Algorithms for Managing QoS for Real-Time
Data Services Using Imprecise Computation*

Mehdi Amirijoo!, Jérgen Hansson!, Sang H. Son?

! Department of Computer Science, Linképing University, Sweden
{meham, jorha}@ida.liu.se
? Department of Computer Science, University of Virginia, Virginia, USA
son@cs.virginia.edu

Abstract. Lately the demand for real-time data services has increased
in applications where it is desirable to process user requests within their
deadlines using fresh data. The real-time data services are usually pro-
vided by a real-time database (RTDB). Here, since the workload of the
RTDBs cannot be precisely predicted, RTDBs can become overloaded.
As a result, deadline misses and freshness violations may occur. To ad-
dress this problem we propose a QoS-sensitive approach to guarantee a
set of requirements on the behavior of RTDBs. Our approach is based
on imprecise computation, applied on both data and transactions. We
propose two algorithms to dynamically balance the workload and the
quality of the data and transactions. Performance evaluations show that
our algorithms give a robust and controlled behavior of RTDBs, in terms
of transaction and data quality, even for transient overloads and with in-
accurate run-time estimates of the transactions.

1 Introduction

Lately the demand for real-time data services has increased and applications
used in manufacturing, web-servers, e-commerce etc. are becoming increasingly
sophisticated in their data needs. The data used span from low-level control
data, typically acquired from sensors, to high-level management and business
data. In these applications it is desirable to process user requests within their
deadlines using fresh data. In dynamic systems, such as web servers and sensor
networks with non-uniform access patterns, the workload of the databases cannot
be precisely predicted and, hence, the databases can become overloaded. As
a result, deadline misses and freshness violations may occur during transient
overloads. To address this problem we propose a quality of service (QoS) sensitive
approach to guarantee a set of requirements on the behavior of the database,
even in the presence of unpredictable workloads. Our scheme is important to
applications where timely execution of transactions is emphasized, but where it
is not possible to have accurate analysis of arrival patterns and execution times.

* This work was funded, in part by CUGS (the National Graduate School in Computer
Science, Sweden), CENIIT (Center for Industrial Information Technology) under
contract 01.07, and NSF grant I1S-0208758. © RTCSA 2003.

Our approach is based on imprecise computation [9], where it is possible
to trade off resource needs for quality of requested service. This has successfully
been applied to applications where timeliness is emphasized, e.g., avionics, engine
control, image processing [4, 11], networking [12], and approximation algorithms
for NP-complete problems [18]. In our work, the notion of impreciseness is ap-
plied on both data and transactions, and the goal is to satisfy a QoS specification,
in terms of data and transaction impreciseness, giving the desired quality of the
provided service. We propose two dynamic balancing algorithms, FCS-IC-1 and
FCS-IC-2, to balance the quality of the data and the transactions. Main chal-
lenges include unpredictability of workload, in terms of unknown arrival patters
and inaccurate execution time estimates, but also effective balancing between
transaction and data quality. To solve this issue, we apply feedback control
scheduling [10] to provide robustness under these conditions.

The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such that
the behavior of a RTDB can be controlled, even in the presence of load variation
and inaccurate execution time estimates. We have carried out a set of experi-
ments to evaluate the performance of the algorithms. In the simulation studies
we have applied a wide range of workload and run-time estimates to model po-
tential unpredictabilities. The studies show that FCS-IC-1 and FCS-IC-2 give
a robust and controlled behavior of RTDBs, in terms of transaction and data
quality, even for transient overloads and when we have inaccurate run-time esti-
mates of the transactions. This has been shown by comparing the performance
against selected baseline algorithms.

The rest of this paper is organized as follows. A problem formulation is given
in Section 2. In Section 3, the assumed database model is given. In Section 4, we
present our approach and in Section 5, the results of performance evaluations
are presented. In Section 6, we give an overview on related work, followed by
Section 7, where conclusions and future work are discussed.

2 Problem Formulation

In our model, data objects in a RTDB are updated by update transactions,
e.g. sensor values, while user transactions represent user requests, e.g. complex
read-write operations. The notion of imprecision is applied at data object and
user transaction level. The data quality increases as the imprecision of the data
objects decreases. Similarly, the quality of user transactions increases as the
imprecision of the results produced by user transactions decreases. Note that
quality of user transactions is related to quality of data. Since user transactions
access and read data objects, decreasing the quality of data may lead to a de-
crease in the quality of user transactions. However, in this work we model user
transaction quality and data quality as orthogonal entities and, hence, quality
of data and quality of user transactions are considered to be independent. In the
future, we will extend our model to capture more advanced relations between
user transaction quality and data quality.

In practice, a database administrator (DBA) specifies a desired QoS level in
terms of steady-state and transient-state behavior of data and user transaction
quality. The goal is to adapt the behavior of the RTDB such that the given
QoS specification is satisfied. This is achieved by balancing the workload among
update and user transactions. In general, lowering the user transaction workload
leads to increased resources available for update transactions, resulting in an
increase in data quality. Similarly, lowering the update transaction workload
results in an increase in user transaction quality.

Starting with data impreciseness, for a data object stored in the RTDB and
representing a real-world variable, we can allow a certain degree of deviation
compared to the real-world value and if such deviation can be tolerated, arriving
updates may be discarded. In order to measure data quality we introduce the
notion of data error. Let d; denote an arbitrary data object and T} a transac-
tion updating d;. The data error, denoted DE;, of a data object d; is defined
as a function of the current value (denoted CurrentValue;) of d; and the up-
date value (denoted UpdateV alue;) of the latest arrived update transaction, T},
i.e. DE; = ®#(CurrentV alue;, UpdateValue;). The data error of a data object
gives an indication of how much the value stored in the RTDB deviates from
the corresponding value in the real-world, given by the latest arrived update
transaction.

The workload of updates is adjusted by manipulating the data error, which
is done by considering an upper bound for the deviation between the values of
the data objects stored in the RTDB and the corresponding values in the real-
world. The upper bound is given by the mazimum data error (denoted MDE)
and is set based on a set of performance variables giving the current state of
the RTDB (e.g. quality of user transactions). The data error is adjusted by the
following criteria. An update transaction (T7) is discarded if the data error of
the data object (d;) that is to be updated by Tj is less or equal to MDE (i.e.
DE; < MDE). In contrast, an update transaction is executed and committed if
the corresponding DE; is greater than M DE.

If MDE increases, more update transactions are discarded as we tolerate
greater data error, hence, lower data quality. Similarly, if M DE decreases, fewer
update transactions are rejected, resulting in a lower data error, and conse-
quently, greater data quality. The goal of our work is to derive algorithms for
adjusting data error, such that the data and the user transaction quality satisfy
a given QoS specification. A major issue is how to compute M DE, depending
on the user transaction quality.

3 Data and Transaction Model

3.1 Database Model

We consider a firm RTDB model, in which tardy transactions, i.e., transactions
that have missed their deadlines, add no value to the system and therefore are
aborted. We consider a main memory database model, where there is one CPU
as the main processing element.

3.2 Data Model and Data Management

In our data model, data objects can be classified into two classes, temporal and
non-temporal [14]. For temporal data, we only consider base data, i.e., data that
hold the view of the real-world and are updated by sensors. A base data object
d; is considered temporally inconsistent or stale if the current time is later than
the timestamp of d; followed by the absolute validity interval of d; (denoted
AVL), i.e. CurrentTime > TimeStamp; + AV I;.

Define the the data error of a data object d; as,

|CurrentV alue; — UpdateV alue;|

DE; =100
‘ x |CurrentV alue;|

(%)

where UpdateV alue; is the value of the latest arrived transaction updating d;.

3.3 Transaction Model

Transactions are classified either as update transactions or user transactions.
Update transactions arrive periodically and may only write to temporal data
objects (i.e. base data objects). User transactions arrive aperiodically and may
read temporal and read/write non-temporal data. The inter-arrival time of user
transactions is exponentially distributed.

User and update transactions (7};) are assumed to be composed of one manda-
tory subtransaction (M;) and #0O; optional subtransactions (denoted O; ;, where
1 < j < #0;). For the remainder of the paper, let,

t; € {M;,0;1,...,0; 40}

denote a subtransaction of T;.

We use the milestone approach [9] to transaction impreciseness. Thus, we
have divided transactions into subtransactions according to milestones. A man-
datory subtransaction is completed when it is completed in a traditional sense.
The mandatory subtransaction gives an acceptable result and it is desired to
complete the mandatory subtransaction before the transaction deadline. The
optional subtransactions depend on the mandatory subtransaction and may be
processed if there is enough time or resources available. While it is assumed that
all subtransactions (¢;) arrive at the same time as the parent transaction (7}),
the first optional subtransaction (i.e. O;1) becomes ready for execution when
the mandatory subtransaction completes. In general, an optional subtransaction,
0;,;, becomes ready for execution when O; ;1 (where 2 < j < #0;) completes.
Hence, there is a precedence relation given by,

M; < Oz’,l < Oi,z <...=< Oi,#O.--

A transaction is completed once its mandatory subtransaction is completed.
We set the deadline of all subtransactions to the deadline of the parent trans-
action. A subtransaction is terminated if it is completed or has missed its dead-
line. A transaction (T;) is terminated when its last optional subtransaction (i.e.

O;,#0,) is completed or one of its subtransactions has missed its deadline. In the
latter case, all subtransactions that are not completed are terminated as well.

For update transactions we assume that there are no optional subtransac-
tions (i.e. #0; = 0). Hence, each update transaction consists only of a single
mandatory subtransaction. This assumption is based on the fact that updates
do not use complex logical or numerical operations and, hence, have a lower
execution time than user transactions.

In our transaction model, the estimated average utilization of the transactions
is known. However, the average or the actual utilization is not known. Hence,
a feature in our model is that it models systems in unpredictable environments
where the actual CPU utilization of transactions is time-varying and unknown
to the scheduler.

4 Approach

Below we describe our approach for managing the performance of a RTDB in
terms of transaction and data quality. First, we start by defining QoS and how
it can be specified. An overview of a feedback control scheduling architecture is
given, followed by issues related to modeling of the architecture and design of
controllers. Finally, we present the algorithms FCS-IC-1 and FCS-IC-2.

4.1 Performance Metrics and QoS specification

In our approach, the DBA can explicitly specify the required database QoS,
defining the desired behavior of the database. In this work we adapt both steady-
state and transient-state performance metrics. The metrics are as follows:

— Deadline Miss Percentage of Mandatory User Subtransactions (M™). In
a QoS specification the DBA can specify the deadline miss percentage of
mandatory subtransactions given by,

#DeadlineMiss™
#TerminatedM

where # DeadlineMiss™ denotes the number of mandatory subtransactions
that have missed their deadline, and #Terminated™ is the number of termi-
nated mandatory subtransactions. We exclusively consider user transactions
admitted to the system.

— Deadline Miss Percentage of Optional User Subtransactions (M©). M© is
the percentage of optional subtransactions that have missed their deadline.
MPO is defined by,

MM =100 x

(%)

#DeadlineMiss®

M° =100
% #Terminated©

(%)

where #DeadlineMiss® denotes the number of optional subtransactions
that have missed their deadline, and #Terminated® is the number of ter-
minated optional subtransactions. We exclusively consider user transactions
admitted to the system.

— Mazimum Data Error (M DE). This metric gives the maximum data error
tolerated for the data objects, as described in Section 2.

— Owvershoot (Mp) is the worst-case system performance in the transient-state
(see Figure 1) and it is given as a percentage. The overshoot is applied to
MO, MM and MDE.

— Settling time (T) is the time for the transient overshoot to decay and reach
the steady-state performance (see Figure 1).

— Utilization (U). In a QoS specification the DBA can specify a lower bound
for the utilization of the system.

value

reference

Fig. 1. Definition of settling time (7;) and overshoot (M)

We define Quality of Data (QoD) in terms of MDE. An increase in QoD
refers to a decrease in M DE. In contrast a decrease in QoD refers to an increase
in MDE. We measure user transaction quality in terms of deadline miss per-
centage of optional subtransactions, i.e. M©. This is feasible in the case when
optional subtransactions contribute equally to the final result.

The DBA can specify a set of target levels or references for MM, MO, and
MDE. A QoS requirement can be specified as the following: MM = 1% (i.e.
reference M™M), MO = 10% (i.e. reference M©), MDE, = 2% (i.e. reference
MDE), U > 80%, Ts < 60s, and M, < 30%. This gives the following transient
performance specifications: MM < MM x (M, + 100) = 1.3%, M© < 13%, and
MDE < 2.6%.

4.2 Feedback Control Scheduling Architecture

In this section we give an overview of the feedback control scheduling architec-
ture. Further, we identify a set of control related variables, i.e., performance
references, manipulated variables, and controlled variables.

The general outline of the feedback control scheduling architecture is given in
Figure 2. Admitted transactions are placed in the ready queue. The transaction
handler manages the execution of the transactions. At each sampling instant, the

controlled variables, miss percentages and utilization, are monitored and fed into
the miss percentage and utilization controllers, which compare the performance
references, MM, MP, and U,, with the corresponding controlled variables to
get the current performance errors. Based on these the controllers compute a
change, denoted AU, to the total estimated requested utilization. We refer to
AU as the manipulated variable. Based on AU, the QoD manager changes the
total estimated requested utilization by adapting the QoD (i.e. adjusting M DE).
The precision controller then schedules the update transactions based on M DE.
The portion of AU not accommodated by the QoD manager, denoted AU,eq,
is returned to the admission control, which enforces the remaining utilization
adjustment.

Controller
Miss Percentage M

Miss Percentage © Miss Percentage
CPU Utilization

Utilization

>
C

AU MDE
new QoD L —al _
Manager Monitor
U T . Miss Percentage
ser Transactions Y ¢ MDE
Sourcel Admission
Precision
o Control Control
Sourcem
. Dispatched -
Update Transactions Y ———— | |Transaction Handler
Stream1
Stream , Ready Queue
Block

Block Queue

Fig. 2. Feedback control scheduling architecture

The streams (Stream;) generate update transactions, whereas user transac-
tions are generated and submitted by sources (Source;).

The transaction handler provides a platform for managing transactions. It
consists of a freshness manager (FM), a unit managing the concurrency control
(CC), and a basic scheduler (BS). The FM checks the freshness before accessing
a data object, using the timestamp and the absolute validity interval of the
data. If a user transaction is accessing a stale data object and the transaction

deadline is later than the next update arrival, the transaction is blocked. It
is then made ready when the corresponding update commits. However, if the
transaction deadline is earlier than next update arrival, the stale data object is
used. We use earliest deadline fist (EDF) as a basic scheduler to schedule user
transactions. Conceptually, transactions are scheduled in a multi-level queue
system. Update transactions and mandatory user subtransactions are placed in
the highest priority queue, whereas optional user subtransactions are placed in a
lower priority queue. We employ two-phase locking with highest priority (2PL-
HP) [1] for concurrency control, where a conflict is resolved by allowing the
transaction with the highest priority to lock the data object. 2PL-HP is chosen
since it is free from priority inversion and has well-known behavior.

Admission control is applied to control the flow of transactions into the
database. When a new transaction is submitted to the database, the admission
controller (AC) decides whether or not it can be admitted to the system.

Precision controller discards an update transaction writing to a data object
(d;) having an error less or equal to the maximum data error allowed, i.e. DE; <
MDE. However, the update transaction is executed if the data error of d; is
greater than M DE. In both cases the time-stamp of d; is updated.

4.3 System Modeling and Controller Design

We have modeled the controlled system, i.e. RTDB, according to the analytical
approach proposed in [10]. The approach has been adapted such that it supports
mandatory and optional subtransactions. For derivation and tuning of the model
we refer to [2].

We employ two feedback control scheduling policies, called FC-M and FC-
UM [10], to control user transaction quality in the presence of unpredictable
workload and inaccurate execution time estimates. Depending on the algorithm
used, we apply different feedback control scheduling policies. FCS-IC-1 uses the
FC-UM policy, while FCS-IC-2 employs FC-M.

FC-M uses a miss percentage control loop to control the system miss per-
centage with regards to a reference. Here, separate control loops are used for
mandatory and optional subtransactions. Miss percentages of mandatory and
optional subtransactions, M™ and M, are monitored and controlled with re-
gards to the specified references, i.e. MM and MP.

FC-UM, on the other hand, employs utilization and miss percentage con-
trollers. This has the advantage that the DBA can simply set the utilization
reference to a value that causes the desired deadline miss percentage in the
nominal case (e.g. based on profiling), and set the miss percentage references
(MM and MP?) according to the application requirements. For all controllers,
the control signal AU is computed to achieve the target miss percentage given
by the references.

We have extended FC-UM in a way that the reference utilization, denoted U,.,
is constantly updated online. The utilization reference is dynamically updated
according to a linear increase and exponential decrease scheme. Initially, U,
is set to an initial value. As long as the utilization controller has the control

(i-e. the miss percentages are below their references), the utilization reference is
increased by a certain step. As soon as one of the miss percentage controllers
takes over (i.e. miss percentage above the reference), U, is reduced exponentially.
This is to prevent a potential deadline miss percentage overshoot due to an too
optimistic utilization reference. Note that this approach is self-adapting and does
not require any knowledge about the underlying workload model.

We have adapted and tuned the feedback controllers, but we do not include
these details in this paper due to space limitations. The interested reader is
referred to [2].

4.4 Algorithm Specification

We present two algorithms for managing data and user transaction imprecise-
ness. Both are based on adjusting the utilization and the miss percentages using
feedback control. The utilization adjustment is enforced partially by adjusting
the QoD, which requires setting M DE according to the utilization adjustment
(AU), as described in Section 4.2. We adapt the following notation of describing
discrete variables in the time-domain; A(k) refers to the value of the variable A
during the time window [(k — 1)W, kW], where W is the sampling period and k
is the sampling instant.

Given a certain AU (k), we need to set M DE(k+1) such that the utilization
(or resources) gained when discarding update transactions correspond to AU (k).
Remember that setting M DE(k + 1) greater than M D E(k) results in more dis-
carded update transactions and, hence, an increase in gained utilization. Simi-
larly, setting M DE(k + 1) less than M DE(k) results in fewer discarded update
transactions and, hence, a decrease in gained utilization. In order to compute
MDE(k + 1) given a certain AU(k), we use a function f(AU(k)) that returns,
based on AU (k), the corresponding M DE(k + 1). The function f holds the fol-
lowing property. If AU (k) is less than zero, then MDE(k + 1) is set such that
MDE(k+1) is greater than M DE(k) (i.e. QoD is degraded). Similarly, if AU (k)
is greater than zero, then MDE(k + 1) is set such that MDE(k +1) is less than
MDE(k) (i-e. QoD is upgraded). We will return to the concepts around f in
section 4.5.

FCS-IC-1. FCS-IC-1 (Feedback Control Scheduling Imprecise Computation 1)
is based on the extended FC-UM policy (as described in Section 4.3). By using
an adaptive scheme where the utilization reference is constantly updated, the
utilization yielding the target miss percentage can be approximated. The expo-
nential utilization reduction used with FC-UM decreases the risk for a potential
miss percentage overshoot. In addition to this, FCS-IC-1 performs the following.

The system monitors the deadline miss percentages and the CPU utilization.
At each sampling period, the CPU utilization adjustment, AU(k), is derived.
Based on AU (k) we perform one of the following. If AU (k) is greater than zero,
upgrade QoD as much as AU (k) allows. However, when AU (k) is less than zero,
degrade the data according to AU, but not beyond the highest allowed MDE

(i.e. MDE, x (Mp + 100)). Degrading the data further would violate the upper
limit of MDE, given by the QoS specification. In the case when AU (k) is less
than zero and M DE equal to MDE, x (M, + 100), no QoD adjustment can be
issued and, hence, the system has to wait until some of the currently running
transactions terminate. An outline of FCS-IC-1 is given in Figure 3.

Monitor M™ (k), M©(k), and U(k)
Compute AU (k)
if (AU(k) > 0 and MDE(k) > 0) then
Upgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU(k) not accommodated by QoD upgrade
else if (AU(k) < 0 and MDE(k) < MDE, x (Mp +100)) then
Downgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU (k) not accommodated by QoD downgrade
else if (AU (k) < 0 and MDE(k) = MDE, x (M, +100)) then
Reject any incoming transaction
else
Inform the AC of AU(k)
end if

Fig. 3. FCS-IC-1

FCS-IC-2. In FCS-IC-2, the FC-M policy is used (as opposed to FCS-IC-1,
where FC-UM is applied). In the case of FCS-IC-1, the miss percentages may
stay lower than their references, since the utilization is exponentially decreased
every time one of the miss percentages overshoots its reference. Consequently,
the specified miss percentage references (i.e. MM and M) may not be satisfied.
In FCS-IC-2, the utilization controller is removed to keep the miss percentages
at the specified references.

One of the characteristics of the miss percentage controllers is that as long
as the miss percentages are below their references (i.e. MM < MM and M© <
MP), the controller output AU will be positive.® Due to the characteristics of f
(i.e. AU(k) < 0= MDE(k+1) > MDE(k) and AU(k) > 0= MDE(k+1) <
MDE(k)), a positive AU is interpreted as a QoD upgrade. Consequently, even
if the miss percentages are just below their references, QoD remains high. We
would rather that the miss percentage of optional subtransactions (M©), which
corresponds to user transaction quality, increases and decreases together with
data quality (M DE). For this reason, in FCS-IC-2, the QoD manager is extended

3 If we have transient oscillations, AU, may temporally stay positive (negative) even
though the ATE has changed from being below (above) the reference to be above
(below) the reference value. This is due to the integral operation, i.e., due to earlier
summation of errors, which represents the history and therefore cause a delay before
a change to the utilization is requested and has effect.

such that M DE is set not only by considering AU, but also according to the
current transaction quality given by M©. When AU is less than zero (miss
percentage overshoot), M DE is set according to f. However, when AU is greater
or equal to zero, M DE is set according to the moving average of M©. The moving
average of M© is computed by,

My a(k) = aMO (k) + (1 -)M 4(k — 1)

where a (0 < a < 1) is the forgetting factor [16]. Setting a close to 1 results in a
fast adaptation, but will also capture the high-frequency changes of M€, whereas
setting « close to 0, results in a slow but smooth adaptation. The latter results
in the data quality varying with the transaction quality. When M) , is relatively
low compared to MTO, MDE is set to a low value relative to MDE,. As M]\O/IA
increases, M DE increases but to a maximum value of MDE, x (M, + 100). A
further increase violates the QoS specification. The algorithm outline is given in
Figure 4.

Monitor M™ (k) and M© (k)
Compute AU(k)
if (AU (k) > 0) then
Adjust MDE(k + 1) according to
MDE(k + 1) i= min(*24® M DE,, MDE, x (M, + 100))
if (MDE(k) < MDE(k + 1)) then
Add the utilization gained after QoD degrade to AU(k)
else
Subtract the utilization lost after QoD upgrade from AU (k)
end if
Inform AC of the new AU(k)
else if (AU(k) < 0 and MDE(k) < MDE, x (Mp +100)) then
Downgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU(k) not accommodated by QoD downgrade
else
{i.e. AU(k) < 0 and MDE(k) = MDE, x (M, + 100)}
Reject any incoming transaction
end if

Fig. 4. FCS-IC-2

4.5 QoD Management

The preciseness of the data is controlled by the QoD manager which sets M D E(k)
depending on the system behavior. When f is used to compute MDE(k + 1)
based on AU(k) (as in FCS-IC-1 and some cases in FCS-IC-2) the following
scheme is used.

Rejecting an update results in a decrease in CPU utilization. We define gained
utilization, GU (k), as the utilization gained due to the result of rejecting one or
more updates during period k. GU (k) is defined as,

#RU; (k)

=2 av) < BV
#AU; (k)

where #RU;(k) is the number of rejected update transactions T; generated by
Stream;, #AU;(k) the number of arrived update transactions T;, and EU; is
the estimated utilization of the update transactions T;.

An important issue is how to set M DE(k + 1) given a certain AU (k). Basi-
cally, we want to set MDE(k + 1) such that,

_ [GU(k) — AU (k), AU (k) < GU (k),
GU(k+1) = {0, AU(K) > GU (k).

This requires that we can predict GU(k + 1) induced by MDE(k + 1). Note
that given M DE(k+ 1) we can only estimate the corresponding GU (k+ 1) since
our problem is of probabilistic nature. For this mentioned reason, we introduce
the notion of predicted gained utilization,

PGU = g(MDE)

where given an M DE, the corresponding GU can be predicted. We derive g based
on system profiling, where we measure GU for different M DFEs. The function g
is then derived by linearizing the relationship between GU and M DE. By taking
the inverse of g,

MDE = g~(PGU) = u x PGU (1)

we can compute a M DE(k + 1) based on a PGU (k + 1) where,

_ | GU(k) — AU(k), AU (k) < GU (k),

PGU(k +1) = {o, AU(k) > GU (k). (2)

Since RTDBs are dynamic systems in that the behavior of the system and
environment is changing, the relation between GU and M DE is adjusted on-line.
This is done by measuring GU (k) for a given M DE(k) during each sampling
period and updating p. Note that on-line profiling also has the advantage of
requiring less accurate parameters computed from off-line analysis.

By applying Equation (1) and (2), we compute M DE(k + 1) according to
the following,

MDE(k + 1) = f(AU(k)) =
= min(p x PGU(k + 1), MDE, x (M, + 100)).

Since M DE is not allowed to overshoot more than M DE, x (M, + 100), we use
a min operator to guarantee this.

5 Performance Evaluation

In this section a detailed description of the performed experiments is given. The
goal and the background of the experiments are discussed, and finally the results
are presented.

5.1 Experimental Goals

The main objective of the experiments is to show whether the presented algo-
rithms can provide guarantees based on a QoS specification. We have for this
reason studied and evaluated the behavior of the algorithms according to a set
of performance metrics. The performance evaluation is undertaken by a set of
simulation experiments, where a set of parameters have been varied. These are:

— Load (Load). Computational systems may show different behaviors for dif-
ferent loads, especially when the system is overloaded. For this reason, we
measure the performance when applying different loads to the system.

— Execution Time Estimation Error (EstErr). Often exact execution time
estimates of transactions are not known. To study how runtime error affects
the algorithms, we measure the performance considering different execution
time estimation errors.

5.2 Simulation Setup

The simulated workload consists of update and user transactions, which ac-
cess data and perform virtual arithmetic/logical operations on the data. Update
transactions occupy approximately 50% of the workload. Note that the load ap-
plied to the database is based on submitted user and update transactions and the
tested approaches may reduce the applied load by applying admission control.

In our experiments, one simulation run lasts for 10 minutes of simulated
time. For all the performance data, we have taken the average of 10 simulation
runs and derived 95% confidence interval, denoted as vertical lines in the figures.
The following QoS specification is used: MM = 1%, MY = 10%, MDE, = 2%,
U > 80%, T < 60s, and M, < 30%.

We use the following notation where the metric X; refers to the trans-
action T;, while X;[t;] is associated with the subtransaction ¢; (where ¢; €
{M;, 054, 0iz0: })-

Data and Update Transactions. The simulated DB holds 1000 temporal data
objects (d;) where each data object is updated by a stream (Stream;, 1 < <
1000). The period (P;) is uniformly distributed in the range (100ms,50s) (i-e. U :
(100ms, 50s)) and estimated execution time (EET;) is given by U : (1ms, 8ms).
The average update value (AV;) of each Stream; is given by U : (0,100). Upon
a periodic generation of an update, Stream; gives the update an actual ex-
ecution time (AET;) given by the normal distribution N : (EET;,/EET;)

and a value (UpdateValue;) according to N : (AV;, AV; x VarFactor), where
VarFactor is uniformly distributed in (0,1). The deadline is set according to
D; = ArrivalTime; + P;.

User Transactions. Each Source; generates a transaction T}, consisting of one
mandatory subtransaction and #0; (1 < #0; < 3) optional subtransaction(s)
(1 < j <#0;). #0; is uniformly distributed between 1 and 3.

The estimated (average) execution time of the subtransactions (EET;[t;])
is given by U : (10ms, 20ms). The estimation error EstErr is used to intro-
duce execution time estimation error in the average execution time given by
AET;[t;] = (1 + EstErr) x EET;[t;]. Further, upon generation of a trans-
action, Source; associates an actual execution time to each subtransaction,
which is given by N : (AET;[t;],\/AET;[t;]). The deadline is set according
to D; = ArrivalTime; + EET; x SlackFactor. The slack factor is uniformly
distributed according to U : (20, 40).

It is assumed that the number of data accesses (#DA;[t;]) for each subtrans-
action is proportional to EET;[t;]. Hence, longer subtransactions access more
data. Upon a transaction generation, Source; associates an actual number of
data accesses given by N : (#DA;[t;], /#DA;[t;]) to each subtransaction of T;.
The data set accessed by a transaction is partitioned among the subtransactions
such that the partitions are mutually disjoint. However, the data sets accessed
by transactions may overlap.

5.3 Baselines

To the best of our knowledge, there has been no earlier work on techniques for
managing data impreciseness and transaction impreciseness, satisfying QoS or
QoD requirements. Previous work within imprecise computing applied to tasks
focus on maximizing or minimizing a performance metric (e.g. total error). The
latter cannot be applied to our problem since in our case we want to control a
set of performance metrics such that they converge towards a set of references
given by a QoS specification. For this reason, we have developed two baseline
algorithms, Baseline-1 and Baseline-2. We use the baselines to study the impact
of the workload on the system. Here, we can establish the efficiency of FCS-IC-1
and FCS-IC-2 by comparing the operational envelope of the algorithms, i.e., we
can compare the resistance to failure of the algorithms with regard to applied
load and/or run-time estimation errors. The baselines are given below.

Baseline-1. The preciseness of the data is adjusted based on the relative miss
percentage of optional subtransactions. Conceptually, M DE increases as M©

increases. MDE is set according to MDE(k+1) = min(MA(;f,’“) MDE,, MDE, x
(M, +100)). A simple AC is applied, where a transaction (T;) is admitted if the

estimated utilization of admitted transactions and T; is less or equal to 80%.

Baseline-2. In Baseline-1, a significant change in M DE may introduce oscilla-
tions in miss percentages. Baseline-2 is similar to Baseline-1, but here MDFE
is increased and decreased stepwise. The outline of the algorithm is as fol-
lows. If M© (k) is greater than zero, increase M DE(k) by a step (MDEg.,)
until MDE, x (M, + 100) is reached (i.e. MDE(k + 1) = min(MDE(k) +
MDEge,, MDE, x (M, + 100))). If M©(k) is equal to zero, decrease M DE(k)
by a step (M DEj.p) until zero is reached (i.e. MDE(k+ 1) = max(MDE(k) —
MDE;ip,0)). The same AC as in Baseline-1 is used here.

5.4 Results of Varying Load

The setup of the experiment is given below, followed by the presentation of the
results. Figure 5 shows the average M© and MDE.

Experimental setup. We measure MM, M9, MDE, and U. The experi-
ment setup is as follows. We apply loads from 50% to 200%. The execution time
estimation error is set to zero (i.e. EstErr = 0).

100

80 —<+ FCS-IC-1 3
—+- FCS-IC-2
—_ L —t+ Baseline-1
s 60 "
>3 —©- Baseline-2
Q — Reference
S 4ol
20
Ok &
50
Load (%)
3
25} <~ FCS-IC-1 2
—— FCS-IC-2
2 —-4—+Baselne-1 - - — — - — — — — % — — —
S —©- Baseline-2
w15k — - Reference
o
=
1k
0.5
Ok &
50 100 150 200

Load (%)
Fig.5. Average performance for Load = 50, 75, 100, 150, and 200%, EstErr = 0

Average Miss Percentage of Mandatory Subtransactions. Miss per-
centage of mandatory subtransactions (M ™) has been observed to be zero* for
all four algorithms and, therefore, this has not been included in Figure 5. The
specified miss percentage reference (M,M), have been set to 1% and this is not
satisfied. This is due to higher priority of mandatory subtransactions compared

4 We have not observed any deadline misses.

to optional subtransactions. According to our investigations, the miss percentage
of mandatory subtransactions start increasing when the miss percentage of op-
tional subtransactions is over 90% [2]. Consequently, since the miss percentage of
optional subtransactions does not reach 90%, the miss percentage of mandatory
subtransactions remains at zero.

Average Miss Percentage of Optional Subtransactions. For Baseline-1
and Baseline-2, the miss percentage of optional subtransactions (M©) increases
as the load increases, violating the reference miss percentage, M, at loads
exceeding 150%. In the case of FCS-IC-1, M© is near zero at loads 150% and
200%. Even though the miss percentage is low, it does not fully satisfy the QoS
specification. This is in line with our earlier discussions regarding the behavior
of FCS-IC-1. The low miss percentage is due to the utilization controller since
it attempts to reduce potential overshoots by reducing the utilization, which in
turn decreases the miss percentage. FCS-IC-2 on the other hand shows a better
performance. The average M© at 150% and 200% is 8.5 + 0.1%, which is fairly
close to M. In our model tuning of the controlled system, we have assumed
worst-case setups and set EstErr to one. In this experiment we have set EstErr
to zero, resulting in a certain model error®. If EstErr is set to one, we can see
that that the average M© is close to M. This is shown in Section 5.5.

Average MDE. The average M DE for Baseline-1 and Baseline-2 violates
the reference M DE set to 2%. In contrast, in the case of FCS-IC-1, MDE is
significantly lower than M DE,. Since the miss percentages are kept low at all
times, they are not likely to overshoot. Consequently, the control signal from the
miss percentage controllers is likely to be positive, which is interpreted by the
QoD manager as an QoD upgrade and, hence, M DE will not reach the level of
MDE.,. This is further explained in Section 5.6, where the transient performance
of the algorithms is discussed. FCS-IC-2 provides an average M DE closer to
MDE,, given by 1.78 + 0.024% at loads 150% and 200%. However, M DE does
not reach MDE, since MDE is set according to the relative M© (which does
not reach M2).

Average Utilization. For all approaches, the utilization satisfies the QoS
specification as it is above the specified 80% for loads between 100-200%, reach-
ing almost 100% at 200% applied load.

5.5 Results of Varying EstErr

The setup of the experiment is given below, followed by the presentation of the
results. Figure 6 shows the average M© and MDE.

Experimental setup. We measure MM, M®, MDE, and U. The experi-
ment setup is as follows. We apply 200% load. The execution time estimation
error is varied according to EstErr = 0.00, 0.25, 0.50, 0.75, and 1.00.

Average Miss Percentage of Mandatory Subtransactions. As in the
previous experiment (see Section 5.4), MM is zero for all approaches and EstErr.

® By model error we mean the deviation of the model used compared with the actual
system being controlled.

100 T T T T T
80;/35’/* |
&
| <+ FCS-IC-1 |
g 6o > FCS-IC-2
o —— Baseline-1
= a0 —©- Baseline-2 B
— - Reference
20 b
e R P
L Lo L 4 | L g I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
EstErr
3
250 & = =
g
w1l5F =
g% 3 B ¥
1k —< FCS-IC-1 E
—— FCS-IC-2
051 —— Baseline-1 i
’ —©- Baseline-2
0 L L L — - Reference |, L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EstErr

Fig. 6. Average performance for EstErr = 0, 0.25, 0.50, 0.75, and 1.0, Load = 200%

The discussion regarding average miss percentage of mandatory subtransactions
given in Section 5.4 also apply here and are not further discussed.

Average Miss Percentage of Optional Subtransactions. As expected,
Baseline-1 and Baseline-2 do not satisfy the QoS specification. In fact, M©
increases as EstErr increases, reaching a value close to 90% for both algorithms.
As we can see, FCS-IC-1 and FCS-IC-2 are insensitive against varying EstErr.
Note that when analyzing FCS-IC-2, we can see that M© grows towards M2
as EstErr increases in value. M© for EstErr set to zero and EstErr set to
one is 8.47 £+ 0.036% and 9.23 &+ 0.17%, respectively. This is the result of the
discussions given in Section 5.4. As EstErr increases, the model error decreases
and, hence, the controlled system becomes closer to the actual model. This gives
a more accurate picture of the system and the controllers are therefore able to
control the system in a more correct way.

Average MDE. Baseline-1 and Baseline-2 violate the specified M DE ref-
erence. For FCS-IC-1 average M DE does not change considerably for different
EstErr. In the case of FCS-IC-2, average MDE grows towards M DE,, with
increasing EstErr. The adjustment of M DE depends on the relative M© and,
hence, the average MDE grows as the average M© grows, reaching a value of
1.97 + 0.03%.

5.6 Transient Performance

Studying the average performance is often not enough when dealing with dy-
namic systems. Therefore we study the transient performance of FCS-IC-1 and

FCS-IC-2 when Load is set to 200% and EstErr set to one. Figures 7 and 8
show the transient behavior of FCS-IC-1 and FCS-IC-2. The dash-dotted line
indicates maximum overshoot.

100 TR FR R PR PR PP AR PR H P e et
80 — M° 4
g — Maximum M® overshoot
S 60 —+— Utilization -
°
g
o 40 1
=
20 -
0 I I I 1 I
0 100 200 300 400 500
Time
35F T T 3
3F — MDE B
7777777777777777 — - Maximum MDE overshoot]
25K B
€ o]
g
S15- 4
1+ i
0.5 B
0 L L L L L
0 100 200 300 400 500

Time

Fig. 7. Transient performance for FCS-IC-1. EstErr = 1.0, Load = 200%

Starting with FCS-IC-1, we can note that M© is kept low at all times. This
is expected since the average M was shown to be low. The reader may have
noticed that M DE is greater than zero in the interval 20-150 where M© is zero.
Since M DE is greater than zero, it is clear that AU may become negative during
that period. This is due to the behavior of the utilization controller. Initially, the
utilization is below the reference (U,). As the utilization increases and no miss
percentage overshoots are observed, U, increases linearly until a miss percentage
is observed (one of the miss percentage controllers takes over) in which case U,
is reduced exponentially. In FCS-IC-1, U, is only increased if the utilization
controller has taken over. Our investigations show that the utilization controller
takes over once the utilization overshoots U,., resulting in a negative AU and,
hence, U, being increased too late. Consequently, the negative AU leads to an
increase in M DE.

FCS-IC-2 shows a more satisfying result as both M and MDE increase
and decrease together. Both M© and M DE are kept around MP and MDE,,
respectively. Although the average M© is close to MO, we can see that M© often
overshoots its reference. The highest M© has been noted to 25.7%. This is higher
than the specified maximum miss percentage of 13% (i.e. M° < 13%). One
cause to such overshoot is the various disturbances like data conflicts, resulting

=
o
=]

MO i
— Maximum M overshoot
—+— Utilization i

®
=]
T

@
=]
T

MO and U (%)

40 7

N
o

MDE (%)
SIS

— MDE

— - Maximum MDE overshoot

-
T
I

0.5F q

0 100 200 300 400 500
Time

Fig. 8. Transient performance for FCS-IC-2. EstErr = 1.0, Load = 200%

in restarts or aborts of transactions. Further, we have set EstErr to one, which
yields a higher overshoot than in the case when EstErr is set to zero (i.e. no
execution time estimation error). The results of setting EstErr to zero is shown
is Figure 9. Here we can see that the variance of miss percentage is much smaller
than in the case when EstErr is set to one.

5.7 Summary of Results and Discussions

It has been shown that FCS-IC-1 and FCS-IC-2 are insensitive against load
variations and inaccurate execution time estimations. FCS-IC-1 can manage to
provide near zero miss percentage for optional subtransactions. We have also seen
that FCS-IC-1 can efficiently suppress miss percentage overshoots. However, the
performance of FCS-IC-1 does not fully comply with the given QoS specification.
Miss percentages and M DE are kept significantly lower than the references,
violating the given QoS specifications. This is due to the exponential decrease
in utilization every time M© overshoots its reference.

In FCS-IC-2, M© and M DE are consistent with their specified references.
In addition, we have seen that the data and user transaction quality increase
and decrease together. FCS-IC-2, however, produces overshoots higher than the
maximum allowed overshoot, as given by the QoS specification.

We conclude that FCS-IC-1 should be applied to RTDBs where overshoots
cannot be tolerated, but where consistency between the controlled variables and
their references is relaxed, i.e., we do not require the system to produce the
desired miss percentages and M DE. The experiments show that FCS-IC-2 is

=
o
=]

®
=]

— W 4
— Maximum M overshoot
—— Utilization -

@
=]

MO and U (%)
Iy
o

20

N
o

MDE (%)
SIS

— MDE

— - Maximum MDE overshoot

-
T
I

0.5F q

0 100 200 300 400 500
Time

Fig. 9. Transient performance for FCS-IC-2. EstErr = 0.0, Load = 200%

particularly useful when consistency between the controlled variables and their
references are emphasized, but some overshoots higher than the maximum al-
lowed can be accepted.

6 Related Work

In the past few years, feedback control scheduling has been receiving special at-
tention [10, 13, 3]. Lu et al. have presented a feedback control scheduling frame-
work, where they propose three algorithms for managing the miss percentage
and/or utilization [10]. In the work by Parekh et al., the length of a queue of
remote procedure calls (RPCs) arriving at a server is controlled [13]. Changing
the periodicity of a set of tasks in response to load variations has been suggested
in [3]. If the estimated load is found to be greater than a threshold, task periods
are enlarged to find the desired load. In contrast to FCS-IC-1 and FCS-IC-2,
aperiodic tasks are not considered in their model.

Labrinidis et al. introduced the notion of QoD [8]. Here, web pages are cached
at the server and the back-end database continuously updates them. Their pro-
posed update scheduling policy can significantly improve data freshness com-
pared to FIFO scheduling. Kang et al., presented a feedback control scheduling
architecture used to control the transaction miss percentage and utilization of
a real-time database by dynamically balancing update policies (immediate or
on-demand) of a set of data [7].

Liu et al. proposed an imprecise computation model [9]. They presented a
set of imprecise scheduling problems associated with imprecise computing and

also gave an algorithm for minimizing the total error of a set of tasks. Shih et al.
presenting two algorithms for minimizing the maximum error for a schedule that
minimizes the total error [15]. Hansson et al. proposed an algorithm, OR-ULD,
for minimizing total error and total weighted error [5]. The approaches presented
by Liu, Shih, and Hansson require the knowledge of accurate processing times
of the tasks, which is often not available in RTDBs. Further, they focus on
maximizing or minimizing a performance metric (e.g. total error). The latter
cannot be applied to our problem, since in our case we want to control a set of
performance metrics such that they converge towards a set of references given
by a QoS specification.

The correctness of answers to databases queries can be traded off to enhance
timeliness. Query processors, APPROXIMATE [17] and CASE-DB |[6] are exam-
ples of such databases where approximate answers to queries can be produced
within certain deadlines. However, in both approaches, impreciseness has been
applied to only transactions and, hence, data impreciseness has not been ad-
dressed. Further, they have not addressed the notion of QoS. In our work, we
have introduced impreciseness at data object level and considered QoS in terms
of transactions and data impreciseness.

7 Conclusions and Future Work

The need for real-time data services has increased during the last years. As the
run-time environment of such applications tends to be dynamic, it is imperative
to handle transient overloads efficiently. It has been shown that feedback con-
trol scheduling is quite robust to errors in run-time estimates (e.g. changes in
workload and estimated execution time). Further, imprecise computation tech-
niques have shown to be useful in many areas where timely processing of tasks or
services is emphasized. In this work, we combine the advantages from feedback
control scheduling and imprecise computation techniques, forming a framework
where a database administrator can specify a set of requirements on the database
performance and service quality. We present two algorithms, FCS-IC-1 and FCS-
IC-2, for managing steady state and transient state performance in terms of
data and transaction impreciseness. FCS-IC-1 and FCS-IC-2 give a robust and
controlled behavior of RTDBs, in terms of transaction and data quality, even
during transient overloads and when we have inaccurate run-time estimates of
the transactions.

For our future work, we are establishing techniques for managing data and
user transaction impreciseness in a distributed environment and we develop poli-
cies for handling derived data. Different approaches to modeling the controlled
system will be considered.

Acknowledgment

The authors wish to thank Kyoung-Don Kang at the University of Virginia,
Charlottesville, for providing and helping us with the simulator used to perform
the experiments.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance
evaluation. ACM Transactions on Database System, 17:513-560, 1992.

M. Amirijoo. Algorithms for managing QoS for real-time data services us-
ing imprecise computation, 2002. Master’s Thesis Report LiTH-IDA-Ex-02/90,
www.ida.liu.se/~rtslab/master/past.

G. C. Buttazzo and L. Abeni. Adaptive workload managment through elastic
scheduling. Journal of Real-time Systems, 23(1/2), July/September 2002. Special
Issue on Control-Theoretical Approaches to Real-Time Computing.

X. Chen and A. M. K. Cheng. An imprecise algorithm for real-time compressed
image and video transmission. In Proceedings of the Sizth International Conference
on Computer Communications and Networks, pages 390-397, 1997.

J. Hansson, M. Thuresson, and S. H. Son. Imprecise task scheduling and overload
managment using OR-ULD. In Proceedings of the Tth Conference in Real-Time
Computing Systems and Applications, pages 307-314. IEEE Computer Press, 2000.
W. Hou, G. Ozsoyoglu, and B. K. Taneja. Processing aggregate relational queries
with hard time constraints. In Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 68—77. ACM Press, 1989.

K. Kang, S. H. Son, and J. A. Stankovic. Service differentiation in real-time
main memory databases. In Proceedings of 5th IEEE International Symposium
on Object-oriented Real-time Distributed Computing, April 2002.

A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving
the quality of data on the web. The VLDB Journal, pages 391-400, 2001.

J. W. S. Liu, K. Lin, W. Shin, and A. C.-S. Yu. Algorithms for scheduling imprecise
computations. IEEE Computer, 24(5), May 1991.

C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback control real-time schedul-
ing: Framework, modeling and algorithms. Journal of Real-time Systems, 23(1/2),
July /September 2002. Special Issue on Control-Theoretical Approaches to Real-
Time Computing.

P. Malinski, S. Sandri, and C. Reitas. An imprecision-based image classifier. In
The 10th IEEE International Conference on Fuzzy Systems, pages 825-828, 2001.
V. Millan-Lopez, W. Feng, and J. W. S. Liu. Using the imprecise-computation
technique for congestion control on a real-time traffic switching element. In Inter-
national Conference on Parallel and Distributed Systems, pages 202-208, 1994.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Us-
ing control theory to achieve service level objectives in performance managment.
Journal of Real-time Systems, 23(1/2), July/September 2002. Special Issue on
Control-Theoretical Approaches to Real-Time Computing.

K. Ramamritham. Real-time databases. International Journal of Distributed and
Parallel Databases, (1), 1993.

W. K. Shih and J. W. S. Liu. Algorithms for scheduling imprecise computations
with timing constraints to minimize maximum error. IEEE Transactions on Com-
puters, 44(3):466-471, 1995.

K. J. Astrém and B. Wittenmark. Adaptive Control. Addion-Wesley, second edi-
tion, 1995.

S. V. Vrbsky and J. W. S. Liu. APPROXIMATE - a query processor that produces
monotonically improving approximate answers. IEEE Transactions on Knowledge
and Data Engineering, 5(6):1056-1068, December 1993.

S. Zilberstein and S. J. Russell. Optimal composition of real-time systems. Artificial
Intelligence, 82(1-2):181-213, 1996.

