Real-time Lab Excercises: A teacher’s Dilemma

Erik Herzog and Peter Loborg! and Simin Nadjm-Tehrani

Dept. of Computer and Information Science,
Linkoping University
{erica,simin}@ida.liu.se

Abstract

This paper describes our design of real-time systems
laboratories in an integrated theme of study which in-
cludes automatic control.The theme appears at the end
of the third year of a 4,5 year master of engineering pro-
gramme, which adopts Problem-Based Learning (PBL)
as a main pedagogical method. We describe the ratio-
nale behind our choice of application area, the lab en-
vironment, and the operating system used. The paper
concludes by giving some qualitative evaluations as well
as some quantitative measures based on limited data.

1 Introduction

In this paper we describe our experiences with develop-
ing laboratory exercises for a course in the third year
of a 4.5 year Master of Engineering programme: the In-
formation Technology (IT) programme. We describe
the dilemma faced by any course designer when rel-
atively small number of hours are available, and the
goal is to achieve some insight in some central aspect
of real-time system development; an area wide enough
for several courses, from theoretical analysis of schedul-
ing algorithms to practical design and implementation
of dedicated hardware, software and middleware.

This problem may be considered irrelevant, in the sense
that the ACM 2001 curriculum does not list real-time
systems as a core area for computer engineering stu-
dents [1]. However, there is a philosophy behind the
design of our programme which apparently goes against
this recommended curriculum. The idea behind our

! Currently employed at Carlstedt Research and Tech-
nology, Linkdping, e-mail: petloQ@crt.se.

educational programme is to use the Problem-Based
Learning (PBL) methodology [3, 2], whereby three ele-
ments are central: study of realistic cases in integrated
settings, self directed learning, and group discussions.
The first item, in our case, has led to a choice of com-
bining the topics of real-time systems with automatic
control (which is considered as core for all engineers).
In this way both topics strengthen and motivate each
other. However, our design possibilities are limited by
allocated time.

This choice implies that instead of a dedicated course
in real-time systems we have a “Theme” which is an
integration of automatic control and real-time systems.
Note that themes are studied one at a time during a
4-7 week period with no other parallel courses. In fact
the whole spring term (semester), the 6th in the study
programme, was designed as a whole — covering four
themes: concurrent programming and operating sys-
tems, followed by the theme which is the subject of
this paper, a theme on control theory integrated with
transform theory and linear algebra, and a theme on
ethics for engineers [5]. The time allocated to real-time
systems corresponds to 1,5 credit points out of 18 oblig-
atory credit points for the integrated term. This paper
was written after running the themes over three years.

2 The application example

Having an integrated theme with automatic control
meant that we could concentrate on real-time issues re-
lated to this class of applications, as opposed to other
fields such as real-time communication. To have an in-
tegrating example we chose a fine measurement robot
from the swedish company C. E. Johansson. The robot
is demonstrated for the students during a field trip at
the beginning of the theme. Precision within a few mi-
cro meters and speed of several measurements per sec-
ond are two aspects of the real system, making it inter-
esting both from the control point of view and in terms
of real-time constraints. Thus, the automatic control
labs first treat the issues of servo control, stability etc.
on one motor, and the real-time labs treat a collection

of computation processes including 3 motors (one for
each dimension), a path generator, a supervisor and so
on.

Sporadic events are present in the example in a natural
manner (hitting an end-position, or appearance of an
obstacle), and their effects can be considered both in
terms of selection of scheduling policy and in treatment
of exceptions (i.e. adding fault-tolerance).

3 The topic areas

Next it was decided that the labs should not teach pro-
gramming. Thus, issues related to programming lan-
guage constructs and styles were excluded. This con-
trasts another course which we give for other educa-
tional programmes — where Ada is the programming
language for the labs, and synchronisation mechanisms
and scheduling labs are implemented with emphasis on
programming.

Instead we have decided upon an environment whereby
the students encounter the system development stages.
Matlab was chosed as a vehicle for studying design and
code-generation, and a separate tool was used to visual-
ize the effects of non real-time versus real-time schedul-
ing principles.

First, the students simulate a simplified model for one
robot arm and a servo motor steering the arm in one
dimension. Then they add servo controllers for other di-
mensions, a (pre-prepared) path generator and a super-
visor for detecting end-positions. ;From this extended
model, C code is generated using Matlab’s automatic
code generator.

The approach taken has enabled the creation of an ap-
pealing, intuitive environment. Students do not have to
master complex real-time systems and tools' for com-
pleting the exercise. The goal is to focus entirely on real-
time aspects of the exercise. However, before getting to
our ultimate goal some obstacles had (and some still
have) to be removed — namely which operating system
to use as a target platform for Matlab code generation.

4 Developing the excercise environment

Tools such as Matlab/Simulink and MatrixX have code
generation capabilities designed for a varity of different
targets, ranging from Posix compliant real-time kernels
through rather raw machines (PC/DOS and DSP’s) in
which multi-threading has to be simulated or imple-
mented by the code generator, down to what is con-
sidered non real-time machines (such as Unix, Win-
dows etc.) where the purpose is to speed up a simula-

'The students have been using the Matlab/Simulink sys-

tem prior to this course, and the extra part needed for gen-
erating C code is the activation of one button.

tion. Regardless of target system, the code generation
is designed to implement the same overall behaviour (as
specified by the model) regardless of the chosen target.
This is, however, only true as long as computational
resources are not exceeded.

4.1 Selecting a real-Time operating system

Matlab was choosen as the excercise environment since
the university holds a site license and since the students
are already familiar with the tool. Matlab’s Real Time
Workshop (RTW) [4] has built in support to generate
code for several targets. They also provide an interface
to a “general real-time” target, to be used as a basis for
porting the code generator to new targets. The Unix
system is considered a non real-time target, although
many of the available Unix variants claim to have a
posix compliant real-time part. The majority of the
machines available for our students at our department
are running such a Unix system?.

In our case the choice of target system boiled down to
a choice between buying a few special target machines
(a bottle-neck situation with any decent sized group of
students) or to try to utilise the real-time capabilities
available on our Unix machines. Buying special tar-
get machines, e.g., VxWorks platforms from Windriver,
would provide us with a good set of tools for manipulat-
ing the Matlab model under execution and tools to mon-
itor the real-time behaviour on the remote target (Wx-
Works/Tornado), showing detailed information about
e.g., task switches and semaphore usage. On the other
hand, we already had a tool for visualizing the tasking
behaviour of our Unix machines. So, we opted for the
more generic, lower cost and lower development time
option. We decided to try out the real-time scheduling
classes available, using our own process logging facility.

4.2 Executing a Matlab/Simulink model

The Simulink model created in Matlab consists of a set
of function blocks, where output from one block is fed
through “wires” to one or several other blocks. Nor-
mally these models describe a continuous system, but it
is also possible to describe purely discrete systems (e.g.,
sampling controllers) as well as mixed systems. When a
system is discrete with several different sampling rates
it is called a multi-rate system, and the only restric-
tion on such systems imposed by matlab is that all the
rates must be a multiple of all slower rates. In a mixed
continuous and multi-rate system, the continuous part
is executed together with the fastest sampled discrete
part.

2The SunOS version 5.6

4.3 Porting to a new target

Porting the C-code generator for a new target is al-
most only a question of renaming the primitives used for
spawning threads, manipulating semaphores and man-
aging interrupts. Where and how to do this is well doc-
umented [4]. Converting a time-sharing based Unix sys-
tem running in a network environment into a real-time
target does, however, require some extra attention.

The SunOS we are using is equipped with not only one
scheduler, but a set of schedulers implementing different
scheduling policies (called scheduling classes). Sched-
ulers are loaded into the OS when required, and it is pos-
sible to write and add new schedulers. Our machines are
equiped with three different schedulers; time-sharing,
interactive and real-time. The difference between the
time-sharing and the interactive is minor, the interac-
tive is a slightly different tuned version of time-sharing
where the nice value (a sort of priority) is manipulated
by the window system in order to achieve faster response
for the application which has the user’s attention. The
real-time (RT) scheduler, on the other hand, operates
strictly priority-based. High priority tasks allways in-
terrupt tasks with lower priority, and all non RT-tasks
have lower priority than any RT-task. If an RT-task en-
ters an infinite loop, the entire Unix machine will hang.
Thus, superuser privilages are required to put a task
into an RT scheduling class. Once a task is running in
RT-mode, all tasks spawned from that task inherit the
RT capabilities, and no special privilages are required
to change priority of a task within the RT-class.

The SunOS does, however, create a few extra tasks for
some internal management duties as soon as a second
task is created in a program. Thus, it became impor-
tant for the main program to start off as a low priority
RT-task, spawning tasks for the different sampling pe-
riods and thereby also the internal management task at
the same low priority. These new tasks start by raising
their own priority to a level appropriate to the sam-
pling rate, and the main program would finally raise its
own priority one step above the priority of the fastest
sampling task.

4.4 Visualizing the real-time execution

The C code generated by Matlab’s automatic code gen-
erator has been instrumented to provide logging of
thread related system events, and the resulting program
is parameterized with what scheduling policy to use.
Every time a task is activated, preempted or restarted
the timing information is recorded for later use. Finally,
the log is viewed post-mortem, and the effect of the se-
lected policy is presented graphically. Figure 1 shows
a screen dump for a part of the log of a typical student
session.

5 The resulting excercise

The resulting excercise is presented on the course web-
page [7]. First, the students simulate a simplified model
for one arm and a servo motor steering the arm in one
dimension. Then they add servo controllers for other di-
mensions, a (pre-prepared) path generator and a super-
visor for detecting end-positions. These modules were
specified to run with different periodicity (the arm mod-
els being fastest at a rate of 200Hz, followed by the three
controllers at 100Hz and the path generator at 50Hz).

(From this extended model, C code is generated using
Matlab’s automatic code generator. The execution of
the model with the chosed parameters results in data
for the particular run, and the students are asked to
examine the log, ponder on irregularities, detect missed
deadlines, etc. The lab-time saved not producing all the
code is hopefully spent on reflecting on the techniques
used. Deeper understanding is expected through “what-
if” questions in interaction with the lab assistant for the
course.

The main robot example is run twice: once in the non-
RT Unix mode and again in the RT-mode, comparing
and explaining the differences. To facilitate generation
of alternative scenarios which involve significant CPU
usage, the Matlab model is also instrumented with spe-
cial “heavy computation” blocks with a parameterised
absolute execution time.

6 Conclusions and future developments

The decision to rely on models, code generation and
analysis tools for the exercise was taken in order to con-
centrate on study of real-time behaviour of processes.
This requires a predictable run-time environment. Non-
real-time tasks must not be allowed to interfere with
real-time tasks. Although SUN’s operating system is
supposed to guarantee this, the actual behaviour ob-
served suggests otherwise. Run-time results differ some-
what from machine to machine. There is also a big vari-
ance over time. A possible explanation is that there is
interference from network traffic, device drivers or other
system tasks. Directing all interrupts, except for timer
interrupts, to a special dedicated task with low prior-
ity might be a way to overcome some delays in future
versions of this excercise.

Due to above problems, the predictable run-time envi-
ronment required for an exercise in real-time computing
is not yet realised. This fact does of course limit the
instructive value of the exercise and causes frustration
among students and supervisors — but a side-effect is
that it demonstrates the importance of predictability in
real-time computing.

- | Log Tool
Quit Help
RTELock
EBaseRate
ERat e
ERatal
ERatad
ERatad
L e I L I L L L I O I B L |
_| RTClock L . 210 { . 220 L .
]] B
_| tBaseRate —
s = s L=
_I tRatel S—
_| tRatez
_I tRate3 —
_| tRated
Raws |‘-«.| 1 -
thread t {ms) wotx ictx event comment
tRatel 210.2 124 60 SEMA_AOUIRE retunon from SEMA WALIT Tasksemal
tRatel 211.4 124 E0 COMMERT Heawn computation {~1 ms)
tRatel 212.7 124 E0 COMMENRT 5till computing heawiln. . .
tRatel 213.8 124 El EWSPERLED
t: time in ms from start of program
witi: number of wolentarp context switches
ictx: nwomber of invwolentarp context switches .rf
|

Figure 1: Window from a typical student session, examining the real-time behaviour of processes.

6.1 Results and evaluations

Despite the problems encountered, the theme as a whole
is well regarded among students and feedback in the
first year was expressed in terms like: ”The lab is very
instructive, but it is irritating with all the extra work
created due to non-predictable system behaviour”.

We believe the separation of programming and real-time
aspects, allowing students to concentrate on real-time
issues is one contributing factor why the course fares
relatively well in evaluations. However, in later years
we have noted a tendency among the students to con-
sider the labs as “not so demanding”. It seems that the
seemless integration with the automatic control part,
the lectures, and the group discussion of real-time cases
provides insights early in the studies, so that the extra
insight gained from the labs is getting less over time.
However, as mentioned earlier, since the course has only
been run three times our statistical data is still fairly
limited.

As far as topic integration is concerned, one can say
that it works very well (supported by student evalu-
ations). This is one of the themes where theory and
practice, and topics from two different institutions work
well together. The written examination usually includes
one large example reflecting both real-time and control
theory aspects (e.g. distributed control in a car, au-

tonomous helicopter, automatic drilling machine, CD
player head drive). The pass rates and the numbers of
top marks are higher than what we have for existing
separate courses (despite the fact that the scheduling
theory covered in this theme is more advanced, and the
questions are sometimes more demanding).

We have also studied the pass rates for the labs com-
pared to our course given for other programmes (consid-
ering all the involved labs here and the labs used in the
traditional course). Compared to the traditional course
(not PBL, no integration) we find a marked difference
over three years. Between 88% and 100% of the stu-
dents in this programme have passed their labs within
a 3 month period after finishing the course (different %’s
for different years). For the traditional course the com-
parative pass rate is 47% to 72%. We believe the stu-
dents’ conception of responsibilty, fostered by the PBL
approach, and their motivation within this programme
is a strong factor behind the measured result.

6.2 Generalisation to other settings

The aspects discussed in this paper can be of interest to
other educators for several reasons. Our work, as well as
the work in other parts of this programme, can serve to
illustrate a successful attempt at incorporation of PBL
into engineering educational programmes, where the fo-
cus is lifted from narrowing down into one area up to

integration of topics within an applicative setting. The
price to pay is a little less room for each topic (specially
since all themes here are obligatory and no electives).
We have shown how to use the limited time and still
not to lose the knowledge content. Reader interested in
this broader area may also consult a comparative study
of the student preferences and choices in two (content-
wise) similar programmes, one with a traditional peda-
gogical approach, another with PBL [6].

Another interest may arise from the experience we
gained in setting up a laboratory environment using
standard equipment, standard operating system and
normal educational network configuration — still finding
a way to exhibit the interesting aspects of computation
(with respect to real-time). This might inspire other ed-
ucators to use standard settings in non-standard ways.

References

[1]

[2]

[4]

[5]

[6]

[7]

Association for Computing Machinery. Com-
puting Curricula 2001, Strawman report.
http://www.computer.org/education/cc2001,
March 2000.

Web page for Swedish Council for the Renewal
of Undergraduate Education,financed projects:
http://hgur.hsv.se/activities/projects
/financed projects/f-j/ingemarsson_ingemar.htm,

November 2000.

L. Wilkerson and W. Gijselaers (Eds.). Bring-
ing Problem-Based Learning to Higher Education.
Theory and Practice. San Fransisco, Jossey Bass
Publishers, 1996.

Math Works Inc. Real-time Workshop, version 2,
User’s Guide. infomathworks.com, 1997.

S. Nadjm-Tehrani. Towards Real-Time Systems
Education with PBL. In Proc. 2nd Int. Work-
shop on Real-Time Systems Education, pages 39—
48. IEEE Computer Society Press, 1997.

S. Nadjm-Tehrani and L. Strémbéck. Study of
educational preferences in computer engineering
education. In proceedings of second interna-
tional conference on Problem-Based Learning
in higher education, page 32. Linkoping Uni-
versity, September 2000. Extended abstract
and more information currently appears on
http://www.ida.liu.se/"snt/teaching.html,
under NOT Project.

The Information Technology programme. 6th Term
information page (in swedish). Available from
http://www.control.isy.liu.se/student/ttit62/,
1999-00.

