
On semantics and correctness of reactive

rule-based programs

Man Lin1?, Jacek Malec2??, Simin Nadjm-Tehrani1

1 Department of Computer and Information Science
Link�oping University

S{581 83 Link�oping, Sweden
linma,jam,snt@ida.liu.se

2 Department of Computer Engineering
M�alardalens H�ogskola

Box 883, S{721 23 V�aster�as, Sweden

Abstract. The rule-based paradigm for knowledge representation ap-
pears in many disguises within computer science. In this paper we address
special issues which arise when the rule-based programming paradigm
is employed in the development of reactive systems. We begin by pre-
senting a rule-based language RL which has emerged while developing
intelligent cruise control systems. We de�ne a desired declarative se-
mantics and correctness criteria for rule-based programs which respect
causality, synchrony assumption and desired determinism. Two alterna-
tive approaches are proposed to analyze RL programs. Both approaches
build upon static checks of a rule-based program. In the �rst approach
we accept programs which are correct with respect to a constructive se-
mantics while in the second approach, a strati�cation check is imposed.
The combination of rules and reactive behaviour, together with a formal
analysis of this behaviour is the main contribution of our work.

1 Overview

The rule-based paradigm for knowledge representation appears in many dis-
guises within computer science. Language issues related to this paradigm appear
in production systems [3], parallel program design (e.g. Unity [2]), default rea-
soning within AI [9], logic programming [1], rewriting [7], active and deductive
databases [4], and logics for action and change [15].

Our work combines results from the three areas of rule-based knowledge rep-
resentation, reactive systems [11, 6], and programming language semantics. The
combination of rules and reactive behaviour, together with a formal analysis of
this behaviour is thus the main contribution of our work. Di�erent approaches

? Man Lin has been supported by TFR (Swedish Research Council for Engineering
Sciences) and WITAS (the Wallenberg laboratory for research on Information Tech-
nology and Autonomous Systems).

?? Jacek Malec has been partially supported by M�alardalens Real-Time Research Center
(MRTC).

for speci�cation of real-time and reactive systems range over automata-based,
temporal logics, Petri nets, action systems, and process algebras. In our view a
rule-based language with a formal semantics shares the bene�ts of these speci�-
cation languages. In addition, it has a special appeal: it mimics the natural mode
of reasoning by humans in many applications. Therefore, it can be considered as
a powerful tool for capturing expert knowledge and formally analyzing it. More-
over, rules can be executed and can therefore be seen as both a speci�cation and
a programming language.

The synchronous family of high-level programming languages [5] for real-time
systems (Lustre, Esterel, Signal) share the above characteristic. They too can
be used both for capturing high level design and as executable code. Though
very di�erent in syntax and style of programming, adding reactiveness to our
rules leads to formal semantics which is reminiscent of a couple of the proposed
semantics for Statecharts [14], and Esterel [13].

2 Rules and Reactiveness

A reactive rule-based system (illustrated in Figure 1) is a system that reacts
to the changes of its environment continuously [12]. Such a system is composed
of three entities called state, rules, and inference engine. The state consists
of slots : state variables, with associated pairs of values indicating the previous

and the current value of the slot, respectively. During a period when no changes
happen (equilibrium period, EP), the two values of a slot are identical. At a point
when there is a change (a stimulus comes from the environment), the current
value of some slot becomes updated. We call such a moment an asynchronous

computational point (ACP). At each ACP, the stimulus triggers one or more
rules, producing new changes in the slots, which in turn trigger other rules,
and so on. This is continued until no changes are possible, i.e. a steady state is
reached. Then the system starts "resting" in its new EP, awaiting new stimuli.
The inference engine is in charge of the computations at the ACPs.

rules

state

inference
engine

stimuli
responses

Fig. 1. A reactive rule-based system.

The rule language RL (syntax can be found in the appendix) is developed to
express responses of the system at each ACP. The language has been successfully
used for developing a reactive application: a driver-support system [10].

The rules in an RL program have an event-condition-action form, e.g.:

WHEN A *= a IF (B *= b AND NOT E |= e) THEN D := d;

read as \When A changes to a then if B changes simultaneously to b and E has
not been e then D obtains value d". The WHEN part: A *= a is called the trigger

part of the rule, the IF part: (B *= b AND NOT E |= e) is called the condition

part of the rule, and the THEN part D := d is called the assignment part of the
rule. The trigger part and the condition part together are called the precondition
of the rule. The characteristics of this language are:

{ The meaning of a reactive program is independent of the ordering of the
rules (in case of larger systems rule ordering is a cumbersome and error-prone
process; the semantics of such programs is unclear and easy to distort). In
our approach a program can be enhanced by simply adding new rules to the
existing rule base;

{ The language assumes �nite domains for variables (c.f. datalog) allowing a
�nite model;

{ The language allows the logical operations, negation and conjunction;
{ The language allows for taking account of concurrent events (in the example
rule events A *= a and B *= b occur simultaneously);

{ The language models time ow without introducing metric time (E |= e

checks if \E has had value e before", while E *= e checks if \E has changed
to value e");

A rule responds to external stimuli at a given state by checking whether
the rule is enabled at the current state, and �ring the rule (performing the
assignments) if so is the case.

A stimulus to a system, denoted as I , is a set of changes which are (slot,
value) pairs. A state of a rule-based system is a pair (S;C) where S contains
the values of all the variables (slots), and C contains the set of changes. We use
Sx to denote the value of x in the latest EP. During an EP, S is the same and
C = ;. At an ACP, S is the same as S in the previous EP and C contains the
changes occurring at this ACP including the external stimuli and the changes
derived as the result of the assignments of the enabled rules.

A rule r being enabled at a state (S;C) is denoted by (S;C) ` r. A rule r
being not enabled at a state (S;C) is denoted by (S;C) 6` r. To check whether
(S;C) ` r, we only need to check if all the primitive preconditions of rule r

are satis�ed at (S;C). By primitive precondition, we mean positive condition
including X |= v (was), X *= v (changes to), or negative condition including
NOT X |= v (was not), NOT X *= v (does not change to). The trigger part of
a rule contains only one primitive condition X *= v , while the condition part
of a rule can be a conjunction of primitive conditions. We de�ne ` for rules by
�rst de�ning ` for primitive conditions of rules, here delimited by [].

{ (S;C) ` [x|=v] i� Sx = v;
{ (S;C) ` [x*=v] i� Sx 6= v and hx; vi 2 C;
{ negation (NOT) and conjunction (AND) are interpreted as standard logical
connectives. That is:
� (S;C) ` [NOT p] where p is any positive primitive i� not (S;C) ` p.
� (S;C) ` [p1 AND p2] where p1 and p2 are primitive preconditions i�
(S;C) ` p1 and (S;C) ` p2.

{ (S;C) 6` r i� not (S;C) ` r.

Let's look at a simple example. Suppose x, y, and z are the three slots of the
system. Let Sx = 0, Sy = 0, Sz = 0 and C = I = fhx; 1ig. Program P1 contains
only one rule r1:

r1: WHEN x *= 1 IF y |= 0 THEN z := 1;

Rule r1 is enabled at (S;C) since hx; 1i 2 C and Sy = 0. The e�ect of �ring this
rule is to assign 1 to z. Therefore, the set of changes becomes C1 = fhx; 1i; hz; 1ig.

Let's consider another program P2 containing only r2 with the same (S;C):

r2: WHEN z *= 1 IF y |= 0 THEN y := 1;

Rule r2 is not enabled at (S;C) since hz; 1i 62 C. Therefore, the set of changes
is still fhx; 1ig.

If an RL program contains several rules, then the response of the system at
each ACP may no longer be only one (or zero) �ring of rule. There could be
several rule �rings some of which are caused by others.

3 Synchrony Assumption and Causality

One might ask why the responses only occur at ACPs. The fundamental as-
sumption taken here is the synchrony assumption: each response is assumed to
be synchronous with the e�ects it causes. This assumption is realistic if the re-
sponses of the system are fast enough so that the environment does not change
during the responses (which should be checked in practice). The e�ects of the
execution of one component are instantly broadcast to all the other components
of the system. Therefore, all the components of the system have the same view
of the system state.

The smallest component of an RL program is one single rule. If several rules
get �red at the same ACP, then all the rule �rings are considered to occur at
the same time. We don't care how the rule �rings are done step by step if only
synchrony requirement is considered. What is interesting is only the result of the
response. The result of a response at (S; I) is a stable state (S;C 0) and a set of
�red rules Rf where:

{ C 0 is the result of �ring all the rules in Rf at the given initial state (S; I).
Let Ar denote the assignments of rule r. Then

C 0 =
[

r2Rf

Ar [I:

(S;C 0) is seen as the state after the response.
{ Rf is the maximal set of rules that are enabled at state (S;C 0). First, all the
rules in Rf are enabled at (S;C 0). Second, no other rules not belonging to
Rf are enabled at (S;C 0).

However, we would like to retain causality which is a very important property
for a reasoning system. The principle of causality requires that any change issued
should have a sequence of (enabled) rule �rings leading to it. The following exam-
ple shows a causal reasoning. By composing earlier programs P1 and P2, we get a
new program P3 which contains two rules: r1 and r2. One can infer that both r1

and r2 are �red and the new set of changes becomes C3 = fhx; 1i; hy; 1i; hz; 1ig.
The reasoning is simple. Since r1 is enabled at (S; I), r1 is �red and the e�ect:
the change hz; 1i is instantaneously broadcast. The system state becomes (S;C1)
where C1 = fhx; 1i; hz; 1ig. Since r2 is enabled at (S;C1), r2 is also �red and
results in the �nal set of changes C3.

For the above example, C 0 = C3 and Rf = fr1; r2g. The synchrony require-
ment is also satis�ed since C3 = I [Ar1 [Ar2, and r1 and r2 are the only rules
enabled at (S;C3).

However, not all the responses respect both synchrony hypothesis and the
principle of causality. Let's look at two examples.

Given S where Sx = 0; Sy = 0; Sz = 0, I = fhy; 1ig and a program with two
rules r3 and r4, what are the �nal state and the �red rule set?

r3: WHEN x *= 1 IF y |= 0 THEN z := 1;

r4: WHEN z *= 1 IF y |= 0 THEN x := 1;

There are two solutions which satisfy the synchrony requirement. One is C 0 = I

and Rf = ;. The other is C 0 = fhy; 1i; hx; 1i; hz; 1ig and Rf = fr3; r4g. The
problem with the second solution is that without the �ring of r4, r3 can not get
�red. The same is for r4: without the �ring of r3, r4 can not get �red. The result
is self-triggered. Or, in other words, it is not causal since we can not generate
this �nal result via a causal sequence of rule �rings.

The above example shows that not all the responses satisfying synchrony
requirement are causal. Next, we show that not all the causal responses satisfy
the synchrony requirement either.

Suppose (S; I) be Sx = 0; Sy = 0; Sz = 0, I = fhy; 1ig, and a program be as
follows.

r5: WHEN y *= 1 IF NOT x *= 1 THEN z := 1;

r6: WHEN y *= 1 IF x |= 0 THEN x := 1;

A causal rule �ring sequence is r5 followed by r6 which results in
C 0 = fhy; 1i; hx; 1i; hz; 1ig. The problem is that r5 is not enabled at (S;C 0) which
violates the synchrony requirement.

4 Other Requirements

As we deal with variables, one important requirement is not to assign di�erent
values to the same variable at the same ACP. Another requirement is that there

should be only one �nal result at each ACP. This requirement is understood as
observable determinism.

Next, we provide a desired semantics de�nition for a response which respects
the synchrony hypothesis, the principle of causality and the above requirements.

5 Declarative Semantics

De�nition 1. Suppose R is the set of rules of a program P . The declarative

response of the program P in a state (S; I) is any sequence of �rings

�0�1 : : :

such that

{ �0 = (C0; R
f
0)=(I; ;),

{ �i+1 = (Ci+1; R
f
i+1)

=

8<
:
(Ci [Arf ; R

f
i [frfg) where rf 2 R=frjr 2 R nRf

i ^ (S;Ci) ` rg
if R 6= ;

�i if R = ;

2

In the de�nition, each �ring (�i) contains a set of changes (Ci) and a set of �red

rules (Rf
i).

It can be proved that a declarative response has always a �nite length [8].

De�nition 2. Let R be the rule set in a program P . Let a declarative response of
the program in a state (S; ;) to a stimulus I be �0�1 : : : �m. Let �m = (Cm; R

f)
and Rf = fr1; r2; : : : ; rmg: The declarative response is correct if and only if

{ the response is rule-consistent:

8r(r 2 Rf ! (S;Cm) ` r)

that is, none of the rules �red in this response will become disabled after the
�nal �ring;

{ the response is slot-consistent:

8x(hx; v1i 2 Cm ^ hx; v2i 2 Cm ! v1 = v2)

that is, no slot can have more than one change of value in this response;
{ the response is unambiguous: for any other declarative response �0�

0
1 : : : �

0
k

with �0k = (C 0k; R
0f) that is both rule-consistent and slot-consistent, we have

C 0k = Cm. 2

A correct response is the desired response. This semantics is referred to as
declarative semantics. An RL program is correct if and only if it has a correct
response for any possible combination of state and stimuli. Two natural questions
arise:

{ Can we construct an operational semantics to implement the desired declar-
ative semantics?

{ Can we identify the ill-behaved programs during compile time without hav-
ing to generate all the responses for each state-and-stimulus combination?

We will devote the next two sections to answering the above questions.

6 Constructive Semantics

6.1 The semantics

Constructive semantics is an application of the three-valued-logic approach to
non-monotonic reasoning in the setting of reactive systems. It also resembles
the recently proposed semantics for pure Esterel [13]. The main di�erences are
in the structure of programs (rule-based in our case, imperative in the case of
Esterel), and the means of communication (change in slot values in our case, pure
signals/events in Esterel). In what follows we present the constructive semantics.

The constructive semantics needs not only positive information about the
changes of the system, but also negative information about the lack of changes.
In constructive semantics, we deal with extended system state (S;Z) where S
records the values of the slots before the ACP and Z contains a set of annotated
changes where each (slot, value) pair has a annotation indicating the status of
this change. The status is an element from the set f+;�;?g. + is read as positive,
and hx; vi+ means that hx; vi does occur in this ACP; � is read as negative,
and hx; vi� means that the change hx; vi can not possibly occur in this ACP; ?
is read as Unknown, and hx; vi? means that the change of x to v is not present
yet at this point of the computation, but it is not sure whether it will take place
later.

The result of evaluation of a rule is one of the following: True, False or Un-

known instead of only True or False as in 2-valued logic. The evaluation evaluates
a rule to be Unknown if it is not known whether the rule will evaluate to true or
false after this response. More speci�cally, a primitive condition (NOT x *= v)
is evaluated to be True at a state (S;C) if hx; vi does not belong to C when rea-
soning under 2-valued logic, but Unknown in the case of constructive semantics
if hx; vi is not explicitly marked with unchangeable status (positive or negative).

The ordering between the status annotations is

�= f(?;�); (?;+); (?;?); (�;�); (+;+)g:

Let Z;Z 0 be two sets of annotated changes. Z is less informative than Z 0, denoted
Z � Z 0 if and only if

(8hx; via 2 Z)(9a0)(hx; via
0

2 Z 0 ^ a � a0):

Given C, C+ is de�ned as the extension of C where:

C+=fhx; vi+ j hx; vi 2 Cg [fhx; v0i� j hx; vi 2 C ^ v0 6= vg [
[fhx; vi? j 8v0hx; v0i 62 Cg

Symmetrically, given Z, Z� is de�ned as the reduction of Z where:

Z�=fhx; vi j hx; vi+ 2 Zg:

A rule being 3-enabled at an extended state (S;Z) is denoted by (S;Z) `3 r.
A rule being 3-non-enabled at an extended state (S;Z) is denoted by (S;Z) 6`3 r.
(S;Z) `3 r if and only if all the primitive preconditions are evaluated to be
True at (S;Z). (S;Z) 6`3 r if and only if one of the primitive precondition is
evaluated to be False at (S;Z). The evaluation of a primitive condition p at a
given extended state (S;Z) is shown as follows:

{ [x|=v] is True if Sx = v;

[x|=v] is False if Sx 6= v;

{ [x*=v] is True if hx; vi+ 2 Z and Sx 6= v;

[x*=v] is False if hx; vi� 2 Z or Sx = v;

{ [NOT p] is True if p is False; [NOT p] is False if p is True;

{ With the exception of [True], all other primitive conditions are evaluated to
Unknown.

It should be observed that there are intermediate cases when neither (S;Z) `3
r nor (S;Z) 6`3 r is true.

The negative changes are derived by function never. Function never works
iteratively. At each iteration, a negative change is added into the set of annotated
changes. The change added has one of the following characteristics:

{ No rule in the program can issue such change.

{ All the rules that can issue such change are 3-non-enabled at the current
extended state.

When we say adding negative changes or positive changes, we mean updating
the annotation of the (slot, value) pair in the set of annotated changes. This is
done by update function. The annotation can only be changed from ? to +
or �. An attempt to change the status from + to � or vice versa indicates a
symptom of slot-inconsistency. When such situation occurs, the set of annotated
changes returned is an empty set to indicate failure. The formal de�nition for
never and update can be found in [8].

We are now in a position to de�ne an operational semantics.

De�nition 3. Given a program P with a rule set R, an initial system state
(S; ;), and a stimulus I , the constructive response of the program is a sequence

01 : : :

such that

{ 0 = (Z0; ;), where Z0 = never(S; I+; R);

{ i+1 = (Zi+1; R
f
i+1)

=

8>>><
>>>:

(;; Rf
i) if Zi = ;;

(never(S; update(Zi;A+
rf
)); R); Rf

i [frfg) if Zi 6= ; and

rf 2 Ri 6= ;;

(Zi; R
f
i) if Ri = ;;

where Ri = frjr 2 R nRf
i ^ (S;Zi) `3 rg. 2

As we can see, if there exists an un�red rule 3-enabled in the current state,
and no slot-inconsistency occurred in the update of the previous step (Zi 6= ;),
then the current set of annotated changes Zi is updated with positive changes,
and negative changes. The positive changes come either from the external stim-
ulus (step 0) or from the assignments of the selected rule that is 3-enabled at
the current extended state (subsequent steps). The negative changes derived by
never function are those potential negative changes that could be deduced from
the current state. If there is no un�red rule 3-enabled by the current state, then
the procedure returns the same tuple as in the previous step. Finally, if the state
indicates the occurrence of slot-inconsistency (Zi = ;), the procedure returns
the empty set as the new set of annotated changes.

We say that the constructive response terminates at Zm if and only if (Zm =
; and Zm�1 6= Zm)or (Rm = ; and Rm�1 6= ;), that is, a slot-inconsistency
occurs or there is no rule to be selected.

A terminating constructive response is accepted if and only if it terminates at
Zm and Zm 6= ; and (8hx; via 2 Zm)(a 6= ?). That is, an accepted constructive
response terminates normally, meaning that no slot-inconsistency occurs (Zm 6=
;), and the set of annotated changes of its �nal state is complete, meaning that
no change in Zm is marked with ?.

6.2 Properties

It can be proved that given a program P and (S; I), all the constructive responses
reach the same �nal set of annotated changes (the thereom can be found in [8]).

It can also be proved that any accepted constructive response yields a correct
declarative response. In order to prove this, we �rst de�ne a mapping from an
accepted constructive response to a sequence of �rings and then prove that this
sequence is a construction of a declarative response (see [8]). Then, we prove
that this declarative response is a correct one (see theorem Soundness).

De�nition 4. Let CR = 01 : : : m be an accepted constructive response,
where i = hZi; R

f
i i; 0 � i � m. Then

map(CR)=�0; �1; : : : ; �m;

where �i = (Z�i ; R
f
i). 2

Theorem Soundness If DR = map(CR) is a declarative response obtained

from an accepted constructive response CR, then DR is correct. 2

The proof can be found in [8].

The static checker performs an exhaustive check of acceptability of the re-
sponses for all possible states and stimuli. It can be easily proved that that all
the programs passing the constructive check procedure are correct ones with
respect to the desired declarative semantics.

7 Strati�ed Program

Strati�ed program is a well-known notion in logic programming and deductive
databases. It was an early attempt to deal with dependencies between relations
in presence of negation. The �xpoint computation along strata gives this class
of programs a natural semantics. We introduce the idea of strati�cation into
reactive rule-based systems to achieve rule-consistency. An arbitrary declarative
response is not necessarily rule-consistent since a condition (NOT x *= v) of a
rule r can be disabled by �ring other rules after r, which may generate hx; vi. By
�ring rules in a strati�ed order, this kind of situation can be avoided. Working
with strati�ed rule sets has the following e�ect: every time a rule which has
a condition part including negation over [s*=v] is tested for being enabled, we
can be sure that a rule with an assignment v to s has been �red earlier in the
response (if it is included in the �nal �red rule set of this response at all).

Note, however, that the user needs not explicitly consider these dependen-
cies when introducing rules. The support at compile time is supposed to check
whether such a strati�cation exists. Given a program P and a pair hx; vi, the
de�nition of hx; vi is the set of rules in whose assignment part hx; vi appears.

A strati�ed rule-based program consists of a disjoint set of rules P = P 1 [
: : : [P i [: : : [P k called strata. If a program is strati�able, its strati�cation is
constructed as follows:

{ If a positive pair [x*= v] appears in the trigger part or condition part of a
rule from Pi, then its de�nition is contained within

S
j�i Pj ;

{ If a negative pair [NOT x*=v] appears in the condition part of a rule from
Pi, then its de�nition is contained within

S
j<i Pj .

For a given a strati�ed correct program, the responses generated by such
operational semantics are correct if they are slot-consistent. Unfortunately, for a
strati�ed program this operational semantics does not guarantee slot-consistency.
Strati�cation simply provides a su�cient condition for rule-consistency.

8 Summary

The technical results obtained in our research can be summarized as follows:

{ We have de�ned a rule-based language RL that combines asynchronous in-
teraction with an environment with synchronous treatment of a response.
Time and concurrency are thus dealt with in a simple manner;

{ For this language we have de�ned a declarative semantics which enables a
natural treatment of causality, atomicity, and desired determinism;

{ We have de�ned a correctness criterion for reactive RL programs. A correct
program ensures termination of rule �rings at each reaction, consistency of
the �red rules and a unique reaction for each new set of stimuli to the system;

{ We have de�ned and implemented constructive semantics, based on three-
valued evaluation of rules, that guarantees the correct results of computa-
tions for correct programs;

{ We have developed and implemented a static procedure for checking the
correctness of programs;

{ We have proven soundness of the obtained results;

{ For strati�ed programs we have developed the computational support which
guarantees correctness w.r.t. one particular consistency requirement.

References

1. K. Apt and R. Bol. Logic programming and negation: A survey. Journal of Logic
Programming, 19/20:9{71, 1994.

2. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. MA:
Addison-Wesley, 1988.

3. T. A. Cooper and N. Wogrin. Rule-based Programming with OPS5. Morgan Kauf-
mann Publishers, Inc, 1988.

4. K.R. Dittrich, S. Gatziu, and A. Geppert. The active database management sys-
tems manifesto: A rulebase of ADBMS features. In Timos Sellis, editor, Rules in
Database System. RIDS'95, Springer Verlag, 1995.

5. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

6. D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, volume 13 of NATO ASI Series.
Springer Verlag, 1985.

7. G. Huet. Conuent reductions: Abstract properties and applications to term
rewriting systems. Journal of ACM, 27(4):797{821, 1980.

8. M. Lin. Formal Analysis of Reactive Rule-based Programs. Licentiate thesis,
Link�oping University, 1997. Link�oping Studies in Science and Technology, The-
sis No 643, ISBN 91-7219-030-2, ISSN 0280-7971.

9. W. Lukaszewicz. Non-Monotonic Reasoning. Ellis Horwood, 1990.

10. J. Malec, M. Morin, and U. Palmqvist. Driver support in intelligent autonomous
cruise control. In Proceedings of the IEEE Intelligent Vehicles Symposium'94, pages
160{164, Paris, France, October 1994.

11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

12. M. Morin, S. Nadjm-Tehrani, P. �Osterling, and E. Sandewall. Real-time hierarchi-
cal control. IEEE Software, 9(5):51{57, September 1992.

13. G. Plotkin, C. Stirling, and M. Tofte, editors. Language and Interaction: Essays

in Honour of Robin Milner, chapter The Foundations of Esterel. MIT Press, 1998.
To Appear.

14. A. Pnueli and M. Shalev. What is in a step: On the semantics of Statecharts.
Theoretical Aspects of Computer Software, LNCS, 526:510{584, 1991.

15. E. Sandewall. Features and Fluents, volume 1. Clarendon Press. Oxford, 1994.

A Appendix: Syntax

The syntax for RL is de�ned as follows.

De�nition 5. A rule is a string

WHEN <rtrig> IF <rcond> THEN <rassign>

ful�lling the requirements of the following grammar:

<rtrig> ::= <slot-name> *= <slotval>

<slotval> ::= <ident>

<rcond> ::= <rcond> AND <rliteral>

| <rliteral>

| TRUE

<rliteral> ::= NOT <rliteral>

| <slot-name> *= <slotval>

| <slot-name> |= <slotval>

<rassign> ::= <assignment> | { <assignment-list> }

<assignment-list> ::= <assignment> | <assignment-list> , <assignment>

<assignment> ::= <slot-name> := <slotval>

<slot-name> ::= <ident>

where <ident> denotes an identi�er. 2

This article was processed using the LATEX macro package with LLNCS style

