory and optional subtransactions that have
missed their deadlines is given by jDeadlineMissM�k�j
and jDeadlineMissO�k�j, respectively. We exclusively
consider transactions admitted to the system.

User Transaction Quality Metrics:

� Deadline miss percentage of mandatory user subtrans-
actions is defined as,
MM �k� � ���� jDeadlineMissM �k�j

jTerminatedM �k�j ���.

� Deadline miss percentage of optional user subtransac-
tions is defined as,
MO�k� � ���� jDeadlineMissO �k�j

jTerminatedO�k�j
���.

� Average transaction error gives the preciseness of the
results of user transactions, and it is defined as,

ATE�k� � ����

P
i�Terminated�k�

TEi

jTerminated�k�j ���.

Data Quality Metric. Maximum data error (MDE�k�)
is used as a metric for data quality (see section 2).

QoS Fairness Metric. Standard deviation of transaction
error (SDTE) gives a measure of how much the trans-
action error of terminated transactions deviates from the
average transaction error, and it is defined as, SDTE�k� �q

�
jTerminated�k�j��

P
i�Terminated�k� �TEi � ATE�k���.

System Utilization. We measure system utilization (U )
in order to acquire a better understanding of the perfor-
mance of the algorithms.

Transient-State Performance Metrics. We consider
the following transient-state performance metrics (see Fig-
ure 2) applied on user transaction quality and data quality
performance metrics.

� Overshoot (Mp) is the worst-case system performance
in the transient system state and it is given in percent-
age.

� Settling time (Ts) is the time for the transient overshoot
to decay and reach the steady state performance, given
by ���� � 	� of the performance reference. Hence,
this is a measure of how fast the system converges to-
wards the desired performance.
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4.2 QoS Specification

The QoS specification is given in terms of steady-state
and transient-state performance metrics as described in Sec-
tion 4.1. For each performance metric y we specify its
steady-state by a reference yr, meaning that we want y to
stay at yr at all times, and apply overshoot and settling time
to specify its transient-state performance. Quality of data
(QoD) is defined in terms of MDE. An increase in QoD
refers to a decrease inMDE. In contrast a decrease in QoD
refers to an increase in MDE. We consider the following
ways of defining QoS.

QoS Specification A. We define quality of transaction
(QoT) in terms of deadline miss percentage of optional sub-
transactions (MO). QoT decreases as MO increases (sim-
ilarly, QoT increases as MO decreases). The DBA can
specify steady-state and transient-state behavior for MM ,
MO, and MDE. A QoS requirement can be specified as
the following: MM

r � �� (i.e. reference MM ), MO
r �

���, MDEr � ��, U � Ul � ���, Ts � ��s, and
Mp � ���. This gives the following transient-state perfor-
mance specifications: MM �MM

r � �Mp	���
 � ����,
MO � ��� and MDE � ����. A lower utilization value
is given by Ul, meaning that U must be greater or equal to
Ul at all times.

QoS Specification B. We define QoT in terms of aver-
age transaction error (ATE). QoT decreases as ATE in-
creases (similarly, QoT increases as ATE decreases). The
DBA can specify steady-state and transient-state behavior
for ATE and MDE. A QoS requirement can be spec-
ified as the following: ATEr � ��� (i.e. reference
ATE), MDEr � ��, Ts � ��s, and Mp � ���.
This gives the following transient-state performance spec-
ifications: ATE � ATEr � �Mp 	 ���
 � ���, and
MDE �MDEr � �Mp 	 ���
 � ����.

4.3 Feedback Control Scheduling Architecture

We employ feedback control scheduling [10, 11] to man-
age the quality of the service provided by the RTDB. The
goal is to control the performance, defined by a set of con-
trolled variables, such that the controlled variables satisfy
a given QoS specification. The general outline of the feed-
back control scheduling architecture is given in Figure 3.
Admitted transactions are placed in the ready queue. The
transaction handler manages the execution of the transac-
tions. We choose MM and MO as controlled variables
when the QoS is specified according to QoS specification
A, while ATE is the controlled variable when QoS speci-
fication B applies. At each sampling instant, the controlled
variable(s) is monitored and fed into the QoS controller,
which compares the performance reference(s), i.e. MM

r

and MO
r , or ATEr, with the controlled variable(s) to get

Control
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∆Unew

Manager
QoD

∆U
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Figure 3. Feedback Control Scheduling Archi-
tecture

the current performance error. Based on this the controller
computes a change, denoted �U , to the total estimated re-
quested utilization. We refer to �U as the manipulated vari-
able. Based on �U , the QoD manager changes the total es-
timated requested utilization by adapting the QoD (i.e. ad-
justing MDE). The precision controller then schedules the
update transactions based on MDE. The portion of �U
not accommodated by the QoD manager, denoted �Unew,
is returned to the admission controller, which enforces the
remaining utilization adjustment.

The transaction handler provides a platform for manag-
ing transactions. It consists of a freshness manager (FM),
a unit managing the concurrency control (CC), and a ba-
sic scheduler (BS). The FM checks the freshness before ac-
cessing a data object, using the timestamp and the absolute
validity interval of the data. We employ two-phase locking
with highest priority (2PL-HP) [1] for concurrency control.
2PL-HP is chosen since it is free from priority inversion and
has well-known behavior. We use three different scheduling
algorithms as basic schedulers: (i) Earliest Deadline First
(EDF), where transactions are processed in the order deter-
mined by increasing absolute deadlines (ii) Highest Error
First (HEF), where transactions are processed in the order
determined by decreasing transaction error, and (iii) High-
est Error Density First (HEDF), where transactions are pro-
cessed in the order determined by decreasing transaction
error density given by, TEDi � TEi

ATi�Di�CurrentT ime
,

whereATi andDi denote the arrival time and relative dead-
line of the transaction Ti, respectively.3 For all three basic
schedulers (EDF, HEF, and HEDF) the mandatory subtrans-
actions have higher priority than the optional subtransac-
tions and, hence, scheduled before them.

The precision controller discards an update transaction
writing to a data object (di) having an error less or equal
to the maximum data error allowed, i.e. DEi � MDE.

3Note that HEF and HEDF cannot be used in the case when error func-
tions for transactions are not available, as they are error-cognizant and re-
quire knowledge of transaction error for each transaction.
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However, the update transaction is executed if the data error
of di is greater thanMDE. In both cases the time-stamp of
di is updated.

We have modeled the controlled system, i.e. the RTDB,
according to the analytical approach proposed in [10]. The
approach has been adapted such that it supports the impre-
cise computation model [9]. For deriving and tuning of the
model and the feedback controllers, we refer to [2, 3] for
details.

4.4 Algorithms for Data and Transaction Quality
Management

The algorithms FCS-IC-1 and FCS-IC-2 control QoT by
monitoring MM , MO, and U , adjusting MDE such that
a given QoS specification, according to QoS specification
A, is satisfied. Here, we use EDF as a basic scheduler, i.e.,
transactions are scheduled according to EDF. FCS-HEF and
FCS-HEDF are error-cognizant and control QoT by moni-
toring ATE and adjusting MDE, such that a QoS speci-
fication in terms of QoS specification B is satisfied. Fur-
thermore, FCS-HEF and FCS-HEDF are designed to en-
hance QoS fairness among transactions. We use the same
feedback control policy for FCS-HEF and FCS-HEDF, but
use different basic schedulers, i.e., FCS-HEF schedules
the transactions using HEF and FCS-HEDF schedules the
transactions using HEDF.

Given a certain �U�k�, we need to set MDE�k � ��
such that the change in utilization due to discarding update
transactions corresponds to �U�k�. Remember that setting
MDE�k � �� greater than MDE�k� results in more dis-
carded update transactions and, hence, an increase in gained
utilization. In order to compute MDE�k � �� given a
certain �U�k�, we use a function f��U�k�� that returns,
based on �U�k�, the corresponding MDE�k � ��. The
function f holds the following property. If �U�k� is less
than zero, thenMDE�k��� is set such thatMDE�k���
is greater than MDE�k� (i.e. QoD is degraded). Similarly,
if �U�k� is greater than zero, thenMDE�k��� is set such
that MDE�k � �� is less than MDE�k� (i.e. QoD is up-
graded). Due to space limitation we refer to [2, 3] for the
derivation of f .

4.4.1 FCS-IC-1.

FCS-IC-1 employs one utilization and two miss percentage
controllers, i.e., one controller to adjust the utilizationU ac-
cording to a lower bound Ul, and two controllers to adjust
MM and MO . Initially, U is set to a Ul. As long as MM

andMO are below their references,U is increased by a cer-
tain step. As soon as MM or MO (or both) are above their
references, U is reduced exponentially. This is to prevent
a potential deadline miss percentage overshoot due to a too

Monitor MM �k�, MO�k�, and U�k�
Compute �U�k�
if (�U�k� � � and MDE�k� � �) then

Upgrade QoD according toMDE�k � �� �� f��U�k��
Inform AC about the portion of �U�k� not accommodated by
QoD upgrade

else if (�U�k� � � and MDE�k� � MDEr � �Mp � ����)
then

Downgrade QoD according to MDE�k� �� �� f��U�k��
Inform AC about the portion of �U�k� not accommodated by
QoD downgrade

else if (�U�k� � � and MDE�k� � MDEr � �Mp � ����)
then

Reject any incoming transactions
else

Inform the AC of �U�k�
end if

Figure 4. FCS-IC-1

optimistic utilization reference. In addition to this, FCS-IC-
1 performs the following.

The system monitors the deadline miss percentages and
the CPU utilization. At each sampling instant, the CPU uti-
lization adjustment, �U�k�, is derived. Based on �U�k�
we perform one of the following. If �U�k� is greater than
zero, upgrade QoD as much as �U�k� allows. However,
when �U�k� is less than zero, degrade QoD according to
�U , but not greater than the highest allowed MDE (i.e.
MDEr � �Mp � ����). Degrading the data further would
violate the upper limit of MDE given by the QoS spec-
ification. In the case when �U�k� is less than zero and
MDE equals MDEr � �Mp � ����, no QoD adjustment
can be issued and, hence, the system has to wait until some
of the currently running transactions terminate. An outline
of FCS-IC-1 is given in Figure 4.

4.4.2 FCS-IC-2.

In FCS-IC-2, two miss percentage control loops, one for
MM and one for MO, are used. In the case of FCS-IC-1,
the miss percentages may stay lower than their references,
since the utilization exponentially decreases every time one
of the miss percentages overshoots its reference. Conse-
quently, the specified miss percentage references (i.e. MM

r

and MO
r ) may not be satisfied. In FCS-IC-2, the utilization

controller is removed to keep the miss percentages at the
specified references.

One of the characteristics of the miss percentage con-
troller is that as long as MO is below its reference (i.e.
MO � MO

r ), the controller output �U stays positive.4

Due to the characteristics of f (i.e. �U�k� � � �

4If we have transient oscillations, �U , may temporally stay positive
(negative) even though the MO has changed from being below (above)
the reference to be above (below) the reference value. This is due to the
integral operation, i.e., due to earlier summation of errors, causing a delay
before a change to the utilization is requested and has effect.
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MDE�k � �� � MDE�k�), a positive �U is interpreted
as a QoD upgrade. Consequently, even if MO is just be-
low its reference, QoD remains high. We would rather that
MO, which corresponds to QoT, increases and decreases
together with QoD given by MDE. For this reason, MDE

is set considering both �U and MO. When �U is less
than zero (i.e. MO overshoot), MDE is set according to
f . However, when �U is greater or equal to zero, MDE

is set according to the moving average of MO, computed
by MO

MA�k� � �MO�k� � �� � ��MO
MA�k � ��, where

� (� � � � �) is the forgetting factor. Setting � close
to 1 results in a fast adaptation, but also captures the high-
frequency changes of MO , whereas setting � close to 0 re-
sults in a slow but smooth adaptation. The outline of FCS-
IC-2 is given in Figure 5.

Monitor MM �k� and MO�k�
Compute �U�k�
if (�U�k� � �) then
MDE�k � �� ��

min�
MO

MA
�k�

MO
r

MDEr�MDEr � �Mp � �����

if (MDE�k� � MDE�k � ��) then
Add the utilization gained after QoD degrade to �U�k�

else
Subtract the utilization lost after QoD upgrade from �U�k�

end if
Inform AC of the new �U�k�

else if (�U�k� � � and MDE�k� � MDEr � �Mp � ����)
then

Downgrade QoD according to MDE�k � �� �� f��U�k��
Inform AC about the portion of �U�k� not accommodated by
QoD downgrade

else if (�U�k� � � and MDE�k� � MDEr � �Mp � ����)
then

Reject any incoming transactions
else

Inform the AC of �U�k�
end if

Figure 5. FCS-IC-2

4.4.3 FCS-HEF and FCS-HEDF

FCS-HEF and FCS-HEDF are extensions to FCS-IC-2, but
where QoT is measured in terms of ATE, instead of MO.
Hence, we replace the miss percentage control loops for a
single average transaction error control loop. Here, MDE

is adjusted based on the control signal �U and the moving
average of ATE, given by ATEMA�k� � �ATE�k� �
�����ATEMA�k� ��. Due to space limitation we do not
provide full algorithm descriptions for FCS-HEF and FCS-
HEDF but refer instead to Figure 5 where MO

MA is replaced
with ATEMA.

5 Performance Evaluation

5.1 Experimental Goals

The main objective of the experiments is to determine if
the presented algorithms can provide QoS guarantees ac-
cording to a QoS specification. We have for this reason
studied and evaluated the behavior of the algorithms by
varying a set of parameters:

� Execution time estimation error (EstErr). Often ex-
act execution time estimates of transactions are not
known. To study how runtime error affects the algo-
rithms we measure the performance considering dif-
ferent execution time estimation errors.

� QoS specifications. It is important that an algorithm
can manage different QoS specifications. Here we
compare the results of the presented algorithms with
regards to different QoS specifications.

� Transaction error functions. The characteristics of the
error functions depend on the actual application. For
this reason, we evaluate the performance of the algo-
rithms with regard to different transaction sets showing
different transaction error characteristics.

5.2 Simulation Setup

The simulated workload consists of update and user
transactions, which access data and perform virtual arith-
metic/logical operations on the data. Update transactions
occupy approximately 50� of the workload. In our exper-
iments, one simulation run lasts for 10 minutes of simu-
lated time. For all the performance data, we have taken
the average of 10 simulation runs and derived 95% confi-
dence intervals. The workload model of the update and user
transactions are described as follows. We use the follow-
ing notation where the attribute Xi refers to transaction Ti,
and Xi�ti	 is associated with subtransaction ti (where ti �
fMi� Oi��� � � � � Oi��Oig). We analyze ATE�k�, MDE�k�,
SDTE, and CPU Utilization (below referred to as utiliza-
tion) U .

Data and Update Transactions. The DB holds 1000
temporal data objects (di) where each data object is up-
dated by a stream (Streami, � � i � ����). The pe-
riod of update transactions (Pi) is uniformly distributed in
the range (100ms,50s) (i.e. U 
 ����ms� ��s�) and esti-
mated execution time (EETi) is given by U 
 ��ms� �ms�.
The average update value (AVi) of each Streami is given
by U 
 ��� ����. Upon a periodic generation of an update,
Streami gives the update an actual execution time given by
the normal distribution N 
 �EETi�

p
EETi� and a value

(Vi) according to N 
 �AVi� AVi � V arFactor�, where
V arFactor is uniformly distributed in (0,1). The deadline
is set to ArrivalT imei � Pi.
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User Transactions. Each Sourcei generates a trans-
action Ti, consisting of one mandatory subtransaction,
Mi, and �Oi (� � �Oi � ��) optional subtransac-
tion(s), Oi�j (� � j � �Oi). �Oi is uniformly dis-
tributed between 1 and 10. The estimated (average) ex-
ecution times of mandatory and optional (EETi�ti�) sub-
transactions are given by U � ��ms� ��ms�. The estima-
tion error EstErr is used to introduce an execution time
estimation error in the average execution time given by
AETi�ti� 	 ��
EstErr��EETi�ti�. Further, upon gen-
eration of a transaction, Sourcei associates an actual ex-
ecution time to each subtransaction ti, which is given by
N � �AETi�ti��

p
AETi�ti��. The deadline of a transaction

is set to ArrivalT imei
EETi�SlackFactor. The slack
factor is uniformly distributed according to U � ���� ���.
The inter-arrival time is exponentially distributed with the
mean inter-arrival time set to EETi � SlackFactor.

We have considered two different transaction sets having
different transaction error characteristics. In the first set,
referred to as TSet�, transactions are evenly distributed in
four classes representing error function orders of 0.5, 1, 2,
and 5 (e.g. ��
 of the transactions have an error order of
1). In the second set, referred to as TSet�, ��
 of the
transactions have an error order of 0.5, ��
 have error order
of 1, ��
 have error order 2, and �
 have error order 5.

In our experiments we use the following QoS speci-
fication: QoSSpecA 	 fMM

r 	 �
, MO
r 	 ��
,

MDEr 	 ���
, Ts � ��s, Mp � ��
, Ul 	 ��
g,
QoSSpecB� 	 fATEr 	 ��
, MDEr 	 �
, Ts � ��s,
Mp � ��
g, QoSSpecB� 	 fATEr 	 ��
, MDEr 	
��
, Ts � ��s, Mp � ��
g.

5.3 Baselines

To the best of our knowledge, there has been no earlier
work on techniques for managing data impreciseness and
transaction impreciseness, satisfying QoS or QoD require-
ments. For this reason, we have developed three baseline
algorithms, FCS-EDF, Baseline-1, and Baseline-2, to study
the impact of the workload on the system. We compare
the behavior of FCS-HEF and FCS-HEDF with FCS-EDF,
which is similar to FCS-HEF and FCS-HEDF, but where
EDF is used as a basic scheduler. We choose EDF since
it is optimal (in minimizing deadline misses) and has well-
known behavior. The algorithm outline of Baseline-1 and
Baseline-2 is given below. Depending on the given QoS
specification, let � be either MO or ATE.

Baseline-1. If � (i.e. MO or ATE) is greater than
its reference, the utilization has to be lowered, which is
achieved by discarding more update transactions, i.e. in-
creasingMDE. MDE is set according to MDE�k
�� 	

min���k�
�r

MDEr�MDEr � �Mp
�����. A simple AC is
applied, where a transaction (Ti) is admitted if the estimated
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Figure 6. Average Performance: Load 	 ���
,
QoSSpecA

utilization of admitted subtransactions and EETi is less or
equal to ��
.

Baseline-2. To prevent a potential overshoot, we in-
crease MDE as soon as � is greater than zero. If ��k�
is greater than zero, MDE�k� increases stepwise until
MDEr � �Mp 
 ���� is reached (i.e. MDE�k 
 �� 	
min�MDE�k� 
MDEstep�MDEr � �Mp 
 �����). If
��k� is equal to zero, MDE�k� decreases stepwise until
zero is reached (i.e. MDE�k 
 �� 	 max�MDE�k� �
MDEstep� ��). The same AC as in Baseline-1 is used.

5.4 Experiment 1: Results of Varying EstErr

The setup of the experiment is given below, followed by
the presentation of the results.

Experimental setup. We apply 200
 load and mea-
sure MO, ATE, SDTE, MDE, and U . The execution
time estimation error is varied according to EstErr = 0.00,
0.25, 0.50, 0.75, and 1.00. For FCS-IC-1 and FCS-IC-2 we
use QoS specification QoSSpecA, while for FCS-HEF and
FCS-HEDF QoS specification QoSSpecB� and transaction
set TSet� holds. Figure 6 shows the performance of FCS-
IC-1 and FCS-IC-2, and Figure 7 shows the performance
of FCS-HEF, FCS-HEDF, and FCS-EDF. Dash-dotted lines
indicate references.

Results. For all algorithms the confidence intervals are
within ����
 for MO, ATE, and SDTE, and within
���
 for MDE. For all algorithms and baselines the uti-
lization has been observed to be above ��
. As we can see
for Baseline-1 and Baseline-2, the controlled variables (i.e.
MO and ATE) and MDE change for varying EstErr.
However, FCS-IC-1, FCS-IC-2, FCS-HEF, and FCS-HEDF
provide a robust control of the performance as MO, ATE,
and MDE do not change considerably for varying execu-
tion time estimation errors. Further, we see that FCS-HEF
provides a lower SDTE than the other algorithms. Note
that FCS-IC-1 provides a much lower MO than MO

r . This
is due to the properties of the utilization controller, where
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Figure 8. Average performance: EstErr = 0,
QoSSpecB�, TSet�

the utilization decreases exponentially every timeMO over-
shoots its reference, yielding an overall lower utilization,
and consequently, a lower MO compared to MO

r
. From

above we can conclude that FCS-IC-1, FCS-IC-2, FCS-
HEF, and FCS-HEDF are insensitive to changes to execu-
tion time estimation and, hence, they can easily adapt when
accurate run-time estimates are not known.

5.5 Experiment 2: Varying QoS Specification

The setup of the experiment is given below, followed by
the presentation of the results.

Experimental setup. We apply loads from 50� to 200�
and measure ATE, SDTE, and MDE. The execution
time estimation error is set to zero (i.e. EstErr � �).
Transaction set TSet� is used. Figure 8 shows the per-
formance of FCS-HEF, FCS-HEDF, and FCS-EDF given
QoSSpecB�, while Figure 9 shows the performance of the
algorithms under QoSSpecB�. Dash-dotted lines indicate
references.

Results. For all algorithms, the confidence intervals of
ATE and SDTE are within �����, while the same figure
forMDE is�����. As we can see,ATE andMDE grow
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Figure 9. Average performance: EstErr =
0,QoSSpecB�, TSet�

towards their references as the applied load increases, con-
sequently satisfying the QoS specifications. Thus, we have
shown that the proposed algorithms can support different
QoS specifications.5

It can be observed that the difference in SDTE between
FCS-HEF and FCS-HEDF is smaller for QoSSpecB� than
QoSSpecB�. We notice that when ATE is lower than ap-
proximately ���, FCS-HEDF performs better than FCS-
HEF with regard to lowering SDTE. ForQoSSpecB�, the
reference ATEr is set to ���, resulting in a lower ATE
(compared to the ATE generated for QoSSpecB�) and,
hence, the difference in SDTE becomes smaller.

5.6 Experiment 3: Effects of Varying Order of
Transaction Error Functions

In experiment 2 we evaluate the algorithms using the
transaction set TSet�. Below we compare the results ob-
tained from experiment 2 using a different set of transac-
tions, TSet�. This is to evaluate the performance of FCS-
HEF and FCS-HEDF with regard to different sets of trans-
actions having different transaction error characteristics.

Experimental setup. We apply loads from 50� to 200�
and measure ATE, SDTE, and MDE. The execution
time estimation error is set to zero (i.e. EstErr � �).
QoS specification QoSSpecB� and transaction set TSet�
are used. Figure 10 shows the performance of FCS-HEF,
FCS-HEDF, and FCS-EDF. Dash-dotted lines indicate ref-
erences.

Results. The confidence intervals of ATE and SDTE
for all algorithms are within �����, while for MDE the
same figure is �����. For FCS-EDF, FCS-HEF, and FCS-
HEDF we can see that ATE and MDE satisfy the given
QoS specification as they are consistent with the references
during high applied loads.

Comparing to Figure 8, it can be observed that ATE for

5We do not present the results of the Baseline-1 and Baseline-2, since
they have showed poor results in earlier experiments.
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Figure 10. Average performance: EstErr = 0,
QoSSpecB�, TSet�

FCS-HEF is higher than the other algorithms. Given a set
transactions where the error order of each transaction is less
than one (i.e. n � �), ATE is lower under EDF scheduling
than under HEF scheduling. Consider two transactions, T�
andT�, that have error functions withn � ��� (see Figure 1)
and where the difference in deadlines is very small (imagine
that the difference is infinitely small). Assume that it takes
one time unit to complete an optional subtransaction and
that there are 10 time units to the deadline of both transac-
tions, hence, we can only execute and complete 10 subtrans-
actions before their deadline. The question is how to sched-
ule the subtransactions such that the average transaction er-
ror is minimized. In the case of HEF, we assign 5 time units
to each transaction (i.e. completing 5 optional subtransac-
tions), giving an average transaction error of approximately
0.75. In the case of EDF we assign 10 time units to the
transaction with the earlier deadline and zero time units to
the second, giving an average error of 0.5. Thus the aver-
age error becomes lower under EDF scheduling. Studying
TSet�, we see that about 50� of the transactions have er-
ror functions with orders less than 1 (i.e. n � �), hence,
here ATE becomes lower under EDF scheduling than un-
der HEF scheduling.

Further, for loads less than ���� we can see that FCS-
HEF produces higher SDTE than the other algorithms.
This is due to the high ATE during the same load inter-
val. However, SDTE for FCS-HEF is lower for the other
algorithms for loads above ���� as the difference in ATE
becomes smaller between the algorithms.

Comparing the performance of the algorithms given in
Figure 8 and Figure 10, we conclude that FCS-HEF and
FCS-HEDF are robust against varying applied load and
varying transaction error characteristics.

5.7 Summary of Results and Discussion

Our experiments show that FCS-IC-1, FCS-IC-2, FCS-
HEF, and FCS-HEDF are robust against inaccurate execu-

tion time estimations as MO, ATE, and MDE remain
unaffected for varying execution time estimation errors.
Also, FCS-HEF and FCS-HEDF can adapt to different QoS
specifications and various transaction sets showing different
transaction error characteristics. The proposed algorithms
outperform the baseline algorithms and FCS-EDF and they
can manage a given QoS specifications well. We have car-
ried out other types of experiments [2, 3] for the algorithms
given in this paper, where we evaluate the performance of
the algorithms with regard to transient-state behavior, i.e.,
overshoot and settling time. The results of the additional
experiments show that the FCS-IC-1, FCS-IC-2, FCS-HEF,
and FCS-HEDF are able to handle transient overloads and
control the magnitude and settling time of the overshoots.
In particular, we have observed that FCS-IC-1 and FCS-
HEF efficiently suppress overshoots and, hence, perform
better during transient-states than FCS-IC-2, FCS-HEDF,
and FCS-EDF.

FCS-IC-1 can manage to provide near zero MO and it
is able to efficiently suppress potential overshoots, but does
not fully satisfy the QoS specification with regard to the
reference. FCS-IC-2, on the other hand, provides an MO

near its reference, MO
r

. Thus FCS-IC-1 should be applied
to RTDBs where overshoots cannot be tolerated, but where
consistency between the controlled variables and their ref-
erences is relaxed, i.e., we do not require the system to
produce the desired miss percentages and MDE. The ex-
periments show that FCS-IC-2 is particularly useful when
consistency between the controlled variables and their ref-
erences is emphasized, but where overshoots are accepted.

Moreover, it was showed that FCS-HEF in general pro-
vides a lower SDTE than FCS-HEDF and the baselines.
We conclude that FCS-HEF should be used in applications
where QoS fairness among transactions is important, but
also where the performance of the RTDB during transient-
state must not violate given QoS specifications.

6 Related Work

There has been several algorithms proposed addressing
imprecise scheduling problems [9, 5, 4]. These algorithms
require the knowledge of accurate processing times of the
tasks, which is often not available in RTDBs. Further, they
focus on maximizing or minimizing a performance metric
(e.g. total error). These optimization problems cannot be
applied to our problem, since in our case we want to con-
trol a set of performance metrics such that they converge
towards a set of references given by a QoS specification.

Lu et al. have presented a feedback control scheduling
framework where they propose three algorithms for man-
aging the miss percentage and/or utilization [10]. However
they do not address the problem of maximizing QoS fair-
ness among admitted tasks. In the work by Parekh et al.,
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the length of a queue of remote procedure calls (RPCs) ar-
riving at a server is controlled [11] using automatic control.

Labrinidis et al. introduced the notion of QoD in the con-
text of web-servers [8]. Their proposed update scheduling
policy of cached web pages can significantly improve data
freshness compared to FIFO scheduling. Kang et al. used a
feedback control scheduling architecture to balance the load
of user and update transactions [7]. In our previous work,
we presented a set of algorithms for managing QoS based
on feedback control scheduling and imprecise computation
[2, 3], where QoS was defined in terms of transaction and
data preciseness.

The correctness of answers to databases queries can be
traded off to enhance timeliness. The database query pro-
cessors, APPROXIMATE [13] and CASE-DB [6] are ex-
amples of such databases where approximate answers to
queries can be produced within certain deadlines.

7 Conclusions and Future Work

In this paper we have argued for the need of increased
adaptability of applications providing real-time data ser-
vices. To address this problem we have proposed a QoS-
sensitive approach based on feedback control scheduling
and imprecise computation applied on transactions and data
objects. Imprecise computation techniques have shown to
be useful in many areas where timely processing of tasks or
services is emphasized. In this work we combine the ad-
vantages from feedback control scheduling and imprecise
computation techniques, forming a framework consisting
of a model for expressing QoS requirements, an architec-
ture, and a set of algorithms. The expressive power of our
approach allows a DBA to specify the desired QoS with re-
gard to steady-state and transient-state, capturing the dy-
namics of a RTDB. FCS-IC-1 and FCS-IC-2 address QoS
specifications given in terms of deadline miss percentage of
optional subtransactions, while FCS-HEF and FCS-HEDF
address specifications based on the notion of transaction er-
ror. Given a QoS specification, the four algorithms FCS-
IC-1, FCS-IC-2, FCS-HEF, and FCS-HEDF give a robust
and controlled behavior of RTDBs in terms of transaction
and data preciseness, even for transient overloads and with
inaccurate run-time estimates of the transactions. The pro-
posed algorithms outperform the baseline algorithms and
FCS-EDF, where transactions are scheduled with EDF and
feedback control, and can manage the given QoS specifica-
tions well. This is a significant improvement over current
techniques for specifying and satisfying QoS requirements.

For our future work, we will model the relationship be-
tween data error and transactions error, expressing trans-
action error in terms of completed optional subtransactions
and the data error of the data objects accessed by a transac-
tion. Further, we also intend to extend our work to manage

the notion of service differentiation and derived data man-
agement.
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