
Assured Selection
— A Relaxed Concurrency

Control Mechanism

Supervisor: Esa Falkenroth, Nancy E. Reed, Anders Törne
Examiner: Nancy E. Reed, Anders Törne

© Cinzia Foglietta

LINKÖPINGS UNIVERSITET

ISBN 91-XXXX-XXX-X ISSN 0280-7971
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPING UNIVERSITY

COPYRIGHT © 1997 XXXXX XXXXXXX

Ai
Miei Cari Genitori

Gino e Lorenza

 Univerisita’ degli Studi di Pisa
 Facolta’ di Scienze Matematiche Fisiche e Naturali

Corso di Laurea in Scienze dell’Informazione

 Anno Accademico 1998/99

 Tesi di laurea

 Assured Selection
 — A Relaxed Concurrency
 Control Mechanism

Il Candidato
Cinzia Foglietta

Il Relatore
Ch.mo prof. Maurizio Bonuccelli

Il Controrelatore
Ch.mo/ma prof.ssa

Sommario

Le tecniche di mutua esclusione sono tradizionalmente appli-
cate in ambienti a dati condivisi per evitare inconsistenze
quando processi in esecuzione concorrente accedono simultanea-
mente alle risorse comuni. Benche’ tali tecniche siano efficaci,
riducono il parallelismo durante l’esecuzione concorrente.

Assured Selection e’ un meccanismo alternativo e ottimistico
per il controllo della concorrenza basato sulla gestione di
eccezioni. Questo meccanismo non mira ad evitare inconsist-

enze dei dati condivisi, invece rileva e risolve eventuali conflitti
solo dopo l’occorrenza.

Quando la probabilita’ di conflitto e’ ridotta e il costo per il
rilevamento e la gestione delle inconsistenze e’ contenuto,
Assured Selection aumenta il parallelismo rispetto alle tecniche
di mutua esclusione tradizionali.

Questa tesi studia la semantica di Assured Selection. In
aggiunta, prova la validita’ del nuovo meccanismo attraverso
risultati sperimentali e analisi teorica.

Abstract

Mutual exclusion techniques are traditionally applied in shared
data environments to avoid inconsistencies when concurrent
executing tasks simultaneously access common data. Although
these techniques are effective, they reduce the parallelism of
concurrent execution.

Assured Selection is an alternative optimistic mechanism for
concurrency control based on exception handling. This mecha-
nism is not aimed at avoiding inconsistencies on the shared
data, instead detects and solves any corruptions after they have
occurred.

When the probability of conflict is low and the overhead for
the corruption detection and handling is small, Assured Selec-
tion improves parallelism compared with traditional mutual
exclusion techniques.

This thesis investigates the semantics of Assured Selection.
Furthermore, it proves the validity of the new mechanism
through experimental results and a theoretical analysis.

Acknowledgements

I wish to express my deep and sincere gratitude to all who have
provided invaluable discussions, advice and support throughout
the genesis of the thesis.

I am especially thankful to my supervisor Esa Falkenroth for
the idea of the thesis and for his many valuable comments, dis-
cussions, arguments and criticism.

Next, I wish to thank Nancy E. Reed and Asmus Pandikow for
their valuable suggestions, comments and corrections while
writing the report.

Thanks also to Anders Törne and all the other members of
Real Time System Laboratory for providing me with a collegial
atmosphere and a cooperative research environment in which to
work.

Finally, I wish to thank my family and my dear friends Marco,
Mustapha, Algirdas, Sonia, Anna, Ulf, Emanuela, Deborah and
Mahmood for their moral suppor and the many encouraging
words.

Thanks a lot to all of you!

Cinzia Foglietta

Contents

Abstract

Acknowledgements

11 Introduction

17 Background and Related
Work

31 The Problem

43 Approach and Current
State of Assured Selection

55 The Task

63 Solutions for Assured
Selection

89 Semantic issues for VPQB
AS

113 Implementation and
Experimental Results

137 Evaluations of Perform-
ance

155 Concluding Remarks

161 Further work
13

CHAPTER
14

15

CHAPTER
16

INTRODUCTION
Chapter 1
Introduction

This chapter gives a short summary of the thesis and provides a
description of the task. Next, it describes the state before the
investigation and the audience intended for the report. Finally,
it explains the report outline.

1.1 Summary of the Thesis
Monitors, semaphores and conditional critical regions are
mutual exclusion techniques traditionally used in shared data
systems for concurrency control. They avoid corruptions of
shared data during concurrent access by serializing the task’s
access to the data. Although this serialization prevents corrup-
tions, it also restricts parallelism in the concurrent execution
since it forces the tasks into unproductive waiting.

An alternative approach for concurrency control is to allow
tasks to operate simultaneously on the shared data, avoiding
serialization during the concurrent access. However, since con-
sistency might not be preserved, the idea is to detect possible
17

CHAPTER 1
corruptions afterwards and recover from them through excep-
tion handling.

Under the optimistic assumption of rare corruptions and hav-
ing low overhead for corruption detection and handling, the
result is an improvement of parallelism.

This Master’s thesis investigates a concurrency control tech-
nique based on the approach mentioned above. The thesis stud-
ies issues related to the semantic definition of the new
technique, analysing semantic choices and alternative solutions.
Moreover, the mechanism studied is tested and validated
through practical implementation. Lastly, it is compared with
monitors through a theoretical analysis.

The results of the analysis prove that the new mechanism
improves parallelism compared to traditional mutual exclusion
techniques. However, this only holds when the probability of cor-
ruptions on the shared data is low. As the number of corruptions
grows the benefits are lost and then traditional mutual exclu-
sion techniques provide better performance. This suggests the
combination of both the new technique and traditional ones for a
more flexible and complete solution. An accurate evaluation of
the possible conflicts on the shared data is needed to determine
which technique is most efficient for each situation.

1.2 The Task and its Genesis
The idea for this Master’s thesis emerged from a case study for a
manufacturing control system investigated in the RTSLAB
(Real Time Systems Laboratory) at Linköping University in
Sweden.

The case study showed the necessity of avoiding concurrency
problems when concurrent tasks simultaneously access shared
resources. Due to the reduced probability of corruption on
shared data, the use of mutual exclusion techniques could intro-
duce unproductive delays in the concurrent execution reducing
18

INTRODUCTION
the parallelism of the tasks. This lead to the idea of Assured
Selection (AS) an alternative approach for concurrency control
based on exception handling.

The task of this Master’s thesis is to further develop and
define the idea of AS as a mechanism for concurrency control.

The proposal includes the following work:

 • Investigation of choices, strategies and alternative solutions
to define the semantics of AS.

 • Validation of the approach through implementation and sim-
ulation.

 • Evaluation of parallelism with AS as compared to mutual
exclusion techniques.

 • Specification of the benefits and limitations of the new mech-
anism.

A more detailed description of the task and the organization of
the work done is presented in Chapter 5.

1.3 State Before the Investigation
AS was conceived to improve the parallelism in common
resources systems during concurrent access to shared data. The
idea is to reduce the strictness of locking during the concurrent
access, allowing multiple processes to read and update the com-
mon data simultaneously. Although the parallelism is improved,
conflicts can occur because of the relaxed locking, corrupting the
common data. Inconsistencies are automatically monitored and
subsequently solved using exception handling. The reader
should refer to Sections 4.1 and 4.2 for further details about the
current state of AS.
19

CHAPTER 1
1.4 Audience
This report is aimed at designers and implementers of program-
ming languages and concurrent systems where time is a critical
issue. The report is intended for this audience because it defines
the semantics for a new concurrency control technique. Moreo-
ver, it discusses the benefits of using the new technique when
the number of corruptions on the shared data is limited. Finally,
the experimental results with an implementation show the
validity of the new mechanism and its easy integration in a con-
current programming language.

It is assumed that readers are familiar with high-level
sequential and concurrent programming and concurrency
issues. The specific background needed to understand the report
is presented in Chapter 2.

1.5 Report Outline
This section gives information about the organization of the
report.

Chapter 1 gives a short summary of the work done for the
thesis. It also describes the task of the thesis, the state before
the investigation and the audience for the report. Finally, it
explains how the report is organized.

Chapter 2 introduces the background information needed to
understand the thesis. At first, a short description of sequential
and concurrent processes is given. Next, the mutual exclusion
problem and the techniques traditionally applied to solve it are
described. Then, concepts of exception handling and error recov-
ery are introduced. Finally, the relation with the thesis is dis-
cussed.

Chapter 3 describes the problem of reduced parallelism when
semaphores, conditional critical regions and monitors are
applied for concurrency control. Moreover, it defines the meas-
20

INTRODUCTION
ures used to evaluate delays and parallelism in concurrent sys-
tems.

Chapter 4 introduces Assured Selection (AS) as a new opti-
mistic approach for concurrency control and describes the cur-
rent state of its semantics. In addition, it mentions issues to be
investigated for a complete definition of AS.

Chapter 5 presents and analyses the task of the Master’s the-
sis project. Moreover, it explains choices made during the organ-
ization of the work and it introduces the requirements to be
fulfilled during the investigation of AS. Lastly, it describes the
restrictions made to the task.

Chapter 6 discusses possible semantics of AS. It provides a
detailed classification of alternative solutions for AS and
explains their semantics. In addition, it compares these solu-
tions, selecting the one which best meets the requirements
introduced in chapter 5.

Chapter 7 investigates further semantic issues of the solu-
tion selected in chapter 6, completing its definition.

Chapters 8 reports the experience of implementing AS. In
particular, first it introduces the CAMOS system. CAMOS is the
implementation environment in which the solution studied for
AS has been integrated and tested. Next, it describes how AS
has been integrated in CAMOS and presents some details of the
implementation. Finally, it explains how the implemented solu-
tion has been tested and its performance evaluated in a case
study.

Chapter 9 provides a theoretical evaluation of the perform-
ance of AS, not related with the implementation. The evaluation
compares AS and monitors through a theoretical analysis.

Chapter 10 discusses the advantages and limitations of AS.
Next, it explains the contribution given by the thesis to the
existing idea of AS. Finally, it provides a summary of the thesis.

Chapter 12 examines unresolved issues and suggests future
investigations.
21

CHAPTER 1
22

BACKGROUND AND RELATED WORK
Chapter 2
Background and

Related Work

This chapter presents the theory and the background informa-
tion necessary to understand the following chapters. First, it
introduces the concept of sequential processes. Next, it explains
the use of mutual exclusion techniques in shared data systems
to coordinate the activities of concurrent cooperating processes.
Moreover, it introduces exception handling and error recovery.
Readers familiar with these background concepts may continue
reading the last section of this chapter where the relation
between the background information and the thesis is
explained.

2.1 The Notion of Process
A sequential process is the thread of control of the program dur-
ing execution. It starts when the first instruction of the program
is processed and continues in sequential fashion executing one
instruction at the time.
23

Two or more sequential processes may be associated with the
same program, since they are considered two separate execution
sequences. The path through the program may differ due to var-
iations in input data but for any particular execution of the pro-
gram there is only one path.

As a process executes, it changes state. The state of a process is
defined by the current activity of that process. The diagram in
Figure 2.1 shows the states that a sequential process reaches
during its execution.

Figure 2.1: Diagram of process states [Sil94]

 • New: the process is being created.
 • Running: Instructions are being executed.
 • Waiting: the process is waiting for some event to occur.
 • Ready: The process is waiting to be assigned to a processor.
 • Terminated: The process has finished execution.

During its execution, a process can create new processes. The
creating process is called the parent process, whereas the new
processes are called children of that process. When a process cre-
ates child processes, two possibilities exist in terms of execution:

New

Ready Running

Terminated

Waiting

 • The parent continues to execute concurrently with its chil-
dren.

 • The parent waits until some or all its children have termi-
nated.

Figure 2.2 shows a tree structure of parent processes and their
children.

Figure 2.2: Tree of processes

A process terminates under the following circumstances:

 • Completion of execution of the process body.
 • Suicide, by execution of a "self-terminate" statement.
 • Abortion, through the explicit action of another process.
 • Occurrence of an unrecoverable error condition.
 • When no longer needed.

Processes assumed to execute non-terminating loops, never ter-
minate.

A parent process may terminate the execution of one of its
children for a variety of reasons, such as:

 • The child has exceeded its usage of some resources it has

root

parent2 parent3parent1

child1,1 child1,2 child2,1 child3,1 child3,2
25

CHAPTER 2
been allocated.
 • The task assigned to the child is no longer required.

In addition when a parent process terminates, all its children
are forced to terminate as well, or alternatively a parent cannot
terminate before its child processes have terminated. The rea-
son is that a parent process has usually a supervisor role during
the execution of the children.

2.2 Concurrent Executing Processes
Concurrent programming languages all incorporate the notion
of processes. A concurrent program can be seen as a collection of
sequential processes that logically execute in parallel. The term
concurrent refers to the potential parallelism.

Concurrent processes may be either independent or cooperat-
ing processes. Any independent process executes without affect-
ing or being affected by other processes. In contrast, a
cooperating process interacts with other concurrent processes. A
process that shares data with other processes is an example of a
cooperating process.

Cooperating processes need to communicate with each other
during the concurrent execution. This can be done, using either
shared variables or message passing. Shared variables are
objects that more than one process has access to. Communica-
tion can therefore take place through these variables. Message
passing is another means of communication. It involves the
explicit exchange of data between two processes by means of a
message that passes from one process to the other via some
agency. In this thesis, only communication through shared vari-
ables will be considered.
26

BACKGROUND AND RELATED WORK
2.3 Mutual Exclusion
Shared variables are a straightforward way of passing informa-
tion between concurrent cooperating processes. However, their
unrestricted use is unreliable and unsafe due to the multiple
update problem. This section describes the mutual exclusion
problem, consequence of the simultaneous access of processes to
shared variables. Moreover, it presents the mechanisms tradi-
tionally applied to solve it.

Consider two processes updating a shared variable, X, with
the assignment:

X := X + 1

On most hardware this will not be executed as an indivisible
(atomic) operation but will be implemented in three distinct
instructions:

(1) Load the value of X into some register
(2) Increment the value in the register by 1
(3) Store the value in the register back to X

As the three operations are not indivisible, two processes simul-
taneously updating the variable could follow an interleaving
that would produce an incorrect result. For example, if X was
originally 5, the two processes could each load 5 into their regis-
ters, increment and then store 6.

A sequence of statements that must be executed indivisibly to
prevent incorrect interleaving is called critical section. The syn-
chronization method required to protect a critical section is
known as mutual exclusion.

Critical regions, semaphores and monitors are examples of
mutual exclusion mechanisms that guarantee the indivisible
execution of a critical section and thereby the consistency of
shared data. The following subsections give a short overview of
these mechanisms, further details can be found in [Sil94],
[Bur97], [Law92] and [Tho98].
27

CHAPTER 2
2.3.1 SEMAPHORES

A semaphore S is an integer variable that, apart from initializa-
tion, is accessed only through two standard atomic operations:
wait and signal. The semantics for these operations is as follows:

 • Wait(S): If the value of the semaphore S is greater than zero,
then decrement its value by one; otherwise delay the process
until S is greater than zero and then decrement its value.

 • Signal(S): Increment the value of the semaphore S by one.

Wait and Signal are atomic operations. Therefore, two processes
executing at the same time wait or signal on the same sema-
phore, cannot interfere with each other.

Mutual exclusion can be easily programmed using sema-
phores as shown with the following example:

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

process P1;
loop
wait (mutex);

<critical section>
signal (mutex);
<non-critical section>

end
end P1;

process P2;
loop
wait (mutex);

<critical section>
signal (mutex);
<non-critical section>

end
end P2;
28

BACKGROUND AND RELATED WORK
If P1 and P2 are in contention, then they will execute their wait
statements simultaneously. However, as wait is atomic, one
process will complete execution of this statement before the
other begins. One process will execute a wait(mutex) with
mutex=1, which will allow that process to proceed into its criti-
cal section and set mutex to 0; the other process will execute
wait(mutex) with mutex=0, and be delayed. Once the first proc-
ess has exited its critical section, it will signal(mutex). This will
cause the semaphore to become 1 again and allow the second
process to enter its critical section (and once more set mutex to
0).

With a wait/signal bracket around a section of code, the initial
value of the semaphore will restrict the maximum amount of
concurrent execution of the code. If the initial value is 0, no proc-
esses will ever enter; if it is 1 then a single process may enter
(that is, mutual exclusion); for values greater than 1, the
number of allowed process corresponds to the value.

2.3.2 CONDITIONAL CRITICAL REGIONS

A critical region is a section of code that needs guaranteed
mutual exclusion. Variables that must be protected from concur-
rent usage are grouped together into named regions and are
tagged as resources. Processes are prohibited from entering a
critical region in which another process is already active. A
Boolean guard governs the access to a region. When a process
wishes to enter a critical region, it evaluates the guard (under
mutual exclusion); if the guard evaluates true, it may enter, but
if it is false, the process is suspended and the execution is
delayed. Suspended processes must then re-evaluate their
guard every time a process naming that resource leaves the crit-
ical region.

To explain the use of conditional critical regions, an example
follows with two processes, one writing and the other reading
characters from a bounded buffer.
29

CHAPTER 2
Program buffer_example;
type buffer_t is record

slots : array (1..N) of characters;
size : integer range 0..N;

end record;

buffer : buffer_t

resource buf : buffer;

process writer;
...
loop
region buf when buffer.siz e < N do
--- place char in buffer ---
end region;

...
end loop;

end;

process reader;
...
loop
region buf when buffer.siz e > 0 do
--- take char from buffer ---

end region;
...
end loop;

end;
end;

The writer or the reader process accesses the shared resource
buf in mutual exclusion and only if the correspondent guard to
the critical region is satisfied. If it is false, the process is sus-
pended (releasing the mutual exclusion on the shared resource
buf) until this condition becomes true.
30

BACKGROUND AND RELATED WORK
2.3.3 MONITORS

A monitor is a high-level data structure that collects critical
regions in the form of procedures. Processes invoke these proce-
dures, with appropriate arguments, when they wish to gain
access to a shared resource. Only one process is granted access
to the shared resource at a time; thus the procedures of the mon-
itor are executed in mutual exclusion. The following code shows
the general structure of a monitor.

Monitor MONITORNAME;
(* declaration of local data *)

procedure PROCNAME (parameter list);
begin
(* procedure body *)

end

(* declaration of other local procedures *)

begin

(* initialization data *)

end;

The monitor contains a declaration of local data, which is the
data to be shared or control information concerning access to a
shared resource. The procedures that can manipulate shared
resources are then declared with appropriate parameter lists.
The body of the monitor is executed at the beginning and pro-
vides any necessary initialization of the shared resource. Once
initialized, processes can invoke the procedures (that are so-
called entry points) of the monitor, passing actual parameters.
The invocation of a monitor procedure can be done as follows:

MONITORNAME.PROCNAME (actual parameters)
31

CHAPTER 2
The use of monitors makes the programming of mutual exclu-
sion more flexible and less errors prone compared to semaphores
or conditional critical regions.

2.4 Exception Handling and Exception Handlers
Reliability, safety and fault tolerance are requirements becom-
ing more and more important in computer applications. For this
purpose, exception handling is used to recover from the abnor-
mal conditions that arise when exceptions occur.

After an error has occurred, the exception is first detected.
Next, the process executing the operation that caused the error
is notified. Finally, the notified process tries to solve the prob-
lem. The notification of exceptions is usually referred to as the
raising or signalling of exceptions and the resolution of excep-
tions is referred to as exception handling.

Programming languages supporting exception handling have
additional features in their structure for detection and handling
of exceptions. First, these programming languages declare a
new type of variable called an exception. Moreover, they allow
the raising of exceptions from the points where the exception sit-
uation is detected. Finally, they group the set of statements to be
executed when an exception is raised into modules known as
exception handlers.

The following example shows how exceptions can be declared,
raised and handled in a simple program that calculates the solu-
tion to a quadratic equation:
32

BACKGROUND AND RELATED WORK
Procedure quadratic (a, b, c, r1, r2)
imaginary: exception

d:= b*b - 4*a*c
if d < 0 then raise imaginary endif
r1:= (-b + sqrt (d))/(2*a)
r2:= (-b - sqrt (d))/(2*a)

end procedure

exception handler

imaginary : print 'imaginary roots'

others : print 'fatal error'
raise failure

end exception handler

As soon as an exception is raised, control is transferred to the
corresponding place in the exception handler and the handling
code is executed. The exception handler looks like a case state-
ment, in which each exception is listed. Note that exceptions can
also arise within exception handlers. In the previous example
the exception others rises the exception failure.

During the execution of a program, exceptions can be sig-
nalled from the program itself, from other programs, from the
operating system, or the hardware. Their recovery within the
exception handler may be possible or not.

2.4.1 EXCEPTION PROPAGATION

After the occurrence of an exception, the process which caused
the error is signalled and is in charge of handling the exception.
A particular situation arises when no local handler to the sig-
nalled process is found to handle the exception.
33

CHAPTER 2
One possible solution to this problem is to look for handlers
higher in the chain of caller processes. This is called exception
propagation. A potential problem with exception propagation
occurs when the language requires exceptions to be declared
within a given scope. Under some circumstances, it is possible
for an exception to be propagated outside its scope. However,
there are problems with variable visibility and parameter pass-
ing.

This section provided a short overview about exceptions and
exception handling, further details can be found in [Bur97] and
[Rom97].

2.5 Error Recovery
After an exception is detected and signalled, it is handled in the
exception handler associated with the operation which caused
the exception. Two strategies can be applied for the exception
recovery: backward or forward error recovery.

Forward error recovery attempts to continue from an errone-
ous state by making selective corrections that lead to a new con-
sistent state. Although forward error recovery can be efficient, it
is system specific and depends on the accurate identification of
the location and cause to errors. Examples of forward recovery
techniques include redundant pointers in data structures and
the use of self-correcting codes. An abort facility may also be
required during the recovery process.

Backward error recovery restores the system to a safe state
and the then executes an alternative section of the program. The
point to which a process is restored is called a recovery point. To
establish a recovery point it is necessary to save appropriate sys-
tem-state information at run-time.

Further details about forward and backward error recovery
can be found in [And81], [Cam86] and [Rom97].
34

BACKGROUND AND RELATED WORK
2.6 Resumption, Termination and Signal Models
After an exception has been handled, an important considera-
tion is whether the process that caused the exception should
continue its execution. Three models have been studied to cope
with this problem: the resumption, termination and signal mod-
els. They are briefly explained next.

2.6.1 THE RESUMPTION MODEL

This model can be applied when the exception handler is able to
solve the problem that caused the exception. Once the exception
has recovered, the execution of the operation that caused the
exception can be resumed. The problem with this model is that
errors raised by the run-time environment are often difficult to
repair.

2.6.2 THE TERMINATION MODEL

In this model, when an exception has been raised and the han-
dler called, control does not return to the point where the excep-
tion occurred. Instead, the block or procedure containing the
handler is terminated and control passed to the caller block or
procedure. This usually happens when the exception is not
recoverable in the exception handler.

2.6.3 THE SIGNAL MODEL

This is a hybrid model in which the handler can decide whether
to resume the execution of the operation that caused the excep-
tion or to terminate it. If the handler can recover the exception,
the semantics is the same as in the resumption model. If the
error is not recoverable, the execution of the operation that
caused the exception is terminated and control passes to the
caller block or procedure.
35

CHAPTER 2
2.7 Relation of the Background Notions to the
Thesis

The previous sections of this chapter presented the background
information needed to understand the work presented in this
work. This section explains the connection of these topics to the
thesis.

Notions about processes and their concurrent execution, the
mutual exclusion problem and techniques applied to solve it, are
needed to understand the problem of reduced parallelism with
concurrency control mechanisms (Chapter 3). Moreover, they
are also needed to understand the solutions and semantic
choices for the new mechanism presented in the Chapters 4, 6
and 7 and the comparison with monitors presented in Chapter 9.

Exception handling and error recovery notions are required to
understand how the concurrency control mechanism investi-
gated in this thesis detects and compensates for corruption on
shared data.

Furthermore, semaphores, conditional critical regions and
monitors are also related to the thesis. These techniques and the
new mechanism follow different approaches but all of them are
solutions for the concurrency control problem.
36

THE PROBLEM
Chapter 3
The Problem

This chapter describes the problem of reduced parallelism when
semaphores, conditional critical regions and monitors are
applied for the concurrency control problem. Furthermore, it
defines measures to estimate the parallelism and the delays
which affect the concurrent execution.

3.1 Reduced Parallelism in Concurrent
Systems Sharing Data

In concurrent systems sharing resources, several processes
simultaneously access common data. To ensure both logical and
timing correctness, a concurrency control mechanism is needed
to synchronize the accesses.

Mutual exclusion techniques (monitors, semaphores and criti-
cal regions) are the mechanisms traditionally applied to pre-
serve consistency. They ensure correctness by serializing the
access to the common data. However, they can represent a bot-
tleneck in the system since they limit the parallelism in the con-
current execution.
37

CHAPTER 3
The problem with these techniques is the strictness of the lock
which, during the mutual exclusive access, forces processes to
perform unproductive waiting. In the worst case all the concur-
rent processes try to access the shared data at the same time.
However, only one process at a time obtains the mutual exclu-
sion. The others that are competing to access the resource are
forced to wait.

Delays in the processes’ activities and reduction of the
throughput are the consequences. The delay for each process is
directly proportional to the waiting time before accessing com-
mon data. The decrease of the throughput is inversely propor-
tional to the total delay. When a process locks out other
processes for a long time, the benefits of the concurrency are
lost: concurrent execution becomes serial execution.

Traditional mutual exclusion techniques are pessimistic
approaches to the concurrency control. They avoid conflicts by
serializing the processes access to the shared data even when
several processes could work in parallel without risks of colli-
sions. For example, when the modifications produced by one or
more processes do not introduce corruptions to the others. In
these cases, the use of mutual exclusion techniques is inade-
quate since it delays the concurrent execution even if consist-
ency is preserved. Moreover, the use of these techniques can
introduce problems in systems that cannot tolerate delays in the
processes’ activities or in those ones for which the throughput
has to be guaranteed to stay over a certain limit.

Two examples are introduced in the next sections to illustrate
the reduction of parallelism in the concurrent execution when
mutual exclusion techniques are applied.
38

THE PROBLEM
3.1.1 EXAMPLE NR.1

An integer variable w is shared between a number n of concur-
rent processes The program executed by process
contains the portion of code in Figure 3.1.

Figure 3.1: Portion of code for

Furthermore, if the condition is satisfied, the m opera-
tions in the then branch of the if statement should be executed
under the guarantee that the value of w remains > 8. To avoid
corruptions of the shared variable w during the execution of the
m operations, the access to the variable w has to be synchro-
nized. Using traditional mutual exclusion techniques process

 locks the access to the variable w has shown in Figure 3.2.
Consider a situation in where process starts the execution

of the code in Figure 3.2 while the value of w=10 and the access
to w is not locked by other processes. locks the access to w
and starts the execution of the if statement. Assume now that
another process tries to update the variable w to 9 while
is executing the if statement. Process is blocked until

p1 pn p1

if w>8 then begin

end

operation 1;
operation 2;

.
operation m;

.

.

.

.

.

.

.

p1

w 8>

p1
p1

p1

p2 p1
p2 p1
39

CHAPTER 3
unlocks the access to w. In this case, the blocking of is not
needed. Both and could execute concurrently since the
condition w>8 is satisfied even if the value of w is changed to 9
during the execution of the if statement.

Figure 3.2: Locking the access to w

3.1.2 EXAMPLE NR. 2

A long-running task collects statistical information about all
customers and phone calls in a telecom database. To guarantee
consistency, the long-running task must lock all phone-call
records. This lock will prevent customers from making any calls
while the long-running task executes. To improve the response
time the long-running task may lock the phone-call record one
by one, but then the long-running task may give an incorrect
result since the phone-records may be modified under the dura-
tion of the long-running task.

p2
p1 p2

if w>8 then begin

end

operation 1;
operation 2;

.
operation m;

lock access to w

unlock access to w
.
.
.
.
.

.

.

.

.

40

THE PROBLEM
Therefore, using a coarse-level lock will produce correct statis-
tics but the response time will be unacceptable. Instead, the
alternative where the records are locked one by one will give
acceptable response time but the consistency of the long-run-
ning task will be compromised. Since incorrect data may lead to
serious problems and global locks drastically reduce the inher-
ent parallelism of the control application, none of these solutions
is acceptable.

3.2 Problem Analysis
As explained in the previous section, when mutual exclusion
techniques are applied, they can delay the concurrent execution
and reduce the parallelism. In this section at first the delays
which affect the execution of each concurrent process during the
access to shared resources are estimated. Moreover, the blocking
time which affects the concurrent execution is defined. Finally,
the throughput is defined as a measure of the parallelism.

3.2.1 SINGLE-ACCESS DELAY, SINGLE-RESOURCE DELAY AND
TOTAL DELAY OF CONCURRENT EXECUTING PROCESSES

Critical regions, semaphores and monitors serialize the access to
shared data. Only the process which accesses the common
resource first, obtain the mutual exclusion and is allowed to use
the resource. All the others which try to access later are instead
queued and wait till the mutual exclusion is released. Further-
more, when the resource is unlocked one queued process at a
time in FIFO order obtains the mutual exclusive access on the
common resource. The delay which affects each concurrent proc-
ess during the access to common data can be estimated and
expressed in term of the Single-Access Delay, Single-Resource
Delay and Total Delay.
41

CHAPTER 3
Consider a concurrent system with common resources and
processes, and assume that the time for the processes’ sched-

uling is infinitely fast compared to the time needed to use the
shared resources. The Single-Access Delay (SAD) of a concurrent
process is the time has to wait before it obtains the
mutual exclusive access to the resource during the access .
This time is zero if no other processes are using the resource,
neither processes are queuing to use it at the moment of the
access . Otherwise, the SAD depends on:

 • the time needed at the moment of the access to
the process which is using the resource to finish its access

 • the number of processes which are queued to
obtain the mutual exclusion on the shared resource at the
moment of the access

 • the time needed for each queuing process to use the
shared resource

Assuming is constant and known for each access to the
shared resource , the SAD of a process during the access

 to the shared resource can be expressed as:

The SAD is maximum when tries to access the common
resource and all the other concurrent processes are queued to
use it. In this case, = and = 0. The
SAD of during the access to becomes:

Moreover, knowing the number of accesses of process to
the resource during the execution of its program, it is possible
to estimate the total delay of process during the

nr
np

pi pi
r j sk

sk

tres r j sk(,) sk
r j

nq r j sk(,)
r j

sk
tuse r j()

r j

tuse r j()
r j pi

sk r j

SAD pi r j sk, ,() tres r j sk,() nq r j sk(,) tuse r j()×+=

pi
r j

nq r sk(,) np 1– tres r j sk(,)
pi sk r j

SADmax pi r j sk, ,() np 1–() tuse r j()×=

nacc pi
r j

pi nacc
42

THE PROBLEM
accesses to the resource . This time is called Single-Resource
Delay (SRD) and it is obtained by adding the SAD for each of the

 accesses of to as follows:

Finally, the Total Delay (TD) of a process is defined as the
total time has to wait during its execution while accessing
the shared resources of the concurrent system. This time is
obtained by calculating and adding together the SRD of process

for each of the shared resources of the concurrent system.

SAD, SRD and TD have been defined in this section as measures
of the delays which affect concurrent executing process when
mutual exclusion techniques are applied for the concurrency
control. In particular, SAD estimates the delay of a concurrent
process during a single access to a shared resource. SRD gives a
measure of the total delay of a concurrent process during its exe-
cution for the access to a single shared resource. Finally, TD is a
measure of the total time a concurrent process is delayed during
its execution because of the access to all shared resources in the
system.

r j

nacc pi r j

SRD pi r j,() SAD pi r j sk, ,()
k 1=

nacc

∑=

pi
pi

nr

pi nr

TD pi() SRD pi r j,()
j 1=

nr

∑=
43

CHAPTER 3
3.2.2 BLOCKING TIME DURING THE CONCURRENT EXECUTION

This section explains how the time needed for the execution of a
concurrent program is delayed when mutual exclusion tech-
niques are used for concurrency control. Moreover, it defines the
blocking time as measure of the delay which affect the concur-
rent execution.

A concurrent program can be seen as a collection of processes
which logically execute in parallel. Therefore, the time of execu-
tion of the concurrent program depends on the time of execution
of the single processes. In particular, assuming that all concur-
rent processes start executing at the same time, the time to exe-
cute the concurrent program correspond to the time needed for
the execution of the longest process. Figure 3.3 shows an exam-
ple with three concurrent processes , , which start
their execution at the time . The time required for the execu-
tion of processes , and are respectively , and .
As the three processes execute in parallel, the concurrent execu-
tion starts at and finishes at when the execution of the
longest process terminates.

When mutual exclusion techniques are applied, they can
delay the execution of the concurrently executing processes even
more. In particular, for each concurrent process, the time strictly
needed to execute is extended by the waiting time spent during
the access to shared resources. In the previous section, the TD
(Total Delay) has been defined to estimate the total delay which
affects each concurrent process during its execution.

Consider again the example in Figure 3.3 and assume that ,
and are the times strictly needed for the three processes
, and to execute. Moreover, assume that , and
share resources and that mutual exclusion techniques are

used to control the access to them. The total delays which affect
processes , and during the access to shared resources
can be expressed with TD(), TD() and TD(). Figure 3.4
shows the new time of execution for , and .

p1 p2 p3
t0

p1 p2 p3 t1 t2 t3

t0 t2
p2

t1
t2 t3
p1 p2 p3 p1 p2
p3

p1 p2 p3
p1 p2 p3

p1 p2 p3
44

THE PROBLEM
Figure 3.3: Time of execution of a concurrent program

Figure 3.4: New time of execution for , and

process

execution timet0

t1

t2

t3

p1

p2

p3

t2

process

t0

t1

t2

t3

p1

p2

p3
TD(p3)

TD(p2)

TD(p1)

execution timet3+TD(p3)

p1 p2 p3
45

CHAPTER 3
As a consequence of the delay for each concurrent process, the
time needed to execute the concurrent program becomes longer.
In the example in Figure 3.4, the execution of the concurrent
program starts at and ends at + TD(), when the longest
concurrent process terminates.

In the general case of a concurrent system with ... con-
current executing processes, the time needed for the concurrent
execution (namely the time needed for the concurrent program
to execute) can be expressed as follows:

and corresponds to the time needed for the process with the
largest execution plus waiting time sum to terminate its execu-
tion.

Furthermore, a measure of the delay which affects the execu-
tion of a concurrent program can be given and will be referred to
as blocking time of the concurrent execution.

In particular, in the formula above, is the time strictly needed
for a process to execute.

The and the BlockingTime defined in this section will
be used in Chapter 9 to estimate the decrease of parallelism in
concurrently executing systems when concurrency control tech-
niques are applied.

3.2.3 THROUGHPUT AS A MEASURE OF PARALLELISM

In this section the throughput is defined as measure of parallel-
ism.

The throughput of a system is a ratio which measures the
speed at which the system works. This ratio can be expressed in
instructions per second or jobs per hour or some other units of
performance. In this thesis the throughput will be expressed in
term of work produced per time unit.

t0 t3 p3

p1 pn

Tconc max ti TD pi()+()=

pi

BlockingTime Tconc max tj()–=

t j
pj

Tconc
46

THE PROBLEM
In particular, the throughput of a concurrent system will be cal-
culated dividing the units of work produced during the execution
of a concurrent program by the time needed to execute the pro-
gram.

As the time to execute a concurrent program can be delayed
when mechanisms for the concurrency control are used, the
throughput decreases in a proportional way.

The throughput of a concurrent system will be used in Chap-
ters 8 and 9 to evaluate the parallelism of concurrent systems
when concurrency control techniques are used.

3.3 Summary
Concurrency control is needed in concurrent sharing data sys-
tems to ensure integrity of the common data. Using traditional
mutual exclusion techniques, processes achieve mutual exclu-
sion on the shared resources by locking the access to them.
Although integrity is preserved, tasks may be forced to wait for
others to finish. The problem is that strictness of the lock block-
ing the concurrent execution may be more than is actually nec-
essary. Consequences of this blocking are delays for the tasks’
activities and therefore reduced parallelism. In this chapter the
Single-Access Delay, the Single-Resource Delay, the Total Delay
and the blocking-time have been defined as measures of the
delays which affect the execution of concurrent tasks. In addi-
tion, the throughput has been defined as a measure of parallel-
ism.

Troughput
WorkProduced

TimeUnit
--=

Troughput
UnitsOfProducedWork

TimeNeededToExecuteTheProgram
---=
47

CHAPTER 3
48

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
Chapter 4
Approach and

Current State of
Assured Selection

This chapter presents Assured Selection (AS) as an alternative
solution for concurrency control. At first, a description of the
approach use by AS is given. Then, the terminology, the syntax
and the issues related to a semantic definition of AS are intro-
duced.

4.1 Fine Grained Locking and Exception
Handling

As explained in Chapter 3, traditional mutual exclusion tech-
niques reduce the parallelism of concurrent processes sharing
data. The problem is that the strictness of the lock that forces
49

CHAPTER 4
processes to perform unproductive waiting. AS is an alternative
approach to concurrency control that solves this problem by
relaxing restrictions during concurrent access.

The approach combines fine grained predicate locks with
exception handling. The fine grain of the locks allows more tasks
to execute in parallel on the shared data, reducing the blocking
during concurrent access. However, the relaxed blocking does
not ensure integrity and can lead temporarily to inconsistent
data.

To avoid error propagation, corruptions must be detected and
resolved afterwards. Error detection can be done by monitoring
the asynchronous access to the shared data. Once detected, a
corruption can be handled within exception handling using
backward or forward error recovery.

The idea of AS is to ensure consistency and at the same time
to reduce the blocking without incurring unbounded or excessive
run-time overhead when monitoring and solving corruptions.
Under the assumption of low probability of corruption, an
improvement of the throughput is expected.

A more detailed description of the approach, the terminology
and the syntax for AS are given in the following sections.

4.1.1 GUARD PREDICATES, ASSURED REGIONS AND EXCEPTION
HANDLERS

AS combines guard predicates, assured regions and exception
handlers:

 • A guard predicate is a Boolean expression which contains
shared variables. If the Boolean value of the guard predicate
is satisfied the corresponding assured region is entered.

 • An assured region is a section of code executed under the
assumption that the associated guard predicate remains sat-
isfied. However, no restrictions are specified on the concur-
rent access when entering this region and simultaneous
updates of shared variables can corrupt the value of the
50

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
guard. During execution within this area, corruptions are
automatically monitored and notified.

 • An exception handler is a portion of code associated with an
assured region and executed to restore integrity when a cor-
ruption of the predicate guard is notified within the assured
region.

Later, an assured region and the corresponding predicate guard
will be referred to as AS block.

In Figure 4.1, the sequence of execution of the described parts
of AS is shown:

1. The guard predicate is evaluated.
2. If the Boolean value of the guard predicate is true, the execu-

tion of the assured region starts. Updates of the shared vari-
ables contained in the guard predicate are automatically
monitored within the assured region and corruptions are sig-
nalled.

3. If a corruption of the monitored data is signalled, execution
continues in the exception handler.

Figure 4.1: Sequence of execution of AS.

assured
region

exception
handler

guard predicate monitored
true block of code

corruptionon

1

2

3

51

CHAPTER 4
4.1.2 THE SYNTAX OF AS

The syntax of AS is similar to an if statement with an exception
handler associated to the then-branch.

The Boolean expression in the test is the guard predicate, the
portion of code in the then branch is the assured region. If the
evaluation of the guard predicate is true, the assured region is
executed. If it is false, the execution continues in the else branch
(if any) as in ordinary if statements.

An asterisk following the if term is used to distinguish the AS
statement from an if. Figure 4.2 shows the parts of the AS state-
ment.

Figure 4.2: AS statement.

With referring to the example NR.1 in Section 3.1, the program
of process using AS can be written as in Figure 4.3.

if*

 end

assured
region

then begin

guard
predicate

on exception:

exception handler

p1
52

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
Figure 4.3: Section of program for process using AS

4.1.3 VIOLATIONS, VIOLATING AND VIOLATED PROCESSES

Within an assured region, corruptions on shared data can occur
due to the relaxed restrictions on the concurrent access.

A process that corrupts the value of an assured guard is
referred to as violating process. The process that executes within
the assured region during the corruption is called violated proc-
ess. The corruption is referred to as violation and the notification
to the violated process is called signal.

Figure 4.4 shows two processes A and B in concurrent execu-
tion. While A is executing an AS block, B violates the guard
predicate of the AS block that A is executing. The violation is
signalled to process A.

if* w>8 then begin

on exception:

.

.

.

handling code executed if
 violations to the guard predicate

operation 1;
operation 2;
.
.
operation m;

within the assured region

end

.

arise

p1
53

CHAPTER 4
Figure 4.4: Signal of violation to the violated process

4.2 Current State of the Semantics of AS
This section explains the current state of the semantics of AS,
pointing out, with examples, semantic choices to be studied.

As mentioned in the previous section, purpose of AS is to relax
restrictions on the concurrent access. Assured regions are
entered without locking the access on the shared variables. If
during the execution within this region the guard predicate
remains satisfied, all processes can concurrently read and

violated process violating process

violation point
signal of
violation

Process A Process B

exception

assured
region

guard
predicate

AS block
. .

.

.

.

.

.

.

.

.

handler
54

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
update the shared variables of the guard. Lock operations are
applied for the time strictly needed to update a shared variable.

In the example presented in Figure 4.3, while process is
executing in the assured region other processes can access and
update the value of w. As long as the updates do not change the
value of the guard predicate, the concurrent access to w is
allowed. Figure 4.5 shows a situation in which process is exe-
cuting operation 2 in its assured region (the value of w = 10) and
a process updates the shared variable w. Since the update
does not violate the value of the assured guard, conflicts do not
arise. The two processes continue their execution without limi-
tation on their parallelism.

Figure 4.5: Concurrent execution of and where both
processes simultaneously operate on the shared variable w

p1

p1

p2

if* w>8 then begin

operation 1;
operation 2;
operation 3;
.
.
operation n;

end

locked access to w
w:= 9;
unlocked access to w

program for p1

.

.

.

.

.

.

.
on exception:

program for p2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

exception handling code

p1 p2
55

CHAPTER 4
Instead, if the update of to w changed the Boolean value of
the guard predicate (ex. w:= 3), a violation would have occurred.

After a violation of a guard predicate has occurred, the execu-
tion of the violated process in the assured region is stopped and
continues in the exception handler.

Figure 4.6 shows the state before the violation between two
concurrent processes A and B, when A is executing within an
assured region. The dashed lines represent the point of execu-
tion in the two processes.

Figure 4.6: State of execution of A and B before the viola-
tion

p2

exception

Process A Process B

violation point

assured
region

guard
predicate

AS block
. .

.

.

.

.

.

.

.

handler
56

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
Figure 4.7 summarizes the situation after the violation. After it
is detected, the violation is signalled to the violated process (1)
which continues execution in the exception handler (2).

Both the solutions to continue or stop execution in the violat-
ing process can be valid and need to be studied.

Figure 4.7: State of execution of A and B after the violation

As mentioned before in this chapter, in the exception handler
the violation is compensated for using backwards or forwards
error recovery. After the violation has been handled, aborting,
restarting or resuming execution in the violated process are
valid subsequent alternatives. Furthermore, the violated proc-

violated process violating process

violation point

signal
violation

(2)

Process A Process B

stopping or continuing
execution?

assured
region

guard
predicate

AS block
.
.
.
.
.
.
.
.

.

(1)

exception
handler
57

CHAPTER 4
ess can be resumed from (3) different resumption points: from
the beginning, from the AS block or from the break point within
the assured region as shown in Figure 4.8.

Figure 4.8: Alternative resumption points for the violated
process: from the beginning, from AS block, from the break

point within the assured region

Whether to block or not block the violating process, restart,
abort or resume the violated process and the resumption points
are choices to be studied to define the semantics of AS. Moreover,
in the solution presented for AS it is the violated process that
gets and handles the violation. The possibility that the violating

violated process violating process

violation point

signal
violation

exception

(1)

(2)

Process A Process B

assured
region

guard
predicate

AS block

(3)
handler
58

APPROACH ANDCURRENT STATE OF ASSUREDSELECTION
or another process handles the violation instead of the violated
one needs to be analysed as well. A more complete list of seman-
tic issues to be discussed for AS is presented in the next section.

4.3 Semantic Issues of AS
To define AS as a mechanism for the concurrency control its
semantics needs to be defined and the following choices need to
be investigated:
 • What processes should be blocked after a violation?
 • When are blocked processes unblocked?
 • When is a violation signalled and to which processes?
 • What happens if the violated process has child processes?

Should they be stopped or aborted or can they continue their
execution?

 • Which process should handle the violation? Is it the violated,
the violating or another process?

 • What happens if a process violates itself?
 • How is a violation handled?
 • What happens to the signalled processes after the violation

has been handled? Are they aborted, restarted or resumed?
 • From which point are the signalled processes resumed? Is it

from the beginning, from the AS block or from the break
point within AS?

 • How should nested violations of a guard predicate be dealt
with?

 • What happens if a violating process gets violated?

All these choices are discussed in details in Chapter 6 and 7
when solutions for AS are analysed.
59

CHAPTER 4
60

THE TASK
Chapter 5
The Task

This chapter analyses the work to be done to solve the task of
the thesis introduced in Section 1.2. In addition, it mentions the
restrictions made to the task.

5.1 Analysis of the Task
The task of this Master’s thesis is to develop the idea of AS as
presented in Chapter 4. This section presents choices and deci-
sions made during the organization of the work for the thesis.
Moreover, it presents the requirements to be fulfilled during the
investigation and the implementation of AS. Finally, it explains
how the work to solve the task has been organized.

5.1.1 THE CHOICES AND THE DECISIONS

Four choices have been made during the organization of the
work to this thesis:

1. The theoretical and experimental scope.
2. The generality of the investigation.
3. The environment for the investigation.
61

CHAPTER 5
4. The evaluation of performance for AS.

The first choice concerned the scope of the thesis. Two alterna-
tives have been considered: to develop a totally theoretical
investigation or to combine experimental results along with the
theoretical studies. The second choice was about the generality
of the investigation. AS could be specialized for a particular sys-
tem or studied at more abstract level, finding a more general
solution adaptable to specific systems. Once the scope of the the-
sis and the generality of the investigation were decided, the next
choice was to select a testing environment. The final choice con-
cerned the evaluation of the performance of the new mechanism,
through simulation or theoretical analysis.

The decisions taken and the motivations are explained as fol-
lows:

1. Theoretical investigation versus implementation. The
decision for the scope of the thesis, was to combine a theoret-
ical investigation with experimental results. The reason for
this was to validate the studies of the theory with practical
experience and also to explore issues of AS not pointed out
from the theory.

2. General solution versus system specific. The decision
for the generality of the investigation was to study the se-
mantics for AS at a general level and subsequentially to
model and implement it in a specific system. The motivation
was to find a solution for AS of general interest, not linked to
any specific system and easy to adapt in different concurrent
environments.

3. Concurrent shared data systems versus CAMOS. As a
consequence of the desired generality of the solution, the the-
oretical investigation has been thought to be suitable for all
concurrent sharing data environments. However, the envi-
ronment chosen for the implementation work was the CA-
MOS system for control of manufacturing plants (see Chap-
ter 8 for a description of CAMOS). The motivation for select-
62

THE TASK
ing CAMOS was the natural suitability of its environment to
AS, that made the integration of the solution fairly easy.
Moreover, an existing case study programmed in CAMOS
could be used to test and evaluate the performance of the
new mechanism implemented.

4. Theoretical analysis versus simulations. Concerning
how to evaluate the performance, the decision was to use a
theoretical analysis for the comparison of AS and traditional
mutual exclusion techniques. Furthermore, a case study was
chosen to analyse the performance of the mechanism imple-
mented in CAMOS through graphical simulations. The moti-
vation for combining theoretical analysis and simulations
was to provide a more accurate and complete analysis of the
results.

5.1.2 REQUIREMENTS ON THE SEMANTIC DEFINITION OF AS AND
ON THE IMPLEMENTATION IN CAMOS

As a consequence of the decisions mentioned above, the task of
the thesis has been organized in two parts: the theoretical inves-
tigation and the implementation. To define AS as a mechanism
for concurrency control, the theoretical investigation includes
studies of semantic issues of AS. The implementation work
includes the integration of one solution for AS studied in the the-
ory in CAMOS. This section introduces the requirements to be
met during the semantic definition of AS and during the imple-
mentation.

Requirements on the Semantic Definition of AS

The solution investigated to define AS as a mechanism for the
concurrency control must satisfy the following requirements:

 • Clear and easy semantics. The semantics of the solution
must be clearly defined and easy to understand.
63

CHAPTER 5
 • Generality. The solution must be adaptable in different envi-
ronments and situations.

 • Completeness. The solution must be as complete as possible.
 • Maximum parallelism. The solution should allow maximum

parallelism by reducing the delays in the concurrent execu-
tion.

These requirements are discussed in Chapter 6 when alterna-
tive solutions for AS will be analysed.

Requirements on the Implementation of AS in CAMOS

The following requirements must be fulfilled during the integra-
tion of AS with the CAMOS system:

 • Few lines of added/changed code.
 • Separation of exception handling code from normal code.
 • Improvement of parallelism.

The requirements on the implementation of AS in CAMOS are
discussed in Chapter 8 when the implementation experience is
described.

5.1.3 ORGANIZATION OF THE WORK

According to the choices mentioned in Section 5.1.1 and to the
requirements on the semantics and on the implementation of AS
described above, the task has been organized as follows.

The theoretical investigation includes the following activities:

 • Definition and analysis of the problem of reduced parallelism
with traditional mutual exclusion techniques.

 • Investigation of alternative solutions to the concurrency con-
trol following the approach for AS introduced in Chapter 4.

 • Classification, analysis and comparison of the alternatives,
with respect to the requirements introduced in Section 5.1.2.

 • Selection of the solution that matches these requirements
best.
64

THE TASK
 • Definition of semantic issues for the selected solution.
 • Evaluation of the performance of the resulting mechanism

with comparison to traditional mutual exclusion techniques.
 • Specification of the benefits and limitations of the new mech-

anism.

The implementation consists of the following work:

 • Implementation of AS and integration with the CAMOS sys-
tem.

 • Experimental tests on the correctness of the implemented
AS mechanism.

 • Evaluation of the performance of the implemented AS mech-
anism in a case study.

5.2 Scope of the Task
This section presents the restrictions made on the task during
the investigation and the implementation of AS.

At first, since the intention was to keep the focus on the many
semantic issues of AS, formal definitions have not been used to
express the semantics of AS. Nor have proof rules been provided
to verify the correctness of AS.

The second restriction concerns the comparison between the
performance of AS and traditional mutual exclusion techniques.
Semaphores, conditional critical regions and monitors realize
the concurrency control following the same approach. They lock
access to shared resources serializing the concurrent access to
them. In this sense, their performances has been considered to
be equivalent. As a consequence, the comparison has been done
only between AS and monitors as the main representative of the
class of mutual exclusion techniques. Moreover, the kind of anal-
ysis done for the comparison of the performances is a worst case
analysis. Average case analysis is beyond the scope.
65

CHAPTER 5
A further restriction has been made during the implementation.
Since the purpose of the implementation was only to validate or
refute the approach of AS and also due to restrictions in time,
not all the issues investigated for the theoretical solution have
been implemented and tested.

5.3 Summary
In this Chapter the task of this master thesis has been pre-
sented and analysed. The task is to study the idea of AS pre-
sented in Chapter 4 and includes the following activities:

 • Definition and analysis of the problem of reduced parallelism
when traditional mutual exclusion techniques are applied for
the concurrency control in shared data systems.

 • Investigation of alternative solutions for AS following the
approach described in Chapter 4.

 • Analysis, classification and comparison of the alternatives.
 • Selection of the solution that meets the requirements pre-

sented in Section 5.1.2 best.
 • Definition of semantic issues for the selected solution.
 • Implementation of the resulting mechanism in the CAMOS

system.
 • Experimental tests on the correctness of the implemented

mechanism.
 • Evaluation of the performance of the implemented mecha-

nism through simulations.
 • Comparison of the performance of AS and monitors through

a worst case analysis.
 • Specification of the benefits and limitations of the studied

mechanism.
66

SOLUTIONS FORAS
Chapter 6
Solutions for AS

This chapter classifies, explains and compares solutions for AS.
First, the classification criteria are introduced and a classifica-
tion of solutions is presented with respect to these criteria. Next,
the semantics of the classified solutions is explained. Lastly, the
solutions are compared to select the one that meets the require-
ments on the semantic definition of AS best.

6.1 Classification Criteria
This section introduces the exception handler process and the
blocking, quasi-blocking, non-blocking behaviour of the violating
process as criteria to classify solutions for AS.

6.1.1 EXCEPTION HANDLER PROCESS

According to the current state of AS introduced in Section 4.2,
the violated process is in charge of handling violations of the
guard predicate of an AS statement. When an exception is sig-
67

CHAPTER 6
nalled, the violated process stops its execution in the assured
region and continues in the exception handler associated with
the AS block.

However, other processes could recover from a signalled viola-
tion. For example, the violation could be handled by the violat-
ing process, the parent of the violated process, both the violated
process and its parent or another process. Depending on the
exception handler process, alternative solutions for AS can be
studied.

6.1.2 BLOCKING, NON-BLOCKING, QUASI-BLOCKING AS

Referring to the semantics of AS presented in the Section 4.2,
after a violation of an AS statement is signalled, both alterna-
tives to stop or to continue execution in the violating process,
can be valid. The blocking, non-blocking, quasi-blocking seman-
tics of AS refer to the behaviour of the violating process after the
violation.

Using a non-blocking semantics the violating process contin-
ues execution after it has violated a guard predicate. The vio-
lated process and the exception handler process, if different from
the violated, are the only processes affected by the violation.
Their execution is delayed for the time necessary for the recov-
ery.

With a blocking semantics instead, in addition to the violated
and the exception handler process, also the violating process
gets delayed. After the violation the execution in the violating
process is blocked and resumed only after exception handling.
The blocking semantics is needed for example when the violat-
ing process continues reading the corrupted data or would
update it generating other violations. However, it is not really
clear when to apply the non-blocking or the blocking semantics
since it depends on the situation and the environment of execu-
tion.
68

SOLUTIONS FORAS
An alternative solution is to delay the decision to stop or not
stop a violating process at run-time, combining the blocking and
the non-blocking semantics within the quasi-blocking seman-
tics. The violating process suspends itself after the violation and
the conditions to resume its execution are evaluated within the
exception handler. The violating process is resumed as soon as
possible, after it is verified that its execution does not interfere
with the error recovery.

The exception handler process, the blocking, non-blocking,
quasi-blocking semantics are used in the next section as criteria
to classify alternative solutions for AS.

6.2 Classification and Analysis of Solutions for
AS

This section presents a classification of solutions for AS and
explains their semantics. Initially, the solutions are grouped in
five categories based on whether the exception handler process
is the violated, the violating, the parent of the violating, both the
violating and its parent or another process. Moreover, for each
category three subcategories are provided based on the blocking,
non-blocking, quasi-blocking semantics for the violating process.
Table 6.1 shows the resulting classification. The idea for the
classification has been found in [Buh95] where, similarly, differ-
ent types of monitors have been classified.
69

CHAPTER 6
The semantics of the solutions classified above will be explained
through an example with two processes B and C in concurrent
execution. The program executed by B contains an AS block and
the one executed by C a critical instruction that, depending on
the moment of execution, could violate the guard predicate of
the AS block in B. See Figure 6.1.

If process C executes the critical instruction before or after
process B executed the AS block, the violation of the guard pred-
icate does not occur. Therefore, all the solutions in table 6.1 have
the same behaviour. The concurrent execution of B and C contin-
ues without limitation of parallelism.

Instead, the semantics of the classified solutions are different
if the violation is signalled. This happens if the critical instruc-
tion in C is executed while process B is executing in the assured
region.

Table 6.1: Classification of solutions for AS

Exception
handler
process

blocking
violating
(B)

non-
blocking
violating
(NB)

quasi-
blocking
violating
(QB)

violated process
(VD)

VDB VDNB VDQB

violating process

(VG)

----- VGNB -----

 parent of vio-
lated process

(P)

PB PNB PQB

violated and its
parent

(VP)

 VPB VPNB VPQB

other process

(O)

OB ONB OQB
70

SOLUTIONS FORAS
Figure 6.1: Sections of programs executed by
processes B and C

To focus the differences, for each category of solutions in the
table 6.1 two moments of the concurrent execution need to be
analysed: before and after the violation. This analysis is pre-
sented in the following five sections. However, for the categories
of solutions VD, P, VP and O only the QB subcategory is
described in detail. Assuming the same state of execution before
the violation, the subcategories B, NB can be easily derived from
QB as explained in the next sections. For the category VG
instead, only the NB subcategory is presented since it is the only
one defined.

6.2.1 THE VIOLATED PROCESS IS THE EXCEPTION HANDLER (VD)

In this category of solutions the exception handler is part of the
program of the process that executes the AS statement.

Process B Process C

if* c

c:= 8

= 10 then
operation 1
operation 2

..
operation n

end

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

critical instructionAS block

c is a shared variable initialized with 10
71

CHAPTER 6
Referring to the example in Figure 6.1, Figure 6.2 shows the
state before the violation for the subcategories of solutions VDB,
VDNB and VDQB. Process B is executing in the AS block and C
is before the critical instruction. The dashed line shows the
point of execution.

Figure 6.2: VDB, VDNB and VDQB: state of execution
before the violation

If process C executes the critical instruction before B exits the
AS block, the violation occurs.

Figure 6.3 shows the state after the violation for the subcate-
gory of solutions VDQB. After the violation has occurred, proc-
ess C temporary suspends its execution (1). The exception is
signalled to the violated process B (2) that continues execution
in the exception handler (3). Before the exception handling takes

AS block

Process B Process C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

critical instruction

Exception
handler
72

SOLUTIONS FORAS
place, process B checks conditions to resume the violating proc-
ess. The violating process is resumed immediately if its execu-
tion does not interfere with the violation recovery, otherwise the
violating process is unblocked as soon as possible during the
exception handling (4). After the error recovery and the unblock-
ing of the violating process, process B aborts, restarts or
resumes its own execution. The resumption point is decided
within exception handling. Possible resumption points (at the
beginning of the program, at the beginning of the AS statement
or at the break point within AS) are shown in the figure labelled
as (5).

Figure 6.3: VDQB: state after the violation

Assured selection

block

violated process violating process

critical instruction

Exception

Process B Process C

(5)

(3)

.

.

.

.

.

.

.

.

.

.

.

(1)

(4)

(2)

handler
73

CHAPTER 6
For the subcategories of solutions VDB and VDNB the state
after the violation appears similar to the one shown in Figure
6.3. The difference for the category VDB is that the violating
process gets blocked after the violation and is unblocked by the
violated process only after the violation recovery. For the sub-
category VDNB instead, the difference is that the violating proc-
ess continues execution after the violation. Therefore, the
violated process does not handle unblocking the violating proc-
ess.

6.2.2 THE VIOLATING PROCESS IS THE EXCEPTION HANDLER
(VG)

In this category of solutions the exception handler associated
with the AS block is part of the program of the violating process.
After a violation of the guard predicate is signalled, the violating
process stops its execution after the violating instruction and
continues in the exception handler. As the violating process is in
charge of recovery from the violation, its execution cannot be
blocked after a violation. Therefore, only the non-blocking sub-
category of solutions is defined within the category VG.

Referring again to the example in Figure 6.1, the state before
the violation for the subcategory of solutions VGNB is shown in
Figure 6.4. Process B is executing within the AS block and proc-
ess C is before the critical instruction. The dashed line shows the
point of execution in the two processes.
74

SOLUTIONS FORAS
Figure 6.4: VGNB: state before the violation

If process C executes the critical instruction when B is executing
in the assured region the violation occurs.

The state after the violation for the subcategory of solutions
VGNB is shown in Figure 6.5. The violation is signalled to the
violated process B (1). B stops its execution to avoid error prop-
agation (2). Instead, the violating process C continues in the
exception handler (3) and recovers the violation. Furthermore,
process C resumes process B from the point decided within
exception handling (possible resuming points are shown labelled
(4)). Finally, process C resumes its own execution after the criti-
cal instruction (5).

AS block

Process B Process C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

critical instruction

Exception
handler
75

CHAPTER 6
Figure 6.5: : VGNB: state after the violation

6.2.3 THE PARENT OF THE VIOLATED PROCESS IS THE EXCEPTION
HANDLER (P)

In this category of solutions the exception handler is in the pro-
gram of the parent of the process that contains the AS block.

Referring to the example with processes B and C introduced in
Section 6.2, now it is assumed that a process A is the parent of
process B. The state before the violation between B and C for the
subcategories of solutions PB, PNB and PQB is shown in Figure
6.6.

AS block

Process B Process C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

violated process violating process

(2)

Exception
handler

critical instruction
(4)

(3)

(1)

(5)
76

SOLUTIONS FORAS
Process A is executing within its program after having created
by process B, B is executing within the AS block and process C is
before the critical instruction. The dashed line shows the point
of execution in processes A, B and C.

Figure 6.6: PB, PNB and PQB: state before the violation

If the critical instruction in process C is executed when B is exe-
cuting in the assured region the violation occurs.

Figure 6.7 shows the state of execution after the violation for
the subcategory of solutions PQB. After the violation has
occurred, the execution in the violating process C is temporarily
suspended (1) and the violation is signalled to the violated proc-
ess B (2) and to process A (3). The execution in the violated proc-

process B

process A

AS block

process C

Exception
handler

critical
instruction
77

CHAPTER 6
ess is stopped (4) and process A continues in the exception
handler (5). Before the violation recovery, conditions to resume
the violating process are checked. The violating process is
resumed immediately if its execution does not interfere with the
recovery, otherwise the violating process is resumed as soon as
possible during exception handling (6). After the violation is
recovered, process A aborts, restarts or resumes process B. Pos-
sible resumption points are shown in (7). Finally, process A
resumes its own execution (8).

Figure 6.7: PQB: state after the violation

process B

process A

AS block

process C
.
.
.
.

(3)
(7)

(4)

(2)

(8)

(1)

(5)

(6)Exception
handler

critical
instruction

violatingviolated
78

SOLUTIONS FORAS
The state after the violation for the subcategories of solutions
PB and PNB is similar to the one shown in Figure 6.7. The dif-
ference for the subcategory PB is that the violating process gets
blocked after the violation and is unblocked by the parent of the
violated process only after the exception recovery. For the sub-
category PNB instead, the difference is that the violating proc-
ess continues its execution after the violation. Therefore, the
parent of the violated process does not have to handle the
unblocking of the violating process.

6.2.4 THE VIOLATED PROCESS AND ITS PARENT ARE THE
EXCEPTION HANDLERS (VP)

In this category of solutions the violation can be handled by two
different exception handlers: one is in the program of the vio-
lated process and the other is in the program of the parent of the
violated process. After the violation is signalled, the violated
process tries to recover from within its handler. If the violation is
recoverable the violated process handles it and then resumes its
own execution. Instead, if the violation is not recoverable, it is
forwarded to the parent of the violated process. Afterwards, the
parent process handles the forwarded violation by aborting or
restarting the execution of the violated child with the same or
different parameters.

Consider again the example with processes B and C and
assume A is the parent of B. The state before the violation for
the subcategories of solutions VPB, VPNB and VPQB is shown
in Figure 6.8. Process A is executing within its program after
having created process B. B is executing in its AS block and proc-
ess C is before the critical instruction. The dashed line shows the
point of execution in A, B and C.
79

CHAPTER 6
Figure 6.8: VPB, VPNB and VPQB: state before
the violation

If the critical instruction in process C is executed and B is exe-
cuting in the assured region a violation occurs.

Figure 6.9 shows the state after the violation for the subcate-
gory of solutions VPQB. After the violation has occurred, the vio-
lating process C temporarily suspends its execution (1) and the
exception is signalled to the violated process B (2). Process B
continues execution in its exception handler (3). Here, the viola-
tion can be recoverable or not. If the violation is recoverable
process B checks conditions to resume the violating process. The
violating process is unblocked immediately if its execution does

process B

process A

AS block

process C

Exception
handler

Exception
handler

critical
instruction
80

SOLUTIONS FORAS
not interfere with the recovery, otherwise the violating process
is unblocked during exception handling (4). After violation
recovery, process B resumes its own execution from one of the
resumption points in (5).

Instead, if the violation is not recoverable, the violated process
forwards the signal to its parent A (6). A handles the forwarded
violation in its exception handler (7) by aborting or restarting,
with the same or different parameters, process B. Furthermore,
process A unblocks the violating process C (8) and finally
resumes its own execution (9).

Figure 6.9: VPQB: state after the violation

process B

process A

AS block

process C
.
.
.
.

(1)
(2)

(7)
(9)

(5) (3)

(6)

(8)

Exception
handler

Exception
handler

critical
instruction

violated violating

(4)
81

CHAPTER 6
The state after the violation for the subcategories of solutions
VPB and VPNB is similar to the one in Figure 6.9. The differ-
ence for the subcategory VPB is that the violating process gets
blocked after the violation signal and it is unblocked by the vio-
lated process or its parent only after the exception has been han-
dled. Instead, for the subcategory VPNB, the difference is that
the violating process continues its execution after the violation.
As a consequence, neither the violated process nor its parent
handle unblocking the violating process.

6.2.5 ANOTHER PROCESS IS THE EXCEPTION HANDLER (O)

In this category of solutions the exception handler is a process
different from the violating, the violated and the parent of the
violated. The task of the handler process is to recover from vio-
lations of AS statements that possibly occur during concurrent
execution.

Consider again the example with processes B and C and
assume now that O is the handler process. The state before the
violation for the subcategories of solutions OB, ONB and OQB is
shown in Figure 6.10. B is executing the AS block and C is before
the critical instruction. Process O is suspended, waiting to han-
dle possible violations.
82

SOLUTIONS FORAS
Figure 6.10: OB, ONB, OQB: state before the violation

If C executes the critical instruction while process B is executing
in the AS block the violation occurs.

The state of execution for the subcategory OQB after the vio-
lation is shown in Figure 6.11. The execution in the violating
process C is temporarily suspended (1). The violation is sig-
nalled to the violated process B (2) and to the handler process O
(3). The execution of the violated process is stopped (4) and proc-
ess O starts the recovery of the signalled violation (5). Before
violation recovery, O checks the conditions necessary to resume
the violating process C. C is resumed immediately if its execu-
tion does not interfere with the recovery. Otherwise, the violat-

process B

AS block

process C

critical
instruction

handler process O
83

CHAPTER 6
ing process is resumed as soon as possible during exception
handling (6). After the violation has been recovered, process O
aborts, restarts or resumes process B. Possible resumption
points are shown in (7). Finally, process O again suspends its
execution waiting to recover from other violations.

Figure 6.11: OQB: state after the violation

The state after the violation for the subcategories of solutions
OB and ONB is similar to the one in Figure 6.11. For the sub-
category OB the difference is that the violating process is
blocked after the violation signal and it is unblocked by the han-
dler process O after the exception has been recovered. For the

process B

AS block

process C
.
.
.
.

(3)(7)

(4)

(2)
(1)

(6)

critical
instruction

violatingviolated

handler process O
(5)
84

SOLUTIONS FORAS
subcategory ONB, the difference is instead that the violating
process continues its execution after the violation. Conse-
quently, process O does not handle unblocking the violating
process.

6.3 Comparison of Solutions
In this section the solutions for AS classified and explained in
the previous section are compared. The comparison is made to
select the solution that best meets the requirements on the
semantic definition of AS (clear and easy semantics, complete-
ness, generality and maximum parallelism) introduced in Sec-
tion 5.1.2. First the convenience of using the blocking, non-
blocking and quasi-blocking semantics of AS is discussed. The
purpose is to identify the subcategory of solutions within B, NB
and QB, that meets the requirements referenced above best.
Next, the solutions within the selected subcategory will be com-
pared.

The blocking, non-blocking and quasi-blocking semantics for
AS describes the behaviour of a violating process after it violates
an AS statement. The blocking semantics forces the violating
process to stop during violation recovery. Instead, the non-block-
ing semantics allows the violating process to continue execution.
The quasi-blocking semantics is a combination of the blocking
and the non-blocking semantics. After a violation is signalled,
the violating process is suspended and is resumed as soon as it is
verified that its execution does not interfere with the violation
recovery. In the best case the violating process is resumed imme-
diately and it is not delayed during the recovery (like in the non-
blocking semantics). Instead, in the worst case the violating
process gets blocked for the time of the recovery (like in the
blocking semantics). Therefore, the quasi-blocking semantics
includes (simulates) both of the other semantics. As a conse-
85

CHAPTER 6
quence, the quasi-blocking semantics is more complete than the
blocking and non-blocking ones.

Moreover, it is not really clear when to apply the blocking and
when the non-blocking semantics. The choice depends on the sit-
uation and the moment when a violation occurs. In this sense,
the quasi-blocking semantics is also more clear and general than
the blocking and non-blocking ones. The decision whether to
continue or to stop the execution of the violating process is auto-
matically taken at run-time, after a violation has occurred. As a
consequence, the quasi-blocking semantics can be used for all
the situations in which the blocking and non-blocking semantics
are applied.

From the parallelism point of view, the blocking semantics is
the one that delays the concurrent execution most. Both the vio-
lated and the violating processes (and eventually the exception
handler process if different from them) are delayed during the
violation recovery. Instead, with the non-blocking semantics the
violating process is never delayed after a violation. However,
due to its lack of generality, this semantics cannot be applied in
situations in which the execution of the violating process must
be stopped. This suggests using the quasi-blocking semantics
that delay the violating process only when really needed and
only for the time strictly necessary to avoid interference during
exception handling.

As a consequence of the reasoning given above, the subcatego-
ries of solutions B and NB will be excluded from the comparison.
The comparison with respect to the requirements on the seman-
tic definition of AS concerns the following:

 • clear and easy semantics
 • generality
 • completeness
 • maximum parallelism

is then restricted to the following solutions: VDQB, PQB, VPQB
and OQB.
86

SOLUTIONS FORAS
Clear and Easy Semantics

For the solutions VDQB, PQB, VPQB and OQB the following
semantic issues have been clearly defined:

 • Which processes are signalled after the violation.
 • Which processes compensate for the violation.
 • Which processes are blocked after the violation.
 • When the blocked processes are resumed.

Nevertheless, for none of these solutions have the semantics
been completely specified. However, the following comment can
be made. For the solutions PQB and OQB the exception handler
process is not the process that gets violated. A semantic issue
difficult to define during the violation recovery is how to handle
problems of parameter passing and variable visibility between
the exception handler process and the violated process. This
problem is avoided by the solutions VDQB and VPQB. In the
solution VDQB the violation is always recovered by the violated
process itself. In the solution VPQB the violation can be handled
alternatively by the violated process or its parent process. How-
ever, if the parent of the violated process compensates for the
violation, it can only abort or restart the violated child. There-
fore, problems of parameter passing and variable visibility do
not occur. Hence, the semantics for the solutions VDQB and
VPQB are easier to define.

Generality

The following decisions have been made to keep the solutions for
AS as general as possible:

 • To use the quasi-blocking semantics for unblocking the vio-
lating process.

 • To allow both continuation and abortion semantics for the
violated process during exception handling.
87

CHAPTER 6
 • Three alternative resumption points for the violated process
have been defined if a violation is recovered with continua-
tion semantics.

However, the issues mentioned above are common for the solu-
tions VDQB, PQB, VPQB and OQB. Consequently, the general-
ity of all these solutions can be considered equal.

Completeness

After an AS statement is violated, the most convenient process
to compensate for the violation is usually the one that gets vio-
lated, because it has complete visibility of the variables to be
recovered. The solutions PQB, OQB do not cover this possibility
since the violation is handled by the parent of the violated proc-
ess or another process (different from the violating and the vio-
lated ones). This makes the solutions PQB and OQB non-
complete.

Concerning the completeness for the solutions VDQB and
VPQB, the solution VDQB only considers the case that the viola-
tion is handled by the violated process. Instead, the solution
VPQB allows a more flexible handling of a violation, considering
the possibility of recovery of the violated process. With this solu-
tion the parent of the violated process supervises the violation
recovery and decides whether to abort or restart the excepted
child process when the exception is not recoverable. Moreover,
the solution VPQB allows execution of the violated process to
restart with different parameters. This possibility is not consid-
ered by the solution VDQB. Hence, the solution VPQB is more
complete than VDQB.

Maximum Parallelism

The solution which maximizes the parallelism is the one that
delays the concurrent execution the least during the recovery of
violations. As the time necessary to compensate for violations is
88

SOLUTIONS FORAS
not known, the delays in the concurrent execution will instead
be expressed as the number of processes delayed during the vio-
lation recovery.

For all the solutions VDQB, PQB, VPQB and OQB, the violat-
ing process can be delayed or not during the exception handling
according to QB semantics. Furthermore, the following proc-
esses are delayed:

 • In the solutions PQB and OQB two processes are delayed:
the violated process (which is stopped to avoid error propaga-
tion), and the process in charge of handling the violation
(respectively the parent of the violated process or another
process different from the violated or the violating ones).

 • In the solution VDQB only the violated process is delayed
since it is in charge to handle the violation.

 • In the solution VPQB the delayed processes can be one or
two. If the violation is recovered by the violated process, only
this process is delayed. Instead, if the violation is not recov-
erable, it is handled by the parent of the violated process.
Hence, both the violated process and its parent are delayed
during the recovery. However, a parent process can only han-
dle a forwarded violation by aborting or restarting the
excepted child. Consequently, the delay which affects the
parent process is fairly contained since it is limited to the
time strictly necessary for the abortion or the restarting of
the violated child.

Therefore, the solutions that delay the concurrent execution the
least during recovery of violations, are VDQB and VPQB.

Conclusion

From the reasoning above it follows that all solutions are gen-
eral. Nevertheless, the semantics for the solutions PQB and
OQB are potentially more difficult to define than those for the
solutions VDQB and VPQB. Moreover, the solutions PQB and
OQB are not complete and during the handling of violations
89

CHAPTER 6
they delay the concurrent execution more than the solutions
VDQB and VPQB. Hence, the solutions VDQB and VPQB meet
the requirements on the semantics definition of AS best. Fur-
thermore, concerning these two solutions, they fulfill the
requirements of clear semantics, generality and maximum par-
allelism in a similar way. However, VPQB is a more complete
solution since it allows more flexible handling of violations.
Therefore, the solution VPQB is selected to be defined in more
detail.

6.4 Summary
In this chapter alternative solutions for AS have been presented.
At first, they have been classified with respect to the blocking,
non-blocking and quasi-blocking behaviour of a violating process
and to the exception handler processes. Moreover, the classified
solutions have been analysed and compared. From the compari-
son the solution VPQB has been selected and its semantics will
be investigated in more detail. In the rest of the thesis, this solu-
tion will be referred to as VPQB AS.
90

SEMANTIC ISSUES OFVPQB AS
Chapter 7
Semantic Issues

of VPQB AS

This chapter studies semantic issues of VPQB AS related to the
semantic definition of AS as a mechanism for concurrency con-
trol.

7.1 Current State of VPQB AS
Two main semantic choices have been made so far for VPQB AS:
the processes in charge of handling violations of an AS state-
ment are the violated process and its parent and the quasi-
blocking semantics for the violating process. In this section a
short summary of VPQB AS is given.

A process that has an AS statement in its program starts exe-
cuting in the assured region if the Boolean value of the guard
predicate is satisfied. Therefore, it continues within the assured
region under the assumption that the guard predicate remains
verified. However, no restrictions are specified for the concur-
91

CHAPTER 7
rent access to any shared variables. As a consequence, other
processes in concurrent execution can update the common vari-
ables tested in the guard predicate and change the Boolean
value of the guard.

When a guard predicate is no longer satisfied, a violation is
signalled to the process which is executing the AS statement.
The execution of the violating process is temporary suspended.
The violated process tries to recover from the signalled violation.
Therefore, if the violation is recoverable, the violated process
handles it and resumes the violating process according to the
quasi-blocking semantics. Moreover, depending on how the
exception is handled, the violated process resumes its own exe-
cution either from the beginning of the program, from the begin-
ning the AS block or from the break point within the AS block. If
the violation is not recoverable, the violated process forwards
the violation signal to its parent process. This process will han-
dle the forwarded violation by restarting or aborting the
excepted child. Afterwards, the parent process resumes the exe-
cution of the violating process and finally its own execution.

7.2 Dealing with Child Processes
The semantics of VPQB AS has been presented for a simple case
with three processes in concurrent execution. What happens if
the process which executes an AS statement has child processes,
created before or within the AS block? Furthermore, what hap-
pens if these processes have child processes themselves?

Figure 7.1 shows an example of a hierarchy of child processes.
Process B, child of A, has an AS block and child processes cre-
ated before and within the assured region. In particular, the set
of all the processes created within the assured region is referred
to with the expression assured children.
92

SEMANTIC ISSUES OFVPQB AS
Figure 7.1: Hierarchy of child processes for A and B

The assured children are created within an assured region. Con-
sequently, their execution proceeds under the assumption that
the guard predicate associated with the assured region remains
satisfied. If the guard predicate gets violated, the assured chil-

process A

*

**

* *

*

*

**

* assured children

Exception
handler

Exception
handler

guard
predicate
assured
region

AS block

process B
93

CHAPTER 7
dren could be affected by an error and their execution must be
stopped to avoid error propagation. Moreover, the recovery of the
assured children could be necessary to restore consistency in the
concurrent execution.

In the presented VPQB AS, after a violation is signalled, the
violated process and its parent are in charge of compensating for
it. This solution can be extended allowing the violated process
and its parent to recover from any violation in the assured chil-
dren also. However, problems of variable visibility and parame-
ter passing could arise during the compensation. Furthermore,
the exception could be handled for one process at a time. This is
a centralized solution that could introduce a bottleneck in the
concurrent execution. The execution of the violated process, its
parent, its assured children and the violating process can be
delayed and a subsequent reduction of the throughput is possi-
ble. An alternative solution, is to allow the assured children to
handle violations in their programs as explained in the following
section.

7.3 Inheriting VPQB AS
Inheriting VPQB AS allows assured children to recover a sig-
nalled violation concurrently, each one in its own exception han-
dler.

When an assured child is created, it inherits from its parent
process an exception handler for the recovery of violations of the
AS statement in which the assured child has been created.
Figure 7.2 shows an example of a process B which has four
assured children. Each assured child inherits the exception han-
dler from its parent process.
94

SEMANTIC ISSUES OFVPQB AS
Figure 7.2: Inheriting the exception handler from
parent process

When an AS statement gets violated the execution of the violat-
ing process is temporarily suspended. Moreover, the violation is
signalled to the violated process and to its assured children. To
avoid error propagation the signalled assured children pause

process A

process B

AS block

Exception
handler

Exception
handler 2

Exception
handler

Exception
handler 1

Exception
handler 3

Exception
handler 4

child 1

child 2

assured
child 1assured

child 2

assured
child 4

assured
child 3
95

CHAPTER 7
their execution. Instead, the violated process continues in its
exception handler and starts handling the violation in its pro-
gram as explained in Section 6.2.4. See the example in Figure
7.3.

Figure 7.3: Inheriting VPQB AS: state of execution of the
violating, the violated and the assured child processes

after a violation signal

process A

AS block

violating
process

violated
process

signal
violation

Exception
handler

Exception
handler

Exception
handler 3

Exception
handler 1Exception

handler 2

Exception
handler 4

assured
child 1

assured
child 4

assured
child 3

assured
child 2

child 1

child 2

*

*

*

: block point at the moment of the violation signal

*

*

96

SEMANTIC ISSUES OFVPQB AS
Furthermore, depending on how the violation is handled, the
violated process decides whether the recovery of the assured
children is necessary or not.

In particular, according to the semantics of VPQB AS the fol-
lowing four alternatives are possible for the handling of the vio-
lation in the violated process:

1. The violation is not recoverable and the violation signal is
forwarded to the parent of the violated process.

2. The violation is recovered and the resumption point in the vi-
olated process is the beginning of the program.

3. The violation is recovered and the resumption point in the vi-
olated process is the beginning of the AS block.

4. The violation is recovered and the resumption point in the vi-
olated process is the break point within the AS block.

In the first case, the recovery of the assured children is not
needed. The violation will be handled by the parent of the vio-
lated process by restarting or aborting the excepted child. Con-
sequently, the execution of the child processes of the violated,
both assured and not, serves no purpose. Instead, it might cause
problems. If the violated process is aborted, its child processes
do not have a parent process left to return the results of their
tasks. If instead the violated process is restarted, it will execute
the same or different paths of its program, restarting and/or cre-
ating new assured children. The execution of the old assured
children could interfere with the new execution. Consequently,
before the violation signal is forwarded to its parent, the vio-
lated process must abort all its child processes.

Furthermore, the recovery of the assured children is not
needed in the second and third cases above. In case three,
although the violation is recovered, the violated process resumes
its execution from the beginning of the AS block. Therefore, it
will execute again the AS block restarting or creating new
assured children. The execution of the old assured children
97

CHAPTER 7
serves no purpose. Then, the violated process aborts these proc-
esses before resuming its own execution.

In case two instead, the violated process will resume its execu-
tion from the beginning of the program. Consequently, the exe-
cution of all its child processes created before or within the AS
block is no longer needed. The violated process aborts all these
processes before resuming its own execution.

Lastly, in case four the violated process will resume its execu-
tion from the break point within the AS block. The computations
done by the child processes of the violated process may still be
useful. However, the assured children could be affected by the
error and their recovery is necessary. The recovery of the
assured children proceeds as explained next.

First, the violated process unblocks the assured children
blocked after the violation signal. Next, the unblocked processes
continue execution in their exception handlers and start the
recovery of the violation asynchronously from each other. See
the example in Figure 7.4.

Each assured child, that is not able to recover the violation
locally, aborts its subset of child processes. Next, it forwards the
violation signal to the violated process notifying it also which
processes have been aborted. The unrecovable assured children
will be later restarted or aborted by the violated process. This
explains why the subset of child processes of each unrecoverable
assured child has to be aborted. As an unrecoverable assured
child is restarted or aborted, the computations done by its child
processes are no longer needed.

Moreover, the recoverable assured children that have not been
aborted handle the violation locally and define the resumption
point in their programs. Afterwards, they give a notification of
the recovery to the violated process.
98

SEMANTIC ISSUES OFVPQB AS
Figure 7.4: Inheriting VPQB AS: recovery of a violation in
the assured children

The violated process waits to receive notifications of recovery or
abortion and violation signals forwarded from all the assured
children. Then, it resumes, restarts or aborts the execution in
these processes. In particular, each recovered assured child is
resumed from the point decided within the local handler if its

process A

AS block

violated
process

Exception
handler

Exception
handler

Exception
handler 3

Exception
handler 1Exception

handler 2

Exception
handler 4

assured
child 1

assured
child 4

assured
child 3

assured
child 2

child 1

child 2

: violated unblocks
assured children
99

CHAPTER 7
resumption does not interfere with the resumption of the vio-
lated process. Otherwise, the recovered assured child is
restarted or aborted. Moreover, all the assured children that for-
warded the violation signal to the violated process are aborted or
restarted. The decision to restart or abort an assured child
depends on how the exception has been handled in the violated
process. Finally, when all the assured children have been
resumed, aborted or restarted, the violated process resumes its
own execution.

Note that the quasi-blocking semantics for the violating proc-
ess is still valid for the inheriting VPQB AS. In addition, for a
more efficient unblocking of the violating process a further
extension can be made. The violating process can be unblocked
not only from the violated process or its parent, as in the original
semantics, but also from an assured child during the local recov-
ery of the violation. In this way, the violating process is resumed
as soon as possible, after it is verified that its execution does not
interfere with exception handling.

The inheriting VPQB AS gives autonomy to the assured chil-
dren to recover from the violation in their programs and to
decide locally the most appropriate resumption point. Neverthe-
less, the violated process always maintains control of the
assured children since it synchronizes their execution before
and after the recovery. Moreover, it decides to abort, restart or
resume the assured children according to decisions made in its
exception handler. Consequently, the violated process has a
supervisory role during the exception handling and confirms or
refutes the decisions taken locally by the assured children. A
similar idea can be found in Java (threads and beans) [Fla97].

One restriction for the inheriting VPQB AS

What happens if the process which executes an AS statement
finishes the execution of the assured region before all the
assured children have terminated?
100

SEMANTIC ISSUES OFVPQB AS
In this case, violations of the guard predicate should not be sig-
nalled to the process which executed the AS statement but only
to the assured children created within the assured region and
not yet terminated. In addition, the signalled assured children
should be able to recover from the violation in their programs
independently from the process which executed the AS state-
ment. The inheriting VPQB AS does not cover this case.

To avoid the situation described above the following restric-
tion has been made. The process which executes the AS state-
ment is forced to wait until all the assured children have
terminated before exiting its AS block.

7.3.1 CONTINUATION AND ABORTION SEMANTICS DURING
EXCEPTION HANDLING FOR THE INHERITING VPQB AS

This section points out the actions executed during the recovery
from a violation by the violated process, its parent and its
assured children within their exception handlers.

The exception handler in the program of the violated process
and the ones in the assured children are specific for an AS state-
ment. The code contained in these handlers is executed to
recover from violations of the particular AS statement to which
the handlers are associated. The exception handler of the parent
of the violated process is instead more general. Different types of
exceptions can be handled in it, either detected locally in the
program of the parent of the violated process (like overflow or
division by zero) or signalled by other processes (like calls to pro-
cedures with invalid parameters or a forward of unrecoverable
violations of AS statements).

After a violation of the guard predicate of an AS statement is
signalled, the violated process continues execution in its excep-
tion handler. According to the possibility of recovery the violated
process handles the violation as described below.

If the violation is recoverable, the violated process executes
the following actions:
101

CHAPTER 7
 • It recovers the violation in its program.
 • It tries to unblock the violating process according to the

quasi-blocking semantics.
 • It defines the resumption point in its program, deciding

between the beginning of its program, the beginning of the
AS block or the break point within the AS block.

 • If the resumption point chosen is at the beginning of the pro-
gram, the violated process aborts all its children, assured
and non-assured. Next, it resumes its own execution.

 • If the resumption point is at the beginning of the AS block,
the violated process aborts all its assured children. After-
wards, it resumes its own execution.

 • If the resumption point is at the break point within the AS
block, the violated process unblocks the assured children
blocked by the violation signal. Moreover, it waits to receive
notification of recovery or abortion and violation forward of
all the assured children. Therefore, it resumes, aborts or
restarts the assured children as explained in the previous
section. Finally, it resumes its own execution.

If the violation is not recoverable, the violated process executes
the following actions:

 • It aborts all its child processes.
 • It forwards the exception to its parent.
 • It waits to be aborted or restarted by the parent process.

The exception handlers in the assured children are simplified
versions of the handler in the violated process. Within its excep-
tion handler an assured child handles a signalled violation as
follows.

If the violation is recoverable, the assured child executes the
following actions:
 • It recovers the violation locally to its program.
 • It tries to unblock the violating process, if still blocked, dur-

ing the local recovery of the violation.
102

SEMANTIC ISSUES OFVPQB AS
 • It defines the resumption point in its program.
 • It notifies its recovery to the violated process.
 • It waits to be resumed, aborted or restarted by the violated

process.

If the violation is not recoverable locally, the assured child exe-
cutes the following actions:

 • It aborts its subset of child processes.
 • It forwards the violation signal to the violated process, giving

also notification of the aborted processes.
 • It waits for the violated process to abort or restart its execu-

tion.

In the case where the violation is not recoverable in the program
of the violated process, the violation signal is forwarded to the
parent of the violated process. The parent process handles the
forwarded violation within its exception handler by executing
the following actions:

 • It aborts or restarts the violated process.
 • It unblocks the violating process.
 • It resumes its own execution.

During the recovery of a violation within the exception handlers,
temporary locking of the corrupted assured data could be neces-
sary to avoid error propagation. Consequently, all the concur-
rent processes that try to access the inconsistent data could be
delayed for the duration of the lock.

To keep the solution of inheriting VPQB AS as general as pos-
sible, both continuation and abortion semantics have been
allowed in the exception handlers of the violated process, of its
parent and of its assured children. The decision to resume or
abort the violated process and its assured children after a viola-
tion is taken at run-time, depending on the situation and the
moment of the violation.
103

CHAPTER 7
7.3.2 THE VIOLATING PROCESS IS THE VIOLATED PROCESS
ITSELF OR ONE OF ITS ASSURED CHILDREN

The semantics of the inheriting VPQB AS has not been defined
for the following two cases:

1. The violating process is the violated process itself.
2. The violating process is one of the assured children of the vi-

olated process.

The first case happens when the process which contains the AS
statement in its program, during execution within the assured
region, executes an instruction which violated the guard predi-
cate of the AS statement. The second case occurs when one of the
assured children, created within the assured region of the AS
statement, executes an instruction which violates the guard
predicate of the AS statement. The inheriting VPQB AS is
adapted to these cases as explained next.

1. The violating process is the violated process itself. Af-
ter the execution of the violating instruction the violating
process suspends its execution. Next, the violation, which is
automatically detected, is signalled to the violated process it-
self and to its assured children. The assured children block
their execution. The violated process instead, which sus-
pended its execution after the violation, is unblocked by the
violation signal and continues execution in its exception han-
dler. The exception is then recovered from by the violated
process, by its assured children and by the parent of the vio-
lated process as explained in the previous sections. However,
the following simplification can be made. As the violating
process is unblocked by the violation signal, the handler
processes do not need to handle its unblocking during excep-
tion handling.

2. The violating process is an assured child of the violat-
ed process. After the execution of the violating instruction,
the violating assured child process blocks its execution. The
104

SEMANTIC ISSUES OFVPQB AS
violation is signalled to all the other assured children and to
the violated process. The signalled assured children block
their execution. Afterwards, the violated process starts the
recovery of the violation continuing execution in its excep-
tion handler. The violation is then recovered in the violated
process and in its assured children (including the violating
one) as explained in the previous section. As the violating
process is also an assured child of the violated process, its ex-
ecution is aborted, resumed or restarted by the violated proc-
ess at the end of the recovery. Therefore, the assured chil-
dren of the violated process do not need to handle the un-
blocking of the violating process during exception handling.

7.3.3 VIOLATIONS TO VIOLATING PROCESSES

According to the quasi-blocking semantics, when a process vio-
lates a guard predicate of an AS statement its execution is
blocked until the violated process, or one of its assured children,
unblock it. However, the violating process could be blocked while
executing an AS statement itself. What happens if the violating
process gets violated itself while it is blocked?

A simple solution to this problem is to delay the violation sig-
nal until the violating process is unblocked. However, this solu-
tion would not be consistent when the violated process has
assured children. When delaying the violation signal, these
processes would continue their normal execution and error prop-
agation could result.

A revised and consistent solution is that the violation is sig-
nalled to the blocked violating process and its assured children
as soon as it has occurred. At the violation signal, the signalled
assured children block their execution avoiding in this way error
propagation. Nevertheless, the violation is handled as explained
in Section 7.2.1 only when the violating-violated process gets
unblocked.
105

CHAPTER 7
7.3.4 VIOLATIONS ARISING DURING THE EXECUTION OF
PROCEDURES CALLED FROM AN ASSURED REGION

This section explains how violations of the guard predicate aris-
ing during the execution of a procedure called from an AS state-
ment can be handled.

A procedure does not have its own thread of execution.
Instead, the procedure is executed in the thread of the caller
process. Consider the example of Figure 7.8 in which process A
calls the procedure P() from its assured region AR. At first, proc-
ess A calls the procedure P() (1), then it executes the called pro-
cedure (2) and finally it continues the execution in the assured
region after the procedure call point (3).

Figure 7.5: Thread of execution of A during the call and
the execution of the procedure P()

AS Block

Exception
handler

P ()
procedure P ()

Process A

(1)

(2)
(3)

guard predicate GP

assured
region AR
106

SEMANTIC ISSUES OFVPQB AS
Consequently, a procedure called from the assured region of an
AS statement, is executed from the same process which executes
the AS statement. This fact simplifies the handling of violations
signalled during the execution of procedures called from an
assured region.

When a violation is signalled, the violated process suspends
its execution within the procedure. Next, it continues in its
exception handler and the violation is handled as explained in
Section 7.2.1. After exception handling the execution of the pro-
cedure can be alternatively aborted or resumed from the break
point at the moment of the violation signal.

The first case occurs when the execution of the procedure is no
longer necessary after the exception handling. This happens if
the violation is not recoverable or if the resumption point for vio-
lation recovery is at the beginning of the AS block or at the
beginning of the program of the violated process. The execution
of the procedure is instead resumed if the resumption point for
the violation recovery is at the exact break point within the AS
block.

7.4 Nested AS Statements
As introduced in chapter 4 a single AS statement consists of an
AS block and an associated exception handler. A nested struc-
ture of AS statements can be instead represented as a number of
nested AS blocks and an exception handler. The exception han-
dler has as many exception handling sections as the number of
the AS blocks. Each section is associated with an AS block.

An example, with two nested AS statements in the program of
a process A, is shown in Figure 7.5. The AS block AB2 is con-
tained in the assured region of the AS block AB1. The exception
handler consists of two sections of code, one for each AS block.
Each section contains the handling code for the recovery of vio-
lations signalled in the corresponding AS block.
107

CHAPTER 7
Figure 7.6: Two nested AS statements

As for a single AS statement the assured region of one of the
nested AS statements is executed if the corresponding guard
predicate is satisfied. Moreover, if during execution within the
assured region the Boolean value of the guard predicate
changes, a violation is signalled. In the previous example, viola-
tions of the guard predicate GP1 can occur during execution
within the assured region AR1 (then also during execution of the
AS block AB2 which is contained in the assured region AR1).
Analogously, the guard predicate GP2 can be violated in the
assured region AR2.

When a violation of a guard predicate is signalled, execution
continues in the section of the exception handler associated with

AS block AB2

Exception handler

Section 1

Section 2

process A

AS block AB1 guard predicate GP1

assured region AR1

guard predicate GP2

assured region AR2

.

.

.

108

SEMANTIC ISSUES OFVPQB AS
the violated AS block. Referring to Figure 7.5, if during the exe-
cution in the assured region AR1 a violation of the guard predi-
cate GP1 is signalled the execution continues in the section one
of the exception handler.

It is assumed that during the handling of a violation nested
violations of the same or different guard predicates of an AS
statement cannot occur. Consequently, only one violation at a
time is allowed to be signalled and handled during the execution
of an AS statement.

7.4.1 INHERITING VPQB AS WITH NESTED AS STATEMENTS

The semantics of the inheriting VPQB AS needs to be examined
for the case where assured children are created within a nested
structure of AS statements.

In Figure 7.7 an example of a process A which has three
nested AS statements and four assured children ac1, ac2, ac3,
ac4 is presented. The assured blocks of the three AS statements
are labelled AB1, AB2 and AB3. Moreover, the sections of han-
dling code associated with the assured blocks AB1, AB2 and
AB3 are labelled respectively Ex1, Ex2, Ex3.

Violations occurring in one of the nested AS statements
should not be notified to all the assured children. Instead, only
the assured children created within the assured region associ-
ated with the violated guard predicate must be signalled. For
example, refer to Figure 7.7 and assume that a violation of the
assured predicate associated with the assured block AB2 occurs
when process A is executing in the assured block AB3, after hav-
ing created the assured child ac4. The violation must be sig-
nalled to process A and only to the assured children ac3 and ac4.
109

CHAPTER 7
Figure 7.7: Assured children created within a nested
structure of AS statements

The inheriting VPQB AS can be extended as follows to allow
nested AS statements. When an assured child is created, it
inherits from the parent process an exception handler. This
exception handler consists of one section of handling code for
each of the AS blocks in which the assured child is nested. Refer-
ring to the example in Figure 7.7, when the assured children ac1
and ac2 are created, they inherit from process A the exception
handling sections Ex1.1 and Ex1.2. Moreover, when the ac3 is
created, it inherits from the parent process the exception han-
dling sections Ex1.3 and Ex2.1. Finally, when the assured child
ac4 is created, it inherits from process A the exception handling
sections Ex1.4, Ex2.2 and Ex3.1. See Figure 7.8.

AB1
AB2

AB3

Process A

ac1ac2

ac3

ac4

Ex1
Ex2
Ex3
110

SEMANTIC ISSUES OFVPQB AS
Figure 7.8: Inherence of exception handling sections

When a violation of a guard predicate occurs the violated process
and the assured children created within the assured region asso-
ciated with the violated guard predicate are signalled. There-
fore, the violation is handled. The signalled assured children
block their execution. All the other assured children are instead
not affected by the violation and continue their execution. The
violated process continues executing in the section of the excep-
tion handler associated with the violated AS block. For example,
referring to Figure 7.8, it is assumed that the guard predicate of
the assured block AB2 is violated during the execution of the
assured block AB3, after the assured child ac4 has been created.
The solution is signalled to the assured children ac3 and ac4 and

AB1
AB2
AB3

Process A

ac1ac2

ac3

ac4

Ex1
Ex2
Ex3

Ex3.1
Ex2.2
Ex1.4

Ex2.1
Ex1.3

Ex1.2 Ex1.1
111

CHAPTER 7
to process A. The signalled assured children block their execu-
tion. Process A continues with section Ex2 of the exception han-
dler. The assured children ac1 and ac2 continue their execution.
The signalled violation is then handled in the violated process
and in the signalled assured children. The following four alter-
natives are possible for handling the violation:

1. The violation is not recoverable and it is forwarded to the
parent of the violated process.

2. The violation is recovered and the resumption point is at the
beginning of the program of the violated process.

3. The violation is recovered and the resumption point in the
program of the violated process is at the beginning of the vio-
lated AS statement.

4. The violation is recovered and the resumption point in the
program of the violated process is at the break point within
the violated AS statement.

In cases one and two the violation is handled as explained in
Section 7.2.1. In case three the only difference with the solution
presented in Section 7.2.1 is that the assured children which are
aborted before the violated process resumes its execution, are
the only ones that get the violation signal. In case four, the vio-
lated process unblocks all the signalled assured children blocked
by the violation signal. The unblocked assured children continue
execution in the section of their exception handlers associated
with the violated AS statement. Subsequently, the violation is
recovered locally in the programs of these processes or for-
warded to the violated process as described in Section 7.2.1.

7.5 Summary
In this chapter further semantic issues for the solution VPQB
AS have been defined. In particular, VPQB AS has been
extended to allow local handling of violations in processes cre-
ated within the assured region of an AS statement resulting in
112

SEMANTIC ISSUES OFVPQB AS
inheriting VPQB AS. Furthermore, the semantics of the inherit-
ing VPQB AS have been studied in the case where violations of
an AS statement arise from the violated process itself or from
processes created within the assured region. Next, a solution
has been presented for handling violations occurring during the
execution of procedures called from AS statements. Finally, the
semantics of nested AS statements have been defined.
113

CHAPTER 7
114

IMPLEMENTATION AND EXPERIMENTAL RESULTS
Chapter 8
Implementation

and
Experimental

Results

This chapter describes an implementation of AS and presents
experimental results obtained using the implementation. The
first two sections provide the notions needed to understand the
work done during the implementation. In particular, a short
description of CAMOS, the environment chosen for the imple-
mentation, is given. Next, operations in CAMOS are described.
Subsequently, it is explained how the solution VPQB AS has
been modelled and implemented to define assured operations in
CAMOS. Finally, the performance of the implemented solution is
evaluated using a case study.
115

CHAPTER 8
8.1 CAMOS: the Implementation Environment
CAMOS (Control Application Mediator Object System) is a pro-
totype for a Manufacturing Control System (MCS) developed as
part of a licentiate thesis [Fal96] in the Real Time Systems
Laboratory (RTSLAB) at Linköping University. An MCS is used
for the automatic control of machinery in a production process.
The purpose of an MCS is to provide easier maintenance and
more flexibility during the production process and to allow fast
changes of the control software.

CAMOS is a database centred MCS and solves the data man-
agement problems in the production process by using an active
object-relational database management system. A short descrip-
tion of the CAMOS architecture is given in the next sections.

8.1.1 THE CAMOS ARCHITECTURE

Four elements characterize the CAMOS architecture: the active
database system AMOS (Active Mediator Object System), the
high level language CAMOS(L), the operation manager and the
real-time kernel. Figure 8.1 shows an overview of the CAMOS
architecture. A short description of the four components men-
tioned above is then provided. Further details can be found in
[Fal96] and [Die97].
116

IMPLEMENTATION AND EXPERIMENTAL RESULTS
Figure 8.1: Overview of the CAMOS architecture

Real-time kernel

Real world machinery

AMOS database

CAMOS
compiler

internal

virtual

manager
Operation

state of execution

executes
compiles

controls

changes

sends acknowledgement

initializes changes provides information

activates algorithms
to change the real
world machinery

messages after changes
occurred in the real

about the states of the
real world machinery

of the real world
machinery

of the real world
machinery

of CAMOS(L)

CAMOS(L)
programs into

representation

representation

programs

world machinery
117

CHAPTER 8
The Active Database Management System AMOS

The CAMOS architecture uses the database AMOS to store the
information for the production process. AMOS is an example of
an Active Database Management System (ADMS) developed in
the Engineering Databases and Systems Laboratory (EDSLAB)
at Linköping University. AMOS supports mechanisms to store
data using object-oriented techniques. Moreover, it provides
active rules, a new sort of database notion introduced by
ADBMS, that makes the database active and not only a passive
data repository. Active rules monitor the state of data in the
database and automatically execute one or more user-pro-
grammed database operations when a user-programmed condi-
tion is satisfied. Further details about ADMS and active rules
can be found in [Wid96]. For more information about AMOS
refer to [Kar94].

The CAMOS(L) Language

CAMOS(L) is a high-level language used to program the
machinery behaviour for MCS in the CAMOS system. It pro-
vides mechanisms to coordinate the machinery's activities and
supports data management. CAMOS(L) has been developped to
simplify the programming of production processes. Therefore, it
consists of only a few syntactical constructs.

When a CAMOS(L) program is used to control a manufactur-
ing production process, at first an internal representation of the
real-world machinery and its behaviour is provided within the
database AMOS. Therefore, the machinery can be controlled via
software using CAMOS(L) operations. Operations are the most
important syntactical CAMOS(L) constructs and are described
in the Section 8.3. The compiler CAMOS is used to compile
CAMOS(L) programs into database queries, active rules and
run-time code. The object code resulting from the compilation is
stored in the AMOS database and is executed by the operation
manager.
118

IMPLEMENTATION AND EXPERIMENTAL RESULTS
The Operation Manager

The operation manager organizes the execution and executes
the operations stored in the database. The operation manager
consists of three parts: the interpreter, the scheduler and the
rule coordinator. The functionality of these parts can be
summarized as follows:

 • The interpreter reads the run-time code resulting from the
compilation of CAMOS(L) programs and executes operations
according to their execution order. It also performs changes
in the virtual representation of the real word machinery
internal to the database, during the execution of the opera-
tions. Moreover, it works on the acknowledgement messages
from the real-time kernel.

 • The scheduler selects an operation that is allowed to exe-
cute. If there is more than one operation to execute at the
same time, the scheduler uses the round-robin policy.

 • The rule coordinator activates and deactivates operations
by the activation and deactivation of active rules.

The Real-time Kernel

The real-time kernel is the connection between the virtual rep-
resentation of the real world machinery in AMOS and the
machinery in the real word. It supervises movements of the real
word machinery by initializing the changes after the virtual rep-
resentation of the machinery changed. Moreover, when changes
in the real world are done, the real-time kernel, sends acknowl-
edgement messages back to the operation manager.
119

CHAPTER 8
8.2 Structure and High-Level Representation of
CAMOS(L) Operations

Operations are the most important element of CAMOS(L) and
are used to program and control machinery in a production proc-
ess. in this section at first the general structure of CAMOS(L)
operations is described, since this is necessary to understand the
work done during the implementation. Moreover, an example is
used to introduce the high-level representation of operations in
CAMOS(L).

8.2.1 THE STRUCTURE OF CAMOS(L) OPERATIONS

A CAMOS(L) operation consists of a Boolean condition and a
body which contains a number of suboperations. The Boolean
condition must be satisfied before the operation is allowed to
execute. This condition is called the operation's wait condition
and its purpose is to synchronize the operation with other oper-
ations. Furthermore, an operation consists of several subopera-
tions, grouped into guarded sets. The guard is a database query
returning a Boolean value that decides if the guarded set of sub-
operations will be executed or not.

Suboperations are threads of execution of the process execut-
ing the main operation. All suboperations within one operation
may execute in parallel. However, dependencies can be used to
serialize suboperations that must not be executed in parallel.

When all the suboperations with fulfilled guards have finished
execution, the operation ends as well, unless it is an iterative
operation. An iterative operation starts again by checking the
wait condition and then executing again all the suboperations
with fulfilled conditions.
120

IMPLEMENTATION AND EXPERIMENTAL RESULTS
8.2.2 HIGH-LEVEL REPRESENTATION OF CAMOS(L) OPERATIONS

The following example shows what an operation in CAMOS(L)
looks like. Moreover, the different parts of the operation are
described.

CREATE OPERATION MoveCrane (crane .c)
AS WHEN

numberOfLifts (.c) < 50
DO
IF position (.c) = 0 THEN

1: PUT .c: h_position = 1;
2: magnetOff (((cranemagnet (.c))));
DEPENDENCIES: (1,2);

ENDIF
IF position (.c) = 1 THEN

2: PUT .c: h_position = 0;
3: magnetOn(((cranemagnet (.c))));
DEPENDENCIES: (2,3);

ENDIF
IF numberOfLifts (.c) = 40 THEN

3: SET .c: maintenance = “TRUE”;
ENDIF

MoveCrane is the name of the operation. A list of formal param-
eters, enclosed in parenthesis, follows the name of the operation.
A formal parameter consists of the name of a CAMOS(L) class,
previously defined in the database AMOS, and an identifier to
which the object is referred to within the operation. The identi-
fier begins with a “.” to recognize it in database queries.

The wait condition is enclosed between the keywords AS
WHEN and DO. It is a database query returning a Boolean
result.

Finally, the body of the operation MoveCrane contains a non-
empty set of if-statements. Each if-statement has an if clause,
called the if-guard, enclosed between IF and THEN. According
121

CHAPTER 8
to the value of the if-guard the body of the if-statement is exe-
cuted or not.

The body of the if statement contains one or more subopera-
tions, preceded by a label, which is a positive integer number fol-
lowed by a colon. A DEPENDENCIES: statement can be used to
order the execution of the suboperations.

The following two types of operations are possible:

 • Primitive operations.
 • Call operations.

Primitive operations are requests for change in the real world
machinery. They can be recognized since they always begin by
PUT or SET.

Call operations are instead calls to other operations. In the
operation MoveCrane examples of call operations are
magnetOff (((cranemagnet (.c)))) and magne-

tOn(((cranemagnet (.c)))) .

8.2.3 EXECUTION OF CAMOS(L) OPERATIONS

Before the execution, CAMOS(L) operations are first compiled
from the high-level to the internal representation which is the
stored into the AMOS database. Therefore, operations must be
activated. The operation manager handles the activation of an
operation, which means the activation of an active rule associ-
ated with the operation. This active rule is generated by the
CAMOS(L) compiler during the compilation and is used to check
automatically when the wait condition of the operation is satis-
fied. Only when this happens, is the active rule deactivated and
the execution of the body of the operation starts.
122

IMPLEMENTATION AND EXPERIMENTAL RESULTS
8.3 Applying AS to Assure CAMOS(L)
Operations

Operations have been presented as the basic constructs of
CAMOS(L). AS has been integrated in CAMOS to assure
CAMOS(L) operations.

When an operation is assured, the operation is called an
assured operation and its wait condition is called an assured
wait condition. Moreover, the suboperations called or executed
within the body of the assured operation are called assured sub-
operations. An asterisk is used to distinguish an assured opera-
tion from an ordinary operation. Furthermore, an exception
handler is associated with the assured operation. The example
of a CAMOS(L) assured operation is shown in Figure 8.2.

Figure 8.2: An example of an assured operation in
CAMOS(L)

CREATE OPERATION MoveCrane (crane .c)

AS WHEN*

numberOfLifts (.c) < 50

DO

IF position (.c) = 0 THEN

1: PUT .c: h_position = 1;

DEPENDENCIES: (1,2);

ENDIF

2: PUT .c: h_position = 0;

IF true THEN

3: magnetOn(((cranemagnet (.c))));

ENDIF

assured wait
condition

EXCEPTION HANDLER

assured
subope-
rations
123

CHAPTER 8
The execution of an assured operation starts when its assured
wait condition is satisfied. Next, the body of the operation is exe-
cuted under the assumption that the Boolean value of the
assured wait condition remains satisfied. Changes to the
assured wait condition are automatically monitored and if its
Boolean value changes a violation is signalled. Consequently,
the code in the exception handler is executed to compensate for
the violation.

The guard predicate, the assured region and the assured chil-
dren described for an AS statement are recognized within an
assured operation as follows. The assured wait condition corre-
sponds to the guard predicate. The body of the operation is rec-
ognized as the assured region. Moreover, the suboperations
executed or called within the body of the assured operation cor-
respond to the assured children of the process which executes
the assured operation. See the example in the Figure 8.3.

When a violation of an assured wait condition occurs, the proc-
ess which is executing the violated assured operation will be
referred to as violated process. The process which violates the
assured wait condition will be referred to as violating process.
124

IMPLEMENTATION AND EXPERIMENTAL RESULTS
Figure 8.3: Guard predicate, assured region and assured
children of an assured operation

8.4 Integrating the VPQB AS to Assure
Operations in CAMOS

This section explains how VPQB AS has been integrated within
CAMOS. In addition, some issues of the implementation and the
requirements fulfilled during the implementation are described.
Finally, possible extensions to the integrated solution are sug-
gested.

CREATE OPERATION MoveCrane (crane .c)

AS WHEN*

numberOfLifts (.c) < 50

DO

IF position (.c) = 0 THEN

1: PUT .c: h_position = 1;

DEPENDENCIES: (1,2);

ENDIF

2: PUT .c: h_position = 0;

IF true THEN

3: magnetOn(((cranemagnet (.c))));

ENDIF

guard

assured
region

assured

EXCEPTION HANDLER

predicate

children
125

CHAPTER 8
8.4.1 THE MODELLED SOLUTION

As the implementation was performed to valid or refute the
approach of AS, a simplified version of VPQB AS has been mod-
elled and implemented. This section explains how VPQB AS has
been modelled to define assured operations in CAMOS.

When an assured operation is created, an exception handler is
associated with the assured operation in the program of the
process which executes the operation. In this exception handler,
violations of the assured wait condition occurring during the
execution of the body of the operation are handled. The assured
suboperations executed or called from the body of the assured
operation, are instead not provided with their own exception
handlers. The reason for this choice derives from the assumption
made that the process which executes the assured operation is
always the most convenient process to handle violations in its
assured suboperations.

When a violation of the assured wait condition occurs during
execution of an assured operation, the violating process blocks
its execution. Moreover, the violated process and its assured
suboperations are signalled. The execution of the signalled
assured suboperations is suspended to avoid error propagation.
Instead, the violated process executes the code in the exception
handler associated with the violated assured operation and com-
pensates for the violation. In particular, the following three
alternatives have been considered:

1. The violation is recoverable in the violated process and in the
suspended assured suboperations.

2. The violation is recoverable in the violated process but not in
the suspended assured suboperations.

3. The violation cannot be recovered in the violated process.
126

IMPLEMENTATION AND EXPERIMENTAL RESULTS
In the first case, the violation is recovered in the violated process
and in the suspended assured suboperations. Moreover, the vio-
lating process is unblocked as soon as possible during the viola-
tion recovery (quasi-blocking semantics). Finally, the suspended
assured suboperations and the violated process are resumed.

In the second case, the suspended assured suboperations are
aborted. Next, the violation is recovered in the program of the
violated process and the violating process is unblocked accord-
ing to the quasi-blocking semantics. Finally, the violated process
is resumed and the aborted assured suboperations are
restarted.

In the third case, both the suspended assured suboperations
and the violated process are aborted. Next, the violation signal
is forwarded to the process that called the assured operation.
The caller process will handle the unblocking of the violating
process. Finally, it will decide whether to restart or not the
assured operation.

Nested Assured Operations

The solution for AS modelled in CAMOS allows nested assured
operations.

An assured operation is nested when it is called from the body
of another operation that is assured itself. Each nested assured
operation is provided with its own exception handler. Figure 8.4
shows an example in which the assured operation Y is called
from the body of assured operation X.

Violations of a nested assured operation can occur during the
execution of its body. These violations are handled in a way sim-
ilar to those described in the previous section.

After a violation has occurred, it is signalled to the process
which is executing the nested assured operation (violated proc-
ess) and to its subset of assured suboperations. The signalled
assured suboperations are suspended. Instead, the violated
process executes the code in the exception handler associated
127

CHAPTER 8
with the violated assured operation. Therefore, it compensates
for the violation as explained in the previous section.

Figure 8.4: Structure of two nested assured operations

Restrictions

The following restrictions have been made when integrating
VPQB AS with CAMOS. First, nested violations of an assured
wait condition arising during the handling of a previous viola-

ASSURED OPERATION X()

assured wait condition for X

Exception handler for X

body of the operation X

Y ()

ASSURED OPERATION Y()
assured wait condition for Y

body of the operation Y

Exception handler for Y
128

IMPLEMENTATION AND EXPERIMENTAL RESULTS
tion have not been allowed. Therefore, only one violation at a
time can be signalled and handled by a violated process. Moreo-
ver, nested violations of different assured wait conditions when
nested assured operations are used have not been allowed
either.

8.4.2 THE IMPLEMENTATION

Since they are not relevant to the purpose of this thesis, the
modifications made during the implementation and integration
with the existing code for CAMOS will not be explained in detail.
Instead, in the next sections, it is first described at an abstract
level how active rules have been used for the monitoring of
assured operations. Then, it is explained how exception han-
dling has been realized in CAMOS. Finally, the requirements
fulfilled during the implementation are discussed.

Automatic monitoring of Assured Wait Conditions using Active
Rules

Within the CAMOS system, active rules represent a natural way
to automatically detect the state of the data stored in the AMOS
database. Active rules have been used to automatically monitor
changes of assured wait conditions.

When an assured operation is created, an active rule is gener-
ated and associated with the operation. This rule is designed to
check, automatically, when the assured wait condition of the
operation is satisfied. Before execution, the assured operation is
then activated. The operation manager handles the activation of
the operation, meaning the activation of the associated rule.
Afterwards, the activated rule signals when the assured wait
condition is satisfied. When this happens the active rule is deac-
tivated and the execution of the assured operation begins. How-
ever, before the execution of the body of the assured operation, a
new active rule is activated. The task of this new rule is to auto-
matically detect changes occurring to the assured wait condition
129

CHAPTER 8
during the execution of the operation and to signal possible vio-
lations.

If and when the Boolean value of the assured wait condition
becomes false, the new activated rule signals a violation to the
process which is executing the assured operation and to its
assured suboperations. Therefore, the violation is handled by
the signalled processes as explained before. The active rule used
for the monitoring of violations is finally deactivated when the
execution of the assured operation terminates. In particular,
this happens in the following situations:

 • The assured operation is aborted during the recovery of a
signalled violation.

 • The execution of the body of the assured operation is success-
fully terminated.

The two active rules described above are generated during the
compilation of the assured operation from high-level to internal
representation. The activation and deactivation of active rules
are handled by the operation manager.

Defining Exception Handling in CAMOS

The earlier CAMOS system did not support exception handling.
Therefore, a solution has been implemented to allow the han-
dling of violations of assured operations.

When an assured operation is created, an exception handler is
also specified. The exception handler consists of a section of code
executed to recover from violations occurring from the assured
operation. In particular, the code in the exception handler can
only be executed if violations are signalled during the execution
of the body of the assured operation.

Syntactically, the exception handler has the same structure as
the body of an operation and consists of guarded sets of suboper-
ations. Moreover, the execution of the code in the exception han-
dler proceeds in the same way as explained for the body of the
operation. After a violation has been signalled, the if-guards in
130

IMPLEMENTATION AND EXPERIMENTAL RESULTS
the exception handler are evaluated. Then the suboperations
with fulfilled guard are processed. The suboperations in the
exception handler are executed to compensate for the signalled
violation. These suboperations, like the ones in the body of an
operation, can be calls to other operations or primitive opera-
tions (SET or PUT). Furthermore, five additional primitive oper-
ations can be called from an exception handler. These primitive
operations are used to abort, restart or resume execution in the
violating process, in the violated assured operation and in the
assured suboperations. They are listed below and described as
follows:
 • ResumePC. This primitive operation resumes execution in

a violated assured operation and in its suboperations sus-
pended after a violation. The primitive ResumePC is called
after the violation has been recovered in the violated assured
operation and in the suspended suboperations.

 • ResumeP. This primitive operation restarts the execution of
a violated assured operation after the violation has been
recovered.

 • ResumeV. This primitive operation unblocks the violating
process during the recovery of a violation.

 • AbortChildren. This primitive operation aborts execution
in the assured suboperations started from an assured opera-
tion and suspended after a violation signal. The primitive
AbortChildren is called when the recovery of the suspended
assured suboperations is not possible.

 • AbortAll. This primitive operation aborts the violated
assured operation and its assured suboperations. Moreover,
it forwards the violation signal to the caller process of the
aborted assured operation. The primitive AbortAll is called
when the recovery of the violated assured operation is not
possible.

The primitive operations described above have been integrated
in CAMOS and can only been used within exception handlers.
131

CHAPTER 8
Requirements fulfilled during the Implementation

During the implementation of assured operations, the following
requirements have been fulfilled:

 • Few lines of added/changed code. One target of the
implementation was to show the easy integrability of AS into
CAMOS. Therefore, few extensions and changes have been
made to the existing code for CAMOS. Only 213 LOC (Lines
Of Code) have been added. The time strictly needed to imple-
ment the solution for AS described in Section 8.4.1 required
two weeks of programming work. Most of the time during
implementation was spent to become familiar with the exist-
ing code for CAMOS, to understand where to modify the code
and to test the implemented solutions.

 • Separation of handling code from the normal code. To
avoid errors during the typing and the execution of
CAMOS(L) programs, the code in the body of an assured
operation has not been mixed with the compensation code in
the exception handler. In particular, calls to the new primi-
tive operations ResumePC, ResumeP, ResumeV, AbortChil-
dren, and AbortAll have been allowed only within the
exception handler of assured operations. In addition, the
code in the exception handler is only executed if violations of
an assured operation occur during the execution of its body.
Afterwards, the execution of the normal code in the body of
the assured operation can be resumed or not, depending on
the choices of violation recovery.

 • Improvement of parallelism. The implementation of
assured operations was performed to provide CAMOS with a
mechanism for the concurrency control that could improve
parallelism when applied in CAMOS(L) applications.
132

IMPLEMENTATION AND EXPERIMENTAL RESULTS
8.4.3 FURTHER EXTENSIONS OF THE INTEGRATED SOLUTION

The solution for AS integrated into CAMOS is not the most effi-
cient and complete. Further extensions and improvements are
possible.

A first extension could be to allow the assurance of single sets
of suboperations within an operation by defining assured if
statements within the body of the operation. This solution would
be more complete and flexible. In this way, when writing an
assured operation, it could be possible to choose whether to
assure the complete operation or only some parts of it.

Moreover, during the implementation, the compiler
CAMOS(L) has not been modified to recognize and translate
automatically assured operations from the high-level to the
internal representation. Instead, manual modifications in the
object code, after the compilation of a program, are required.
This can introduce errors since the object code is not very easy to
read and modify. Consequently, for a more efficient use of
assured operations the compiler should be extended.

In the integrated solution few alternatives have been consid-
ered for the recovery of the assured suboperations called from
the body of a violated assured operation. In particular, the recov-
ery is possible either for all the assured suboperations or for
none of them. A further extension could be to consider a more
flexible recovery of the assured suboperations. For example,
allowing inheritance of exception handlers and local recovery in
the assured suboperations like the inheriting VPQB AS.
133

CHAPTER 8
8.5 Testing and Evaluating the Implemented
Solution in a Case Study

Several tests have been made in a case study to verify the cor-
rectness of the implemented solution.

The case study is a production cell which exists in a metal
plant in a factory in Karlsruhe, Germany. See [FZI93] for a
detailed description of the production cell.

The task of the production cell is to forge metal pieces in a
press. Figure 8.5 shows the production cell.

Figure 8.5: The production cell

The following gives a short overview of the work of the produc-
tion cell:

metal pieces

feed belt

elevating
rotary table

arm1

arm2
robot

press

travelling
crane

deposit belt

pile of
134

IMPLEMENTATION AND EXPERIMENTAL RESULTS
1. A metal piece is put from the pile onto the feed belt.
2. The feed belt transports the piece to the elevating rotary ta-

ble.
3. The table goes in its upper position and rotates clockwise 50

degrees, so that arm1 of the robot can take the piece.
4. The robot rotates, so that arm1 points to the table and picks

up the pieces. Again, the robot rotates, so that arm1 can de-
posit the piece in the press, which is in the middle position.
After that, the robot turns to a safe position.

5. The press goes up and forges the piece. Afterwards, it moves
to a lower position, so that arm2 of the robot can reach the
press.

6. The robot rotates arm2 to the press and picks up the proc-
essed piece. Then, it rotates to the deposit belt and releases
the piece on the belt.

7. The deposit belt transports the piece to the crane and stops
here.

8. The crane fetches the piece from the deposit belt and trans-
ports it to the feed belt, so that the entire process can start
again.

A MCS (Manufacturing Control System) for the production cell
has been previously developed at Linköping University as part
of a Master’s thesis [Die97]. The MCS is modelled on the
CAMOS architecture and the software used for the control of the
machinery is programmed in CAMOS(L).

Since CAMOS(L) did not support concurrency control mecha-
nisms, the previous existing implementation of this case study
showed the necessity to avoid consistency problems when con-
current execution threads access shared manufacturing equip-
ment.

A new implementation for the production cell has been devel-
oped using assured operations to control the movements of
machinery during the access to common resources. In particular,
135

CHAPTER 8
assured operations have been applied to control the access to the
following shared equipment:

 • The elevating rotating table. Consistency problems could
occur when metal pieces are fetched from the feed belt to the
elevating rotating table while the arm1 of the robot tries to
reach the table.

 • The feed belt. Concurrency control is needed because metal
pieces could be fetched simultaneously from the pile and
from the travelling crane.

During the implementation, an existing graphical simulation for
the case study has been used to check if the control system of the
production cell worked properly when applying assured opera-
tions.

Moreover, the graphical simulation has been used also to eval-
uate the performance of the new implemented solution with
respect to the previous one. The method used for the evaluation
was to compare the throughput during the execution of the two
programs. In particular, first the previous existing program for
the production cell and then the new version using assured oper-
ations have been executed in the same environment. During the
execution, the graphical simulation has been observed and for
both executions, the time needed to forge the five pieces in the
pile (executing for each piece the operations 1-8 described above)
has been calculated.

Experimental results found that 297 seconds are needed to
forge five metal pieces using the old program of the production
cell. Using the new version only 274 seconds are needed to proc-
ess the same five pieces.

According to the definition given in Section 3.2.3 the Through-
put of a concurrent system is calculated by dividing the units of
work produced during the execution of a concurrent program by
the time needed to execute the program.
136

IMPLEMENTATION AND EXPERIMENTAL RESULTS
Applying the formula above, the throughput of the production
cell using the old implementation was:

Instead, with the new implementation, the throughput of the
production cell was:

Therefore, the solution using assured operations improved the
throughput of the production cell when compared with the pre-
vious implementation.

A further result obtained by rewriting the program of the pro-
duction cell using assured operations, is a greater compactness
of code. In the previous implementation, to guarantee that the
wait condition of an operation remained verified during the exe-
cution of its body, the condition had to be checked many times.
Checks were necessary for example, in all if-guards and again in
the suboperations called from the body of the operation. Instead,
using assured operations, changes to the assured wait condition
are automatically monitored during the execution of the body
and additional checks are not required. As a consequence, the
code appears more compact and is easier to use, read and main-
tain. The maintenance of code is also an important issue, since
the main reason for controlling production processes via com-
puters is to quickly adapt the production machinery to new
products required for the market.

Troughput
UnitsOfProducedWork

TimeNeededToExecuteTheProgram
---=

ThroughputOld
5

297
--------- Units

Secs
--------------⋅ 0 016835

Units
Secs
--------------⋅,= =

ThroughputNew
5

274
--------- Units

Secs
--------------⋅ 0 018248

Units
Secs
--------------⋅,= =
137

CHAPTER 8
In conclusion, two benefits resulted from applying assured oper-
ations to control the movements of machinery during the access
to common resources: the greater compactness of code and the
improvement of the throughput.

8.6 Conclusions
Experimental results showed that AS is particularly suitable for
use of the CAMOS environment. First, the overhead spent on
monitoring violations of assured shared data does not delay the
movements of the machinery controlled by CAMOS(L) pro-
grams. In fact, the time needed for the machinery to move is con-
siderable longer compared with the time needed to control them
via software. Therefore, the time needed for monitoring viola-
tions delays only the execution of the control software but not
the machinery in the physical world. Moreover, CAMOS pro-
vides active rules, which represent a natural way to detect auto-
matically violations of assured data. The use of active rules
made the integration of AS in CAMOS fairly easy, requiring only
few modifications to the existing code. The evaluations of per-
formance done in the case study, showed the improvement of
parallelism when the implemented mechanism AS is used for
concurrency control. However, since CAMOS does not support
monitors, semaphores nor conditional critical regions, compari-
sons of performance have not been possible between these tech-
niques and the solution for AS implemented in CAMOS.
138

EVALUATIONS OF PERFORMANCE
Chapter 9
Evaluations of

Performance

In this chapter the performance of VPQB AS and monitors are
compared through a worst case analysis.

9.1 Comparing the Performance of VPQB AS and
Monitors

A worst case analysis is used to compare the performance of
VPQB AS and monitors. First, the maximum blocking time Max-
Block, which affects the concurrent execution when the two
techniques are applied for concurrency control is estimated.
Next, the throughput in the worst case of execution for monitors
and VPQB AS is compared.

MaxBlock is the BlockingTime that affects the concurrent exe-
cution in the worst case of execution using a concurrency control
technique. According to the definition of BlockingTime given in
Chapter 3, the MaxBlock will be calculated as follows:
139

CHAPTER 9
 in the worst case of execution -

Where, is the time needed for the execution of a concur-
rent program and is the time strictly necessary for the
longest concurrent process to execute without considering the
delays during the access to shared data. See Section 3.2.2 for
further details.

The comparison of the performance of VPQB AS and monitors
will be done for a concurrent system with concurrent proc-
esses ... sharing a resource s. The task of each process dur-
ing its execution is to use the resource s. The following
assumptions are made:

 • All the concurrent processes start executing at the time

 • The time to use the resource s is equal for each concur-
rent process

 • The time strictly necessary for each process to execute is
exactly the time needed to use the resource s

 • The concurrent execution terminates when all the processes
have used the resource s

 • The time needed for the scheduling of the processes is con-
sidered infinitely fast compared with the time needed to use
the resource s and will be ignored

In the hypothetical case that all the processes can execute in
parallel without consistency problems on the shared resource s,
concurrency control is not necessary. Therefore, as shown in
Figure 9.1, the time needed for the concurrent execution to ter-
minate is exactly .

MaxBlock Tconc= tmax

Tconc
tmax

Np
p1 pn

t0 0=
tuse

tuse

Np

Tconc tuse=
140

EVALUATIONS OF PERFORMANCE
Figure 9.1: for ... when concurrency control
during the access to s is not necessary

However, corruptions on the shared data may occur and a con-
currency control technique must be used to preserve consistency.

In the next two sections, the maximum blocking time that
affects the concurrent execution of ... when monitors and
VPQB AS are applied to control the access to s is estimated. The
time necessary to access and release the shared resource when
monitors are used, as well as the time needed to detect possible
corruptions when using VFQB AS are considered infinitely fast
compared to and will be ignored.

9.1.1 MAXIMUM BLOCKING TIME FOR MONITORS

The maximum blocking time for monitors, , is
the maximum delay that affects concurrent execution when
monitors are used to control the access to the resource s. This
delay occurs in the worst case that all the concurrent proc-

.

.

p
1

p
2

p
3

pn

tuse

tuse

tuse

tuse

t0 tuse

Tconc p1 pn

p1 pn

tuse

MaxBlockmon

Np
141

CHAPTER 9
esses try to access the shared resource at the same time. Since
monitors serialize the access to the resource s, only one process
at a time is allowed to use the resource. As shown in Figure 9.2,
the time necessary for the concurrent execution of ... is

which is the time needed for the process to
finish its execution.

Figure 9.2: in the worst case of execution for moni-
tors

According to the definition of , the is
obtained as follows:

p1 pn
Tconc Nptuse= pn

............
.
.

p
1

p
2

p
3

pn

tuse (N3t2tuse use

pn-1

t0 p- 1)tuse Nptuse

Tconc

MaxBlock MaxBlockmon

MaxBlockmon Nptuse tuse– Np 1–()tuse= =
142

EVALUATIONS OF PERFORMANCE
9.1.2 MAXIMUM BLOCKING TIME FOR VDQB AS

The maximum blocking time for VDFB AS, , is the
maximum delay that affects the concurrent execution when
VPQB AS is used for the concurrency control. This delay
depends on the number of violations v that occurs during the
concurrent access to the common resource s. Assuming the time

necessary to recover from a violation is equal for each sig-
nalled violation, the is estimated as follows.

The number of violations is v = 0. All the concurrent
processes use the resource s in parallel. As shown in Figure 9.3,
the time needed for the concurrent execution of ... is

. In this case, the worst case and the best case for
VPQB AS coincide. Since delays do not affect the concurrent exe-
cution, the .

Figure 9.3: in the worst case for VPQB AS
when v = 0

MaxBlockAS

trec
MaxBlockAS

Np

p1 pn
Tconc tuse=

MaxBlockAS tuse tuse– 0= =

.

.

p
1

p
2

p
3

pn

tuse

tuse

tuse

tuse

t0 tuse

Tconc
143

CHAPTER 9
The number of violations is v = 1. The that
affects the concurrent execution of ... occurs in the follow-
ing worst case:

 • The violation is signalled to a concurrent process just before
this process finishes using the resource.

 • To avoid error propagation, the access to the shared resource
is locked by the violated process for the duration of the recov-
ery.

 • After recovery from the violation, the violated process must
restart its access to s.

 • The violating process is resumed at the end of the violation
recovery.

For example, referring to Figure 9.4, process violates process
at the time . suspends its execution, recovers

from the violation. During the recovery locks the access to
the resource s, consequently, the access of ... to s is delayed
for the duration of the recovery. After the violation has been
recovered, is resumed and finishes its execution, is
restarted, and finally ... can continue their access to s.

However, the violating process could be the violated process
itself. In this situation the worst case is when the violation
occurs just before the violated process finishes its access to s. To
avoid error propagation the violated process locks the access to s
during the violation recovery, delaying the execution of the other
concurrent processes. Then, after recovery from the violation,
the violated process restarts using the resource s while the other
concurrent processes finish their access. This situation is shown
in Figure 9.5. In the Figure, is the process that violates itself
and indicates the violation.

MaxBlockAS
p1 pn

p2
p1 tuse ε– p2 p1

p1
p3 pn

p2 p1
p3 pn

p1
v1
144

EVALUATIONS OF PERFORMANCE
Figure 9.4: in the worst case for VPQB AS
when v = 1

Figure 9.5: in the worst case for VPQB AS when
v = 1 and the violating process violates itself

.

.

.

trec

p
1

p
2

p
3

pn

tuse

t0

tuse
_ εε

tuse
_ ε

tuse
_ ε

tuse
_ ε

ε

ε

Tconc

.

.

.

trec

p
1

p
2

p
3

pn

tuse

t0

v1

εtuse
_ ε

tuse
_ ε

tuse
_ ε

tuse
_ ε ε

ε

Tconc
145

CHAPTER 9
In both the cases described above and shown in Figures 9.4 and
9.5, the time needed for the concurrent execution is the time
needed for the most delayed process to terminate, which is:

Assuming small enough to be ignored, this time can be
approximated as . As a consequence, the

 when v = 1 is:

More generally, if the number of violations is v = (is a
non negative integer), the worst case of execution for VPQB AS
is when all the violations delay a single process . In partic-
ular, each violation rises when has almost finished its access
to the resource s. To avoid error propagation during the recovery
of each signalled violation, the access to the shared resource is
locked. Moreover, after the violation recovery, must restarts
the access to s from the beginning.

As nested violations have not been allowed in the semantics of
VPQB AS, the situation described above happens for example in
the following extreme case:
 • violates itself times.
 • recovers from each violation and locks the access to s dur-

ing the recovery.
 • After a violation has been recovered, restarts its access to

s.
 • Only after the violations happened process succeed in

using s.
 • All the processes ... <> are delayed during the

recovery of the first violation.

Tconc tuse ε–() trec tuse+ +=

ε
Tconc 2tuse trec+=

MaxBlockAS

MaxBlockAS 2tuse trec tuse–+ tuse trec+= =

nv nv

nv
pi

pi

pi

pi nv
pi

pi

nv pi

p1 pn pi
146

EVALUATIONS OF PERFORMANCE
Figure 9.6 shows such a situation. In particular, = and the
labels ... indicate the violations that occur during the exe-
cution.

Figure 9.6: in the worst case for VPQB AS
when v =

In the case illustrated above, the time needed for the concurrent
execution is the time needed for to terminate which is:

Assuming small enough to be ignored, this time can be
approximated as . Therefore, the

 when v = is the following:

pi p1
v1 vn

.

.

.

tuse

trectrectrec

v1 v2

pn

p
1

p
3

p
2

t0

vn

ε

tuse
_ ε

tuse
_ ε

tuse
_ ε tuse

_ ε tuse
_ ε

tuse
_ ε

ε

ε

Tconc
nv

p1

Tconc nv tuse ε–() nvtrec tuse+ +=

ε
Tconc nv 1+()tuse nvtrec+=

MaxBlockAS nv

MaxBlockAS nv 1+()tuse nvtrec tuse–+ nv tuse trec+()= =
147

CHAPTER 9
9.1.3 COMPARISON OF THROUGHPUT AND ANALYSIS OF THE
NUMBER OF VIOLATIONS

Now that the and have been esti-
mated, a comparison of the worst case throughput for monitors
and VPQB AS is possible.

As defined in Section 3.2.3 the Throughput of a concurrent
system is calculated by dividing the units of work produced dur-
ing the execution of a concurrent program by the time needed to
execute the program. According to this definition and assuming
that one unit of work is produced for each successful use of the
resource s, the worst case throughput for monitors is given with
the following formula:

The worst case throughput for VPQB AS is instead the follow-
ing:

As the throughput is inversely proportional to the time needed
for the concurrent processes to use the resource s, VPQB AS has
a better performance than monitors when:

namely, when:

when

MaxBlockAS MaxBlockmon

Throuthgputmon

NpUnitsOfWork

Nptuse
---=

ThroughputAS

NpUnitsOfWork

nv 1+()tuse nvtrec+
--=

nv 1+()tuse nvtrec Nptuse<+

MaxBlockAS MaxBlockMon<

nv tuse trec+() Np 1–()tuse<
148

EVALUATIONS OF PERFORMANCE
From the formula above, an upper limit on the number of viola-
tions can be found. If the number of violations is maintained
under this limit, VPQB AS has a better throughput compared
with monitors. This happens when:

Setting the ratio , it is possible to rewrite the rela-
tion above as follows:

This relation can be studied as a first degree function in three
variables , and r. Moreover, the function can be repre-
sented fixing alternatively r or as parametric constants.

Keeping first the number of processes as a paramet-
ric constant k, the number of violations can be studied in
function of the ratio r. Since it makes sense to have a mechanism
for the concurrency control when at least two concurrent proc-
esses share a common resource, k must be .

Figure 9.7 shows the function . As this
function is parametric in k, Figure 9.7 shows how the curve asso-
ciated with the function gets closer to the origin of the axis for
smaller values of k.

nv

Np 1–()

1
trec

tuse
--------+

---------------------<

trec tuse⁄ r=

nv

Np 1–()
1 r+

---------------------<

nv Np
Np

Np
nv

k 2≥
nv k 1–() 1 r+()⁄=
149

CHAPTER 9
Figure 9.7: The function for
, , and

With fixed k and varying the ratio r, VPQB AS is better than
monitors if the number of violations is maintained in the
region below the curve associated with the function

.
For example, with a constant number of processes

, Figure 9.8 shows the curve associated with the
function when the ratio r is .

nv k 1–() 1 r+()⁄=
k k1= k k2= k k3= k1 k2 k3 2≥> >

nv

nv k 1–() 1 r+()⁄=

Np k 5= =
nv 4 1 r+()⁄= 0 r 6≤ ≤
150

EVALUATIONS OF PERFORMANCE
Figure 9.8: Course of the function
when

In the figure above, the ratio r is if the time neces-
sary to recover from a violation is zero or if the time to use
the shared resource is infinitely fast compared with the time

. In this case, VFQB AS has a better performance than mon-
itors if during the concurrent access of the five processes to the
common resource, the number of violations is maintained
strictly less then four. In particular, since it makes sense to have
an integer number of violations, the maximum number of toler-
ated violations is .

In the same way, if the ratio r=1 (namely if) VFQB
AS has a better performance than monitors when the number of
violations . Therefore, only one violation is tolerated in

0 0.5 1 1,5 2 2.5 3 3.5 4 4.5 5 5,5 6

1

2

3

4

5

6

7

8

9

10

nv

r

= 4
1 + r

nv

nv 4 1 r+()⁄=
0 r 6≤ ≤

r 0= trec
tuse

trec

nv 3=
trec tuse=

nv 2<
151

CHAPTER 9
this case during the concurrent access of the five concurrent
processes to the shared resource.

Note that when the ratio , the number of tolerated viola-
tions becomes less than one. This means that VFQB AS is
better than monitors only if violations do not occur during the
concurrent execution.

Analogously, keeping now the ratio r as parametric con-
stant k (), the number of violations can be studied as a
function of the number of process .

The course of the function is shown
in Figure 9.9. This function is linear and is closer to the abscissa
axis as k increases.

Figure 9.9: The function for
, , and

r 3≥
nv

k 0≥ nv
Np

nv Np 1–() 1 k+()⁄=

nv Np 1–() 1 k+()⁄=
k k1= k k2= k k3= k3 k2 k1 0≥> >
152

EVALUATIONS OF PERFORMANCE
To justify using VPQB AS, with fixed k and varying the number
of processes , the number of violations should be maintained
in the region below the line associated with the function

.
For example, fixing the ratio as a constant, Figure

9.10 shows the line associated with the function
when the number of processes is

.

Figure 9.10: Course of the function
when

In particular, if the =10, the number of violations occur-
ring during the concurrent execution must be . Conse-
quently, as there must be an integer number of violations, the
maximum number of tolerated violations for VFQB AS to have a

Np

nv Np 1–() 1 r+()⁄=
r k 1= =

nv Np 1–() 2⁄= Np
1 Np 10≤ ≤

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

nv

Np

=nv
Np - 1)(

2

nv Np 1–() 2⁄=
1 Np 10≤ ≤

Np nv
nv 4.5<
153

CHAPTER 9
better performance than monitors is . Analogously, if
=5, only one violation is tolerated during the concurrent

access of the five processes to the shared resource (since must
be strictly less than two), and so on for other values of .

9.2 Conclusions
The analysis presented in the previous section proved that using
VPQB AS to control the concurrent access to a shared resource
can improve the parallelism of a concurrent system. In particu-
lar, the worst case performances of VPQB AS and monitors have
been compared. From the comparison it emerged that VPQB AS
is better than monitors when the number of violations occurring
during the concurrent access to the shared resource is below
some limit. Furthermore, an upper bound of the number of vio-
lations tolerated in the worst case has been found. If the number
of violations is maintained under this bound, VPQB AS provides
a better throughput than monitors. However, as the number of
violations grows, the benefits on parallelism are lost and moni-
tors perform better.

nv 4=
Np

nv
Np
154

CONCLUDING REMARKS
Chapter 10
Concluding

remarks

This chapter describes the advantages and limitations of VPQB
AS. Next, it discusses the contribution of this thesis to the exist-
ing idea of AS. Finally, it presents a summary of the thesis.

10.1 Advantages and Limitations of VPQB AS
What are the advantages and limitations of the new mechanism
for the concurrency control?

The advantages of VPQB AS include:

 • The simple integration of the mechanism in concurrent pro-
gramming languages. As presented, the idea of the new
mechanism is simple since it combines a guard predicate, a
way of monitoring the assured shared data with exception
handling. As a result, the practical integration in concurrent
programming languages should be fairly easy. Especially, if
155

CHAPTER 10
exception handling facilities are already supported
 • Applying VPQB AS for concurrency control allows concur-

rent processes to simultaneous accesses the assured shared
data, reducing delays during the concurrent execution

However, to really have improvement of parallelism when VPQB
AS is applied, the following limitations must also be considered:

 • The number of corruptions on the assured shared data must
be less than an upper bound

 • The overhead necessary to monitor the assured shared data
must not delay the concurrent execution very much if at all

 • The possibility of recovery from corruptions on the assured
shared data is required

 • Since during the recovery concurrent execution is delayed,
the time necessary for the exception handling must be upper
bounded

Furthermore, the limitations listed above can mean that VPQB
AS is difficult to apply and limit the situations in which VPQB
AS can be used with benefits to some region of the possible situ-
ations.

This suggests a more flexible and complete solution to the con-
currency control problem: to combine the use of both VPQB AS
and monitors (or one of the other traditional mutual exclusion
techniques) in a system. However, a careful analysis of the pos-
sible corruptions occurring on the shared data, the possibility of
recovery and the time necessary to detect and handle the incon-
sistencies is required to decide when to apply one or the other
technique.

10.2 Contribution of the Work
This thesis extends the existing idea of AS to describe the VDQB
AS with the following contributions:

 • It clearly defines, after a violation of the assured data has
156

CONCLUDING REMARKS
occurred, which processes are signalled, which processes are
in charge of handling the violation, which processes are
blocked and when these processes are unblocked.

 • It introduces the quasi-blocking semantics for the violating
process that allows a flexible unblocking of a violating proc-
ess after it violates assured shared data.

 • It provides the processes created within the assured region
of an AS statement with their own exception handlers
(inheriting VPQB AS). This extension allows a flexible and
fast handling of violations occurring during the execution of
an AS statement, without incurring problems such as varia-
ble visibility and parameter passing.

 • It allows the forwarding of violation signals from a violated
process to its parent process. In this way, violations that are
not recoverable in the violated process can be handled by its
parent process by aborting or restarting (with the same or
different parameters) the excepted child. Consequently, the
parent process can supervise the execution of its children
during the recovery from violations.

 • It defines the decisions to be taken in the exception handlers
of the process which executes the AS statement, of its parent
process and of any processes created within the AS state-
ment. Both continuation and abortion semantics have been
allowed during exception handling.

 • It defines the semantics in the cases that a violating process
is the violated process itself or one of its child processes cre-
ated within the AS statement.

 • It defines how to handle violations of assured data occurring
during the execution of procedures called from the violated
AS statement.

 • It specifies the semantics for nested AS statements.

A further contribution derives from the implementation of
VPQB AS in CAMOS, since it proved the validity of the new con-
currency control technique. Moreover, the experimental results
157

CHAPTER 10
from the implementation showed the benefits in parallelism
when the new mechanism is applied. Finally, from the compari-
son of the performance of VPQB AS and monitors, the given con-
tribution is an estimation of the number of violations under
which VPQB AS improves parallelism compared to monitors.

10.3 Summary of the Thesis
In shared data environments concurrent processes simultane-
ously access common resources. Mutual exclusion techniques
are traditionally applied for concurrency control. To prevent
data corruption they allow concurrent processes to operate in
mutual exclusion on the shared data by locking access to it.
However, a problem with mutual exclusion techniques is the
strictness of locking that introduces delays in the concurrent
execution and reduces the throughput.

Assured Selection (AS) is an alternative approach for concur-
rency control. The idea of AS is to relax the strictness of the lock
and to allow several processes to simultaneously access the
shared data. However, due to the relaxed restrictions allowing
concurrent access, the consistency of the shared data might not
be preserved. Any corruptions that occur are detected and solved
afterwards using exception handling.

When the number of corruptions is low and the overhead to
detect them is less than an upper bound, AS has better perform-
ance than traditional mutual exclusion techniques. Since proc-
esses simultaneously access the shared data, delays in
concurrent execution are reduced and an improvement of the
throughput is the result.

This thesis investigated a concurrency control technique
based on the approach of AS. During the investigation alterna-
tive solutions for AS have been studied and classified. Moreover,
semantic issues for the solution VPQB have been defined in
detail. Next, the new concurrency control technique VPQB AS
158

CONCLUDING REMARKS
has been defined, tested and evaluated through implementation
in CAMOS. Finally, the performances of VPQB AS and monitors
have been compared through a worst case theoretical analysis.

The implementation demonstrated that it was fairly easy to
integrate VPQB AS with the CAMOS system. Moreover, two
benefits emerged from the implementation in CAMOS applica-
tions: an improvement of the throughput and a greater compact-
ness of code. Furthermore, an analysis of the performance of
VPQB AS and monitors found that VPQB AS has a better
throughput than monitors. However, this result only holds when
the number of corruptions on the shared data remains under a
certain bound. As the number of corruptions grows, monitors
provide better performance. This leads to the conclusion that
either VPQB AS and monitors are needed. For a more flexible
and complete solution for the concurrency control problem, the
use of VPQB AS and monitors or another of the traditional
mutual exclusion techniques could be combined. Therefore, an
accurate evaluation of the frequency of corruptions on shared
data and the overhead cost of recovery is needed to decide which
technique is most adequate for each situation.
159

CHAPTER 10
160

FUTURE WORK
Chapter 11
Future work

As part of the thesis was to investigate the approach of AS,
Chapters 6 and 7 presented the semantics of VPQB AS. A first
suggestion for future work is to further extend the semantics of
the studied mechanism. During the investigation, nested viola-
tions of AS statements have not been allowed. However, the
problem of nested violations arising and their recovery should
be adequately dealt with. As this problem is similar to nested
exceptions arising within exception handling, a suggestion is to
study how nested exceptions are solved in concurrent program-
ming languages supporting exception handling. Therefore, a
similar solution could be adapted and defined for VPQB AS.

Next future work concerns the precise specification of the
semantics of VPQB AS. Since the intention was to keep the focus
on the many semantic issues of VPQB AS, a formal specification
of the semantics has not been provided within the thesis. Conse-
quently, the semantics should be formally defined. Moreover,
proof rules should be provided to verify the correctness of the
semantics.
161

CHAPTER 11
Concerning the implementation of VPQB AS, not all the
semantic issues studied in the theory have been implemented.
In particular, the inheriting VPQB AS, studied to reduce delays
during exception handling, should be tested experimentally to
verify if it really improves the parallelism as expected.

Another area for future work concerns the comparison of per-
formance between VPQB AS and monitors. A worst case analy-
sis has been presented for this purpose in Chapter 9. However,
evaluations of performance have not been provided for the aver-
age case. For a more complete and precise comparison of the two
mechanisms, an average case analysis should also be carried
out. Furthermore, to verify the results of the analysis, VPQB AS
could be integrated in a concurrent programming language that
supports monitors. Therefore, experimental tests could be done
to estimate the parallelism achieved with the two mechanisms
in practical situations.
162

APPENDIX A
Appendix A

Abbreviations

AS: Assured Selection

ADMS: Active Database Management Systems

AMOS: Active Mediator Object System

CAMOS: Control Application Mediator Object System

CAMOS(L): Control Application Mediator Object System
Language

EDSLAB: Engineering Databases and Systems Laboratory

LOC: Lines Of Code

MaxBlock: Maximum Blocking Time

MCS: Manufacturing Control Systems

OB: Other Blocking

OB: Other Blocking

OQB: Other Quasi-Blocking
163

CHAPTER
PB: Parent Blocking

PNB: Parent Non-Blocking

PQB: Parent Quasi-Blocking

RTSLAB: Real Time Systems Laboratory

SAD: Single Access Delay

SRD: Single Resource Delay

: Time for concurrent execution

TD: Total Delay

VDB: Violated Blocking

VDNB: Violated Non-Blocking

VDQB: Violated Quasi-Blocking

VPB: Violated Parent Blocking

VPNB: Violated Parent Non-Blocking

VPQB: Violated Parent Quasi-Blocking

Tconc
164

APPENDIX A
165

CHAPTER
166

REFERENCES
References

[And81] Anders, T., Lee, P. A., Fault Tolerance: Principles and
practice, Prentice-Hall International, U.S.A.

[Sil94] Silberschatz, A., Galvin, P., B., Operating System
Concepts, Addison-Wesley, Fourth Edition, U.S.A.

[Buh95] Buhr, P., A., Fortier, M., Coffin M., H., Monitor Clas-
sification, ACM Computing Survey, March 1995, pp.
63-109

[Bur97] Burns, A., Wellings, A., Real-Time Systems and Their
Programming Languages, Addison-Wesley, Second
Edition, U.S.A.

[Cam86] Campbell, R., H., Error Recovery in Asynchronous
Systems, IEEE Transactions on Software Enginee-
ring, August 1986, pp. 811-826

[Die97] Diederich, J., Modelling a Production Cell Using the
CAMOS Language for Manufacturing Control, Mas-
ter’s thesis LiTH-IDA-Ex-97/46, Dept. Computer and
Information Science, Linköping University, Sweden
167

CHAPTER
[Fla97] Flanagan, D., Java in a Nutshell, O’Reilly, Second
Edition, U.S.A.

[Fal96] Falkenroth, E., Data Management in Control Appli-
cations - A Proposal Based on Active Database Sys-
tems, Lic thesis 589, Dept. Computer and
Information Science, Linköping University, Sweden

[FZI93] http://www.fzi.de/prost/projects/production_cell/Pro-
ductionCell.html

[Karl94] Karlsson, J., S., Larsson, S., Risch, T., Sköld, M., W.,
M., AMOS User’s Guide, Linköping University, Swe-
den

[Law92] Lawson, H., W., Parallel Processing in Industrial
Real-Time Applications, Prentice-Hall Interna-
tional, U.S.A.

[Rom97] Romanovsky, A., Practical Exception Handling and
Resolution in Concurrent Programs, Computer Lan-
guages, April 97, pp. 43-58

[Tho98] Thomasian, A., Concurrency Control: Methods, Per-
formance, and Analysis, ACM Computing Survey,
March 98, pp. 71-117

[Wid96] Widom, J., Ceri, S., Active Database Systems: Trig-
gers and Rules For Advanced Database Processing,
Morgan Kaufmann Publishers, San Francisco, U.S.A.
168

	Assured Selection — A Relaxed Concurrency Control Mechanism
	½½
	isbn 91-xxxx-xxx-x�issn 0280-7971 Printed in linköping, Sweden by linköping university Copyright ...
	Ai Miei Cari Genitori
	Gino e Lorenza

	Sommario
	Abstract
	Acknowledgements
	Contents
	11
	17
	31
	43
	55
	63
	89
	113
	137
	155
	161

	Chapter 1 Introduction
	1.1 Summary of the Thesis
	1.2 The Task and its Genesis
	• Investigation of choices, strategies and alternative solutions to define the semantics of AS.

	1.3 State Before the Investigation
	1.4 Audience
	1.5 Report Outline

	Chapter 2 Background and Related Work
	2.1 The Notion of Process
	Figure 2.1: Diagram of process states [Sil94]
	• New: the process is being created.
	• The parent continues to execute concurrently with its children.
	Figure 2.2: Tree of processes

	• Completion of execution of the process body.
	• The child has exceeded its usage of some resources it has been allocated.

	2.2 Concurrent Executing Processes
	2.3 Mutual Exclusion
	2.3.1 Semaphores
	• Wait(S): If the value of the semaphore S is greater than zero, then decrement its value by one;...

	2.3.2 Conditional Critical Regions
	2.3.3 Monitors

	2.4 Exception Handling and Exception Handlers
	2.4.1 Exception Propagation

	2.5 Error Recovery
	2.6 Resumption, Termination and Signal Models
	2.6.1 The Resumption Model
	2.6.2 The Termination Model
	2.6.3 The Signal Model

	2.7 Relation of the Background Notions to the Thesis

	Chapter 3 The Problem
	3.1 Reduced Parallelism in Concurrent Systems Sharing Data
	3.1.1 Example nr.1
	Figure 3.1: Portion of code for
	Figure 3.2: Locking the access to w

	3.1.2 Example nr. 2

	3.2 Problem Analysis
	3.2.1 Single-Access Delay, Single-Resource Delay and Total Delay of Concurrent Executing Processes
	• the time needed at the moment of the access to the process which is using the resource to finis...

	3.2.2 Blocking Time during the Concurrent Execution
	Figure 3.3: Time of execution of a concurrent program
	Figure 3.4: New time of execution for , and

	3.2.3 Throughput as a Measure of Parallelism

	3.3 Summary

	Chapter 4 Approach and Current State of Assured Selection
	4.1 Fine Grained Locking and Exception Handling
	4.1.1 Guard Predicates, Assured Regions and Exception Handlers
	• A guard predicate is a Boolean expression which contains shared variables. If the Boolean value...

	1. The guard predicate is evaluated.
	2. If the Boolean value of the guard predicate is true, the execution of the assured region start...
	3. If a corruption of the monitored data is signalled, execution continues in the exception handler.
	Figure 4.1: Sequence of execution of AS.

	4.1.2 The Syntax of AS
	Figure 4.2: AS statement.
	Figure 4.3: Section of program for process using AS

	4.1.3 Violations, Violating and Violated Processes
	Figure 4.4: Signal of violation to the violated process

	4.2 Current State of the Semantics of AS
	Figure 4.5: Concurrent execution of and where both processes simultaneously operate on the shared...
	Figure 4.6: State of execution of A and B before the violation
	Figure 4.7: State of execution of A and B after the violation
	Figure 4.8: Alternative resumption points for the violated process: from the beginning, from AS b...

	4.3 Semantic Issues of AS

	Chapter 5 The Task
	5.1 Analysis of the Task
	5.1.1 The Choices and the Decisions
	1. The theoretical and experimental scope.
	2. The generality of the investigation.
	3. The environment for the investigation.
	4. The evaluation of performance for AS.

	1. Theoretical investigation versus implementation. The decision for the scope of the thesis, was...
	2. General solution versus system specific. The decision for the generality of the investigation ...
	3. Concurrent shared data systems versus CAMOS. As a consequence of the desired generality of the...
	4. Theoretical analysis versus simulations. Concerning how to evaluate the performance, the decis...
	5.1.2 Requirements on the Semantic Definition of AS and on the Implementation in CAMOS
	• Few lines of added/changed code.

	5.1.3 Organization of the Work
	• Definition and analysis of the problem of reduced parallelism with traditional mutual exclusion...
	• Implementation of AS and integration with the CAMOS system.

	5.2 Scope of the Task
	5.3 Summary

	Chapter 6 Solutions for AS
	6.1 Classification Criteria
	6.1.1 Exception handler Process
	6.1.2 Blocking, Non-blocking, Quasi-blocking AS

	6.2 Classification and Analysis of Solutions for AS
	Figure 6.1: Sections of programs executed by processes B and C
	6.2.1 The Violated process is the Exception Handler (VD)
	Figure 6.2: VDB, VDNB and VDQB: state of execution before the violation
	Figure 6.3: VDQB: state after the violation

	6.2.2 The Violating Process is the Exception Handler (VG)
	Figure 6.4: VGNB: state before the violation
	Figure 6.5: : VGNB: state after the violation

	6.2.3 The Parent of the Violated Process is the Exception Handler (P)
	Figure 6.6: PB, PNB and PQB: state before the violation
	Figure 6.7: PQB: state after the violation

	6.2.4 The Violated Process and its Parent are the Exception Handlers (VP)
	Figure 6.8: VPB, VPNB and VPQB: state before the violation
	Figure 6.9: VPQB: state after the violation

	6.2.5 Another process is the Exception Handler (O)
	Figure 6.10: OB, ONB, OQB: state before the violation
	Figure 6.11: OQB: state after the violation

	6.3 Comparison of Solutions
	• clear and easy semantics
	• Which processes are signalled after the violation.
	• To use the quasi-blocking semantics for unblocking the violating process.
	• In the solutions PQB and OQB two processes are delayed: the violated process (which is stopped ...

	6.4 Summary

	Chapter 7 Semantic Issues of VPQB AS
	7.1 Current State of VPQB AS
	7.2 Dealing with Child Processes
	Figure 7.1: Hierarchy of child processes for A and B

	7.3 Inheriting VPQB AS
	Figure 7.2: Inheriting the exception handler from parent process
	Figure 7.3: Inheriting VPQB AS: state of execution of the violating, the violated and the assured...
	1. The violation is not recoverable and the violation signal is forwarded to the parent of the vi...
	2. The violation is recovered and the resumption point in the violated process is the beginning o...
	3. The violation is recovered and the resumption point in the violated process is the beginning o...
	4. The violation is recovered and the resumption point in the violated process is the break point...
	Figure 7.4: Inheriting VPQB AS: recovery of a violation in the assured children

	7.3.1 Continuation and Abortion Semantics during Exception Handling for the Inheriting VPQB AS
	• It recovers the violation in its program.
	• It aborts all its child processes.
	• It aborts its subset of child processes.
	• It aborts or restarts the violated process.

	7.3.2 The Violating Process is the Violated Process Itself or One of its Assured Children

	1. The violating process is the violated process itself.
	2. The violating process is one of the assured children of the violated process.

	1. The violating process is the violated process itself. After the execution of the violating ins...
	2. The violating process is an assured child of the violated process. After the execution of the ...
	7.3.3 Violations to Violating Processes
	7.3.4 Violations Arising during the Execution of Procedures Called from an Assured Region
	Figure 7.5: Thread of execution of A during the call and the execution of the procedure P()

	7.4 Nested AS Statements
	Figure 7.6: Two nested AS statements
	7.4.1 Inheriting VPQB AS with Nested AS Statements
	Figure 7.7: Assured children created within a nested structure of AS statements
	Figure 7.8: Inherence of exception handling sections

	1. The violation is not recoverable and it is forwarded to the parent of the violated process.
	2. The violation is recovered and the resumption point is at the beginning of the program of the ...
	3. The violation is recovered and the resumption point in the program of the violated process is ...
	4. The violation is recovered and the resumption point in the program of the violated process is ...

	7.5 Summary

	Chapter 8 Implementation and Experimental Results
	8.1 CAMOS: the Implementation Environment
	8.1.1 The CAMOS Architecture
	Figure 8.1: Overview of the CAMOS architecture
	• The interpreter reads the run-time code resulting from the compilation of CAMOS(L) programs and...

	8.2 Structure and High-Level Representation of CAMOS(L) Operations
	8.2.1 The Structure of CAMOS(L) Operations
	8.2.2 High-Level Representation of CAMOS(L) Operations
	• Primitive operations.

	8.2.3 Execution of CAMOS(L) Operations

	8.3 Applying AS to Assure CAMOS(L) Operations
	Figure 8.2: An example of an assured operation in CAMOS(L)
	Figure 8.3: Guard predicate, assured region and assured children of an assured operation

	8.4 Integrating the VPQB AS to Assure Operations in CAMOS
	8.4.1 The Modelled Solution
	1. The violation is recoverable in the violated process and in the suspended assured suboperations.
	2. The violation is recoverable in the violated process but not in the suspended assured subopera...
	3. The violation cannot be recovered in the violated process.
	Figure 8.4: Structure of two nested assured operations

	8.4.2 The Implementation
	• The assured operation is aborted during the recovery of a signalled violation.
	• Few lines of added/changed code. One target of the implementation was to show the easy integrab...

	8.4.3 Further Extensions of the Integrated Solution

	8.5 Testing and Evaluating the Implemented Solution in a Case Study
	Figure 8.5: The production cell
	1. A metal piece is put from the pile onto the feed belt.
	2. The feed belt transports the piece to the elevating rotary table.
	3. The table goes in its upper position and rotates clockwise 50 degrees, so that arm1 of the rob...
	4. The robot rotates, so that arm1 points to the table and picks up the pieces. Again, the robot ...
	5. The press goes up and forges the piece. Afterwards, it moves to a lower position, so that arm2...
	6. The robot rotates arm2 to the press and picks up the processed piece. Then, it rotates to the ...
	7. The deposit belt transports the piece to the crane and stops here.
	8. The crane fetches the piece from the deposit belt and transports it to the feed belt, so that ...
	• The elevating rotating table. Consistency problems could occur when metal pieces are fetched fr...

	8.6 Conclusions

	Chapter 9 Evaluations of Performance
	9.1 Comparing the Performance of VPQB AS and Monitors
	• All the concurrent processes start executing at the time
	Figure 9.1: for ... when concurrency control during the access to s is not necessary

	9.1.1 Maximum Blocking Time for Monitors
	Figure 9.2: in the worst case of execution for monitors

	9.1.2 Maximum Blocking Time for VDQB AS
	Figure 9.3: in the worst case for VPQB AS when v = 0
	• The violation is signalled to a concurrent process just before this process finishes using the ...
	Figure 9.4: in the worst case for VPQB AS when v = 1
	Figure 9.5: in the worst case for VPQB AS when v = 1 and the violating process violates itself
	Figure 9.6: in the worst case for VPQB AS when v =

	9.1.3 Comparison of Throughput and Analysis of the Number of Violations
	Figure 9.7: The function for , , and
	Figure 9.8: Course of the function when
	Figure 9.9: The function for , , and
	Figure 9.10: Course of the function when

	9.2 Conclusions

	Chapter 10 Concluding remarks
	10.1 Advantages and Limitations of VPQB AS
	• The simple integration of the mechanism in concurrent programming languages. As presented, the ...
	• The number of corruptions on the assured shared data must be less than an upper bound

	10.2 Contribution of the Work
	• It clearly defines, after a violation of the assured data has occurred, which processes are sig...

	10.3 Summary of the Thesis

	Chapter 11 Future work
	Appendix A
	AS: Assured Selection
	ADMS: Active Database Management Systems
	CAMOS(L): Control Application Mediator Object System ���������������������Language
	MaxBlock: Maximum Blocking Time
	MCS: Manufacturing Control Systems
	OB: Other Blocking
	OB: Other Blocking
	PB: Parent Blocking
	PNB: Parent Non-Blocking
	PQB: Parent Quasi-Blocking
	SAD: Single Access Delay
	SRD: Single Resource Delay
	: Time for concurrent execution
	TD: Total Delay
	VDB: Violated Blocking
	VDNB: Violated Non-Blocking
	VDQB: Violated Quasi-Blocking
	VPB: Violated Parent Blocking
	VPNB: Violated Parent Non-Blocking
	VPQB: Violated Parent Quasi-Blocking

	References
	[And81]
	[Sil94]
	[Buh95]
	[Bur97]
	[Cam86]
	[Die97]
	[Fla97]
	[Fal96]
	[FZI93]
	[Karl94]
	[Law92]
	[Rom97]
	[Tho98]
	[Wid96]

