The EASE Actor Development Environment

Paul Scerri and Nancy E. Reed

Technical Report: TACSIM-99-01
Real-time Systems Laboratory
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden
pausc,nanre@ida.liu.se

October 1999

Abstract

In interactive simulations it is often desirable to have intelligent ac-
tors playing the roles of humans. Drawing on a wide range of previous
work this paper presents a system that is intended to reduce some of the
difficulties involved in the development of actors. We present a system
called EASE (End-user Actor Specification Environment) that provides
tools and methods to support end user development of intelligent actors.
The tools support the whole development process from design to testing.
The EASE actor architecture is a multi-agent system where a process of
contract making and negotiation between agents determines the actions
of the actor.

1 Introduction

In modern, complex, interactive simulations it is often highly desirable to have
intelligent actors playing the roles of humans. The actors’ task is difficult — sens-
ing the (simulated) environment, choosing a course of action that flexibly and
intelligently follows designer intentions and sending appropriate commands back
to the environment, all in real-time. The actors’ reasoning may need to be very
complex taking into account a variety of factors including the current situation,
a variety of concurrent, potentially conflicting goals, team members, opponents,
previous actions, resource constraints and so on [Tambe et al., 1995b].

In order for the simulation in which the actors are embedded to be useful the
actors must usually act in a human-like manner. Often knowledge of precisely
how an actor should act will be expert knowledge hence it is desirable to have
domain ezperts, as opposed to actor experts, specifying actor behavior.

A plethora of recent work has resulted in architectures for actors with a wide
range of abilities. However in many cases the actor architectures are difficult to
use, support only an adhoc development process and provide little support for

reuse. Virtually no architecture allows domain experts to directly specify actor
behavior. This in turn leads to an expensive, frustrating development process
[Jennings et al., 1998, Nwana, 1999, Wooldrige and Jennings, 1998]. It is clearly
desirable to improve the process of creating intelligent actors.

Drawing on a wide range of previous work this paper presents a system that
is intended to reduce some of the difficulties involved in the development of
useful, complex actors. The system, called EASE (Enduser Actor Specification
Environment), is a group of tools and an associated methodology for the de-
velopment of complex, intelligent actors. The system provides support for all
stages of development from design through testing to reuse. In particular the
system is intended to represent the first step toward putting actor development
capabilities into the hands of the domain experts. By providing structure and
support for a simple, rapid development process along with an accessible actor
architecture, EASE provides the basis for end user development.

1.1 Overview of EASE

Within EASE an actor specification consists of a hierarchy of agents where each
agent is responsible for some aspect of the overall actor behavior (see Figure
1). Each agent takes into account only it’s specific task and is hence fairly
simple. Below an agent in the hierarchy are other agents that perform parts of
it’s behavior.

At runtime an actor’s specification is turned into a multi-agent system where
overall actor behavior is determined by a continuous process of contract making
and negotiation between agents. Agents form a hierarchy of contracts then
agents at the bottom of the hierarchy negotiate amongst themselves over the
actual output of the actor.

On top of the multi-agent actor architecture EASE enforces a methodology
for actor development that covers all stages of development, from design through
to reuse. EASE also provides tool support for the implementation task which
allows completely graphical development, achievable by non-programmers. The
tools have been designed to make reuse as simple as possible, primarily by
enforcing strict modularity. To make the process of testing as quick and painless
as possible integrated tool support exists for quickly inspecting and debugging
actors at runtime. The development aids with the EASE system combined with
an underlying powerful agent runtime engine allow relatively inexperienced users
to create useful actors for complex simulation environments.

1.2 Target Domain

The initial target domain for this system is simulated aircraft pilots. The TACSI
air-combat simulator [Aircraft, 1995], developed at Saab AB, is used for both
training of human pilots and testing of new systems. In this domain new actor
behavior is often required, either to test new systems or to train pilots. It is
desirable that the engineers and pilot trainers that actually use the simulator
can define the behavior of the pilot actors. These people are well educated and

accustomed to using computers but not necessarily Al/actor experts. Many
of the scenarios involved are very similar increasing the desirability of easily
reusing parts of existing specifications. The pilot actors need to appear to be
intelligent and act realistically in a very complex environment. The actuators
for the actor, i.e. the aircraft controls, are extremely complex and allow many
degrees of freedom [Tambe et al., 1995a).

1.3 Related Work

Recently there has been a lot of interest in development methodologies for
agents. Examples include methodologies for Belief Desire Intention (BDI) agents
[Kinny and Georgeff, 1996], for behavior based agents [Bryson, 1998], for dis-
tributed multi-agent systems [Bussman, 1998], for safety critical multi-agent
systems [Bouchefra et al., 1998] and a more general method for a range of agent
oriented systems [Wooldridge et al., 1999].

Development environments, often including substantial graphical support,
exist for building actors or agents for a variety of domains. For example the
Bond system for collaborative network agents [Boloni and Marinescu, 1999),
Jackal for agent based communication infrastructure [Cost et al., 1999)], Zeus
for distributed agents [Nwana et al., 1999], the Icon Modelling Tool (IMT) for
mobile agents [Falchuk and Karmouch, 1998] and MissionLab[MacKenzie, 1996]
for robotics. None of these tools are suited for creating complex actors for
simulation environments.

Systems do exist for developing actors for interactive simulations. The
AgentSheets system, for example, is designed to allow users with very limited
computing experience, often children, to develop fairly complex actors [Repen-
ning, 1993]. AgentSheets agents, however, are greatly restricted in the type of
sensing and acting they can do. KidSim is also designed to allow very inexperi-
enced users to develop intelligent actors [Smith et al., 1997]. Like Agentsheets,
KidSim is very restrictive in the possible behavior and types of environment.

EASE fits into a niche between the systems mentioned above. EASE provides
a structured development methodology to improve the process of building actors.
However, somewhat in contrast to the methodologies above, the emphasis of this
process is to build the systems quickly and easily. Like AgentSheets, EASE is
not intended to be used only by actor or programming experts. However the
increased abilities of EASE actors, as compared to those of AgentSheets, means
that EASE users will need to be more experienced than AgentSheets users.
In many ways EASE attempts to meet the same goals for simulation actor
development as MissionLab does for robot programming.

2 Multi-agent Decision Making

In this section the functioning of the multi-agent system that controls an actor
is explained. In the following section the development process for such a multi-
agent system is described.

4~ Managers
Contracts
v . /v \
Fly to \\‘\A
Waypoint A Avoid Avoid the
Aircraft ground

Fly to ‘ L

Waypoint B ;"
¢ v
Fly home

Figure 1: Part of an actor specification for a simple pilot patrol actor

Engineers

There are two main types of agent, referred to as managers and engineers, in
the multi-agent system of an actor. The agents are arranged hierarchically into
a forest of trees. Engineers will be the leaf nodes of the trees, i.e. at the bottom
of the hierarchies, while all other nodes are managers. Connections between the
nodes are in the form of contracts.

Manager type agents are charged with more abstract tasks. To achieve their
tasks manager agents contract other agents, either engineers or other managers,
to fulfill specific parts of the task. A manager may have contracts with zero or
more agents at any time and may break existing contracts or make new contracts
over time. For example one manager agent may be responsible for a particular
patrol mission. The manager could contract a sequence of agents one for taking
off, one for flying through each of the patrol’s waypoints and one for landing
the aircraft.

Contracts form the only connections between managers and other agents
in the system. The contracts always form the agents into a strict hierarchy.
At design time a designer hardcodes the contracts a manager should make to
handle a particular situation, i.e. there is no service brokering or negotiation to
find an appropriate agent. An agent will not refuse a contract request from a
manager for a new contract, in fact at the implementation level a new agent is
created specifically to service the contract.

At runtime, if for some reason an agent is unable to fulfill its contract, either
temporarily or permenantly, it will inform the manager that contracted it. The
contracting manager may then choose another course of action, if it has one, or

report the failure to the manager that contracted it.

The designer will specify one or more agents to be started at runtime. The
specified agents will be the only agents not contracted by another agent at
runtime. Generally the starting agents will form the tops of hierarchies of agents
that in turn control the actor.

A special type of manager agent, called a list manager, is associated with
a type of thing in the environment. For every instance of the type sensed by
the actor the list manager will contract an agent and assign it to the specific
instance. For example a list manager responsible for avoiding midair collisions
will contract a specific agent to avoid each particular midair obstacle. Each
contracted agent needs only concern itself with the specific obstacle it was as-
signed.

The other main type of agent (a manager was the first) is an engineer.
Engineers are at the bottom of the agent hierarchies. Engineer agents negotiate
with other engineer agents over the output of the actor, i.e. the commands the
actor sends to the environment. Each engineer “argues” for output values that
best fulfill the task it has been contracted to achieve.

Each degree of freedom of the actor is associated with a factory, e.g. a sim-
ulated pilot may have factories for aircraft heading and speed. In this way the
complex negotiations over the actors’ behavior is split into a number of sim-
pler negotiations. A factory continuously suggests possible output values to all
engineers that have registered interest in its output. The interested engineers
respond with their satisfaction with the suggested output value. At regular
intervals the factory sends to the environment the output value most acceptable
to the interested engineers.

For example a factory for the heading of an aircraft may have two interested
engineers. One of the engineers is responsible for avoiding a particular aircraft
and another is responsible for getting to a particular waypoint (see Figure 2).
The avoidance engineer will be satisfied with any heading suggestion that leads
to avoiding the other aircraft, and be more satisfied with headings that result
in comfortably avoiding the aircraft. The waypoint agent will be satisfied with
headings that result in generally heading towards the waypoint and happier
with those that result in heading directly toward the waypoint. Hopefully the
factory can find a heading that satisfies both the engineers.

The process of negotiation is continuous. Because the environment will be
changing as the negotiation proceeds so may engineers preferences for different
output values also change. When new engineers are contracted or when existing
engineers are stopped the factory negotiation simply continues on, albeit with
the new set of agents. The continuous nature of the negotiation means that
it is an anytime algorithm [Zilberstein, 1996] and hence is suitable for (soft)
real-time actors.

The negotiation mechanism allows multiple high level tasks to be attended to
simultaneously without a designer having explicitly considered the interactions
between the tasks. Each manager, responsible for one high level task, simply
contracts appropriate agents to perform pieces of its overall task. At the bottom
of the subsequent hierarchies the engineers associated with the different tasks

This mission manager

has contracted an agent
to fly to waypoint A
4
Fly to / \
Waypoint A Avoid Avoid the
/ Aircraft ground
An engineer created to \
avoid partlcul ar
aircraft
Avoid
Agent negotiation
(abstracted - of course)

Avoid
Aircraft 1
Go at about &~
76 degrees

Aircraft 2

Its OK to go

down (we are

Don't go between high)
60 and 80 degrees
GO DOWN!
.
Output to Heading
actor actuators ., 1 g10

Altitude

1 Go down

Figure 2: A snapshot of the multi-agent actor controller

negotiate amongst themselves and the factories to find a solution that achieves
all, or as many as possible of the managers’ tasks. The negotiation process
integrates the high level tasks without designer intervention.

The earlier example, with two engineers, raises the question of what happens
when the factory cannot find an output value that satisfies all of the interested
agents. When not all engineers can be satisfied the priority of the engineers is
taken into account.

The priority of an agent is a function of three factors. The first factor is the
intrinsic priority of the agent. The intrinsic priority is a static value based on
the type of task the agent has, e.g. a safety critical ground avoidance agent has a
higher intrinsic priority than a fuel conservation agent. The second factor of the
priority is referred to as the organizational priority. The organizational priority
is defined by the role the agent has in the overall system. For example the
aforementioned fuel conservation agent will have a high organizational priority
when contracted by a manager responsible for leaving hazardous territory. The
final factor of an agent’s priority is referred to as environmental priority. The
environmental priority is dynamic and varies according to the significance of
the agent given the current environmental circumstances. For example a fuel
conservation agent may have high environmental priority when the remaining
fuel is low and the aircraft is far from base.

Although most significant for engineers, all agents have a priority. For man-
agers the priority system, in particular the organizational factor, means that
higher priority managers get more say in low level negotiations, i.e. a higher
priority manager will have engineers lower down in their hierarchy with high
organizational priorities and hence more say in negotiations.

3 Actor Development

EASE supports the whole development process, from design to testing to reuse.
Many of the development stages are explicitly supported by tools while for other
stages of development a particular methodology is advocated. In this section the
development process with EASE is explained in detail with particular emphasis
on the tool support provided.

Reuse Feedback
Agents /—\

Task Forest Assign Agents Test Agents ready
Specification to tasks for reuse
Specify
gents

Figure 3: The actor development process

The development of an actor (see Figure 3) begins with the design of trees of
tasks and behaviors that describe the overall behavior of the actor. Behaviors,
continuous aspects of the actor’s overall behavior, e.g. ground avoidance, are
mixed freely with tasks, time bounded aspects of the actor’s overall behavior,
e.g. flying to a waypoint. The design need not consist of a single tree but may
be a forest of trees. The tops of trees represent high level abstract behaviors of
the actor. Further down the tree are more specific aspects of the actors overall
behavior (see Figure 1). There is no timing or sequencing information at this
stage, there is simply a breakdown of overall functionality into pieces.

The next stage of development is to assign an agent to each node in the task
forest. The agent will be performing the task assigned to that node. Leaf nodes
will be assigned engineers and internal nodes, managers. Branches between
nodes are replaced by contract specifications. The internal behavior of the
agents enforces appropriate sequencing of tasks.

The assignment of agents to nodes is done in two steps. Firstly, existing
libraries of agents are consulted to find agents that can be reused. Often reusable
agents would have been created for other, similar scenarios. In most cases if
an agent is found to match a non-leaf node in the behavior forest a whole
agent hierarchy will be found for the node’s branch. Usually an agent can be
imported without change, however some tuning may be required later to adjust
the priorities of the imported agents to the new specification. The amount of
tuning should be minimal and be required only at the top of the imported agent
hierarchy.

When appropriate agents cannot be found in existing libraries they are cre-
ated in the core of the EASE system — the agent specification tool (see Figure
4). To specify an agent the designer specifies a name, intrinsic priority, envi-
ronmental priority function, a state machine for controlling behavior and any
contracts or factory assignments the agent will have.

The name of the agent can be any text, hopefully describing the intended
functionality of the agent. Next the designer needs to specify whether the
agent is a manager or an engineer. The intrinsic priority is set via a slider and
should reflect the designer’s assessment of the importance of the functionality
of the agent when considered in isolation. The environmental priority function
is defined via the function specification system (described below). The function
maps actor sensor readings to values representing the importance of the agent in
the particular situation, e.g. sensor readings indicating proximity to the ground
should map to high values for an agent responsible for ground avoidance.

The state machine for an agent provides the mechanism by which the deci-
sion making of an individual agent is defined. (Having state machines as the
only decision making mechanism is a current specification system limitation,
rather than an important aspect of the overall system.) The state machines
are standard single level Moore state-machines. State transition conditions are
defined with the function specification system. If the agent is an engineer, for
each state in the state machine the engineer is assigned to negotiate with a
specific factory (i.e. over a particular degree of freedom). The function spec-
ification system is used, once again, to define the function that the engineer

_Mission Control Ii

=l

Figure 4: The Agent Specification subsystem

uses to determine the acceptability of a factory suggestion. Alternatively, if
the agent is a manager, for each state the designer specifies the contracts the
manager should make in each state. Specifying a contract consists of selecting
which agent should be contracted and instantiating any parameters associated
with the contracted agent (e.g. the waypoint to fly to).

Once an actor has been partially or fully specified it can be tested in the tar-
get simulation environment. In order to support an iterative process of testing
and incrementally expanding or improving actor behavior a number of graph-
ical interfaces display interactively and in real-time the status of the agent’s
reasoning system.

The main testing interface shows all the currently active agents and their
current status. The interface allows the designer to see whether the right agents
are being created and whether the agents seem to be reacting to the environment
in the desired manner, e.g. by creating appropriate contracts of arguing for
reasonable output values. Problems such as state transitions being taken at the
wrong time or wrong contracts being entered into can be observed with the tool.
The designer can return to the agent specification system and make appropriate
changes if problems are observed.

If the behavior of the actor is not as expected, but the correct agents seem
to be active and in the correct states, the designer can use another tool to view
the status of negotiations (see Figure 5). This tool gives a real-time view of the
output of a factory and the satisfaction of each of the interested engineers to the
factories suggestions. The designer may observe that some agents, due possibly,
to overly high priority are getting too much say in a negotiation. Going back to
the specification the intrinsic priority of the agent (or the agent that contracted
it) could be lowered or the environmental priority function for the agent (or
the agent that contracted it) changed. Alternatively it may be observed that
an agent seems to be calculating incorrect values. To investigate further the
designer can pop up another window that allows snapshots of the details of
function calculations to be displayed. If the designer finds problems here they
can return to the function specification system to rectify the problem.

The cycle of specification and testing will be repeated until the required actor
behavior is achieved. The final stage of the development process is making the
newly created specification available for reuse. However reuse requires no further
effort! New actor specifications can use parts of the current specification in a
completely black box fashion.

3.1 Function Specification

The function specification system allows a designer to specify the different func-
tions that an agent uses(see Figure 6). The requirements on the function spec-
ification system are quite imposing. Potentially extremely complex functions
need to be specified, e.g. the activation function of an avoid enemy aircraft agent
would take into account a wide range of factors about the relative positions of
the other aircraft, in a way that does not require professional programmers and
at the same time encourages reuse. The function specification system is based on

10

— Factory Display | . |J|

Heading .
The agents being The agent for getting to a

shown wapoint wants heading
values in this region

Vertical Axis
<— shows level of
satisfaction

+*
R A Ak e 4 AR 4 b, LR L

Sampled negotiatio<n.

points

*
* *

. . Negotiated
Horizontal axis ouput —=
varies over possible .

headings \ /\ !

L 2 wEW W FF LA 2 Caadiaidihd

d

One of the avoid agents is very
unsatisfied with headings in this
region

Figure 5: The Negotiation Debugger shows the current status of the negotia-
tions.

11

the idea of a spreadsheet. The spreadsheet paradigm was chosen because of the
successful way non-computing professionals can develop complex functionality
with a spreadsheet despite not being able to program.

The function specification system does not look like a conventional spread-
sheet (the cells are not laid out in grid, rather they appear in a tree structure)
and has some features that do not appear in conventional spreadsheets, most
importantly parameterizable cells. Because cells are parameterizable so are
functions. In turn because functions are parameterizable so are agents. Param-
eterizable functions and agents lead to high levels of reuse, as well as reducing
the specification size. The other major difference to a spreadsheet is that values
and functions are not entered as text rather they are created by selecting options
from lists. This removes the possibility of specification errors due to syntax or
type problems.

— Condition Specification | =
File Mew Edit
Expression Panel ;IjCaHs
A9 internal
& [inomefpausc/EASE 5 pecs/Towa
Name [axz + dy2 : & [Dir
Dir to WP (ToWaypoint) - : 9 Coist
Way x ‘ None v| ? 42 + dy? (TowWaypol
ay y ‘ None v| ? dyidx (ToWaypoint)
[anD ~ fx’ dx2 (Towaypoint)
Dir to WP (ToWaypaint) - H
way x ‘ None ,| fx’ dy2 (ToW¥aypoint)
Way y ‘ None v| fx’ Dist To WP (ToWayp
@ [Basic
| Cancel \ | Done | ‘ History ‘ & [rhome/pausc/EASE S pecs/Comrm]
] @ CEnvionment
[This Cell uses: This Cell is used by: 5 $ Jsensors
|7 i M Location x (Sensor)
? dx2 + dy2 (TeWaypoint) ? dx2 + dy2 (ToWaypeint) ; M Location y (Sensor)
3 {'«, Location z (Sensor)
o fx’ dx2 (ToVWaypaint) o fx’ Dist To WP {ToWaypoint) b Heading (Sensor)
4 Aircraft (Sensor)
“| @ [Export
@ fx’ dy2 (TeVWaypoint) H CJExpo
| »

Figure 6: The Function Specification subsystem

4 Discussion

In a series of famous papers Brooks argues strongly against the dominant ways
that AI practitioners went about building intelligent systems [Brooks, 1991a,
Brooks, 1991b]. Rather than complex, monolithic systems incapable of inter-
acting with the real world Brooks advocates a behavior-based approach where
the overall behavior of a situated actor is broken horizontally into smaller pieces

12

of behavior. It is argued that actors should be built by creating simple behav-
iors then incrementally “subsuming” the existing behaviors with more complex
behayviors.

Brooks’ behavior-based idea is extremely promising. An intuitive breakdown
of overall actor behavior and a low risk incremental development process seem
immediately possible. For users unaccustomed to building actors, in particular
domain experts, the behavior-based paradigm potentially offers much especially
in terms of having an actor specification that matches an intuitive breakdown
of the actors’ task. However subsumption and behavior-based systems have not
delivered all they have promised. One of the key reasons seems to be that the
subtle interactions between individual behaviors means that the complexity of
adding new behaviors to an actor soon becomes overwhelming [Bryson, 1998].

Recently a variety of different approaches have been taken to reduce the com-
plexity of the interactions or, at least provide methods for allowing developers
to handle the complexity better. The methods either organize behaviors differ-
ently, e.g. [Parker, 1998, Blumberg and Galyean, 1995], or combine the outputs
of the behaviors in a different way, e.g. [Yen and Pfluger, 1995, Pirjanin, 1998,
Riekki, 1998, Rosenblatt, 1997]. With the EASE actor architecture we are tak-
ing this trend one step further.

A behavior in a behavior-based system is an agent in EASE. By elevating
behaviors to the status of agents the interactions between behaviors simplify in
the same way that “agentifying” other complex systems simplifies the interac-
tions between subsystems. In effect, using agents instead of behaviors makes
behaviors “active” rather than passive entities. The interaction between agents
can then be strictly controlled, through contracts and negotiations, and more
easily understood — drastically reducing the complexity of the effects on over-
all behavior due to subtle interactions. The reduction in the amount of subtle
interactions between behaviors should lead to an increase in the level of actor
complexity that a designer can be reasonably expected to develop.

The EASE multi-agent system, being an extension of behavior-based ideas,
shares many properties with “standard” behavior-based systems. EASE lies
very much towards the reactive end of a reactive-deliberative scale. Agents are
generally very simple, mapping sensor input to appropriate contracts or negoti-
ation strategies. However this need not be the case, agents could potentially be
more complex doing any type of planning or reasoning. The overall behavior of
an actor is an emergent result of the agents’ interactions with others and with
the world.

The potentially conflicting requirements of a usable development environ-
ment and genuinely useful actors imply an underlying actor architecture with
the following characteristics:

e Actor specifications with abstract, loosely coupled specification elements;
and

e A runtime engine that combines the specification elements in a powerful
and flexible manner.

13

. e = B !]
g TACSI: Simulation dem(% TACS

Sim Evaluate Settings Window Tools Database Help 7

Sim time: 320.0 S

Avoiding aircriaft
ile till getting to waypoint

Figure 7: The result of a simulation run in TACSIL.

The former characteristic addresses usability. It is likely to be difficult to build
a development system that “compiles” a user specification into an actor un-
less there is a fairly close correspondence between the specification and run-
time mechanisms (in the same way there is a close correspondence between
constraint programming or imperative programming specifications and their re-
spective runtime mechanisms.) Hence it seems reasonable to assume that the
actor architecture will need to have features that support enduser development.
Abstraction is a mechanism used in all kinds of specification problems to allow
a designer to break problems into manageable pieces. Loose coupling between
specification elements is a desirable feature of a program design the reduces
complexity, makes for more readable specifications and encourages reuse.

The latter characteristic, i.e. a powerful computational engine, addresses
the problem of creating genuinely useful actors. Intuitively the more flexibly
and powerfully a specification can be interpreted by the runtime engine the
more useful behavior will be observed from a specification of a certain size
and complexity. (The same phenomena can be observed with constraint and
imperative programming. The constraint runtime engine is far more powerful
than an imperative one leading to smaller and simpler constraint programs for
some problems.) For example, if an actor runtime engine simply chooses the first
applicable situation-action rule from some list the overall behavior for even a
large specification is likely to be fairly simple. At the other end of the spectrum
if the runtime engine takes the specification, supplements it with common sense
reasoning and previous experience then invokes sophisticated planning routines

14

the observed behavior of the actor will probably be fairly sophisticated. It
follows that the EASE runtime engine should be as powerful as possible.

The actor architecture underlying EASE fulfills the two characteristics. The
hierarchical structure and “single-mindedness” of the individual agents provides
the loose coupling and abstraction desired. The multi-agent runtime engine
provides the powerful reasoning system required to make useful actors.

Figure 7 shows the output from a simulation run in TACSI. There is one
aircraft controlled by EASE. Notice the way the aircraft smoothly integrates
getting to the waypoint and avoiding approaching aircraft. The flight path is
reminiscent of obstacle avoidance paths for behavior based robots. Although
this example is very simple it goes someway toward illustrating that the multi-
agent system can produce some reasonable behavior. The jury is still out on
whether the emergent behavior can produce usefully realistic behavior. More
work needs to be done to determine precisely the strengths and weaknesses of
the approach.

Both major aspects of EASE, namely the underlying computational engine
and the overlying specification process, have been designed by looking at ex-
isting systems and attempting to improve modularity. Our previous experience
developing agents suggests that modularity in agent specifications is a key to
scaling up, reducing costs, improving testability and so on. The intended usage
scenario for EASE makes modularity even more critical. In particular good
modularity should provide the following desirable properties:

e Rapid Prototyping. Over time libraries of agents can be built up. New
actors can be rapidly put together by reusing old agents, i.e. parts of old
actors.

e Highly Complex Actors. As with the development and design of any com-
plex system modularity is a key to making a specification comprehensible
and manageable.

e Use by Novices. Once libraries of agents have been developed relative
novices should be able to piece together agents in order to create required
actors.

e Good Development Process. All reasonable software development pro-
cesses rely on being able to break the problem down into pieces, developing
actors should be no different.

e Development Teams. Good modularity of specification allows different
developers to work on different parts of the same actor, leading to shorter
development times.

Modularity was emphasized in the computational engine through limiting
interactions between the agents. To an even greater extent modularity was a
driving concern in the design of the development system. The modularity was
largely achieved by ensuring that the tools encouraged breaking a task into
pieces. The idea of specific purpose agents leaves little room for, say, mixing

15

flying to a waypoint with avoiding obstacles. In a complementary way the tools
provide no mechanisms for considering the internals of other agents or even
knowing about the existence of any agents except those directly, hierarchically
related.

5 Future Work

Future work is intended to push the system even further towards the hands
of domain experts rather than the present, realistic target of low level agents
and functions created by agent experts and pieced together by domain experts.
At the time of writing EASE was about to begin testing on site at Saab with
simulation experts.

Future work on the actor architecture will include experimenting with differ-
ent negotiation mechanisms, including the method the factory uses for finding
new suggestion values, the protocol for the negotiation and the function the
factory uses to decide which suggestion is the “best”. At present negotiation
only occurs at the level of engineers, in the future negotiation between managers
may allow better integration of multiple high level goals.

Future work on the EASE specification system will focus on ways of encour-
aging designers to develop actor specifications that can be easily reused. At the
other end of the development cycle the process of identifying which parts of new
specifications can use existing agents and how the appropriate existing agents
can be identified will be improved.

Acknowledgments

This work is supported by Saab AB, Operational Analysis division, The Swedish
National Board for Industrial and Technical Development (NUTEK), under
grants IK1P-97-09677 and IK1P-98-06280, and Link6ping University’s Center
for Industrial Information Technology (CENIIT), under grant 99.7.

References

[Aircraft, 1995] Saab Military Aircraft. The TACSI users guide. technical report
GDIO-MI-98:356. Technical report, Saab Military Aircraft, 1995. Edition 5.2.

[Blumberg and Galyean, 1995] Bruce Blumberg and Tinsley Galyean. Multi-
level control of autonomous animated creatures for real-time virtual environ-
ments. In Siggraph ’95 Proceedings, pages 295-304, New York, 1995. ACM
Press.

[Boloni and Marinescu, 1999] Ladislau Boloni and Dan Marinescu. A frame-
work for building collaborative network agents. Technical Report CSD-TR
#99-001, Purdue University, 1999.

16

[Bouchefra et al., 1998] Kamel Bouchefra, Patrick Auge, Thierry Maury,
Brigitte Rozoy, and Roger Reynaud. Multi-agent based architecture spec-
ification and verification. In Proceedings of Eleventh Workshop on Knowledge
Acquisition and Modeling and Management, 1998.

[Brooks, 1991a] Rodney Brooks. Intelligence without reason. In Proceedings
12th International Joint Conference on AI pages 569-595, Sydney, Australia,
1991.

[Brooks, 1991b] Rodney Brooks. Intelligence without representation. Artificial
intelligence journal, 47:139-159, 1991.

[Bryson, 1998] Johanna Bryson. Agent architectures as object oriented design.
In Munindar Singh, editor, The fourth international workshop on agent the-
ories, architectures and languages (ATALY7). Springer Verlag, 1998.

[Bussman, 1998] S. Bussman. Agent oriented programming of manufacturing
control tasks. In Third International Conference on Multi-agent systems,
pages 57-63, Paris, 1998.

[Cost et al., 1999] Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng, Yun Peng,
and Tan Soboroff. Agent development with Jackal. In Proceedings of the Third
Annual Conference on Autonomous Agents, pages 358-359, Seattle, WA, May
1999.

[Falchuk and Karmouch, 1998] Benjamin Falchuk and Ahmed Karmouch. Vi-
sual modeling for agent based applications. Computer, 31(12):31-38, Dec
1998.

[Jennings et al., 1998] Nicholas Jennings, Katia Sycara, and Michael
Wooldridge. A roadmap of agent research and development. Autonomous
agents and multi-agent systems, 1:275-306, 1998.

[Kinny and Georgeff, 1996] David Kinny and Michael Georgeff. Modelling and
design of multiagent systems. In Proceedings of the Third International Work-
shop on Agent Theories, Architectures, and Languages. Lecture Notes in Com-
puter Science, 1996.

[MacKenzie, 1996] Douglas MacKenzie. A design methodology for the config-
uration of behavior-based mobile robots. PhD thesis, Georgia Institute of
Technology, 1996.

[Nwana et al., 1999] Hyacinth Nwana, Divine Ndumu, Lyndon Lee, and Jaron
Collis. ZEUS: A toolkit and approach for building distributed multi-agent
systems. In Proceedings of the Third Annual Conference on Autonomous
Agents, pages 360-361, Seattle, WA, May 1999.

[Nwana, 1999] Hyacinth Nwana. A perspective on software agents research.
Knowledege Engineering Review, 1999.

17

[Parker, 1998] Lynne E. Parker. Alliance: An architecture for fault tolerant
multi-robot cooperation. IEEE Transactions on Robotics and Automation,
14(2), 1998.

[Pirjanin, 1998] Paolo Pirjanin. Multiple objective action selection and behavior
fusion voting. PhD thesis, Department of Medical Informatics and Image
Analysis, Aalborg university, 1998.

[Repenning, 1993] Alexander Repenning. AGENTSHEETS: A tool for building
domain-oriented dynamic, visual environments. PhD thesis, University of
Colorado, Boulder, 1993.

[Riekki, 1998] Jukka Riekki. Reactive task execution of a mobile robot. PhD
thesis, Infotech Oulu and Department of Electrical Engineering, University
of Oulu, Ouluy, Finland., 1998.

[Rosenblatt, 1997] Julio Rosenblatt. Behavior-based planning for intelligent au-
tonomous vehicles. In AV Symposium on Intelligent Autonomous Vehicles,
Madrid, Spain, 1997.

[Smith et al., 1997] David Smith, Allen Cypher, Jim Spohrer, Apple Labs, and
Apple Computer. Software Agents, chapter KidSim: Programming Agents
without a Programming Language. AAAT Press/The MIT Press, 1997.

[Tambe et al., 1995a] M. Tambe, K. Schwamb, and P. Rosenbloom. Constraints
and design choices in building intelligent pilots for simulated aircraft. In
AAAT Spring symposium on ”Lessons Learned from implemented software
architectures for phyiscal agents”, 1995.

[Tambe et al., 1995b] Milind Tambe, W. Lewis Johnson, Randolph Jones,
Frank Koss, John Laird, Paul Rosenbloom, and Karl Schwamb. Intelligent
agents for interactive simulation environments. AI Magazine, 16(1):15-39,
Spring 1995.

[Wooldridge et al., 1999] Michael Wooldridge, Nicholas Jennings, and David
Kinny. A methodology for agent-oriented analysis and design. In Proceedings
of the third annual conference on Autonomous agents, pages 69-76, Seattle,
WA, 1999.

[Wooldrige and Jennings, 1998] Michael Wooldrige and Nicholas Jennings. Pit-
falls of agent oriented development. In Proceedings of the Second International
Conference on Autonomous Agents, 1998.

[Yen and Pfluger, 1995] John Yen and Nathan Pfluger. A fuzzy logic based
extension to Payton and Rosenblatt’s command fusion method for mobile
robot navigation. IEEE Transactions on Systems, Man and Cybernetics,
25(6), 1995.

[Zilberstein, 1996] S. Zilberstein. Using anytime algorithms in intelligent sys-
tems. AT Magazine, 1996.

18

