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Abstract

In applications such as web-applications, e-commerce, and engine control, the demands for real-time data ser-
vices has increased. In these applications, requests have to be processed within their deadlines using fresh data.
Since the workload of these systems cannot be precisely predicted, they can become overloaded and as o result,
deadline and freshness violations may occur. To address this problem we propose a QoS-sensitive approach based
on imprecise computation, applied on transactions and data objects. We propose two algorithms FCS-HEF and
FCS-HEDF that based on feedback control scheduling give a robust and controlled behavior of RTDBs in terms
of transaction and data preciseness, even for transient overloads and with inaccurate run-time estimates of the
transactions. Further, performance experiments show that the proposed algorithms outperform a set of baseline

algorithms including FCS-EDF, that schedules the transactions using EDF and feedback control scheduling.

Keywords: Quality of Service, Quality of Data, Real-time Databases, Imprecise Computation, Feedback Control

Scheduling.

1 Introduction

Lately the demand for real-time data services has increased and applications used in manufacturing, web-servers,

e-commerce etc. are becoming increasingly sophisticated in their data needs. The data normally span from low-level
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control data, typically acquired from sensors, to high-level management and business data. In these applications
it is desirable to process user requests within their deadlines using fresh data. In dynamic systems, such as web
servers and sensor networks with non-uniform access patterns, the workload of the databases cannot be precisely
predicted and, hence, the databases can become overloaded. As a result, deadline misses and freshness violations
may occur during the transient overloads. To address this problem we propose a quality of service (QoS) sensitive
approach to guarantee a set of requirements on the behavior of the database, even in the presence of unpredictable
workloads. Further, for some applications (e.g. webservice) it is desirable that the quality of service does not vary
significantly from one transaction to another. Here, it is emphasized that the individual QoS needs requested by
clients and transactions are enforced, and hence, any deviations from the QoS needs should be uniformly distributed
among the clients to ensure QoS fairness.

We employ the notion of imprecise computation [14], where it is possible to trade off resource needs for the
quality of requested service. Imprecise computation has successfully been applied to applications where timeliness is
emphasized (e.g. [26, 5, 7, 17, 16, 18]). We believe that our approach is important to applications that require timely
execution of transactions, but where certain degree of imprecision can be tolerated. For example, in multi-media
applications the system load is adapted by providing media of varying quality [3]. Anytime algorithms have shown to
be useful for providing approximate results when complete resources are not available [26]. For many applications,
such as avionics and engine control, strict consistency between the RTDB and the external environment may be
relaxed as small changes to variables in the external environment may be considered insignificant and, hence, some
updates may be skipped.

In our previous work we presented two algorithms, FCS-IC-1 and FCS-IC-2, for managing QoS using imprecise
computation [4]. In this paper we extend that work by defining a general model of transaction error, and we present
two new scheduling algorithms, FCS-HEF and FCS-HEDF, that enhance QoS fairness (i.e. decrease the deviation
in quality of service among admitted transactions) and provide an improved transient state performance. Given a
QoS specification in terms of data and transaction impreciseness, FCS-HEF and FCS-HEDF adapt the behavior of a
RTDB such that the QoS specification is satisfied. Main challenges include unpredictability of workload in terms of
unknown arrival patters and inaccurate execution time estimates, but also effective balancing between transaction
and data impreciseness. To solve this issue we apply feedback control scheduling [15] to provide robustness under
these conditions. We say that a system is robust if it has good regulation or adaptation in the face of changes in
system parameters (e.g. execution time estimation error and applied load), but also has good disturbance rejection
(in RTDBs disturbances occur due to concurrency control, but also arrival and termination of transactions).

We have carried out a set of experiments to evaluate the performance of the proposed algorithms. The studies
show that the suggested algorithms give a robust and controlled behavior of RTDBs, in terms of transaction and

data preciseness, even for transient overloads and with inaccurate execution time estimates of the transactions.



The rest of this paper is organized as follows. A problem formulation is given in section 2. In section 3,
the assumed database model is given. In section 4, we present our approach and in section 5, the results of
performance evaluations are presented. In section 6, we give an overview on related work, followed by section 7,

where conclusions and future work are discussed.

2 Problem Formulation

In our model, data objects in a RTDB are updated by update transactions, e.g. sensor values, while user
transactions represent user requests, e.g. complex read-write operations. The notion of imprecision may be applied
at data object and/or user transaction level. The data quality increases as the imprecision of the data objects
decreases. Similarly, the quality of user transactions (for brevity referred to as transaction quality) increases as
the imprecision of the results produced by user transactions decreases. In this work we model transaction quality
and data quality as orthogonal entities. However, it is clear that transaction quality is related to data quality since
user transactions may read data that is imprecise, hence, degrading the results computed by user transactions.
In the future, we will extend our model to capture more advanced relations between transaction quality and data
quality.

Starting with data impreciseness, for a data object stored in the RTDB and representing a real-world variable,
we can allow a certain degree of deviation compared to the real-world value. If such deviation can be tolerated,
arriving updates may be discarded during transient overloads. In order to measure data quality we introduce the
notion of data error (denoted DE;), which gives an indication of how much the value of a data object d; stored
in the RTDB deviates from the corresponding real-world value, which is given by the latest arrived transaction
updating d;.!

The quality of user transactions is adjusted by managing the data error, which is done by considering an
upper bound for the data error given by the mazimum data error (denoted M DE). An update transaction (T}) is
discarded if the data error of the data object (d;) to be updated by T} is less or equal to MDE (i.e. DE; < MDE).
If MDE increases, more update transactions are discarded, degrading the quality of data. Similarly, if MDFE
decreases, fewer update transactions are discarded, resulting in a greater data quality.

Moreover, we introduce the notion of transaction error (denoted T E;), inherited from the imprecise computation
model [14], to measure the quality of a transaction, T;. Here, the quality of the result given by a transaction depends
on the processing time allocated to the transaction. The transaction returns more precise results (i.e. lower T'E;)
as it receives more processing time.

The goal of our work is to derive algorithms for adjusting data error, such that the data quality and the

INote that the latest arrived transaction updating d; may have been discarded and, hence, d; may hold the value of an earlier

update transaction.



transaction quality satisfy a given QoS specification and the deviation of transaction quality among admitted
transactions is minimized (i.e. QoS fairness is enforced). A major issue is how to compute M DE, depending on

the user transaction quality.

3 Data and Transaction Model

We consider a main memory database model, where there is one CPU as the main processing element. In our
data model, data objects can be classified into two classes, temporal and non-temporal [20]. For temporal data
we only consider base data, i.e. data that hold the view of the real-world and are updated by sensors. A base
data object d; is considered temporally inconsistent or stale if the current time is later than the timestamp of d;

followed by the absolute validity interval of d; (denoted AV I;), i.e. CurrentTime > TimeStamp; + AV ;.

For a data object d;, let data error, DE; = 100 x ‘Clig::fj:;“zjm;%‘ (%), where V; is the value of the latest
arrived transaction updating d; and CurrentV alue; the current value of d;.

Transactions are classified either as update transactions or user transactions. Update transactions arrive period-
ically and may only write to base data objects. User transactions arrive aperiodically and may read temporal and
read/write non-temporal data. User and update transactions (7;) are assumed to be composed of one mandatory
subtransaction (M;) and #0; optional subtransactions (O, ;, 0 < j < #0;). For the remainder of the paper, we
let t; € {M;,0;1,...,0; 40, } denote a subtransaction of T;.

We use the milestone approach [14] to transaction impreciseness. Thus, we have divided transactions into
subtransactions according to milestones. A mandatory subtransaction is completed when it is completed in a
traditional sense. The mandatory subtransaction is necessary for an acceptable result and must be computed to
completion before the transaction deadline. The optional subtransactions may be processed if there is enough time
or resources available. While it is assumed that all subtransactions (¢;) of a transaction (T;) arrive at the same
time, the first optional subtransaction (i.e. O; 1) becomes ready for execution when the mandatory subtransaction
is completed. In general, an optional subtransaction, O;;, becomes ready for execution when O;; 1 (where
2 < j < #0;) completes. Hence, there is a precedence relation given by M; < O;1 < O;2 < ... < O; #0;.

We set the deadline of all subtransactions (¢;) of a transaction to the deadline of the transaction (7;). A
subtransaction is terminated if it is completed or has missed its deadline. A transaction (T;) is terminated when
its last optional subtransaction (i.e. O;40;) completes or one of its subtransactions misses its deadline. In the
latter case, all subtransactions that are not completed are terminated as well. If a transaction is terminated when
its last optional subtransaction is complete, then the corresponding transaction error is zero and we say that the
transaction is precisely scheduled. If all transactions are precisely scheduled, we say that the schedule is precise.

For update transactions we assume that there are no optional subtransactions (i.e. #0O; = 0). Hence, each

update transaction consists only of a single mandatory subtransaction, since updates do not use complex logical



Attribute | Description Update Transactions User Transactions

EET; estimated (average) execution time of T; | EET; = EET;[M;] EET; = Zv b EET;[ti]

AET; average execution time of T AET; = AET;[M;) AET; = Ev " AET[ti]

AT; arrival time of T; ATi[t;] = AT; ATi[t:] = AT;

TE; transaction error of T} NA TE;(#CO0S;) = (1 — %)n"

P; period of T; Pti]| = F; NA

EIT; estimated inter-arrival time of T; NA EITi[t;] = EIT;

AIT; average inter-arrival time of T; NA AIT;[t;] = AIT;

D; relative deadline of T; D;[ti] = D; = F; D;[ti] = D; = AIT;

EU; estimated utilization of T; EU;lt:| = EET;[t;]/P; | EUslt:) = EET;[t;]/EIT;
EU; = EET;/P, EU; = EET;/EIT;

AU; average utilization of T; AU;[ti] = AET[t:]/ P | AUs[ti] = AET;[t;]/AIT;
AU; = AET;/P; AU; = AET;/AIT;

Table 1. Transaction Model.

or numerical operations and, hence, normally have a lower execution time than user transactions.
For a user transaction 7}, we use an error function to approximate its corresponding transaction error given by,

 #C0S; ) ™

where n; is the order of the error function and #CO.S; denotes the number of completed optional subtransactions.
This error function is similar to the one presented in [8]. By choosing n; we can model and support multiple classes
of transactions showing different error characteristics (see Figure 1). For example, it has been shown that anytime
algorithms used in AT exhibit error characteristics where n; is greater than one [26].

A summary of the attributes and characteristics of the transactions and their corresponding subtransactions is
given in Table 1. We use the following notation where the metric X; refers to the transaction T;, while X;[¢;] is

associated with the subtransaction of T;.

4 Approach

Below we describe our approach for managing the performance of a RTDB in terms of transaction and data
quality. First, we start by defining QoS and how it can be specified. An overview of a feedback control scheduling
architecture is given, followed by issues related to modeling of the architecture and design of controllers. Finally,

we present the algorithms FCS-HEF and FCS-HEDF.
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Figure 1. Contrib ution of #COS; to TE;.

4.1 PerformanceMetrics and QoS specification

We apply the following steady-state and transient state performance metrics. Terminated(k) denotes the set

of terminated transactions during period k.
o Average Transaction Error (AT E(k)). A DBA can specify the desired average transaction error of admitted
user transactions. The average transaction error during period k,

ZiETerminated(k) TE;
ATE(k) =
(k) |Terminated(k)|

gives the preciseness of the results produced by user transactions.?

e Maximum Data Error (M DE(k)). This metric gives the maximum data error tolerated for the data objects

(as described in section 2) during period k.

o Overshoot (M) is the worst-case system performance in the transient system state (see Figure 2) and it is

usually given in percentage. The overshoot is applied to ATE and MDE.

o Settling time (T}) is the time for the transient overshoot to decay and reach the steady state performance
(see Figure 2), hence, it is a measure of system adaptability, i.e., how fast the system converges towards the

desired performance.

¢ In order to measure QoS fairness among transactions, we introduce Standard Deviation of Transaction Error,
SDTE(k), which gives a measure of how much the transaction error of terminated transactions deviates from

the average transaction error. SDTE(k) in the k** sampling instant is given by,

1 2
DTE(k) = TE; — ATE(k))".
> ( ) |Terminated(k)| -1 iETerngr;ated(k) ( ( ))
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Figure 2. Definition of settling time (7,) and overshoot ()

We define Quality of Data (QoD) in terms of maximum data error (M DE). An increase in the QoD refers to
a decrease in M DE. In contrast, a decrease in QoD refers to an increase in M DE. Similarly, we define Quality
of Transaction (QoT) in terms of average transaction error (ATE). QoT increases as ATE decreases, while QoT
decreases as AT E increases.

In our approach, the DBA can explicitly specify the required database QoS, defining the desired behavior of the
database. The QoS specification is given in terms of a set of target levels or references for ATE and MDE.? A QoS
requirement can be specified as the following: AT E, = 20% (i.e. reference AT E, meaning that we wish AT E(k) to
equal ATE, for all k > 0), MDE, = 5% (i.e. reference MDE), T; < 60s, and M,, < 30%. This gives the following
transient performance specifications: ATE < ATE, x (M, + 1) = 26%, and MDE < MDE, x (M, + 1) = 6.5%.

4.2 FeedbackControl SchedulingAr chitecture

In this section we give an overview of the feedback control scheduling architecture. Further, we identify a set of
control related variables, i.e. performance references, manipulated variables, and controlled variables.

The general outline of the feedback control scheduling architecture is given in Figure 3. Admitted transactions
are placed in the ready queue. The transaction handler manages the execution of the transactions. At each
sampling instant, the controlled variable AT E is monitored and fed into the average transaction error controller,
which compares the performance reference, AT E,., with ATE to get the current performance error. Based on this
the controller computes a change, denoted AU, to the total estimated requested utilization. We refer to AU as
the manipulated variable. Based on AU, the QoD manager changes the total estimated requested utilization by
adapting the QoD (i.e. adjusting M DE). The precision controller then schedules the update transactions based on
MDE. The portion of AU not accommodated by the QoD manager, denoted AUy, is returned to the admission
control, which enforces the remaining utilization adjustment.

The streams (Stream;) generate update transactions, whereas the user transactions are generated and submitted

by sources (Source;).

2For the rest of this paper, we sometimes drop k where the notion of time is not important.
3SDTE is not included in our QoS specification.
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Figure 3. Feedback Control Scheduling Architecture

The transaction handler provides a platform for managing transactions. It consists of a freshness manager (FM),
a unit managing the concurrency control (CC), and a basic scheduler (BS). The FM checks the freshness before
accessing a data object, using the timestamp and the absolute validity interval of the data object. We employ
two-phase locking with highest priority (2PL-HP) [2] for concurrency control. 2PL-HP is chosen since it is free
from priority inversion and has well-known behavior. We consider three different scheduling algorithms as basic
schedulers:

Earliest Deadline First (EDF): Transactions are processed in the order determined by their absolute deadlines;
the next transaction to run is the one with the earliest deadline.

Highest Error First (HEF): Transactions are processed in the order determined by their transaction error;
the next transaction to run is the one with the greatest transaction error.

Highest Error Density First (HEDF): Transactions are scheduled according to their transaction error density

given by, TED; = 4+ T D,-—g]i;rentﬁme’ where AT; and D; denote the arrival time and relative deadline of the
transaction T;, respectively, and where the transaction with the highest transaction error density is processed first.
For all three basic schedulers (EDF, HEF, and HEDF) the mandatory subtransactions have higher priority than
the optional subtransactions and, hence, scheduled before them.
Admission control is applied to control the flow of transactions into the database. When a new transaction is
submitted to the database, the admission controller (AC) decides whether or not it can be admitted to the system.
Precision control discards an update transaction writing to a data object (d;), having an error less or equal to
the maximum data error allowed, i.e. DE; < M DE. However, the update transaction is executed if the data error

of d; is greater than M DE. In both cases the time stamp of d; is updated.
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4.3 SystemModeling and Model Tuning

4.3.1 System Modeling

We have modeled the controlled system, i.e. RTDB, according to the analytical approach proposed in [15]. The
approach has been adapted to support average transaction error.

We adapt the following notation of describing discrete variables in the time-domain: A(k) refers to the value
of the variable A during the time window [(k — 1)W, kW], where W is the sampling period and k is the sampling
instant. Further, we let X (k) and X (2) denote the time domain and the z-domain respectively of the variable X .

The controlled system includes AC, QoD manager, BS, and monitor. The input to the controlled system is the
change in the total estimated requested utilization (AU). The output of the system is the controlled variable, i.e.
ATE. A block diagram of the controlled system with input and output relations is depicted in Figure 4. The
goal is to derive a transfer function describing the relation between the manipulated variable, i.e. AU(z), and the
controlled variable, i.e. ATE(z).

Starting from the control input, the estimated requested utilization is the integration of the control input AU.

Formally, the estimated requested utilization in period k£ + 1,
UEstReq(k + 1) = UEstReq(k) + AU(k) (1)

is the summation of the estimated requested utilization (Ugstreq(k)) and estimated utilization adjustment AU (k)
in period k. Note, the estimated utilization adjustment, AU (k) refers to the desired change in utilization during
period k + 1. The z-transform of Equation (1) is given in Equation (2).

UEstReq(z) — 1
AU(2) z—1

(2)

Further, the actual requested utilization (Uactreq(k)) may differ from Ugsireq(k), due to incomplete knowledge
about the controlled system, e.g. unknown execution times of the transactions and data conflicts. Therefore,

U actreq(k) is modeled according to the following,

UActReq(k) = GA X UEstReq (k) (3)

where G 4, the utilization ratio represents the extent of worst case workload variation in terms of actual total

required utilization.



The next step becomes to model the average transaction error based on the actual requested utilization. The
relationship between U sctreq and AT E is non-linear due to saturation. We define the precisely schedulable threshold
(denoted Uy (k)) as the utilization threshold in the k* period for which the admitted transactions are precisely
schedulable. The average transaction error becomes saturated* when it is within its saturation zone, given by
Udctreq(k) < Uin(k). When the average transaction error is saturated ATE remains zero despite changes to
AU and, hence, Uactreq- However, when outside the saturation zones (i.e. Uactreq(k) > Uin(k)), the average
transaction error increases nonlinearly. One way of linearizing the relationship between Uactreq (k) and AT E(k) is
to take the derivative at the reference average transaction error (i.e. ATE,) given by the QoS specification. Hence,

we let the average transaction error factor,

dATE(k)

dUActReq (k) (4)

Garg =

denote the gradient of the average transaction error at ATE,.
From Equations (1)-(4), we can derive the following. Under the condition that Uacigreq > Ui, there exists a

transfer function,
_ GaGarEk

P
z—1

from the control input AU to average transaction error ATE.

4.3.2 Model Tuning

We tune the model by profiling the system under nominal system operation.® In our work, we have used a simulator
to evaluate our algorithms. Detailed information about system related issues, i.e., simulator settings, is given in
section 5.

We have turned off AC during system profiling. This allows us to derive the relationship between actual load and
the average transaction error without the intervention of an AC. Further, in this profiling we assume that mandatory
subtransactions have higher priority than optional subtransactions. For the purpose of performance evaluation,
we consider two different transactions sets, T'Setl and T Set2, with different transaction error characteristics
(see section 5). Also, the performance of the proposed algorithms are compared with regards to different QoS
specifications, QoSSpecl and QQoSSpec2. We have profiled the system based on the transaction sets and QoS
specifications used in the experiments.

The model parameter G4rg is tuned by measuring AT E under loads of 50-200%, by steps of 10%. Graphs

illustrating average transaction error for T Setl and T Set2 are given in Figure 5 and Figure 6, respectively.® We

4A controlled variable becomes saturated when it remains unchanged independently of the manipulated variable.
5We do not derive system model parameters by considering the worst case set-up as in [15]. By modeling the system under nominal

set-up, we believe that we can obtain a more accurate model of the system at run-time.
6T Setl and T'Set2 denote two sets of transactions with different error characteristics.
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Figure 5. System profiling and model tuning (T'Setl)

have derived 95% confidence intervals but have not included these in the graphs for clarity of presentation. For

both graphs, ATE and SDTE have been observed to be within a 95% confidence interval of +5%.

4.3.3 Model Tuning for QoS Specification QoS Specl

In QoS Specl, the reference transaction error (ATE,) is set to 20%. From the Figures 5 and 6, we can see that the
gradient at 20% average transaction error is approximately 1.3 for all scheduling algorithms and transaction sets
(T'Setl and T Set2). We have set G arg to 1.3 when tuning the controllers used in experiments where QoS Specl

is assumed.”

4.3.4 Model Tuning for QoS Specification QoS Spec2

In QoSSpec2, the reference transaction error (AT E,) was set to 10%. From the Figures 5 and 6, we can see that
the gradient at 10% average transaction error is approximately 0.9 for all scheduling algorithms and transaction
sets, T'Setl and T'Set2. We have set G aTg to 0.9 when tuning the controllers used in experiments where QoS Spec2

is assumed.

"From the figures 5 and 6, we can see that the gradient of ATE is not exactly 1.3 for all scheduling policies and transaction sets.
We can however safely set GaTg to 1.3 when tuning the controllers. This is possible since PI controllers are not sensitive to model

errors (deviation between a model and its corresponding real-world system) and, hence, an approximate G srg suits our purposes.

11
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Figure 6. System profiling and model tuning (7'Set2)
4.3.5 Performance Analysis of Scheduling Algorithms

Below we discuss some of the characteristics that can be observed when scheduling transactions in T'Setl and
T Set2 under different scheduling policies.

Scheduling T'Setl. Considering the average transaction error, we can notice from Figure 5 that during overloads
(i-e. applied load greater than 100%), the scheduling algorithms HEF and HEDF perform better than EDF. As
given by Table 5, we can see that about 50% of the transactions adopt error functions where the order of the
error functions are greater than one, i.e. n; > 1 (see Figure 1). Hence, for a great portion of the transactions TE
decay significantly at the completion of the initial optional subtransactions and less as more subtransactions are
completed. During overloads where transactions can not be precisely scheduled, it is more feasible to distribute
the resources to transactions such that only the first optional subtransactions are completed, as completing the
remaining subtransactions does not decrease TE as much. This is done by HEF since resources are allocated to
transactions with the highest TE and given that a a great portion of the transactions have error functions with
orders greater than one, the average transaction error is minimized. EDF on the other hand, allocates resources
to transactions with no regard to the actual lost in TE when completing a subtransaction.

Turning to the standard deviation of the transaction error, we can see that in Figure 5, the standard deviation
increases as the transaction error increases.® When the system is underutilized (load less than 100%), SDTE is
higher for HEF than the other algorithms. This is due to the high ATE in the underutilized condition. During
overloads, SDTE is significantly lower under HEF scheduling compared to EDF scheduling. Under HEF scheduling

8We have observed this property also when studying the transient behavior of ATE under EDF, HEF, and HEDF scheduling.
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SDTE is less as resources are allocated with regards to TE (resource is given to the transaction with the highest
TE), while under EDF scheduling resources are distributed with regards to deadlines. Hence, under EDF schedul-
ing, two transactions with deadlines near each other may receive different amount of CPU power and, hence, they
may terminate with a significant deviation in transaction error, while in the same case, under HEF scheduling the
resources are divided such that both transactions terminate with transaction errors close to each other.

Scheduling T'Set2. Studying Table 5, we can observe that about 50% of the transactions have error functions
with n less than one. Hence, a great portion of the transaction follow a error scheme where the transaction error is
decreased significantly when completing the final subtransactions (as opposite to T'Setl). From Figure 6, we can
see that EDF performs better than HEF for loads 80-140%. This is due to the optimality of EDF, but also the
fact that EDF does not allocate resources evenly among the transactions. Consider two transactions, 77 and Ty,
that have error functions with n = 0.5 (see Figure 1) and where the difference in deadlines is very small (imagine
that the difference is infinetly small). Assume that it takes one time unit to complete an optional subtransaction
and that there are 10 time units to the deadline of both transactions, hence, we can only execute and complete 10
subtransactions before their deadline. The question is how to schedule the subtransactions such that the average
transaction error is minimized. In the case of HEF, we assign 5 time units to each transaction (i.e. completing 5
optional subtransactions), giving an average transaction error of approximately 0.75. In the case of EDF we assign
10 time units to the transaction with the earlier deadline and zero time units to the second, giving an average error
of 0.5. Thus the average error becomes lower when the resources are not evenly distributed.

For SDTE the same argument as in the case of scheduling of T'Setl holds and, hence, this is not further

discussed.

4.4 Controller Designand Tuning

We employ a policy similar to FC-M [15], to control user transaction quality in the presence of unpredictable
workload and inaccurate execution time estimates. FC-M uses a deadline miss percentage control loop to control
the system deadline miss percentage with regards to a reference, while in our approach we exchange deadline miss

percentage to average transaction error.

4.4.1 Transaction Error Controller

The DBA specifies in the QoS specification the desired database behavior through a set of references, e.g. ATE,.
We employ a PI controller to compute a control signal, AU, based on the current performance error, E 475, which
is the difference between the reference and the measured performance (i.e. Earg = ATE, — ATE). If ATE

overshoots its reference, then AU becomes negative as a request to lower the estimated requested utilization.

13



4.4.2 Integrator Antiwindup

For real-time systems, it may happen that a control variable is within its saturation point (e.g. when Ugcireq <
Uip). When this happens the feedback control loop is broken and the system runs as an open loop because the
controlled variable will remain unchanged independently of the controller output. This may have an undesired
effect, as the performance error will continue to be integrated, growing to a large value. We say that the integrator
“winds up”. It is then required that the performance error has the opposite sign for a long time before a controlled
variable reaches its respective reference. The same effect happens when a controlled variable is far away from
its reference. For example, consider the case when the system is underutilized and ATE is below AT E,. This
results in the average transaction error controller accumulating the performance error. If at a later stage ATE
overshoots its reference, then it may take some time for the transaction error controller to respond to the high
average transaction error. For this reason we use an integrator antiwindup mechanism [22, 23, 9]. We implement
the integrator antiwindup by using a conditional integration [22] technique, where the integration is switched off

when AU becomes greater than a threshold e. We employ the following scheme for conditional integration:

o If AU is less than €, the integrator (see Equation (5)) of the average transaction error controller is turned

on.

e If AU is greater than ¢, the integrator of the average transaction error controller is turned off. This is to

prevent the integrator accumulating the performance error.
By employing the above described integrator antiwindup scheme, the controller can react more efficiently to
changes in workload and prevent significant overshoots.
4.4.3 Controller Implementation

A digital version of the PI controller is given below. Equations (5) and (6) are equivalent, but equation (6) is more

efficient at run-time.

k
AU (k) = Kp(Eare(k) + K1y Barn(j)) (5)
=0
AU(k) = AU(k — 1) + Kp((K] + l)EATE(k) — EATE(k — 1)) (6)
The z-transform of equation (6) is given by:
Clz) = % 9= (Kp(K;+1)),r = K11+1

The parameters that need to be tuned for the transaction error controller are Kp and K;. The tuning, based

on system model and QoS requirements, is given in section 4.4.4.
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Controller Kp Kr M, Ts Roots

ATE (assuming QoSSpecl) 0.26 0.3 =25% =50.0s 0.54

ATE (assuming QoSSpec2) 040 03 =25% =~50.0s 0.54

Table 2. Controller parameter s and time domain performance for QoS specifications QoSSpecl and

QoS Spec2.

4.4.4 Controller Tuning

Having a tuned model of the system and a QoS specification, the next step is to tune the controllers based on the
closed loop of the system. We use C(z) to denote the average transaction error controller.

Given the model of the controlled system, i.e. P, the transfer function of the feedback control loop,

__C(x)P(2)
B =15 cmpe) @
can be established. The z-transform of ATE(k),
ATE(z) = ‘tT_E’l‘zH(z)

can be derived by using equation (7).
We have applied the root locus method in Matlab [1] to tune the controller parameters such that the performance
specifications as given by Table 6 are satisfied. Assuming the system workload having a worst-case utilization ratio

of two (i.e. G4 =2), we set Kp and K according to Table 2. We have set the sampling period to 5 seconds.

Below we evaluate the performance of the controllers with regard to overshoot, settling time, stability, and

steady-state performance error.

Time Domain Performance: Given a unit step in Matlab, the transient performance of the tuned feedback
controllers are established. As we can see from Table 2, the overshoot and the settling time for AT E meet

the requirements given in the QoS specifications (QoSSpecl and QoS Spec2).
Stability: The closed loop systems are stable since all the poles of H are within the unit circle.

Steady-state Error: Since the closed loop systems are stable, the steady-state error of ATE,

ATE, 1
ATE, — lim(z — 1) =
2=

Ees 1 z—11+4C(2)P(z2)

ATE, z—1
z2—1149(z—7)+GaGarE

=0

ATE, — lim(z — 1)
z—1
can be computed by applying the final value theorem to the closed loop transfer function.
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4.5 Algorithms for Data and Transaction Err or Management

We propose two algorithms, FCS-HEF and FCS-HEDF, that adopt the data and transaction management policy
used in FCS-IC-2 [4], where the transaction quality is adjusted based on the deadline miss percentage of optional
subtransactions. In this work, we have extended FCS-IC-2 such that it manages the transaction quality based on
the average transaction error, which captures the transaction quality to a greater extent compared to the miss
percentage of optional subtransactions. Moreover, FCS-HEF and FCS-HEDF are transaction error cognizant and
are designed to enhance QoS fairness among transactions (i.e. decrease the deviation in QoT among admitted
transactions), whereas FCS-IC-2 uses EDF to schedule the transactions and since EDF is only time cognizant, it
may not be able to enforce QoS fairness. We use the same basic algorithm for FCS-HEF and FCS-HEDF, but use
different basic schedulers, e.g. FCS-HEF schedules the transactions with HEF. We also introduce FCS-EDF, which
is similar to FCS-HEF and FCS-HEDF, but where the transactions are scheduled under EDF. We compare the
performance of FCS-HEF and FCS-HEDF with FCS-EDF, since the behavior of EDF is well-known. The following
scheme for managing the data and transaction quality is common for all three algorithms.

Given a certain AU(k), we need to set MDE(k + 1) such that the utilization (or resources) gained when
discarding update transactions correspond to AU (k). Remember that setting M DE(k + 1) greater than M DE(k)
results in more discarded update transactions and, hence, an increase in gained utilization. Similarly, setting
MDE(k + 1) less than M DE(k) results in fewer discarded update transactions and, hence, a decrease in gained
utilization. In order to compute M DE(k + 1) given a certain AU(k), we use a function f(AU(k)) that returns,
based on AU (k), the corresponding M DE(k + 1). The function f holds the following property. If AU(k) is less
than zero, then MDE(k + 1) is set such that MDE(k + 1) is greater than MDE(k) (i.e. QoD is degraded).
Similarly, if AU (k) is greater than zero, then M DE(k + 1) is set such that MDE(k +1) is less than M DE(k) (i.e.
QoD is upgraded). We will return to the concepts around f in section 4.6.

One of the characteristics of the average transaction error controller is that as long as the average transaction
error is below its reference (i.e. ATE < ATE,), the controller output AU will be positive.® Due to the char-
acteristics of f (i.e. AU(k) > 0= MDE(k + 1) < MDE(k)), a positive AU is interpreted as a QoD upgrade.
Consequently, even if the average transaction error is just below its reference, QoD remains high. We would rather
that the average transaction error, which corresponds to QoT, increases and decreases together with QoD. For this
reason, M DE is set not only by considering AU, but also according to the current ATE. When AU is less than
zero (i.e. ATE overshoot), MDE is set according to f. However, when AU is greater or equal to zero, MDE
is set according to the moving average of ATE, computed by AT Epa(k) = cATE(k) + (1 — o)ATEpa(k — 1),

9If we have transient oscillations, AU, may temporally stay positive (negative) even though the ATE has changed from being below
(above) the reference to be above (below) the reference value. This is due to the integral operation, i.e., due to earlier summation of

errors, which represents the history and therefore cause a delay before a change to the utilization is requested and has effect.
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where a (0 < a < 1) is the forgetting factor [24]. Setting a close to 1 results in a fast adaptation, but will also
capture the high-frequency changes of AT E, whereas setting o close to 0, results in a slow but smooth adaptation.
When AT E);4 is relatively low compared to ATE,, MDE is set to a low value relative to MDE,. As ATEp 4
increases, MDE is increased but to a maximum value of M DE, x M,, since a further increase will violate the

given QoS specification. The outline of FCS-HEF, FCS-HEDF, and FCS-EDF is given in Figure 7.

Monitor AT E(k)
Compute AU (k)
if (AU(k) > 0) then
Adjust MDE(k) according to
MDE(k + 1) = min(25242 8 M DE,, MDE, x M,)
if (MDE(k) < MDE(k + 1)) then
Add the utilization gained after QoD degrade to AU (k)
else
Subtract the utilization lost after QoD upgrade from AU (k)
end if
Inform AC of the new AU(k)
else if (AU(k) < 0 and MDE(k) < MDE, x M) then
Downgrade QoD according to MDE(k + 1) = f(AU(k), MDE(k))
Inform AC about the portion of AU (k) not accommodated by QoD downgrade
else
{i.e. AU(k) < 0 and MDE(k) = MDE, x M}
Reject any incoming transactions

end if

Figure 7. Algorithm outline of FCS-HEF, FCS-HEDF, and FCS-EDF

4.6 QoD Management

The preciseness of the data is controlled by the QoD manager which sets M DE(k) depending on the system
behavior. When f is used to compute M DE(k + 1) based on AU (k) (as in FCS-IC-1 and some cases in FCS-IC-2)
the following scheme is used.

Rejecting an update results in a decrease in CPU utilization. We define gained utilization, GU(k), as the

utilization gained due to the result of rejecting one or more updates during period k. GU(k) is defined as,

#RU,(k)
=2 Fav)

#AU, (k) EU:
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where #RU,(k) is the number of rejected update transactions T; generated by Stream;, # AU;(k) the number of
arrived update transactions T;, and EU; is the estimated utilization of the update transactions T;.
An important issue is how to set M DE(k + 1) given a certain AU (k). Basically, we want to set MDE(k + 1)
such that,
GU(k) — AU(k), AU(k) < GU(k),
0, AU (k) > GU(k).

GU(k+1) =

This requires that we can predict GU(k + 1) induced by MDE(k + 1). Note that given MDE(k + 1) we can
only estimate the corresponding GU (k + 1) since our problem is of probabilistic nature. For this mentioned reason,

we introduce the notion of predicted gained utilization,
PGU = g(MDE)

where given an M DE, the corresponding GU can be predicted. We derive g based on system profiling, where we
measure GU for different M DEs. The function g is then derived by linearizing the relationship between GU and
MDE. By taking the inverse of g,

MDE = g~'(PGU) = u x PGU (8)

we can compute a M DE(k + 1) based on a PGU (k + 1) where,

GU(k) — AU(k), AU(k) < GU(k),
PGU(k +1) = (9)
0, AU (k) > GU (k).

Since RTDBs are dynamic systems in that the behavior of the system and environment is changing, the relation
between GU and M DE is adjusted on-line. This is done by measuring GU (k) for a given M DE(k) during each
sampling period and updating u. Note that on-line profiling also has the advantage of requiring less accurate
parameters computed from off-line analysis.

By applying Equation (8) and (9), we compute M DE(k + 1) according to the following,

MDE(k +1) F(AU(K)) =

= min(u x PGU(k + 1), MDE, x (M, + 100)).

Since M DE is not allowed to overshoot more than M DE, x (M, + 100), we use a min operator to guarantee this.

5 Performance Evaluation

In this section a detailed description of the performed experiments is given. The goal and the background of

the experiments are discussed, and finally the results are presented.
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5.1 Experimental Goals

The main objective of the experiments is to show whether the presented algorithms can provide guarantees based
on a QoS specification. We have for this reason studied and evaluated the behavior of the algorithms according to
a set of performance metrics. The performance evaluation is undertaken by a set of simulation experiments, where

a set of parameters have been varied. These are:

e Load (Load). Computational systems may show different behaviors for different loads, especially when the
system is overloaded. For this reason, we measure the performance when applying different loads to the

system.

e Execution Time Estimation Error (EstErr). Often exact execution time estimates of transactions are not
known. To study how runtime error affects the algorithms, we measure the performance considering different

execution time estimation errors.

¢ QoS specifications. It is important that an algorithm can manage different QoS specifications. Here we

compare the results of the presented algorithms with regards to different QoS specifications.

e Transaction error functions. The characteristics of the error functions are dependent on the actual application.
For this reason, we consider the impact of transactions showing different transaction error characteristics.
We evaluate the performance of our algorithms with respect to different sets of transactions, representing

different applications.

5.2 Simulation Setup

In our simulator, the workload consists of update and user transactions, which access data and perform virtual
arithmetic/logical operations on the data. Update transactions occupy approximately 50% of the workload. Note
that the load applied to the database is based on submitted user and update transactions. The tested approaches
may reduce the applied load by applying admission control.

In our experiments, one simulation run lasts for 10 minutes of simulated time. For all the performance data,
we have taken the average of 10 simulation runs and derived 95% confidence intervals. The workload model of the

update and user transactions are given in Tables 3 and 4, and described as follows.

5.2.1 Data and Update Transactions

The simulated DB holds 1000 temporal data objects (d;) where each data object is updated by a stream (Stream;,
1 < 4 < 1000). The period (P;) is uniformly distributed in the range (100ms,50s) (i.e. U : (100ms, 50s))

and estimated execution time (EET;) is given by U : (1ms,8ms). The average update value (AV;) of each
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Parameter Value

#DataObjects 1000

P; U : (100ms, 50s)

EET; U : (1ms,8ms)

AV; U : (0,100)

AET; N : (EET;,/EET;)

Vi N : (AV;, AV; x VarFactor)
VarFactor U:(0,1)

Table 3. Workload settings for data and update transactions

Stream; is given by U : (0,100). Upon a periodic generation of an update, Stream; gives the update an actual
execution time (AET;) given by the normal distribution N : (EET;,/EET;) and a value (V;) according to
N : (AV;, AV; x VarFactor), where VarFactor is uniformly distributed in (0,1). The deadline is set to AT; + D;.

5.2.2 User Transactions

Each Source; generates a transaction T;, consisting of one mandatory subtransaction, M;, and #0; (1 < #0; < 10)
optional subtransaction(s), O; ; (1 < j < #0;). #0; is uniformly distributed between 1 and 10.

The estimated (average) execution time of the mandatory and the optional (EET;[t;]) subtransactions is given by
U : (5ms, 15ms). The estimation error EstErr is used to introduce execution time estimation error in the average
execution time given by AET;[t;] = (1 + EstErr) x EET;[t;]. Further, upon generation of a transaction, Source;
associates an actual execution time to each subtransaction t;, which is given by N : (AET;[t;],/AET;[t;]). The
deadline is set to AT; + EET; x SlackFactor. The slack factor is uniformly distributed according to U : (20, 40).

It is assumed that the number of data accesses (#DA;[t;]) for each subtransaction is proportional to EET;[t;].
Hence, longer subtransactions access more data. Upon a transaction generation, Source; associates an actual
number of data accesses given by N : (#DA;[t;], \/#DA;[t:]) to each subtransaction of T;. The data set accessed
by a transaction is partitioned among the subtransactions such that the partitions are mutually disjoint. However,
the data sets accessed by transactions may overlap.

We have considered two different transaction sets having different transaction error characteristics. In the first
set, referred to as T'Setl, transactions are evenly distributed in four classes representing error function orders of
0.5, 1, 2, and 5 (e.g. 25% of the transactions have an error order of 1). In this set, for 50% of the transactions TE
decrease significantly when completing the initial optional subtransactions, while TE does not decrease as much
upon the completion of the final subtransactions. In the second set, referred to as T'Set2, 50% of the transactions
have an error order of 0.5, 30% have error order of 1, 15% have error order 2, and 5% have error order 5. Here, for

50% of the transactions TE decrease significantly when completing the final subtransactions. The characteristics
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Parameter Value
#0; 1< #0; <10,

P(#0; =1)=...= P(#0; = 10) = &
EET;|t;] U : (5ms,15ms)
AET;[t;] AET;[t;]) = (1 + EstErr) x EET;[t;]
Act Ezec. Time N : (AET[t), \/W,[tz])
D; D; = AT; + EET; x SlackFactor
SlackFactor U :(20,40)
Act. Data Accesses N : (#DA;[ti], /#DA;[ti])

Table 4. Workload settings for user transactions

Transaction Set Distribution

T Setl P(n; =0.5) = P(n; =1) = P(n; =2) = P(n; =5) =0.25
T Set2 P(n; =0.5) = 0.5, P(n; =1) = 0.3, P(n; = 2) = 0.15, P(n; = 5) = 0.05

Table 5. User transaction sets.

of the transaction sets, T'Setl and T Set2 are summarized in Table 5.

5.3 QoS Specifications

We consider two QoS specifications referred to as QoSSpec! and QoSSpec2 and are listed in Table 6. Note,
ATE, and MDE, are steady-state specifications, whereas transient specifications for respective metric can be

obtained by considering the overshoot M, (e.g. ATE < ATE, x M,) and settling time.

5.4 Baselines

To the best of our knowledge, there has been no earlier work on techniques for managing data impreciseness and

transaction impreciseness, satisfying QoS or QoD requirements. Previous work within imprecise computing applied

QoS Metric | QoSSpecl | QoSSpec2
ATE, 20% 10 %
MDE, 5% 10 %
M, 30% 30 %
T, 60 s 60 s

Table 6. QoS specifications used for performance evaluation
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to tasks focus on maximizing or minimizing a performance metric (e.g. total error). The latter cannot be applied to
our problem since in our case we want to control a set of performance metrics such that they converge towards a set
of references given by a QoS specification. For this reason, we have developed two baseline algorithms, Baseline-1
and Baseline-2, to study the impact of the workload on the system. We also compare the behavior of FCS-HEF and
FCS-HEDF with FCS-EDF since EDF is optimal (in minimizing deadline misses) and has well-known behavior.
Here, we can establish the efficiency of FCS-HEF and FCS-HEDF by comparing the operational envelope of the
algorithms, i.e. we can compare the resistance to failure of the algorithms with regard to applied load and/or
run-time estimation errors. The baselines are given below.

Baseline-1. If ATE is greater than its reference, the utilization has to be lowered, which is achieved by discard-
ing more update transactions, i.e. increasing M DE. Consequently, the preciseness of the data is adjusted based on
the relative average transaction error. M DE is set accordingto MDE(k+1) = min(’;TT—Eéf)M DE,,MDE, x M,).
A simple AC is applied, where a transaction (T;) is admitted if the estimated utilization of admitted subtransactions
and EET; is less or equal to 80%.

Baseline-2. In order to prevent a potential overshoot, we increase M DE as soon as AT E is greater than zero. In
Baseline-1, a significant change in M D E may introduce oscillations in the average transaction error. This is avoided
in Baseline-2 by increasing and decreasing M DE stepwise. If ATE(k) is greater than zero, increase M DE (k)
stepwise until MDE, x M, is reached (i.e. MDE(k + 1) = min(MDE(k) + MDEcp,, MDE, x M,)). If ATE(k)
is equal to zero, decrease M D E(k) stepwise until zero is reached (i.e. MDE(k+1) = max(M DE(k)—M DEst.p,0)).
The same AC as in Baseline-1 is used.

FCS-EDF. FCS-EDF is similar to FCS-HEF and FCS-HEDF in that it is based on the algorithm given in
Figure 7, but where EDF is used as a basic scheduler whereas FCS-HEF and FCS-HEDF use HEF and HEDF,

respectively.
5.5 PerformanceMetrics

We analyze the following metrics in our simulations:

Average Transaction Error, AT E(k).

e Maximum Data Error, M DE(k).

Standard Deviation of Transaction Error, SDT E(k).

CPU Utilization (below referred to as utilization), U.
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Figure 8. Average Performance: EstErr =0, QoSSpecl, and T Set1.

5.6 Experiment 1: Resultsof Varying Load

The setup of the experiment is given below, followed by the presentation of the results. Figure 8 shows ATE,
SDTE, and MDE.

Experimental setup. We measure ATE, SDTE, MDE, U, and number of tardy mandatory subtransactions.
The experiment setup is as follows. We apply loads from 50% to 200%. The execution time estimation error is set
to zero (i.e. EstErr =0). QoSSpecl and T Setl are assumed.

Tardy Mandatory Subtransactions. We have not observed any deadline misses for any of the four algo-
rithms.

Average Transaction Error. The confidence intervals for all algorithms are within £2.1%. For Baseline-1
and Baseline-2, the average transaction error (AT E) increases as the load increases, violating the reference, ATE,.,
at loads exceeding 175%. Baseline-2 produces low ATE for loads 100-175%. This is due to the high MDE, and
since many update transactions are discarded more resources can be allocated to user transactions. In the case
of FCS-EDF, ATE reaches the reference at 150% applied load. For FCS-HEF and FCS-HEDF, ATE reaches the
reference at 175%. All FCS algorithms provide a robust performance since ATE is kept at the specified reference
during overloads. It is worth mentioning that AT E for FCS-EDF is higher than the other algorithms. This is in
line with our discussions in section 4.3.5, where we concluded that during overloads where transactions cannot be

precisely scheduled, it is more feasible to distribute the resources to transactions such that only the first optional
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subtransactions are completed, as completing the last subtransactions does not decrease the transaction error as
much. This is done under FCS-HEF scheduling since resources are allocated to transactions with the highest error
and given that approximately 50% of the transactions have error functions with n; greater than one, the average
transaction error is minimized. FCS-EDF on the other hand, allocates resources to transactions with no regard to
the actual decrease in error when completing a subtransaction.

Standard Deviation of Transaction Error. The confidence intervals for all algorithms are within +1.92%.
SDTE is higher for FCS-HEF than the other algorithms when the system is underutilized (load less than 100%).
This is due to the relatively high AT'E for loads less than 100%. For all algorithms, SDTE increases as load and
ATE increase. At 200% load, the corresponding SDTE for FCS-EDF, FCS-HEF, and FCS-HEDF is 34.1%, 25.2%
and 18.2%, respectively. Consequently, deviation of transaction error is minimized when FCS-HEF is used, which
is consistent with our results in section 4.3.5. We would like to point out that there is a lower bound for SDTE
as transaction error functions are discrete and, hence, transaction errors decrease in steps. This becomes more
evident the fewer subtransactions a transaction has as the steps become greater.

Average MDE. The confidence intervals for all algorithms are within +0.5%. The average M DE for Baseline-1
and Baseline-2 violates the reference M DE set to 5% at applied loads of 175% and 130%, respectively. In contrast,
in the case of FCS-EDF, FCS-HEF, and FCS-HEDF, M DE is at the reference during overloads.

Average Utilization. For all approaches, the utilization is above 95% for loads between 100-200%.

We have shown that FCS-HEF, FCS-HEDF, and FCS-EDF are robust against varying applied loads. Moreover,
FCS-HEF outperforms the other algorithms with regards to QoS fairness of admitted transactions.

5.7 Experiment 2: Resultsof Varying EstErr

The setup of the experiment is given below, followed by the presentation of the results. Figure 9 shows ATE,
SDTE, and MDE.

Experimental setup. We measure ATE, SDTE, MDE, and number of tardy mandatory subtransactions.
The experiment setup is as follows. We apply 200% load. The execution time estimation error is varied according
to EstErr = 0.00, 0.25, 0.50, 0.75 and 1.00. QoS Specl and T'Setl are assumed.

Tardy Mandatory Subtransactions. As in Experiment 1, no mandatory subtransactions have missed their
deadline.

Average Transaction Error. The confidence intervals for all algorithms are within £3.5%. As expected,
Baseline-1 and Baseline-2 do not satisfy the QoS specification. In fact, ATE increases as EstErr increases,
reaching a value close to 52% for both algorithms. As we can see, FCS-EDF, FCS-HEF, and FCS-HEDF are
insensitive against varying EstErr as ATE does not change for varying EstErr.

Standard Deviation of Transaction Error. The confidence intervals for all algorithms are within +1.5%.
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Figure 9. Average Performance: Load = 200%, QoS Specl, and T Set1.

For Baseline-1 and Baseline-2 SDTE increases as ATE and EstErr increase, reaching 43.4% at EstErr equals
0.5. In the case of FCS-EDF, FCS-HEF, and FCS-HEDF, SDTFE does not change since the corresponding ATE
is invariant.

Average MDE. The confidence intervals for all algorithms are within +0.3%. Baseline-1 and Baseline-2
violate the specified M DE reference. For FCS-EDF, FCS-HEF, and FCS-HEDF average M DE does not change
considerably for different EstErr, reaching a value of 5.26% at EstErr set to one.

From above we can conclude that FCS-HEF, FCS-HEDF, and FCS-EDF are insensitive to changes to execution

time estimation errors as they manage to satisfy the given QoS specification for varying EstErr.

5.8 Experiment 3: Transient Performance

Studying the average performance is often not enough when dealing with dynamic systems. Therefore we study
the transient performance of the proposed algorithms. Figures 10, 11, and 12 show the transient behavior of
FCS-EDF, FCS-HEF, and FCS-HEDF. The dash-dotted line indicates maximum overshoot.

Experimental setup. We measure ATE, SDTE, and MDE. The experiment setup is as follows. Load is set
to 200% and EstErr set to one. QoSSpecl and T'Setl are assumed.

Results. The highest overshoot for FCS-EDF has been noted to 35.9% at time 40. For FCS-HEF, the highest

overshoot was noted to 30.7% at time 40 (the second highest overshoot was noted to 26.1% at time 555) and finally,
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Figure 12. Transient Performance for FCS-HEDF. EstErr = 1.0, Load = 200%, QoS Specl, and T Setl

the highest overshoot for FCS-HEDF was observed to be 32.5% at time 45. As we can see, the algorithms do not
satisfy the overshoot requirements given in the QoS specification (i.e. ATE < 26%). It is worth mentioning that
data conflicts, aborts or restarts of transactions and inaccurate run-time estimates contribute to disturbances in a
RTDB, complicating the control of ATE (note that we have set EstErr to one). Consequently, overshoots cannot
completely be avoided. For all algorithms the overshoots decay faster than 60s, which are less than the settling
time requirement given in the QoS specification.

As we can see from Figures 10-12, FCS-HEF produce less oscillations in AT E and consequently SDTE and
MDE. Further, FCS-HEF is less prone to overshoot. Consider the case where the utilization in sampling period
k+ 1 differs from the utilization in period k (the utilization is modified due to a change in the number of admitted
transactions). In sampling period k + 1 the following holds. Under HEF scheduling a change in AT'E is noticed at
an earlier stage than under EDF scheduling. Under EDF scheduling, newly admitted transactions are less likely
to have earlier deadlines than the “old” transactions (those admitted in previous periods) and, hence, they are
placed further down in the ready queue. This means that an actual change to the controlled variable is not noticed
until the newly admitted transactions are executing. However, this delay is removed under HEF scheduling, since
newly arrived transactions are more likely to have higher priority than the old transactions (since they have greater
TE) and, consequently, a transient overload or underload is observed earlier. Hence, under HEF scheduling the
controlled variable is more responsive to changes in the manipulated variable. Now, from feedback control theory
we know that delays in systems (low responsiveness of controlled variables) promote oscillations and may even

introduce instability [23, 9]. Given this, we can conclude that under EDF scheduling we should observe more
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Figure 13. Average performance: EstErr =0, QoSSpecl, and T Set2.

oscillations in AT E than compared with HEF scheduling.
5.9 Experiment 4: Effectsof Varying Order of Transaction Err or Functions

In section 5.6 we evaluated the algorithms using the transaction set T'Setl. Below we compare the results
obtained in section 5.6 using a different set of transactions. This is to evaluate the performance of the algorithms
with regards to different sets of transactions having different transaction error characteristics. Below, we apply
similar load pattern as in the first experiment. Figure 13 shows ATE, SDTE, and MDE.

Experimental setup. We assume that a uniform access pattern is used and where we measure ATE, SDTE,
MDE, and number of tardy mandatory subtransactions. The experiment setup is as follows. We apply loads from
50% to 200%. The execution time estimation error is set to zero (i.e. EstErr = 0). QoSSpecl and T Set2 are
assumed.

Results. No deadline misses have been observed for mandatory subtransactions. The confidence intervals of
ATE and SDTE for all algorithms are within +1.7%, while for M DE the same figure is +0.4%. The baselines do
not satisfy the given QoS specification, as ATE is greater than the reference for loads above 175%. Further, for
Baseline-2, M DE violates the reference at load 130%. However, for FCS-EDF, FCS-HEF, and FCS-HEDF we can

see that AT E and M DE satisfy the given QoS specification as they are consistent with the references during high
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applied loads. It can be observed that AT E for FCS-HEF is higher than the other algorithms. Studying Table 5,
we can observe that about 50% of the transactions have error functions with n less than one. Hence, a great portion
of the transactions follow an error scheme where the transaction error is decreased significantly when executing
and completing the final subtransactions (as opposite to T'Set1). In section 4.3.5 we concluded that EDF produces
a lower ATE compared to HEF in the case when T'Set2 is assumed. This is due to the optimality of EDF, but
also the fact that EDF does not allocate resources evenly among the transactions. This result is consistent with
our observations in this experiment.

Further, we can see that FCS-HEF produces higher SDTE than the other algorithms for loads less than 110%.
This is due to the high AT E during the same load interval. However, SDTE is lower for the other algorithms for
loads above 130%. SDTE for FCS-EDF, FCS-HEF, and FCS-HEDF at 200% applied load is 33.2%, 27.5% and
19.8%.

As in Experiment 1, we conclude that FCS-HEF, FCS-HEDF, and FCS-EDF are robust against varying applied

load. Furthermore, FCS-HEF increases QoS fairness independent of the underlying transaction set characteristics.

5.10 Experiment5: Varying QoS Specification

We also compare the performance of our approaches considering other QoS specifications. The idea is to see
how the algorithms can adapt to different QoS specifications. Below, we apply similar load pattern as in the first
experiment. Figure 14 shows ATE, SDTE, and MDE.

Experimental setup. We measure ATE, SDTE, MDE, and number of tardy mandatory subtransactions.
The experiment setup is as follows. We apply loads from 50% to 200%. The execution time estimation error is set
to zero (i.e. EstErr =0). QoSSpec2 and T Setl are assumed.

Results. We do not present the results of the baselines, since they have showed poor results in earlier exper-
iments. No deadline misses have been observed for mandatory subtransactions. The confidence intervals of ATE
and M DE for all algorithms are within +0.8%, while for SDTFE the same figure is £1.4%. In QoSSpec2 we
set ATE, and MDE, to 10%. As we can see, ATE and MDEFE grow towards the references as the applied load
increases. ATE for FCS-EDF, FCS-HEF, and FCS-HEDF are 9.4%, 9.7%, and 9.6%, respectively.

We have shown that the proposed algorithms can support different QoS specifications.

5.11 Summary of Resultsand Discussions

Our experiments show that the algorithms FCS-HEF and FCS-HEDF are robust against load variations and
inaccurate execution time estimations as ATE and M DE have been consistent with their references for varying
load and varying execution time estimation error. Also, FCS-HEF and FCS-HEDF can adapt to other types of

transaction sets showing different transaction error characteristics and manage various QoS specifications. The
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Figure 14. Average performance: EstErr =0, T Setl

proposed algorithms outperform the baseline algorithms and FCS-EDF and can manage the given QoS specifications
well.

It was showed that FCS-HEDF produces a lower AT E compared to the other algorithms. Also, it was observed
that FCS-HEF provides a lower SDTE compared to other algorithms, lowering the deviation of transaction error
among terminated transactions. This property is feasible in applications where QoS fairness among transactions
is emphasized. Finally, FCS-HEF showed a better transient behavior compared to FCS-EDF and FCS-HEDF, as
it produced fewer and smaller AT E overshoots.

We conclude that FCS-HEF should be used in applications where QoS fairness among transactions is important,
but also where overshoots must be prevented, i.e. the worst-case performance has to comply with the specification.
However, FCS-HEDF is particularly feasible in cases where low ATE is desired as under HEDF scheduling, ATE

is smaller compared to HEF and EDF scheduling.

6 Related Work

Liu et al. proposed an imprecise computation model [14]. They presented a set of imprecise scheduling problems
associated with imprecise computing and also gave an algorithm for minimizing the total error of a set of tasks.

Shih et al. presented two algorithms for minimizing the maximum error for a schedule that minimizes the total
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error [21]. Hansson et al. proposed an algorithm, OR-ULD, for minimizing total error and total weighted error [10].
However, the approaches presented by Liu, Shih, and Hansson require the knowledge of accurate processing times of
the tasks, which is often not available in RTDBs. Further, they focus on maximizing or minimizing a performance
metric (e.g. total error). The latter cannot be applied to our problem, since in our case we want to control a set
of performance metrics such that they converge towards a set of references given by a QoS specification.

Feedback control scheduling has been receiving special attention in the past few years [15, 19, 6]. Lu et al.
have presented a feedback control scheduling framework where they propose three algorithms for managing the
miss percentage and/or utilization [15]. In comparison to the proposed approaches here, they do not address the
problem of maximizing QoS fairness among admitted tasks. In the work by Parekh et al., the length of a queue
of remote procedure calls (RPCs) arriving at a server is controlled [19]. Changing the periodicity of a set of tasks
in response to load variations has been suggested in [6]. In contrast to FCS-HEF and FCS-HEDF, aperiodic tasks
are not considered in their model.

Labrinidis et al. introduced the notion of QoD [13]. In their work, web pages are cached at the server and the
back-end database continuously updates them. Their proposed update scheduling policy can significantly improve
data freshness compared to FIFO scheduling. In the work by Kang et al., a feedback control scheduling architecture
is used to control the miss percentage and utilization by dynamically balancing update policies (immediate or on-
demand) of a set of data [12]. In our previous work, we presented two algorithms for managing QoS based on
feedback control scheduling and imprecise computation [4], where QoS was defined in terms of miss percentage of
optional subtransactions.

The correctness of answers to databases queries can be traded off to enhance timeliness. Query processors,
APPROXIMATE [25] and CASE-DB [11] are examples of such databases where approximate answers to queries
can be produced within certain deadlines. However, in both approaches, impreciseness has been applied to only
transactions and, hence, data impreciseness has not been addressed. Further, they have not addressed the notion of
QoS. In our work, we have introduced impreciseness at data object level and considered QoS in terms of transactions

and data impreciseness.

7 Conclusions and Future Work

In this paper we have argued for the need of increased adaptability of applications providing real-time data
services. To address this problem we have proposed a QoS-sensitive approach based on feedback control scheduling
and imprecise computation applied on transactions and data objects. Imprecise computation techniques have
shown to be useful in many areas where timely processing of tasks or services is emphasized, and in this work,
we combine the advantages from feedback control scheduling and imprecise computation techniques, forming a

framework where a database administrator can specify a set of requirements on the database performance and
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service quality. We have developed two algorithms FCS-HEF and FCS-HEDF that based on feedback control

scheduling give a robust and controlled behavior of RTDBs in terms of transaction and data preciseness, even

for transient overloads and with inaccurate run-time estimates of the transactions. The proposed algorithms

outperform the baseline algorithms and FCS-EDF and can manage the given QoS specifications well.

For our future work, we will model the relationship between data error and transaction error, expressing trans-

action error in terms of completed optional subtransactions and the data error of the data objects accessed by a

transaction. We will also establish techniques for managing data and user transaction error in a distributed envi-

ronment and we will develop policies for handling derived data. Different approaches to modeling the controlled

system will also be considered.
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