Creating Complex Actors with EASE

Paul Scerri
Dept. of Computer and Information Science
Link6éping University, SE-58183 Linkdping

pausc@ida.liu.se

ABSTRACT

This paper presents a system called EASE (End-user Actor
Specification Environment) that provides tools and methods
to support end-user development of intelligent actors. The
tools support the whole development process from design to
testing. An EASE actor is a multi-agent system where a
process of contract making and negotiation between agents
determines the actions of the actor.

1. OVERVIEW OF EASE

Drawing on previous work [4, 5, 7] this paper presents a sys-
tem that is intended to reduce the effort involved in actor
development. EASE is a group of tools and an associated
methodology for the development of complex, intelligent ac-
tors. In particular the system is intended to represent the
first step toward putting actor development capabilities into
the hands of the domain experts. By providing structure and
support for a simple, rapid development process along with
an accessible actor architecture, EASE provides the basis
for end-user development of actors.

Within EASE an actor specification consists of a hierarchy
of agents where each agent is responsible for some aspect of
the overall actor’s behavior. Each agent tries to accomplish
only it’s specific task and is hence fairly simple. Agents at
lower levels in the hierarchy perform parts of behaviors for
agents above them. At runtime an actor’s specification is
turned into a multi-agent system where overall actor behav-
ior is determined by a continuous process of contract making
and negotiation between agents. Agents at the bottom of
the hierarchy negotiate amongst themselves over the actual
output of the actor.

On top of the multi-agent actor architecture EASE enforces
a methodology for actor development that covers all stages
of development, from design through to reuse. The tools
have been designed to make development easy by providing
a completely graphical environment and reuse easy by en-
forcing strict modularity. Integrated tool support exists for

To appear in the Forth International Conference on Autonomous Agents,
June, 2000, Barcelona, Spain.

Nancy E. Reed
Dept. of Computer and Information Science
Linkdping University, SE-58183 Linkdping

nanre@ida.liu.se

quickly inspecting and debugging actors at runtime. The
development aids in EASE combined with an underlying
powerful agent runtime engine allow relatively inexperienced
users to create useful actors for complex simulation environ-
ments.

The initial target domain for this system is simulated air-
craft pilots. The TACSI air-combat simulator [1], developed
at Saab AB, is used for both training of human pilots and
testing of new systems. In this domain new actor behavior
is often required and it is desirable that the engineers and
pilot trainers that actually use the simulator can define the
behavior. The pilot actors need to appear to be intelligent
and act realistically in a very complex environment. The ac-
tuators for the actor, i.e. the aircraft controls, are extremely
complex and allow many degrees of freedom.

2. ACTOR DEVELOPMENT

Reuse Feedback

Task Forest Assign Agents Test Agents ready
Specification to tasks for reuse

Specify
gents

Figure 1: The actor development process

EASE supports the entire development process, as shown
in Figure 1. Many of the development stages are explicitly
supported by tools while for others a methodology is advo-
cated. The development of an actor begins with the design
of tree(s) of tasks and behaviors that describe the overall be-
havior of the actor. The design need not consist of a single
tree but may be a forest of trees. The tops of trees represent
high level abstract behaviors of the actor. Further down the
tree are more specific aspects of the actor’s overall behavior.

The next stage of development is to assign an agent to each
node in the task forest. The agent will be performing the
task assigned to that node. Leaf nodes are called “engineers”
and internal nodes “managers”. Branches between nodes are
replaced by contract specifications. The internal behavior of
the agents enforces the sequencing of tasks. When appropri-
ate agents cannot be found in existing libraries they are cre-
ated in the core of the EASE system, the agent specification
tool shown in Figure 2). To specify an agent the designer
specifies a name, intrinsic priority, environmental priority

function, a state machine for controlling behavior and any
contracts or factory assignments the agent will have.

The state machine for an agent provides the mechanism by
which the decision making of an individual agent is defined.
State transition conditions are defined with a function spec-
ification system. Engineer agents negotiate with a specific
factory (i.e. over a particular degree of freedom) for each
state in the state machine. In contrast, the designer speci-
fies the contracts that manager agents should make in each
state. Specifying a contract consists of selecting which agent
should be contracted and instantiating any parameters as-
sociated with the contracted agent (e.g. the waypoint to fly
toward). Once an actor has been partially or fully specified
it can be tested in the target simulation environment. In
order to support an iterative process of testing and incre-
mentally expanding or improving actor behavior a number
of graphical interfaces display interactively and in real-time
the status of the agent’s reasoning system.

— Agent Specification |-
File
Manager ~ |Mission Control | Activation : Very Active | :'y‘:efm
old a
Priority *__ | Avoid

Fly To WP

A rrived Waypeint

Krrived Waypoint

‘ oK H Cancel || Delete

Figure 2: The Agent Specification subsystem

3. DISCUSSION

Rather than complex, monolithic systems incapable of inter-
acting with the real world, Brooks [2] advocates a behavior-
based approach where the overall behavior of a situated ac-
tor is broken horizontally into smaller pieces of behavior. An
intuitive breakdown of overall actor behavior and a low risk
incremental development process seem possible. For users
unaccustomed to building actors, this paradigm potentially
offers a specification that matches an intuitive breakdown of
the actors’ task. One of the difficulties in creating these sys-
tems has been that subtle interactions between individual
behaviors means that the complexity of adding new behav-
iors to an actor soon becomes overwhelming [3].

Recently a variety of different approaches have been taken to
reduce the complexity of the interactions or, at least provide
methods for allowing developers to handle the complexity
better. The methods either organize behaviors differently,
e.g. [6]or combine the outputs of the behaviors in a different

way, e.g. [8].With the EASE actor architecture we are taking
this trend one step further.

A behavior in a behavior-based system is an agent in EASE.
By elevating behaviors to the status of agents the inter-
actions between behaviors simplify in the same way that
encapsulating objects in other complex systems simplifies
the interactions between subsystems. In effect, using agents
instead of behaviors makes behaviors “active” rather than
passive entities. The interaction between agents can then
be strictly controlled, through contracts and negotiations,
and more easily understood — reducing the complexity of
the effects on overall behavior due to subtle interactions.
The reduction in the amount of subtle interactions between
behaviors should lead to an increase in the level of actor
complexity that a designer can be reasonably expected to
develop.

Both major aspects of EASE, namely the underlying com-
putational engine and the overlying specification process,
have been designed by looking at existing systems and at-
tempting to improve modularity. Our previous experience
suggests that modularity in agent specifications is a key to
scaling up, reducing costs, improving testability and so on.
The intended usage scenario for EASE makes modularity
even more critical. In particular, good modularity should
provide the following desirable properties: 1) rapid proto-
typing, 2) highly complex actors, 3) use by novices, 4) a
good development process, and 5) support for development
teams. Future work is intended to make the system even
more usable by domain experts. EASE is currently begin-
ning testing on site at Saab with simulation experts.

Acknowledgments

This work is supported by Saab AB, Operational Analy-
sis division, NUTEK grants IK1P-97-09677, IK1P-98-06280,
and TK1P-99-6166 and CENIIT grant 99.7.

4. REFERENCES
[1] Saab Military Aircraft. The TACSI users guide.
Technical report GDIO-MI-98:356. 1995. Edition 5.2.

[2] R. Brooks. Intelligence without representation.
Artificial intelligence journal, 47:139-159, 1991.

[3] J. Bryson. Agent architectures as object oriented
design. In M. Singh, editor, ATAL ’97. Springer, 1998.

[4] N. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development.
Autonomous agents and MAS, 1:275-306, 1998.

[6] H. Nwana. A perspective on software agents research.
Knowledge Engineering Review, 1999.

[6] L. E. Parker. Alliance: An architecture for fault
tolerant multi-robot cooperation. IEEE RA, 14(2),
1998.

[7] M. Wooldrige and N. Jennings. Pitfalls of agent
oriented development. In Agents ’98, 1998.

[8] J. Yen and N. Pfluger. A fuzzy logic based extension
to Payton and Rosenblatt’s command fusion method
for mobile robot navigation. IEEE SMC, 25(6), 1995.

