Layered Specification of Intelligent Agents

Paul Scerri, Johan Ydrén and Nancy Reed

Department of Computer and Information Science
Linkdping University, SE-581 83 LinkOping, Sweden

pausc@ida.liu.se johan.ydren@meridium.se nanre@ida.liu.se

Abstract. Interactive simulation environments with large numbers of
intelligent agents are becoming increasingly common. In general, knowl-
edge of precisely what agents should do in the environment is not an
agent developer’s area of expertise, rather it is a domain expert’s exper-
tise. In this paper we present an approach to specifying agents that takes
advantage of the domain expert’s knowledge where possible, but still allo-
cates difficult programming tasks to expert programmers. In particular,
the task of specifying agent behavior is layered and tasks are allocated
according to the relative amounts of programming and domain exper-
tise required for each one. Results are presented for an implementation
of the technique for RoboCup players. An interesting benefit of the lay-
ered specification we observed was that an efficient, parallel development
approach emerged.

1 Introduction

Interactive simulation environments with large numbers of intelligent agents are
becoming increasingly common. Such simulation environments often have agents
playing the roles of humans within the simulation [17]. Examples of this type
of environment are military simulations [16, 8], training [1], computer games [4]
and RoboCup [10]. In general, knowledge of precisely what agents should do in
such environments is not an agent developer’s area of expertise, rather it is a
domain expert’s expertise. It follows that it is desirable to have domain experts
as closely involved in the development of the agents as possible. Unfortunately
in general, domain experts will not also be programming experts, rather they
will be average computer users, i.e. they know what the agents should do but not
necessarily how to get the agent to do the job. Easy-to-use specification tools
are necessary for allowing domain experts to directly specify the behavior of the
agents.

The ideal situation would be to have domain experts directly specifying all
agent behavior using an off-the-shelf environment. Unfortunately that is a diffi-
cult, and perhaps unrealistic goal, take a smaller step we take an approach to
agent specification which combines the desirability of non-expert agent specifi-
cation with the practical limitation that programming agents is hard [3].

In particular we propose that the task of specifying an agent be broken into
layers where the more difficult-to-program parts are assigned to expert program-
mers who are provided with appropriate expert programming tools, while the

domain knowledge intensive aspects of specifying the agent are assigned to do-
main experts with easy to use tools. In particular, agent expertise is required for
specifying low level skills, an intermediate level of agent programming experience
is required for developing individual strategies and primarily domain experience
is required for specifying scenarios. Figure 1 illustrates this idea.

Scenarios

Individual
Strategy

Skill

Freguency of Change
Domain Expertise
asiuedx3g weby

Fig. 1. The relative frequency of change and level of expertise needed in three abstract
levels of the agent specification process.

At each layer of the design, a different tradeoff can be made in the specifica-
tion tools between expressive power and ease of use. At the skill layer, expressive
power is the major concern, at the individual strategy layer, both expressive
power and ease of use have equal weight. Finally at the scenario specification
level, ease of use takes precedence. Ideally no tradeoffs would be necessary but
in reality they are required. Our approach is to acknowledge that tradeoffs will
be made and to make them intelligently.

Many researchers have explored the idea of how to create agents composed
of multiple layers. Usually the layers are selected to be appropriate to the kinds
of agent reasoning required at different levels of abstraction (e.g. [7,12]). In this
paper we take a slightly different view on layering, i.e. we look at layering from
the perspective of the specification tools a designer uses to specify agents. When
separating an agent specification into layers, emphasis is on providing appro-
priate specification tools rather than on an appropriate runtime architecture
(although clearly this cannot be ignored.)

Skill specifications need to be available to be used in the individual strat-
egy layer and individual strategy specifications made available in the scenario
specification. In effect, in the lower layers building blocks are specified which are
used as the basis of specifications at the next layer. A critical aspect of making
the layered approach work is that the building blocks exported from one layer
support a good specification process at the next layer.

The precise types of tools required for each specification layer will vary de-
pending on the agent’s destination environment. For some environments the
specification tools will need to support formal verification, while for other en-
vironments supporting rapid prototyping or enabling specification of physical
distribution of the agents will be critical. The particular layering breakdown

presented here is tailored to a specific type of domain with the following char-
acteristics:

— There exists a large amount of expert domain knowledge that is not general
knowledge, e.g. how to fly a combat aircraft or soccer strategies.

— At higher levels of abstraction the required agent behavior changes more
often than at lower levels of abstraction.

— A relatively large number of similar agents are immersed in the same envi-
ronment.

— Reasonably “intelligent” performance is expected of the actors. E.g. if the
agents have only very simple strategies then the individual strategy layer
may be superfluous.

Despite the apparently strong constraints listed above on the domains, a wide
range of entertainment and training applications do meet these requirements.
Furthermore, it should be straightforward to adapt the ideas to use with other
types of applications.

For RoboCup 1999, we developed a layered specification system for a simu-
lation team called the Headless Chickens IIT (HCIII) [14]. Low-level skills were
written in Java, the individual strategies were created with a graphical system
for developing behavior-based agents and the team strategies were built using a
team-level strategy editor based on the idea of a coach’s white board.

Three important observations were made while using this system. Firstly, af-
ter an initial start up time development was able to proceed at each layer almost
completely in parallel. Secondly, the rapid scenario development system allowed
extremely rapid, yet dramatic and effective, changing of team behavior. This
enabled us to quickly adapt the HCIII strategy for different opponents during
the 1999 World Cup. Finally, the runtime architecture layers were found to be
relatively interchangeable. In fact for the 2000 RoboCup World Cup, the team
scenario specification environment is being reused with two different individual
strategy and skill runtime architectures (in different teams) and specification
tools.

2 Layered Development Model

When beginning to develop agents for a new domain, appropriate development
tools must first be designed/selected. Some analysis of the domain will need
to be done to establish what properties the tools and resulting agents should
have. The specific specification tools chosen for each development level depend
on the requirements of the domain, e.g. reactive agent or formal verification.
An important constraint is that the tools must export a specification in a form
that the layer above can interpret. Once the tools are designed (or in practice
probably simultaneously) a mapping to a runtime architecture needs to be devel-
oped. Next, skills, individual strategies and scenarios are developed and tested
in parallel. There will be significant feedback between the specification layers,
especially early on, but over time the bulk of the work will be centered in the

! Once per domain ! For each scenario .
| ! Specify ’N@dback
scenarios
Design Find ' l Feedback
specification [appropriate =T Createsmple — Createsimple — — Testing/
layers architectures 3 skills individual strat. Improve Use
strategies
@ _/
| Feedback Feedback
- Feedback
Parallel — | Improve =
development skills

Fig. 2. The agent development process.

scenario specification tool. Ideally a stable set of skills and a library of individual
strategies will be developed and most effort will go into creating and modifying
scenarios, hence most work will become the domain expert’s sole responsibility.
See Figure 2 for an overview of the proposed development process.

At the skill layer the basic abilities of the agents are defined. For example
in the air-combat domain skills would involve basic maneuvers such as landing
and ground-avoidance. The individual strategies will be developed with a speci-
fication tool tailored to the type of agents required in the domain, e.g. a tool for
specifying reactive rules or a tool for specifying sequences of actions. The indi-
vidual strategies use the skills as their basic building blocks. For the air-combat
domain individual strategies may include different flying formations and differ-
ent opponent engagement strategies. Finally, at the top level, entire scenarios
potentially consisting of many agents, or simply a particular “mission” for one
agent, are defined. The scenario level strategies should be specified in an envi-
ronment particularly suited to the domain and matching the domain expert’s
ways of explaining strategies.

Notice that the layering breakdown refers only to divisions in the tool sup-
port, not to where the layers in the runtime agent will be. The runtime archi-
tecture of the agent may not be layered in the same way as the tools (or not
layered at all). The tools may simply be different ways of specifying things for
the same runtime architecture or, map to possibly a seven layer architecture.
The HCIII mapped the three specification layers to two runtime layers (see Fig-
ure 3) while Headless Chickens IV (HCIV — our RoboCup 2000 entry) maps to
a single runtime layer. Although in the actual agent the same layered structure
may not exist, it is important to preserve the illusion that it does for the benefit
of the user of the specification tools. The usability of the tools will decrease if,
for example, at the scenario specification level the designer needed to consider
how the compilation process for the upper two layers works.

2.1 Skills

Skills are simple, self-contained pieces of agent functionality. Examples of skills
include landing for aircraft simulation and dribbling for RoboCup players. From

Specification tools ; Runtime architecture

Scenario
Specification
L Behavior based
Compilation Architecture
Uses -
Individual
Strategies
1 Uses
sills 1
Compilation
-
H Skills

! |

Environment

Fig. 8. An example mapping between specification tools and the agent architecture.

the perspective of the user of higher specification layers a skill is turned on and
continuously attempts to achieve some simple task until being turned off.

The skills of agents are not expected to change much over the lifetime of the
simulation or to vary from scenario to scenario. For example the way a pilot
lands his aircraft is fairly independent of the mission in which he was involved.
As the skills will often be fairly complex control routines, low level general pur-
pose languages and associated general purpose programming environments will
often be well suited. Furthermore in many simulation environments at low lev-
els of abstraction a domain expert’s knowledge may not be relevant due to the
design of the agent to environment interface. For example the interface between
a RoboCup player and the SoccerServer for a kick is a string “kick power direc-
tion” which makes the domain experts knowledge of muscle movements required
to dribble quite irrelevant. Likewise, the particular movements of the control
stick to land an aircraft are probably not relevant when specifying the skill for
a simulated pilot to land a simulated aircraft.

Because of the relative infrequency of the required changes to the skills and
the difficulty in encoding the knowledge it is reasonable that expert programmers
be employed to create efficient, robust skills using languages and tools most
appropriate for the task. The specification tools at the skill layer should support
an expert programmer in efficiently defining skills. The emphasis in the tool
should be on providing an effective means for specifying a low level skill in a
machine interpretable format.

HCIIT skills were written in Java, i.e. they were completely in the realm of
an expert programmer. Most skills were parameterized by a field position, for
example the position to kick to, dribble to or run toward.

2.2 Individual Strategies

The individual strategies are the abstract behaviors of a single agent. For exam-
ple in air combat simulation an individual strategy may be a certain opponent
engagement strategy. As a whole the individual strategies of the agent define
a sort of agent “template” which will be instantiated for a particular scenario.
From the perspective of the user of the scenario specification layer individual
strategies are the abstract, parameterizable behaviors that the agent has at its
disposal. Some mechanism needs to be developed that allows the team level strat-
egy editor to use the individual strategy “templates” and to allow the individual
strategy editor to use the skills.

For the purposes of the scenario specification layer the behaviors will be
atomic. The individual strategies of an agent will change more often and more
markedly over the lifetime of the simulation than will the agent’s skills. On the
other hand, for the targeted domains, the individual strategies will change less
often than the scenarios. For example in RoboCup, an individual’s strategy for
marking another player will change infrequently, while the skill of dribbling will
almost never change and the team formation (i.e. scenario) will change the most
often. Because of the slightly higher rate of change, and more importantly be-
cause there is more domain knowledge relevant to individual strategies, domain
experts need to be closely involved in specifying individual strategies. However
because of the potential complexity of the strategies the problem of encoding the
strategies will often not be possible by a domain expert alone (at least with the
current state of the art). When designing tools for specifying individual strate-
gies, a tradeoff between ease of use and expressive power should be made more
towards the side of ease of use than for skills, though more towards expressive
power than for scenarios.

For HCIII individual strategies are specified in a graphical editor — no code
needs to be written. The tool allows relatively fast development of fairly com-
plex behavior-based agents. However the complex concepts underlying these sys-
tems mean that the average end-user (i.e. domain expert) cannot do significant
development work unassisted. To allow the team level specification system to
“understand” individual strategies a simple “language” is embedded into the
specification system (for HCIV this interface is in XML). When a team level
strategy is created, the behavior specification is “compiled” into separate play-
ers, i.e the scenario and individual strategies are combined together into a single
runtime layer (see [14] for details).

2.3 Scenario Specification

The scenario specification tool is the most important of the specification tools.
Over the lifetime of the agents it is the scenario specification system that will

be used the most often. The scenario specification is used to design the high
level “organizations” or “missions” of the agents. For example in RoboCup it is
used to specify team formations and tactics, in air-combat simulation it is used
to specify missions and for computer games to specify the initial positions and
movements of the “characters”.

At the scenario specification system’s high level of abstraction expert knowl-
edge is crucial — even more so than for the lower levels. The scenario specification
tool should support the expert in their job of developing appropriate behavior
for the application. There is a subtle but important difference between the design
emphasis for the scenario specification tool and the lower level tools. At lower
levels the specification tools were chosen or designed to simplify the designers
task of translating their knowledge into a computer understandable format. At
the scenario level there is far more experimentation, iteration etc., so the empha-
sis moves from providing means to effectively encode well understood activities
to creatively creating specialized scenarios. In particular it is desirable that a
scenario specification system have the following characteristics:

— A specification method that allows domain experts, rather than system ex-
perts, to interact easily with the system.

— A specification method that is natural to the domain expert. Most desirable
is to draw on explanation methods from the domain for inspiration.

— Very rapid development abilities.

To integrate with the rest of the system the scenario specification tool needs
to be able to “understand” the templates provided by the individual strategy
tool. Additionally it needs to instantiate the provided templates into specialized
agents in some way.

The scenario specification system of HCIII is based on the idea of a coach’s
white board, as shown in Figure 4. In other words we took a medium for ex-
pressing strategies that a domain expert was used to using and attempted to
reproduce that medium in the computer. The “white board” provides different
panels for each of the modes of play that the agents know about. The known
modes are determined by looking for a special keyword in the agent template
(imported from the individual strategy specification tool). The domain expert
(i-e. a soccer coach) places the players, represented by circles, on a diagram of
the ground and then indicates directions they should dribble and pass in each of
their modes. The tool allows coaches to express strategies in a way that they are
used to as well as encouraging creativity and experimentation. For the RoboCup
domain there was a clear real-world analogy between the white board and the
specification system. For other domains the scenario specification method may
appear much different. For example air-combat tactics may be written as a set
of responses to possible situations, using a specification system styled after they
way tactics are normally written down.

StratEditor

; W;%ﬂ
<D |1
N -
\ =
=z

Fig. 4. A screen shot of a defensive team formation in the HCIII scenario editor.

3 Discussion

Developing a layered model like the one described in this paper will often require
significant development effort for a new domain. For example, the development
of the team strategy editor for HCIII was far from a trivial exercise. However
in the RoboCup case it was decided the complexity of designing team strategies
and the advantages to be gained by being able to quickly change strategies out-
weighed the extra effort required. This will not always be the case for a domain.
Sometimes the relative simplicity or infrequency of creating scenarios will not
justify the development time of a scenario editor. In all cases, the significant
cost of creating domain specific, easy-to-use scenario specification environments
can be largely offset by the removal of the expert programmer from the scenario
design and testing loop.

A number of specification environments allow specification across a very
broad range of abstraction levels, i.e. skill through scenario, e.g. [13,5]. Such
a specification means that the “artificial” breakdown into layers of our layered
model need not be made. This in turn avoids some potentially inelegant designs
forced by the layering. On the other hand using the one specification environ-
ment for all aspects of development means that the same tradeoffs between ease
of use and expressive power exist at all levels. Layering allows tradeoffs to be
made on the basis of the type of specification to be done at a particular specifica-
tion level. For example more flexible and complex low level (and hence generally
harder to use) tools are advocated for skills while easy-to-use (and hence less
flexible) tools are used for scenario specification. If the same tool is used across
all levels, the same tradeoff must be made across all levels perhaps resulting

in lack of expressive power at the lower levels (e.g. AgentSheets [13]) and/or
undesirably low usability at higher levels (e.g. dMars [5]).

Some development environments, such as JACK [9] and AgentBuilder [15],
provide different mechanisms for specifying individual and team behavior. How-
ever, unlike in the tool specification editor presented here, the tools provided for
specification of team behavior in both Jack and AgentBuilder require an solid
understanding of programming and of agents. However for the types of domains
and applications these tools target, e.g. integrating legacy systems in an intel-
ligent way, this is a perfectly reasonable design decision as the domain ezpert
in this case is a programmer! If the tools were targeted to domains where the
domain experts were not computer experts a different approach would probably
need to be taken.

In layered agent architectures, such as 3T [2] and Raps [6], agents usually
have three or four architectural styles in different layers at runtime. The rationale
is much the same as the rationale for layered specification tools, i.e. to provide
appropriate tools for the job at different layers of abstraction. In the case of
tools the job is specification, in the case of agent architectures the job is action
selection. However specification layering is not simply a translation of the lay-
ered idea from the computational side of agent development to the specification
tool side. Firstly most layered architectures predefine the structure of the layers
before examining the domain, i.e. general layered architectures are developed
then applied to a particular domain. On the other hand our model advocates
selection/development of tools based on the requirements of the domain. By an-
alyzing the domain before choosing the layers the appropriateness of the overall
system to the domain is likely to be better. The improved suitability comes at
the cost of having to build new tools for each domain. Secondly, the layers for
layered agent architectures exist both at design time and at runtime, whereas
for layered specification the layering may only exist at design time. For example
in the RoboCup system presented here the scenario specification and individual
strategies are compiled together so there exists only two layers at runtime.

The abstract model was used to develop a team that competed in the 1999
RoboCup World cup and finished 5th out of 35 teams. However it was not the
quality of the agent behavior that was interesting rather the development process
used to create the team. In the last weeks leading up to the competition there
were three separate “groups” working almost completely in parallel to develop
HCIIIL. One expert programmer worked at the lowest level of abstraction con-
stantly trying to improve the skills of the team. Another programmer worked on
the individual strategies of players. Finally, a group of students, who joined the
project in the last months worked exclusively on the team strategies. Whenever
significant improvements were made in either the skills or individual strategies
the changes were passed to the team strategy group.

Feedback down levels of abstraction occurred frequently. Usually feedback
from the team to individual player to the skill layer was in the form of comments
like “Players need to be more keen to shoot when around the goal” or “They don’t
follow the ball far enough from their position”. Feedback from the individual

strategies to the skills was usually something like “Can we make them shoot
harder” or “They should look in the area where we tell them to pass to make the
pass hit, rather than just kicking to the exact point”. The critically important
factor of the development process was that all specification layers could work
easily in parallel allowing a large team to work relatively independently yet still
effectively.

Although the RoboCup implementation of the layered model was successful
and useful it was at least partially due to the characteristics of the domain
and the specifics of the architectures chosen, rather than just a good model.
All layers, both on the specification and runtime side, were very reactive. The
reactiveness allowed layers to “make decisions” independently of previous actions
drastically simplifying specification system design. Even more critically it made
the interfaces between the tools, e.g. the way a skill specification was imported
into the individual specification tool, simple to design and build. The reactive
nature of the layers also meant that the only communication between layers was
in the form of the upper laying setting the new group of behaviors or skill at
the next layer down — the environment being used to provide feedback about
the effects of that action. The design of scenarios which involve communication
protocols may be fundamentally more difficult and not possible for genuine end
users.

4 Conclusion and Future Work

Experience with RoboCup using an instantiation of the specification model pre-
sented here supports the idea that layering the specification task provides bene-
fits with respect to other specification methods. In particular appropriate tools
were available at the different levels to make the specification task as easy as
possible. A further, somewhat surprising, result was that the layering led to a
very efficient and practically desirable development process.

There seem to be a variety of other domains/environments where such an
approach to designing specification tools would be appropriate. MissionLab [11],
for example, successfully uses a similar layered structure for specifying multi-
robot missions. Hopefully more agent designers will consider layered specification
approaches when examining possibilities for deploying agents in new domains.

Acknowledgments

This work is supported by Saab Corporation, Operational Analysis Division, the
Swedish National Board for Industrial and Technical Development (NUTEK)
under grants IK1P-97-09677, IK1P-98-06280 and IKIP-99-6166, and the Center
for Industrial Information Technology (CENIIT) under grant 99.7.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

R. Bindiganavale, W. Schuller, J. Allbeck, N. Badler, A. Joshi, and M. Palmer.
Dynamically altering agent behaviors using natural language instructions. In Pro-
ceedings of Fourth International Conference on Autonomous Agents, 2000.

R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack. Experiences
with an architecture for intelligent reactive agents. Journal of Ezperimental and
theorectical Artificial intelligence, 9(1), 1997.

J. Bradshaw, M. Greaves, H. Holmback, T. Karygiannis, W. Jansen, B. Silver-
man, and Alex Wong. Agents for the masses. IEEFE Intelligent Systems and their
applications, 14(2):53-63, 1999.

Johanna Bryson. Creativity by design: A character based approach to creating
creative play. In AISB Symposium on Al and Creativity in Entertainment, 1999.
M. d’Inveron, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMars. Technical report, Australian Artificial Intelligence Institute, Melbourne,
Australia, November 1997.

James Firby. Task networks for controlling continuous processes. In Proceedings
of the Second International Conference on AI Planning Systems, June 1994.
Erann Gat. On three layered architectures. Online Publication, May 1997.

R. Hill, J. Gratch, and P. Rosenbloom. Flexible group behavior: Virtual comman-
ders for synthetic battlespaces. In Proceedings of Fourth International Conference
on Autonomous Agents, 2000.

A. Hodgson, R. Ronnquist, and P. Busetta. Specification of coordinated agent
behavior (the SimpleTeam approach). Technical report, Agent Oriented Software,
2000. http://www.agent-software.com/.

Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, and et. al. RoboCup: A challenge
problem for AI. AI Magazine, 18(1):73-85, Spring 1997.

Douglas MacKenzie. A design methodology for the configuration of behavior-based
mobile robots. PhD thesis, Georgia Institute of Technology, 1996.

K. Pfleger and Barbara Hayes-Roth. Using abstract plans to guide behavior. Tech-
nical Report KSL-98-02, Knowledge Systems Laboratory, Stanford, Jan 1998.
Alexander Repenning and Andri Ioannidou. Behavior processors: Layers between
end-users and java virtual machines. In Proceedings of VL’97, Capri, Italy, Septem-
ber 1997.

Paul Scerri and Johan Ydrén. RoboCup-99: Robot Soccer World Cup III, chapter
End User Specification of RoboCup Teams. Springer, 1999.

Reticular Systems. Agent builder: An integrated toolkit for constructing intelligent
software agents. Technical report, 2000. http://www.agentbuilder.com.

M. Tambe, K. Schwamb, and P. Rosenbloom. Constraints and design choices in
building intelligent pilots for simulated aircraft. In AAAI Spring symposium on
”Lessons Learned from implemented software architectures for phyiscal agents”,
1995.

Milind Tambe, W. Lewis Johnson, Randolph Jones, Frank Koss, John Laird, Paul
Rosenbloom, and Karl Schwamb. Intelligent agents for interactive simulation en-
vironments. AI Magazine, 16(1):15-39, Spring 1995.

