Scheduling of Updates of Base and Derived Data Items in Real-Time

Databases*

Thomas Gustafsson and Jérgen Hansson
Dept. of Computer and Information Science
Link6ping University, Sweden

{thogu,jorha}@ida.liu.se

Abstract

The amount of data that is handled by embedded and real-time systems is increasing. In some applications it is
important to use fresh and accurate values on data when taking decisions or controlling an external environment.
This calls for data-centric approaches when designing embedded systems, where data and its meta-information
(temporal correctness requirements etc) are stored centrally. The focus of this paper is on maintaining freshness
on data values. One way to ensure freshness of data values is to use fized updating frequencies of the data values.
For many systems a fixed updating frequency is too pessimistic since the system can enter states where the need to
do updates is less than what the fired updating frequency states. Hence, many updates are unnecessarily executed.
The contributions of this paper are three-fold: (i) a new notion of data freshness that uses the value domain of
data items, (ii) a scheme for managing updates of data with respect to changes in data values, and (iii) two new
on-demand scheduling algorithms of updates, On-Demand Depth-First Traversal and On-Demand Breadth-First
Traversal, denoted ODDFT and ODBFT respectively.

Simulation results show that ODDFT and ODBFT maintains consistency of data values better than well-known
on-demand algorithms. Moreover, by using the update scheme and data freshness in the value domain algorithms
(ODDFT, ODBFT, and previous defined on-demand algorithms) can change the updating need to the changes in

data values in the current state.

*This work was funded by ISIS (Information Systems for Industrial Control and Supervision) and CENIIT (Center for Industrial

Information Technology) under contract 01.07.

1 Introduction

During the last decade the software in embedded systems has increased significantly in complexity. This is due
to the increase in available memory and CPU speed. In an engine control system there is a need to process a large
amount of data in a timely fashion, for instance to calculate fuel injection time and fuel amount for each cylinder.
To accomplish this the engine control system needs, as almost all embedded systems, to measure data from its
external environment, carry out calculations, and send calculated values to actuators. Thus, sensors and actuators
need to be handled in the software, and, naturally, sensor and actuator values are stored as data variables.

New law regulations and diagnosis requirements for fault detection that is put on the car industry makes the
software in engine control to rely even more than before on acquired data from the environment. In this respect, it
is important not to only calculate data items in a timely fashion, but also to use updated data items in the control
loops and diagnosis functions. These requirements imply a need for deadlines on the calculations of data items,
and a need to use fresh, i.e., updated, data items in the calculations.

The increasing amount of data items in systems of today makes it natural to use a database to handle the data.
Normally, databases are used for enforcing consistency when manipulating data items. The calculation of data
items can now be done in transactions. The ACID properties of a transaction [4] ensure concurrent transactions
have a consistent view of the data. The freshness of data items that are used in a transaction is not guaranteed
though.

In this paper, we investigate different ways of ensuring fresh data items in calculations by using the notion of
expected error of a data item. The error of a data item can be defined as how much the value of the data item
differs from the perfectly updated value of the data item, i.e., the value is updated immediately when it changes,
and it takes zero time. One way of defining expected error of a data item, as implicitly done in other research work
[3,9,20], is to use the notion of absolute consistency [20] where a data item is guaranteed to have a fresh value
during an absolute validity interval, i.e., the error of the value of the data item is low during this interval. After
this duration of time the value is not consistent anymore and the error of the data item is instead high. For some
systems it is not feasible to always have the same validity interval on a data item. In an engine control system,
for instance, the engine temperature increases until it reaches its working temperature. When it does, the value
representing the temperature is fresh for a longer period of time, because it is not likely that the temperature
diverges much from the working temperature, i.e., the validity interval of the data item is not fixed. Another way
to look at it is that the error of the temperature value is low for a longer time when the engine has reached its
working temperature compared to when the engine starts to heat up. Hence, the validity intervals related to engine
temperature are longer in the former case.

Validity interval of the data item determines when updates should be executed [16]. The data item might not

have changed at all when the time stated by the validity interval has passed. One reason can be that dependencies,

such as other data items, have not changed. The update is in fact unnecessary, but it is impossible to know this
since the notion of absolute consistency only considers time, not the values of data items. When the dependencies
have changed and the expected error of the data item is above a given limit, then the data item need to be updated.
Thus, the load of the CPU can be lowered when using values of data items instead of validity intervals.

In this work, we model the expected error of data items in a more accurate way than what is possible with the
usage of validity intervals, e.g., [3,9], and, thus, decrease the need to update data items.

The outline of the paper is as follows: preliminaries to database systems are given in section 2. The problem
description is stated in section 3. A description of the database model, the data items, the data dependency graph,
the transactions, and the freshness of data items is done in section 4. The scheduling algorithms ODDFT and
ODBFT are also presented in section 4. The simulator, simulator parameters, and simulation results is found in

section 5. Section 6 covers the related work. Conclusion and future work end the paper in section 7.

2 Preliminaries

First a short description is given of a typical engine control system. The engine control system uses two time
bases, one is triggered on the angle of the crank axis, whereas the other time base is triggered every fifth msec.
Here the assumption is that we have a four cylinder engine. Once every second revolution, for each cylinder, a
set of tasks are generated. Two tasks are generated before the top dead center! (TDC) that starts calculation of
ignition angle and torque, and knock detection. Three tasks start after the TDC, and they take care of updating
knock diagnosis, calculation of end angles for injection, and measurement of sensor values. Each of these tasks
start a set of transactions that calculates sub-results of the final result computed by the task.

The periods of the time triggered tasks are: 5, 10, 20, 50, 100, 250, and 1000 msec. Every task generates
transactions that read produced results and update data values. Furthermore, when a transaction calculates a new
value of a data item, it uses values of other data items in the database to calculate the new value. These values
are, in turn, calculated by other transactions. To derive fresh data items, the transactions have to be executed
in an order such that the data items are updated before they are read by other transactions. Hence, there are
precedence constraints among the transactions that are determined by which data items the transactions read.

More formally the database consists of base items B, i.e., the sensors in the engine control system, and derived
items D, such as a compensation factor for fuel amount based on engine temperature. Associated with every
derived data item d is a read set, denoted R(d), containing the data items used for deriving the data item. For
instance, one of the items of R(engine_temp_comp_factor) is the value of an engine temperature sensor.

Base items can be of two types:

IThe top position of a cylinder where the air fuel mixture is compressed to the lowest volume, i.e., the pressure on the mixture is

the highest before the spark from the spark plug ignites the mixture.

e Continuous items that change continuously in the external environment, e.g., a temperature sensor. The base

items need to be fetched often enough to have a current view of the environment.

e Discrete items that change at discrete points in time in the external environment, e.g., engine on or off.

Transactions have the properties atomicity, consistency, isolation, and durability and consist of read/write
operations and calculations.

Ahmed and Vrbsky simulated and evaluated an on-demand approach to generate updates [3]: when a data
item is read by a transaction, and the data item is too old, i.e., current time is not within a so called absolute
validity interval of the data item, then an update is generated that updates the data item before the transaction
continues to execute. The update is called a triggered update or triggered transaction. The triggering of updates
can be done in one of three ways, called options in [3], depending on what is considered important in the system;
consistency or throughput of produced values. The options are denoted: (i) no option, (ii) optimistic option, and
(iii) knowledge-based option (the options are described in more detail in section 5.2). The on-demand algorithm

and the options described in [3] are used as baselines in the evaluation of simulation results in section 5.

3 Problem Description

As can be seen from the example above with the engine control unit, we have two problems that have to be

solved simultaneously:

P1 the requirement of usage of up-to-date data implies a need to do updates of data items before they are used

in a calculation; and

P2 the updating frequency of a data item can vary during run-time. To make best use of the available computing

resources the system need to adapt to the new update frequency.

The type of systems that this paper is focusing on are real-time systems, and therefore, the tasks such a system is
executing have deadlines. The deadlines of the system can be a mix of hard and soft deadlines. The schedulability
of a set of transactions depends on how many updates that is started and that cannot be determined before the
system starts. Hence, in this paper, deadlines of transactions are firm or soft.

P1 indicates the importance to schedule and execute updates of data items in a timely fashion. Every transaction
in the system is modeled as a single-writer, where the transaction either writes a base item belonging to B or a
derived item belonging to D to the database. All data items in the system are ordered in a partial order given by
the precedence constraints among the data items, this is described in section 4.1.1, and the updates need to be
scheduled based on the partial order.

P2 is justified by that computing resources can only be bought in discrete units, e.g., a CPU with a specific

frequency. In industry where costs should be kept as low as possible, it is important to use the available computing

resources as efficient as possible. If an algorithm is inefficient then a more powerful CPU might be needed, which
gives an extra cost. By adapting the updating frequency to the actual need, the cost of updates can be reduced
compared to if static updating frequencies are used, and hence, in total, less resources might be needed.

For instance in the engine control unit mentioned above, both the efficiency (P2) and the freshness (P1) need
to be addressed at the same time. Thus, a model that maintains data in an efficient way is needed.

The goal of this work is to propose and evaluate:

e A model of data items and transactions such that it is applicable to, foremost the ECU, but also other kinds

of systems that handles transactions in a firm or soft setting.

e An updating scheme that takes arbitrary precedence constraints into consideration, that tries to minimize
the number of generated updates, and produced results are consistent, i.e., fresh data have been used in the

derivation of the results.

4 Scheduling of Triggered Transactions

When a transaction is about to execute, the data values that are used when deriving results need to have
fresh values. Two algorithms that schedule the needed updates for a transaction are described in this section.
The algorithmic steps of the scheduling of updates is shortly described here with references to a more elaborate

description for each part of the steps.

e Updating base items. Base items are updated with a high frequency and derived data items are marked when
they need to be recalculated. A data dependency graph is used to keep the dependencies between data items.
A validity bound is introduced for each parent of a data item that indicates how much the particular parent
can change before it actually affects the value of the data item. To accept different importance levels of the
calculations, several queues are used to schedule transactions in. Section 4.1 contains an explanation of the

database, the data items, the data dependency graph and the transaction model.

e Scheduling of updates. The actual scheduling of updates are done by one either On-Demand Depth-First
Traversal, denoted ODDFT, described in section 4.6 (pseudo-code in figure 7) or On-Demand Breadth-First
Traversal, denoted ODBFT, described in section 4.7 (pseudo-code in figure 9). The scheduling algorithms
traverses the data dependency graph to find parents that need to be updated to get fresh data values on the

data items that the executing transaction will use.

— Deciding which data items need an update. It is worth recalculating a data item when the change of a

value is noticeable. During scheduling of updates a function, called error, is used that gives an upper

bound of how much a data item can have changed at a given time. The function is described in section

4.2.

The latest time a data item still has to be valid for a transaction to produce a reasonable result is
discussed in section 4.3. This point in time and error is used during scheduling of updates to decide

which data items that have to be updated.

— Prioritizing pending updates. If several updates can be executed at the same time a choice has to be
made. A priority is assigned to each possible update by an algorithm, denoted AssignPriority, described
in section 4.4 (the pseudo-code can be found in figure 3) and the update with highest priority is scheduled
first.

e Scheduling points. Section 4.5 discusses at which occasions updates are scheduled and when updates are
executed. The algorithm, denoted Dispatch, described by pseudo-code in figure 4, is used when a transaction

enters or leaves the system.

Furthermore, section 4.8 describes a feedback control model that can be used to limit the number of generated

updates. Section 4 is ended with a discussion of the scheduling algorithms in subsection 4.9.

4.1 DatabaseModel

The main purpose of the model described in this paper is to represent the handling of data in a system that
has freshness requirements on the data items. Moreover, the base items in the model, e.g., sensors, are continuous
data items that can be fetched by the system itself and derived data items are discrete data items.

In this subsection a model is described for data items, transactions, and the freshness of data items. A discussion

of base item updates and data freshness can be found in subsection 4.9.

4.1.1 Precedence Constraints and the Updates of Base Items

The relationship between base items and derived items can be viewed as a directed acyclic graph (DAG) G = (V, E).
Each vertex v represents a data item and a directed edge (v, w), belonging to the set E, represents that data item
v is a member of the read set of w.? A derived data item d resides at a particular level based on how many vertices

there are in a path from a base item to d. The level of a derived item d is defined as follows.

Definition 4.1. FEach base item b has a fixed level of 1, i.e.,

level(b) = 1. (1)

2The data item v may be a base item or a derived item, while w always is a derived data item.

The level of a derived data item d is determined by the longest path from a base item to d. Hence, the level of d is

level(d) = v;rel?%}((d)(leuel(x)) + 1. (2)

Let us give an example. Figure 1 shows a DAG with seven base items and nine derived items. Here the directed

edge (b1, ds) means that by is a member of the read set of d5. Now we describe how data freshness can be defined
for continuous and discrete data items.

In [20] a data item is said to be absolutely consistent with the entity in the external environment it represents

as long as the age of the value is within an interval, the so called absolute validity interval, awi.

Definition 4.2. A data item x that can be either a base item or a derived item is absolutely consistent when:

current_time — timestamp(z) < |avi(z)|. ®)

This definition defines data freshness for continuous data items. Note that, a discrete data item has no fixed
absolute validity interval, since a discrete data item is valid until the next update arrives and that point in time is
not known.

The data items in a read set are said to be relatively consistent if they are created close to each other in time.

Relative consistency is defined as follows [20]:

Definition 4.3. A set of data items V are relatively consistent if their timestamps do not differ more than an
interval, the so called relative validity interval, i.e., Yy,Yv € V| [timestamp(v) — timestamp(y)| < |rvi(V)|, where

rvi(V) is the relative validity interval of the set of data items.

On the other hand, it can be enough, from a consistency perspective, that the data items read by a transaction
are valid at the same time. This resembles definition 4 in [15], that handles discrete data items and versions of
such data items. A version of a data item is an old value that was valid during a certain validity interval (V).
The latest version is valid until a new version is installed in the database, and the end time in VI of the current

version is set to oo.

Definition 4.4. Given a set of data items W, the data items in W are said to be relatively consistent if
(WVI(z)|z; € W} # 0, where VI(x;) is the interval [timestamp(z;), timestamp(next(z;))) of time that data

item x; 1s valid in, and

timestamp(z}) if @ exists and is the next version of x;,
timestamp(next(z;)) =

00 otherwise.

In this paper, a data item has only one version, the latest, and therefore W is a set of data items as V' in definition
4.3, and as can be seen from definition 4.4, the latest version of data items are always relatively consistent.

Definition 4.2 defines data freshness for a data item in the time domain. When a data item d updated at time
t, and becomes stale at time ¢y, then according to definition 4.2 its derived value at t, denoted vff, can be the
same or similar to the value vzl, thus, the data item is still fresh in the value domain. Hence, a data item d is fresh
as long as the values of data items in the read set are within reasonable bounds from the values that were used

during the derivation of d. The bounds are denoted data validity bounds and are defined as follows.

Definition 4.5. A data validity bound 64,4 states how much data item x € R(d) can change before it affects the

value of d, requiring d to be recomputed.
The data freshness in the value domain is defined as follows.

Definition 4.6. A derived data item d that was derived at time to is derived from R(d) by using values Vd' €
R(d),vy. d is fresh as long as all data items in R(d) have values that are within acceptable bounds from Vd' €

R(d),v;‘?, i.e., d is fresh at times t when:

N Al — | < daa} (4)

Vd'€R(d)

evaluates to true.

All possible changes of data items are originated from the base items. To capture changes of data items, the
system updates base items frequently and data freshness according to definition 4.6 is checked for every derived
item d in level 2 (see figure 1). If equation (4) evaluates to false, then a flag denoted changed is set to true for all

data items, including the derived item d in level 2, that are derived from d.

Q G Q @ @ e Level 1
@) (o) (a) (4) Lew
Gy (4 (@) (4) Lews
@ Level 4

Figure 1. The base items at level 1 and the derived items.

4.1.2 Data Items

A data item is represented by the following tuple

d : (value, timestamp, R(d), changed, weight, priority, avi, error, WCET) where:

e value is the value of the data item.
e timestamp is the timestamp when the data item is updated.

e R(d) is the read set where each element is a tuple (x, 04,) where z is a data item that is needed when deriving

d.
e changed is set to true if any of the ancestors of d have been changed according to definition 4.6.

e weight is the importance of the data item (high weight means that the data item is highly important). The

weight is fixed and determined before the system starts.

e priority is the priority assigned by the system during run-time. How the priority is assigned among the data

items is further explained in section 4.3.

e qui is the absolute validity interval as given in definition 4.2, and is used on base data items to decide the
update frequency. All data items have an awvi. For derived data items the avi is not necessary, since the
validity of a data item depends on the data validity bound §, but the awvi is used in section 5 to compare the

baseline algorithms with the proposed algorithms.

e error(d,t) — R is a function that is used to approximate how much the value of a data item d has deviated,
at time ¢, from the stored value in the database. The function is used to assign priorities to data items when

updates are scheduled.

e WCFET is the worst-case execution time, without updates, for deriving the data item d.

4.1.3 Transactions

Base items are kept fresh by sensor transactions (ST) that only consists of one write operation writing data item
bst. A user transaction, denoted 7y, consists of one or several read operations reading the members in the read
set, calculations, and one write operation writing data item dyp. Ty7 has to read fresh data items belonging to the
read set of dyr. If the data items in the read set are not fresh enough, they have to be made fresh by updating them.
Transaction 7y triggers the necessary transactions that updates the data items. These transactions are denoted
triggered transactions (or triggered updates (TU)) and 7y denotes the triggering transaction. The triggering
transaction and the triggered transactions are under a precedence constraint, due to the dependency of data items.
The triggered transactions need to be executed before the triggering transaction since the result of the triggered

transactions are used by the triggering transaction.

A triggered transaction must not delay triggering transactions other than the one that generated it, because an
update is considered a part of the triggering transaction.® This means that triggered transactions belonging to the
triggering transaction with the earliest deadline can be executed.

The database system has two priority levels for transactions: high, which the most important transactions are
scheduled at, and low, which all other transactions are scheduled at. Each priority level is implemented as a queue.
If we return to the ECU as an example the high priority queue are used for those transactions that are generated
by angle triggered tasks, since these transactions handles ignition of the air fuel mixture, which can be considered
as an important real-time task, even though occasional deadline misses of the calculation of ignition time can
accepted; the previously calculated value is used. Transactions generated by the time triggered tasks are put in
the low priority queue. The earliest deadline first scheduling algorithm (EDF) [6] is used to schedule transactions
in both queues. Tasks in the low priority queue are only executed when there are no tasks with high priority ready
to execute. Base item updates are scheduled in the high priority queue. These updates are periodic and have a
high frequency.

It is not possible to guarantee the execution of low-priority transactions since a higher priority transaction can
arrive and interrupt the low-priority transaction. A transaction is typically part of the execution flow of a task—as
mentioned in section 2—and therefore the produced data item of a transaction is needed in subsequent calculations
in the task. Hence, the transaction need to update the data item, and therefore the deadlines on low priority
transactions are soft.

Concurrency control in the database in our model can be either pessimistic or optimistic concurrency control.
If pessimistic concurrency control is used the locking mechanism has to be aware of the two priority queues since
a lock should be given to a transaction in the high-priority queue before the lock is given to a transaction in the
low-priority queue even though the transaction in the low-priority queue has an earlier deadline. One way to solve
the problem is to use 2PL-HP [1] and set priorities to the transactions in the high-priority queue to a higher value

than the transactions in the low-priority queue.

4.2 Validity

It is impossible to know when a data item d is not fresh anymore. Remember that a data item is considered
fresh as long as the data items in its read set have not deviated more than the data validity bound ég4,,, where z
is a data item in R(d). The current value of any x that belongs to R(d) can only be determined by recalculating
x, and, thus, all parents of d in the data dependency graph need to be recalculated.

A data item that is updated to be used in a derivation of a new data item can change in the middle of the

3 Assume transactions are scheduled with EDF. A triggered transaction is generated with deadline ¢1 by a user transaction with
deadline t2, and now a new user transaction arrives to the system with deadline t3. If ¢ < t3 < tg then the triggered transaction

delays the new user transaction.

10

derivation of the new data item. There are two possible ways to handle this: (i) update the changed value
and restart the derivation, and (ii) accept the fact that the value has changed and continue the derivation. If the
maximum deviation of the value of the data item is known before a transaction that uses it starts and the deviation
is within acceptable bounds, then the data item need no updates during the derivation of a new value, i.e., (i)
above is not necessary.

If the error is acceptable then the data item can be used without a need for updating it. Examples of functions

that could be used as the error function are:
1. error(z,t) = c(t — timestamp(z))?, where 0 < z < o0; or
2. error(z,t) = clog(t — timestamp(x)).

The constant ¢, which is an individual constant for each d, in the above examples is set to a value that models the
current state of the system. The constant ¢ can also be fixed during the run-time of the system.

To be able to compare the values returned by error functions for different data items, the return values need to
be normalized. This is done by dividing the returned value by the value of the data item, e.g., error(dy, 10)/ vfil
Now the normalized value represents the maximum deviation in percent.

For instance, dy in figure 1 is fresh as long as |v,’§2 — vlf;| < ddy bg N |vz‘; — vlt);\éd%m evaluates to true, i.e., as long

as the read set members of d4 have not deviated more than the acceptable validity bounds d4,,5, and dq, b,

The implication of the choice of the value of avi is discussed in section 4.9
4.3 Freshnes®f Data Items During Derivation of New Data ltems

When a transaction is executing it updates one data item, say d. In both ODDFT and ODBFT,
freshness_deadline indicates the point in time where all the members of R(d) have to be fresh. Here fresh
means that either the data item z in R(d) is absolutely consistent or is within its data validity bound J4 , at the
given time. Both algorithms schedule the updates, i.e., the triggered transactions—one triggered transaction for
each update—starting from the deadline of the triggering transaction towards the release time of it, see figure 2.
The reason is that (see the algorithm PREC1 in [17]) it is easier to maintain the precedence constraints in this
way. The triggering transaction has to be scheduled last since it uses the results of all the updates. The closer an
update is to the deadline, the less time is available to diverge from the stored value.

In figure 2 the circles represent possible points in time for freshness_deadline, and each box with a data
item represents the worst-case execution time (WCET) it takes to calculate the data item. Each possible
freshness_deadline occurs twice, once with a dashed boundary representing a freshness_deadline in the schedule
that starts to execute at the release time of the transaction, and a solid boundary representing freshness_deadline

in the schedule when the data items are as close as possible to the deadline of the triggering transaction. The

11

0 N

b,| b, 0,10, b,|b,\d, | d,) d, | d, |d] d, || d | d,]
Release time e g e g e g _ 7| Deadline
P 7 P 7 P 7 P 7
-7 A .~ Triggering transaction
A ad /(,7\3 pd g / /,/3 e g (1
s R 4 s N P
by bbb, |65 ba[])| |) [d, |ds 4 |, d, | d, I
Release time Triggered transactions T Deadline
Triggering
transaction

Figure 2. Different possib le values of freshness_deadline. The transactions are taken from figure 1in

atop to bottom, left to right order.

number it represents in the circle indicates which item in the numbered list below. When the schedule is gener-
ated, the updates are moved to the release time (see PREC1 [17]), i.e., the EDF scheduling algorithm is used for

transactions. It is possible to set freshness_deadline to one of the following values:

1. Equal to the deadline of the triggering transaction Ty writing data item d, i.e., all the members of R(dyr)
need to be valid throughout the execution of 7. As can be seen in figure 2 the freshness_deadline does

not change when the schedule is moved towards the release time of the triggering transaction.

2. Equal to the release time of a transaction Ty, triggered or triggering, that reads data item dyr. Thus, dyr
has to be valid at least until 7y is started. For an example see figure 2. The freshness_deadline of ds
is the release time of dg, because ds is a parent of dg in figure 1. The actual release time of the triggering
transaction updating dg might not, during the execution of the schedule, be the same as in the generated
schedule. Omne reason is that the schedule is moved if it does not reach the release time of the triggering
transaction (the move of the schedule as done from the upper part to the bottom part of figure 2), another
reason is that the triggered updates can be finished before their WCET and, thus, all successor transactions

will be started earlier.

3. Equal to the commit time of the triggering transaction 7. The main problem is that the commit time of the
arriving transaction is not known when the scheduling takes place, see figure 2. If transactions in the schedule
are completed before their worst-case execution time, then the remaining transactions in the schedule will be
started earlier, advancing the commit time of 7 in the schedule. Here the freshness_deadline of d; is the

commit time of dg (the data dependency graph can be found in figure 1).

12

One could argue that the freshness_deadline as in the top of figure 2 is the latest possible freshness_deadline
and that this value could be used, but for both ODDFT and ODBFT case 1 is used. We assume that the freshness

of a data item cannot be higher when all data items it is derived from are valid until the deadline of the transaction.

4.4 Priority on Update Transactions

Triggered transactions are prioritized according to algorithm AssignPriority described in figure 3. The idea is
that transactions updating the most important data items are scheduled first when a large part of the interval
[release_time, deadline) is available to schedule them in. Updating a data item implies it is considered fresh enough
when it is later used to derive other data.

AssignPriority uses the expected error of data given by the function called error to set the priority among the
triggered transactions. The total error among those transactions that need to be updated is calculated and the
more a triggered transaction contributes to reducing the total error the higher priority it gets. If a transaction
cannot be scheduled due to no available execution time, then its priority is higher the next time AssignPriority is
used since the error function returns a higher value due to increase in deviation from the stored value over time.
A weight is also defined for each data item. The weight is used together with the priority given by AssignPriority
to determine which update to schedule first. The weight is multiplied with the priority, and the product is used
as the priority of the data item. The purpose to use a weight for each data item is to capture the need to force
updates of some particularly important data items. In the engine control system, for instance, it is important to
check if the engine starts knocking. The data items that are used for monitoring this have to be fresh and have
priority over other data items. Since each read set of a data item d has a data validity bound 044, where z is
a member of R(d), it is possible to assign a small value to 044 such that the update is always scheduled. If the
weight is not needed, then it can safely be set to 1 for all data items.

The algorithm is presented in figure 3. The computation complexity of the two for-loops are O(n) and O(nlogn),

where n is the size of R(d). It computation complexity for adding an element to a sorted list is O(logn).

4.5 SchedulingPoints

Algorithm Dispatch described in figure 4 is used every time a transaction, triggering or triggered, finishes. The
algorithm checks whether the transaction finishes ahead of time, if it does, then the extra free time can be used
to schedule transactions that could not be fitted into the original schedule. The only transactions that can be
scheduled are those updating data items at the same level or lower* levels as the finished transaction and whose

corresponding children in the data dependency graph are not yet executed. The reason is that all transactions are

4Data item d is closer than data item d’ to the base items in the data dependency graph if level(d) < level(d’), and, thus, resides

in a lower level.

13

AssignPriority(d, freshness_deadline)

for all z € R(d) do
if error(z, freshness_deadline) > 04, then
total_error = total_error 4+ error(z, freshness_deadline)
Put z in queue Q;
end if
end for
for all z € @; do
prio(xz) = error(z, freshness_deadline) [total_error
Multiply prio(x) with weight(z)
Put x in queue Q)5 sorted by priority

end for

Return Q-2

Figure 3. The AssignPriority algorithm that assign priorities to the data items in aread set R(d).

under a precedence constraint and, thus, it makes no sense to execute a triggering transaction whose parents have
not, been updated. Line 4 in figure 4 can be replaced with the following pseudo-code that searches for updates to

execute in available free slots due to early finishing of updates:

if current_time < deadline(t) then
Let freshness_deadline be equal to the freshness_deadline used for 7
Let schedule be schedule of triggered updates for 7
for all 7, € schedule with release_time(r;) < release_time(r) and not scheduled do
if (level(ry) = level(T)) V (level(r,) < level(T) A 1, parent of not yet scheduled transaction) then
deadline(r,) = deadline(r)
Call ODDFT or ODBFT
end if
end for
end if
When a transaction arrives to the system, algorithm Dispatch is called. Triggered updates for the transaction
are scheduled in line 10 in figure 4.
Triggered transactions are picked from a schedule belonging to the triggering transaction with the earliest
deadline. In this way a triggered transaction 7 cannot delay triggering transactions with earlier deadlines than the

triggering transaction that triggered 7. A check can be done that a triggered transaction has a chance to commit.

14

Dispatch(r)
1: if 7 is triggered transaction then
2: Let 73 be the triggering transaction of 7
3: Remove 7 from the scheduling queue of 7
4: Pick the next triggered transaction of 7
5: else if 7 is triggering transaction then
6: if 7 already in one of the two transaction queues then
7 Let 7 be the triggering transaction with closest deadline in the high priority queue or in the low priority

queue if the high priority queue is empty

8: Pick the first transaction in the scheduling queue of 7

9: else

10: Call ODDFT(r, deadline(r)) or ODBFT(7, deadline(T))

11: Let 7¢ be the triggering transaction with closest deadline in the high priority queue or in the low priority

queue if the high priority queue is empty

12: Pick the first triggered transaction of 7;
13: end if
14: end if

Figure 4. The Dispatc h algorithm that is used every time a transaction finishes and when a new

trig gering transaction arrives to one of the two queues.

15

The check is not part of the pseudo-code in figure 4. The release times that algorithms ODDFT and ODBFT
calculate are the latest possible release times of a triggered transaction, since the release times are calculated based
on the deadline of the triggering transaction. Lines 4, 8, and 12 can have such a test:
Calculate available_time = current_time — deadline(r:)
for all 7, € schedule of 7; in reverse order do
available_time = available_time — WCET (1)
if available_time < 0 then
break
end if
if 7, =preempted triggered transaction then
break
end if
end for

Continue executing triggered transactions from 7,

The test checks which triggered transaction to continue executing from in the schedule of updates.

4.6 On-DemandDepth-First Traversal Scheduling

The rationale with the depth-first scheduling algorithm is that the read set members have to be fully updated
before they are used. To fully update a read set member, all its parents in the data dependency graph need to be
updated. The read set member z of data item d, can be seen as a triggering transaction updating x before the
transaction deriving d reads the value of x. For instance, in figure 1 transactions for ds, dg, d7, and dg need to
be executed before the transaction that writes dg. This is a recursive algorithm that updates one branch of the
data dependency graph before it continues with the next. The algorithm is described in figure 7. The parameter
7 is the transaction that needs a data item to be updated, and freshness_deadline is the time at which a read
data item (or any of its predecessors) need to still be fresh. As pointed out above, freshness_deadline is set to
the deadline of the triggering transaction. The transaction is put in a queue with release time and deadline as late
as possible. When all triggered transactions are put in the scheduling queue, they are all moved® as close to the
original release time of the triggering transaction as possible. This effect is achieved by the algorithm Dispatch
that always schedules the first triggered transaction in the schedule of a triggering transaction, irrespective of
the calculated latest release time of the triggered transaction. If the schedule is not moved to the release time,

i.e., triggering transactions are postponed, then it is possible that another transaction arrives and, due to the

5The release time of the transactions in the schedule are set such that the precedence constraints of the updates are still fulfilled

and the transactions cannot be closer to the arrival time of the transaction generating the updates.

16

postponement, one or several of the transactions cannot finish within their deadlines.

As an example of how the scheduling works see figure 5. Here the data dependency graph from figure 1 is used
and a triggering transaction uses data item dy. The read set members of 7y is prioritized in the following order,
highest first, dg, d7, dg, and ds.

In figure 5, the triggered transaction that writes to data item dy and its parents are scheduled twice. Once
because it is a parent of dg, and once because it is a parent of d7. Normally, the value of dy generated by the
triggered transaction associated with data item dr, denoted 7(d7), can be used by 7(dg). Line 8 of ODDFT removes
such already scheduled transactions. An update can be removed if the value produced by the earlier update is
valid when the value is later used. If the value is not valid the duplicate transaction cannot be removed. In this

paper, it is assumed that all duplicates can be removed.

<t d9

<—d5—><—d6—><—d7—><—d8—>

\

b,|b,|d,|d| b, b, d,|d|b] d,|b,],]d,|d]|b 6, d,] d]|d,,

Release time T Deadline

Triggered transactions Transaction
for d,

Figure 5. The schedule before moved as close as possib le to the release time.

Level k-3

Level k-2

Level k-1

Level k

Figure 6. A graph that gives the worst-case running time of algorithm ODDFT.

The complexity of the ODDFT algorithm is exponential in the size of the graph. Regard the graph in figure

17

6. In this graph, every node is connected to all nodes in one lower level, i.e., a node in level k is connected to all
nodes in level kK — 1. There are a maximum of m nodes in one level. The recurrence relation T'(n), where T'(n)
denotes the computation time spent in one node in level n < k, can be stated as:

T(n) =mT(n+ 1)+ O(mlogm)

Tk)=1
where O(mlogm) is the running time of AssignPriority and m is the maximum out-degree of a node, i.e., the
maximum size of a read set. Note that the recurrence relation is defined for the bottom level, k, which is the data
item d to update, to the top level. The total running time of algorithm ODDFT is O(m™mlogm), where m is the
maximum in-degree of a node in graph G, and n is the number of levels in the graph. Hence, the computation time
for ODDFT is exponential in the size of the graph in the worst case, since a graph with n levels can be constructed
from m X n nodes, which is a polynomial in the number of levels, and hence a polynomial in the number of nodes,
i.e., the computation time is, in the worst case, exponential in the size of the graph. Note that this only shows

that the running time is exponential for certain graphs. Note, ODDFT stops traversing the graph when the release

deadline—release_time
WCET .

time is reached. The number of recursive calls can be calculated by taking

ODDFT(r, freshness_deadline, schedule)

1: release_time(r) = deadline(t) — WCET (1)

2: Put transaction 7 first in schedule

3: Set d=data item updated by 7

4: priority_queue = AssignPriority(d, freshness_deadline)
5: for all items z in priority_queue in priority order do

6: if changed(xz) = true then

7 Let 7., be the transaction that updates =

8: Remove duplicates of 7,, from the schedule
9: deadline(ry) = release_time(T)

10: ODDFT(7,, freshness_deadline, schedule)
11: end if

12: end for

Figure 7. The ODDFT algorithm that schedules updates in a depth-fir st manner.

4.7 On-DemandBreadth-First Traversal Scheduling

When there is not enough execution time to schedule all necessary updates, the depth-first algorithm focuses on

the most important read set members according to AssignPriority. One of the read set members d; might not be

18

updated, even though all of the parents of d; already are up to date. For instance, the branch, from top to bottom,
b1,b2,dy,ds in figure 5 cannot be executed if the release time of the triggering transaction would have been closer
to the deadline. The idea of the breadth-first scheduling algorithm is that a data item is updated based on the
level it belongs to, not on which branch it belongs to.

Normally, the breadth-first algorithm (see [8]) is implemented by using a FIFO queue for determining from which
node to continue to expand the frontier between discovered and undiscovered nodes. Here, this is not sufficient, we
instead want the nodes to be picked in both level and priority order. Level order is used to obey the precedence
constraints, and priority order is used to pick the most important update first. The relation 1 is introduced, and

x vy, where z and y are data items in the database, is defined as;

x Dy iff level(z) > level(y)V
(level(z) = level(y) A prio(x) > prio(y))V
(level(z) = level(y) A prio(x) = prio(y) Aid(x) > id(y)),
where prio is the product of the priority of the data item and the weight, level is the level in the data dependency
graph the data item resides at, and id is a unique identifier associated with the data item. The use of an identifier
of a data item gives a total order of the data items. If data item d4 has the integer 4 as an identifier and data item
ds the integer 5, then ds 1 dy if they reside in the same level and is assigned the same priority.

The queue of nodes to use as a frontier in the ODBFT algorithm is sorted by the relation 1. Every time a
node of the data dependency graph is inserted into the queue, the queue is inserted in the right position based
on relation . The inserted node is a read set member that later is put in the schedule and also is the origin of
a new search for updates. The first element in the queue is put in the schedule every time the algorithm iterates
and a new node is used to search for new updates. The first element is also used by the algorithm to start the new
search for undiscovered nodes in the graph. Since I orders the data items according to level, ODBFT behaves
as a breadth-first search. Only those transactions that updates a data item that might change are scheduled, i.e.,
those data items whose changed flag were set to true.

Initially, all nodes are colored white. A node can only be inserted in the queue when it is white. ODBFT cannot
schedule the same transaction more than once, since the first time a node in the data dependency graph is visited
it is colored gray and can, thus, not be included again in the queue. Hence, the problem of the occurrence of
duplicates of a transaction is not possible.

Figure 8 shows how the transactions for the data item in figure 1 would be scheduled by ODBFT. As can be
seen, the triggered transactions are scheduled by level and priority.

The total running time of algorithm ODBFT is O(V + E) [8] if the operations for enqueuing and dequeuing @
take O(1) time. In algorithm ODBFT, the enqueuing takes in the worst case O(log V') since the queue can be kept

sorted and elements are inserted in the sorted queue. The total running time of algorithm AssignPriority called

19

b o144 T 4444 4

Y

Release time Deadline

Transaction

Figure 8. A trig gering transaction and trig gered transaction scheduled by breadth-fir st.

by ODBEFT is the same as the for-loop adding elements to a sorted queue, i.e, O(E logp), where p is the maximum

size of the read set of a data item. Thus, the algorithm has a total running time of O(V logV + E'logp).

4.8 FeedbackControl

As simulation results show in section 5.4, ODDFT and ODBFT have a higher miss ratio of user transactions at
high arrival rates than compared to on-demand algorithms with knowledge-based option. The main reason for this
behavior is that the actual user transaction is delayed by the generated updates and is therefore executed closer to
its deadline. The available slack of the user transaction is decreased so the available time for blocking and restarts
is also decreased. What is needed is a way to determining how much of the accessible slack that can be used by the
updates. Next is a solution presented based on basic control theory. An application of this solution is presented in
section 5.7.

The size of the slack available for updates is measured as the ratio of the available slack for updates and remaining
execution time when the WCET of the user transaction has been accounted for, i.e., the fraction of execution times
of S5 and S in figure 10. When the arrival rate is high, then the ratio should be set high and stop updates to be
executed. Thus, the load on the system is lowered and the user transactions have a greater chance to be executed.

One way to control the size of the slack is to use a feedback control scheduling algorithm. The monitored
variable is the miss ratio of user transactions. We model the controlled process as shown in [19]. The system is
pictured in figure 11. The manipulated variable is the slack ratio, SR. The controlled variable is the miss ratio of
user transactions, M. The performance reference of the miss ratio, M, is set to 20%.

A P-controller is used to change the slack ratio in order to increase/decrease the miss ratio. The controlled
process, i.e., the database, contains an integration part which contains the sum of the old estimated slack ratio
and the new output from the controller. The model is tuned by taking the derivative

dM (k)

dSR(k)
at the vicinity of M,. The performance error in period k is given by E(k) = M (k) — M,.. This error in miss ratio is
the input to the controller which estimates the needed change in slack ratio. The database adds the needed change

in slack ratio to the current slack ratio and uses the new slack ratio for the next sampling period.

20

ODBFT(r, freshness_deadline)

Assign WHITE to all nodes in the data dependency graph
Let d be the data item updated by 7
Put d in queue
while @ # () do
Let u be the top element from @, remove u from the queue
Let 7, be the transaction associated with u
deadline(r,) = release_time(previous scheduled transaction)
release_time(t,) = deadline(r,) — WCET (1)
priority_queue = AssignPriority(u, freshness_deadline)
for all v € priority_queue in priority order do
if color(v) =WHITE then
color(v) =GRAY
if changed(v) = true then
Put v in @ sorted by relation
end if
end if
end for
color(u) =BLACK
Put 7, in the scheduling queue

end while

Figure 9. The ODBFT algorithm schedules updates in a breadth-fir st manner.

Triggering s
1 trans. 2 v

Arrival time Deadline

Figure 10. Division of slack. S; is for updates and S, for restarts and blockings of the trig gering

transaction.

21

Controller Process

Mz/(z-1) + SR(z) SR(z)
> K, > 1/z-1) G,

M(z)

Figure 11. The contr oller and the contr olled system.

The z-transform is used and the transfer function of the system is calculated as:

C(2)P(z)

HE) = 7 empey

where C(z) = K, and P(z) = STMl The system is stable if the poles of the denominator reside inside the unit circle.

z
z—

By applying a step function to the input we get the following expression of SR(z) = H(z)-%5. The denominator
is now

Z—l—l—KpGM.

Set the denominator equal to zero and solve for z. We have that z = 1 — K,,Gjs, which implies that 2 is always less
than 1 if K,,Gyr < 0. Now we have to make sure z is greater than —1, i.e., 1 — K,Gpr > —1, and, thus, 2 > K,G .
The value of Gjs is chosen in section 5.7 by doing simulations with different values of the slack ratio. K, is then

determined based on the chosen G,y.

4.9 Discussion

The base item updates can be handled in two different ways. Either every base item update is one single
transaction scheduled in the high priority queue as a normal transaction, or a single process takes care of updating
all base items periodically. A similar problem is discussed in [9], where it is found that there is not a significant
difference between the two approaches, at least in the setup with a disk-resident database. In [2] it is argued that
the updates should be handled by one single process, because the overhead of one single transaction for each base
item update would be too great. In the simulations reported in section 5, the base item updates are modeled as
transactions.

If the difference deadline(r) — release_time(t) is large compared to the duration the data items are fresh, then
it is not optimal to move the transactions as close to release_time(r) as possible, since the time from commit time
to deadline of triggering transactions is large. As mentioned above it is difficult to know the actual commit time
at scheduling time. The commit time can be approximated and used as the freshness deadline, but in this work
the deadline is used as the freshness deadline of data items.

For soft transactions, i.e., triggering transactions with low priority, both the commit time and the deadline are

not fixed; they depend on the arrivals of higher priority transactions. At commit time the transaction has to check

22

if the expected error of the derived data item is acceptable. The freshness of the values used in the transaction can
have been degraded considerably due to interleavings of the arrivals of higher priority transactions. If the expected

error is not acceptable the transaction has to be restarted.

5 Performance Evaluation

This section describes the simulator, possible parameter settings, and the setup that has been used during
performance evaluation. The setup of the simulator can be found in subsection 5.1. Two different families of
baseline algorithms are described in subsection 5.2. The two families differ in how the freshness guarantee is
handled.

The simulations are described in sections 5.3-5.8. The simulations that are performed and evaluated are:

e Sensor transactions and user transactions. This simulation investigates the effect the size of the
database has on the throughput of user transactions at different loads. The simulation can be found in

section 5.3.

e Throughput of user transactions. The miss ratio of user transactions is investigated. Simulations for
different arrival rates are conducted and the baseline algorithms are compared to ODDFT and ODBFT. The

simulation can be found in section 5.4.

e Weights. Every data item can be annotated with a weight symbolizing how important the data item is for
the derivations. ODDFT and ODBFT take the weights into consideration during scheduling. This experiment
checks if there is a noticeable difference between the proposed algorithms and the baselines. The simulation

can be found in section 5.5.

¢ Transient and steady state. Triggered transactions constitute excess load on the system. This experiment
examines how many triggered transactions the algorithms generate during different system states. The

simulations can be found in section 5.6.

e Feedback control scheduling of slack. As simulations in section 5.4 show, ODDFT and ODBFT has a
higher miss ratio of user transactions than some of the baseline algorithms. One way to address this problem
is to use a controller that allocates a certain amount of the available slack time to the triggering transaction.
This experiment tests whether the controller can decrease the miss ratio or not. The simulation can be found

in section 5.7.

e Overload. The proposed algorithms add CPU overhead due to added complexity of data structures, such
as traversal of the data dependency graph, the use of the error function, and maintenance of the change flag.

The simulation can be found in section 5.8.

23

5.1 Simulator Setup

The simulator is a discrete-event simulator called RADEx that is used for instance in [12,24]. The simulator
setup is to simulate a soft real-time main-memory database. The transaction model in section 4.1.3 uses two
transaction queues. Two queues are used in the simulator, base item updates in the high priority queue and
user transactions in the low priority queue. The sensor transactions execute with higher priority than the user
transactions. The updating frequency of sensor transactions are determined by their avi. The arrival times of user
transactions are determined by the arrival rate and an exponential distribution. The database consists of data
items taken from two sets. Either a data item is a base item b, that holds a sensor value, or a data item is a derived
item d that holds the result of a calculation using one or more other data items. The updating of a data item takes
time and this is modeled with the constants STProcCPU and ProcCPU that denote the maximum time it takes to
write a sensor value (a write operation), and to read or write (a read/write operation) a derived value respectively.
The average execution time of an operation on a data item is randomly set during initialization of the simulator.
The average execution time for an operation in a sensor transaction is in the interval [0,STProcCPU] and in the
interval [0,ProcCPU] for a user transaction. The actual execution time of an operation is drawn from a standard
distribution N(u, o) with the expectation u set to the average execution time decided during initialization. The
standard deviation o is set to one fourth of the maximum possible execution time for user transactions and zero
for sensor transactions. The relative deadline of a transaction is calculated by taking the WCET of the transaction
times a random value in the interval [2,8].

A sensor transaction is executed periodically based on the avi of the base item the sensor transaction updates.
User transactions arrive aperiodically from an exponential distribution and the derived data item a user transaction
updates is randomly chosen from the set of all derived data items. This scenario, with the same likelihood for all
derived data items to be in a user transaction, might not be found in a real-life application, since it might be more
likely that a leaf node in the data dependency graph is needed by the system, e.g., an actuator value. Different
probabilities for data items membership of

No real calculations are made as a data item is updated. To be able to simulate changing values, all data
items have an upper bound on how much the value can change during an avi. When a data item is updated its
timestamp is set to the current time and its value is increased with an amount that is randomly picked in the
interval [0,max_change] and multiplied with the fraction (timestamp — previous_timestamp)/avi, i.e., the value
of a data item can at maximum change max_change during its avi. The new value of the data item is the sum of
the previous value plus the change.

A user transaction updating data item d; only writes a new value to the database when at least one of the data
items d; that d; is derived from have changed.

When a data item d; gets updated its old value is stored as an outdated version, v, in the database. Associated

24

with version v is the versions of all d; that were used during the derivation of d;. When a user transaction commits,
it is checked whether its parents have been updated or not, and if their values are still within the data validity
bounds. Also during commit, it is checked whether all d; are consistent according to their avis. Two different
ratios are constructed in the simulations from these values. The first ratio is the number of committed transactions
that are valid, either based on data validity bounds or awvi, divided by the maximum possible number of committed
transactions. The maximum possible number of committed transactions is taken from the simulation without any
updates at all, since more committed transactions than in this case cannot be achieved with triggering of updates
enabled. The second ratio is the number of committed valid transactions divided by the number of committed
transactions.

Table 1 summarizes the parameters used in the simulator. In table 1, UT denotes a user transaction and ST
denotes a sensor transaction. The factor in the entry ; ; is described in section 5.6. The setting of the sensor

transaction parameters make sensor transactions to always take STProcCPU time to execute.

Table 1. Parameter s for the database simulator.

Parameter Value

avi uniform(200,800) msec
arrival rate user trans. [0,100] exponential distr.

i j factor x avi

max_change uniform(200,800)

slack (UT) uniform(1,7) x WCET msec
ProcCPU 10 msec

STProcCPU 1 msec

mean processing time (€) (UT) uniform(0,ProcCPU) ms

std deviation processing time (UT) 2.5

processing time (UT) N(e,2.5) msec
mean processing time (ST STProcCPU msec
std deviation processing time (ST) 0

processing time (ST) STProcCPU msec

The dependencies among the data items can be viewed as a directed acyclic graph (DAG). A random DAG, i.e.,

the layout of the database, is generated by a program. The parameters that can be set for the DAG generator are:
e Number of data items in the database.

e The ratio of base items and derived items.

25

e The cardinality of the read set R(d) of a derived item d, i.e., the maximum number of data items that have
to be read in order to derive a new value of the data item. The cardinality of a derived data item is taken

from a uniform distribution. The same distribution is used for all derived data items d.
e The likelihood that a member of R(d) is a base item.

The values of the parameters for generating a DAG is summarized in table 2.

Table 2. Parameter s for the DAG generator .

Parameter DB 20x20 DB 20x60 DB 45x105
Number of data items 40 80 150

Ratio sensor items 0.5 0.25 0.3

Ratio derived items 0.5 0.75 0.7

Max number items in read set 6 6 6
Probability read set member is sensor item 0.6 0.6 0.6

In the simulations performed in the simulator, the database size is given as |B| x |D|, where |B| is the number
of base items, and |D| is the number of derived items. When a database is given, such as 45x105, the DAG has

been generated once by the DAG generator, i.e., it is the same database that is used in all experiments.

5.2 Algorithms for Generating Updates

The algorithms proposed in section 4, ODDFT and ODBFT, are on-demand based; an update of a data item is
put in the schedule when the change of the data item is true and the value of the data item might change if it is
recalculated, i.e, the change approximated by error is above the data validity bounds of the children. The schedule
is generated when it is needed, i.e., when a data item is updated by a transaction, all the parents of the data item
are checked for possible change. Simulation results for the proposed algorithms should, thus, be compared to other
on-demand algorithms.

The on-demand algorithms described in [3] are used as baselines. In [3] a triggered update is generated as soon
as the age of the data item that a transaction accesses is found to be greater than the largest age of its read-set

members. Three strategies for generating triggered updates are evaluated:

e No check. A triggered update is always generated. This option is consistency-centric since an update is

generated as soon as a data item is found to be stale.

e Optimistic. The summation of past waiting time and the execution time of a triggered transaction is compared

to the slack time. If the slack time is greater there is enough free time to execute the triggered update. This

26

option is throughput-centric since updates are not generated when there is not enough available time for
them to execute, i.e., a user transaction has priority over updates even though the user transaction produces

a value from stale data.

o Knowledge-based. Uses knowledge of past waiting time to predict the remaining response time. If the sum
of the past waiting time, the execution time of the triggered update, and the remaining response time is less

than the slack, the triggered update is executed. This option is also throughput-centric.

If a high number of committed transactions is important then the knowledge-based option should be used, since
available slack time, waiting time, and remaining waiting time is used to decide if the triggered update can finish
its execution. On the other hand, if valid transactions are important, then the no option should be used, since an
update for a too old data item will always be generated, and therefore a high degree of the transactions that are
able to commit are valid.

Moreover, a family of on-demand algorithms, with the same options as in [3] (no check option, optimistic,
and knowledge-based), but the triggering of updates is decided based on the data validity bounds, changed and
approximated error instead of time (avi) is also used as baseline algorithms. A triggered transaction updating data
item d; is generated when d; is requested and at least one of the parents d; of d; has changed set and error outside
Od;,d;» de R(dy;).

All algorithms that trigger updates based on the changed-flag, approximated error, and data validity bounds,
i.e., data freshness as defined in definition 4.6, are said to be value-aware, whereas algorithms that trigger updates

based on age are age-aware.

Table 3. Notation of algorithms.

On-demand Proposed algorithms

no option | optimistic | knowledge-based | ODDFT ODBFT

time based OD ODO ODKB
value based OD_V OD_V ODKB_V ODDFT ODBFT

The on-demand algorithms, OD, ODO, and OD_V, described above, only update data items when necessary.
These algorithms do not take how long the data item is valid into consideration. The proposed algorithms, ODDFT
and ODBFT, both try to make the used data items valid at least until the deadline of the transaction. The commit
time cannot be used since it is not known at the time of scheduling the updates (see section 4.3). To be able to
compare the on-demand algorithms and the proposed algorithms, one additional category of on-demand algorithms
is implemented in the simulator. Now, an update is triggered when a read data item will be outdated at the deadline

of the transaction. The string _AD is appended to the algorithm name from table 3 to denote such an algorithm,

27

e.g., ODKB_AD for on-demand updating for valid data items at deadline of transactions, and knowledge-based

option. In the following sections, the algorithms are denoted as in table 3.

Data validity
interval

avi

Figure 12. The x-axis of the ellipses is the age of the data item and the y-axis is the value from the
error function. A black rectangle gives the avi and the data validity bound (here we assume it is the

same for all children).

Two examples are given from figure 12. Colored ellipses gives the age in x-axis and error in y-axis at t = 7
and white ellipses at ¢t = 10. Black rectangles give in x-axis the avi and in y-axis the data validity bound for
the children. All data items in figure 12 have changed set to true, i.e., any of the parents have been updated.
Suppose a user transaction arrives and uses d,,, OD, ODO, and ODKB would not generate an update for the
parent ds since the x-axis of the colored ellipsis for dj; is inside the black rectangle’s x-axis which is the avi of the
data item. OD_AD, ODO_AD, and ODKB_AD on the other hand would generate an update of dj, since the white
ellipsis is outside the rectangle (x-axis is only considered), which is the age of dj, at the deadline of the transaction.
ODDFT and ODBFT would both generate updates of dj, since the y-axis of the white ellipsis is outside the y-axis
of the rectangles, which is the d4,,,4, - If the transaction instead updates d;, then as before, OD, ODO, and ODKB
would not generate an update of d; since its colored ellipsis is within the avi. The _AD versions of the on-demand
algorithms would generate an update of d;, but ODDFT and ODBFT would not since the error of d; as calculated
by error is within the limit d4, 4,, which is pictured by the white d; ellipsis is within the rectangle on the y-axis.

The release time test in Dispatch described in section 4.5 is used. The concurrency control algorithm is 2PL-HP,
and the transactions are scheduled according to EDF. It is shown in [21] that optimistic concurrency control is
better than lock-based concurrency control in a setting with periodic transactions. It is also found that optimistic
concurrency control is poor at maintaining temporal consistency. Here we only use 2PL-HP, but how concurrency
control algorithms are affected by the introduction of data validity bounds need to be investigated. Sensor trans-

actions always execute before user transactions. Where otherwise stated, the weights on all data items are set to

28

1. All data items have the same error function. It is defined as:
error(x,t) = (t — timestamp(z)) X ¢,

where c is set to 1 for all data items, i.e., the data items age, in the worst case scenario, linearly with time. This
makes error behave as the avi of a data item, because the change in value of a data item (max_change) is in the
same range as the avi, uniform(200,800) in both cases, and the value of a data item is the sum of all changes. The
purpose with error is to get an upper bound of how much the value of a data item has changed at a given future
time. The avi of a data item is a pessimistic approximation, based on time, on how long time the value of a data
item is valid, i.e., the same as error.

The simulations are conducted 5 times for each arrival rate, and this gives a confidence interval of ...

5.3 SensorTransactionsand User Transactions

The update transactions for the base items have the highest priority and, thus, always interrupt executing user
transactions. The load put on the system by update transactions for base items depends on the number of base
items in the database. Figure 13 shows two different sizes of a database, 40 data items in total where 20 are base
items in figure 13(a), and 150 data items among which 45 are base items in figure 13(b). Stale time domain is
the number of transactions where at least one of the read set members is invalid based on avi at commit time.
Temporal transactions is the number of committed transactions that have not missed any avi. Stale value domain
refers to the number of user transactions where at least one of the read data items has a new value that is outside
the data validity bound at commit time. Valid transactions is the number of committed transactions that use valid
data according to definition 4.6. The data validity bound is set to match the avi of the data items, i.e., the factor
for the 64 4 entry in table 1 is set to one since the max_change value is derived from the same interval as the avi.

The number of generated base item update transactions for each arrival rate is 8095 for the database with size
40 and 18897 for the database with size 150. The number of generated user transactions depends on the arrival
rate, and, as can be seen in the figures, increases linearly with increasing arrival rate. Above, roughly, an arrival
rate of 50 user transactions per second, there is not enough time to execute all user transactions, i.e., the number
of committed transactions diverges from the number of arriving user transactions. The higher number of generated
base item update transactions in the larger database makes less number of user transactions to commit. The top
number of committed user transactions are 6000 in the small database, and 5000 in the large database.

For a small database, as in figure 13(a), the database is kept up to date at high arrival rates. The number of
outdated committed user transactions is almost constant at arrival rates above 30 transactions per second. When
a user transaction arrives to the system it is randomly determined which derived data item it updates. When the
arrival rate is high, the number of arriving user transactions is sufficient to keep the database up to date. As can

be seen in figure 13(b) the outdated committed user transactions increase as the arriving user transaction increase.

29

10000

9000

8000

7000

6000

5000

4000

Number of transactions

3000

2000

1000

Database size 20*20.

Database size 45*105.

Without updates

%54

—- Committed trans.
A Generated trans.

1|4 Missed avis

—>- Temporal trans
—+ Outdated data

| .= valid trans.

B

.
44—
,gﬂﬂ/q T ey

33

10 20

30

50 60 70 80 90
Arrival rate

40 100

(a) 20 base item

Number of transactions

10000

9000

8000

7000

6000 -

5000 -

4000 [~

3000~

2000~

1000

FWithout updates

-6 Committed trans.
A Generated trans.

1| -4 Missed avis

—>- Temporal trans.
—— Outdated data

|| Valid trans.

20

30

50 60 70 80
Arrival rate

40

(b) 45 base item

90

100

Figure 13. Load generated by base item update transactions and user transactions.

An upper limit of outdated transactions as for the small database is not reached. Remember that in this setup, the
number of transactions are the sum of sensor and user transactions. No triggered updates are generated. Therefore,

the number of committed user transactions cannot be higher than in this simulation for any size of the database.

5.4 Throughput of User Transactions

In this set of experiments the goal is to investigate what the number of valid committed user transactions for
each algorithm is. The simulator runs the simulated database for 100000 msec at a specific arrival rate. The

performance of ODBFT is not showed since it behaves as ODDFT (see figure 15(a)).

5.4.1 Optimistic and Knowledge-Based Option

Figure 14 shows how the algorithms perform at arrival rates from 0 to 100 user transactions per second. At arrival
rates above 25 user transactions per second the ODDFT algorithm falls behind the other algorithms when it comes
to committed user transactions see figure 14(d). This is discussed and solved in section 5.7. Note, since the
knowledge-based option is used it is hard to have more committed user transactions than ODKB and ODKB_V,
because the knowledge-based algorithms skip updates if the user transaction cannot finish in time, i.e., a user
transaction is prioritized over an update even though the user transaction will be invalid when it commits.
Figure 15 shows in 15(a) and 15(c) the ratio of committed user transactions and possible committed user
transactions. The number of possible committed user transactions are taken from a simulation with no updates,

and this is the highest possible number of committed user transactions for an arrival rate of committed user

transactions. Figures 15(b) and 15(d) show the ratio of valid committed user transactions and committed user

30

Number of transactions

Number of transactions

Figure 14. Performance of algorithms at diff erent arrival rates for a database of size 45x105. The

Database size 45*105.

Database size 45*105.

10000 " " -6~ Committed trans. 10000 " " -6~ Committed trans
A A Generated trans. A A Generated trans.
< Stale time domain < Stale time domain
A - A 4
9000 FODKB —>- Temporal trans. 9000 -ODKE,_V- > Temporal trans.
I —+ Stale value domain o —+ Stale value domain
8000 A | =% Valid trans 8000 A | = valid trans.
o a
7000 a . 7000 N g
o o AN
6000 A 8 £ 6000[A 8
IS 8 N
g
5000 A 8 = 5000 A 8
5
A g A
4000 s . E 4000 & .
A z N
3000 a . 3000} & .
N e T B - -5 &
e =g A=t &
2000 A ﬁa;ﬁrﬁ{” i 2000 2 _ 2 e
s e
g <3
1000 Z : . 1000 s .
20 40 80 100 20 40 60 80 100
Arrival rate Avrrival rate
(a) On-demand Knowledge-based option and avi (b) On-demand Knowledge-based option and va-
(ODKB). 95% confidence interval for all plots lidity bound (ODKB_V). 95% confidence interval
+172.9. for all plots +238.1.
Database size 45+105. Database size 45105
10000 —©- Committed trans. 10000 —©- Committed trans.
A A Generated trans. A A Generated trans.
N < Stale time domain 1| < stale time domain
9000 OPKE_AD ~>- Temporal trans. 9000 FODDFT A > Temporal trans.
A —— Stale value domain & —+ Stale value domain
5000 i [= Vvaiid trans. s000L R || =+ valid trans
iy PN
7000 A 8 7000{- & 1
-y E iy
6000 A 1 £ 6000 A 1
& 8 I
]
5000 A 1 £ 5000 A 1
5
A 5 A%
2
4000 & , £ 4000} A i
a = A
3000 IS 8 3000 & g
IS
S &gl b > bbb b
2000 gﬁﬂ% 2000} A ppzvb‘b’l}ﬁ 1
IS >
1000 = . 1000]
g T e e e B
20 80 100 20 80 100
Arrival rate Arival rate

(¢) On-demand Knowledge-based and avi at dead-
line of user transaction (ODKB_AD). 95% confi-

dence interval for all plots £165.9.

data validity bounds are set to match the avis.

31

(d) Depth-first scheduling (ODDFT). 95% confi-
dence interval for all plots £134.4.

(#valid

Database size 45*105.

Valid transactions, Validity bounds

Database size 45*105. Valid transactions, Validity bounds
T T T T T T T T T —~ Without updates —~ Without updates
—-©- 0D —-©- 0D
—« 0ODO —« ODO
—+— ODKB —+— ODKB
<~ ODKB_V —<- ODKB_V
— ODDFT — ODDFT
—&- ODBFT —&- ODBFT
: -
= B
£ oaf e 1
PO ENN S SR S N SN S S S PO ENN S SR N N SN S S S
0 10 20 30 40 60 70 80 90 100 0 10 20 30 40 60 70 80 90 100
Arrival rate Arrival rate
(a) Ratio of valid committed user transaction (b) Ratio of valid committed user transactions.
out of possible number of committed user trans- 95% confidence interval for all plots +0.026.
actions. 95% confidence interval for all plots
+0.051.
Database size 45*105. Valid transactions, Validity bounds Database size 45*105. Valid transactions, Validity bounds
! ! ! ! ! ! ! — Without updates ! ! ! ! ! ! ! ! — Without updates
-~ 0D -~ 0D
0.9 | =+ ODDFT —— ODDFT
—&- ODBFT —&- ODBFT
-5~ 0D_V % 0D_V
—- OD_AD —- OD_AD
]
! -
1 P
s .
s ! PR
% £ 04l e 4
£ PN
PO EN S SR S N SN S S S PO EN S SR S N SN S S S
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Arrival rate Arrival rate
(c) Ratio of valid committed user transaction (d) Ratio of valid committed user transactions.

out of possible number of committed user trans-

actions. 95% confidence interval for all plots

+0.051.

95% confidence interval for all plots 4-0.026.

Figure 15. Ratio of valid committed user transactions.

32

transactions for specific algorithms.
Studying figure 15, we see that for arrival rates in the interval [0,45], ODDFT and ODBFT make the highest
number of valid user transactions committed (see figure 15(a)). Figure 15(b) shows that out of the transactions

that commit for each algorithm, ODDFT and ODBFT have the most valid transactions.

5.4.2 No Option

The no option presented in [3] generates a triggered update as soon as a requested data item is found to be too
old. This option can be used if temporal consistency is of prime importance, i.e., it is more important to have valid
committed user transactions than a high throughput of user transactions. However, as can be seen in figure 15(a),
OD has worse consistency than ODKB and ODKB_V, since the ratio is lower than for ODKB and ODKB_V. This
is because of the larger number of generated triggered updates. A higher ratio of the committed transactions are

valid for no option, figure 15(d), compared to knowledge-based, figure 15(b).

Database size 45*105. Database size 45*105.
10000 ~6~ Committed trans. 10000 ~&~ Committed trans.
& A Generated trans. 4 A Generated trans
<- Stale time domain < Stale time domain
9000 10D @ —>- Temporal trans. 90001OD_AD & > Temporal trans.
Ay —t+— Stale value domain 7AY —t+— Stale value domain
8000 A —— Valid trans. 8000 - A —— Valid trans.
o sy
7000 -3 7000~ A
%) Py @ %
2 2
£ 6000 A £ 6000} o
= 2
8 A b A
&]
£ 5000 A 5 5000 A
5 5
z “ 3 a
g 4000 A& g 4000 [~ A
z A z A
3000 A 3000~ A
N = iy
2000 A > - 2000 4 . 2 B
N A =
1000 & - = 1000f & = == =
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Avrrival rate Arrival rate
(a) On-demand no option. 95% confidence inter- (b) On-demand no option and age at deadline.
val for all plots +159.3. 95% confidence interval for all plots +164.8.

Figure 16. On-demand no option algorithms.

Figure 16 shows that the performance of ODDFT (figure 14(d)) and the on-demand no option algorithms are
roughly the same at high arrival rates. More committed user transactions are valid under ODDFT and ODBFT
compared to on-demand no option (figure 15(c)). Out of the committed user transactions a higher degree of
them are valid under ODDFT and ODBFT (figure 15(d)), even though a smaller number of triggered updates are
generated (figure 17). This shows that ODDFT and ODBFT perform better than on-demand algorithms with no

option.

33

Database size 45*105. Number of generated transactions Database size 45*105. Number of generated transactions

4000 —Wiout updaies 16000 Wit updaies
—— ODO —-&- 0D
—+— ODKB —k— ODDFT
3500 || <~ obkB_v 14000 - || -= opsFT
—— ODDFT - OD_V
—-B- ODBFT —+— OD_AD
—~ ODKB_AD
3000 al 12000 -
2500 B B N al 10000 -
y P
8 g
3 3
€ 2000t & 8000
2 g
g g
b b
1500 al 6000 -
1000 al 4000~
500 . 2000 [1
4
1‘0 2‘0 3‘0 4‘0 5‘0 5‘0 7‘0 8‘0 9‘0 100 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
Arrival rate Arrival rate
(a) Number of generated updates for optimistic, (b) Number of generated updates for no option,
knowledge-based and proposed algorithms. 95% and proposed algorithms. 95% confidence interval
confidence interval for plots are £172.9. for plots are +200.0.

Figure 17. Number of generated trig gered transactions.

5.4.3 Pessimistic Absolute Validity Interval

The on-demand algorithm that triggers on outdated parents performs in the setup with factor set to 1 slightly
better than an on-demand algorithm triggering on too old data. The reason is that the data validity bounds on
the data items matches the avi. If the avi is pessimistic, i.e., the data items lives generally longer than the awvi,
then the difference between the two types of on-demand algorithm should have been larger. This is shown below.

Figure 18 shows the impact of pessimistic avis. The data validity bounds are set to 3xmax_change, and since
max_change and avi are derived from the same distribution, uniform(200,800), the avis are now pessimistic. By
comparing figure 18(a) with 15(a) and 15(c), we see that all algorithms perform better than before; the ratios
are higher. This is because of the larger data validity bounds that make a data item live longer. The age-aware
algorithms cannot take advantage of that the data items live longer. Figure 18(b) and figure 17 show that the

number of generated triggered transactions has decreased for the data validity bound algorithms.

5.4.4 Results

ODDFT and ODBFT perform better than the no option of the on-demand algorithm, which is the consistency-
centric option. Less number of triggered transactions are generated and a higher number of valid user transactions
commit. Compared to the knowledge-based option of the on-demand algorithm, ODDFT and ODBFT generate
more triggered transactions, and at high arrival rates a less number of valid user transactions are committed.

However, at moderate arrival rates, ODDFT and ODBFT have more valid transactions than the knowledge-based

34

Database size 45*105. Valid transactions, Validity bounds Database size 45*105. Number of generated transactions

— Without updates 2500 T T T T T T T T T — Without updates
—— ODO —— ODO
—+— ODKB —+— ODKB
< ODKB_V < ODKB_V
—— ODDFT —— ODDFT
-5~ ODBFT 2000| | [=== opeFT
3
4 15001
g
H
©
g
&
+ 1000
3
1 % 500
2 04 1./
g v
0'30 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Arrival rate Arrival rate
(a) Ratio of committed valid user transactions. (b) Generated triggered transactions. 95% confi-
95% confidence for plots are £+0.059. dence interval for plots are £79.2.

Figure 18. avis are pessimistic.

option. When the avis on data items are too pessimistic, ODDFT and ODBFT are not affected.

5.5 Weights

In this experiment the weights of data items are set randomly by taking a number n from a normal distribution,

N (2.0,3.0). If the picked number n is less than 1, then the weight is set to 1, otherwise stick with .

Database size 45*105. Weights

—~ Without updates
-o- 0D

|| == opks_v
—— OD_AD
—<~ ODDFT
|| = opeFT

051

(# Valid weights)/(# Total weights)

o
w

[10 20 30 40 50 60 70 80 90 100
Arrival rate

Figure 19. Weights other than 1.0 on data items. One simulation run for each arrival rate.

ODDFT and ODBFT take weights into consideration when prioritizing updates. The AssignPriority algorithm
that both ODDFT and ODBFT use, multiply the priority returned by the error function with the weight on the

data item. The on-demand algorithm with any option does not use a weight on the data items.

35

The metric in this experiment is the weight ratio:
_ Z{x:VzER(d)szm’\S&d,m} wezght(x)
> vaer(d) Weight(z)

where 2z’ is the value the previous derivation of d used, i.e., the sum of the weights for all valid parents z € R(d)

WR(d)

)

divided by the sum of the weights for all parents.

Figure 19 shows that for a low arrival rate, ODDFT, ODBFT, OD, and ODKB_V all have the same ratio. At
this low arrival rate, there is time available to execute updates in, and almost all updates have time to complete.
Thus the same number of updates are executed, and therefore there is no difference between the algorithms. As
the arrival rate increases and the available time for updates decreases, ODDFT and ODBFT can keep the ratio
at the initial level for higher arrival rates than the other algorithms. For instance, at an arrival rate of 40 user
transactions per second, the difference between ODDFT and OD is 17 percentage points, but in figure 15(d) the
difference is 10 percentage points. The performance in number of committed user transactions is the same for
ODDEFT and OD, see figure 14(d) and 16(a) respectively. The 7 percentage points that ODDFT performs better

than OD comes from the fact that ODDFT uses weights when scheduling updates, whereas OD does not.
5.6 Transient and SteadyStates

The idea with the data validity bounds on the data items is to capture the fact that values of the base items
can change differently during the execution of the application. At transient states the base items might change
rapidly and much, then the derived items need to be recalculated often. At steady state the base items change less
frequently. Hence, the derived data items need to be updated less often. When avis are used on the data items,
then it is difficult to capture these dynamic changes. One way, of course, is to change the avi of the data items
when the state of the external environment changes. The application then needs to monitor the changes from one
state to the other, which is not needed when data validity bounds are used.

One measure of load put on the system is the number of generated triggered updates. The number of generated
sensor transactions and user transactions are constant for all algorithms at a specific arrival rate. To investigate if
the value-aware algorithms generate less number of triggered transactions during steady state than the age-aware

algorithms, the following simulation was conducted.

e The arrival rate is kept at 30 user transactions per second throughout the simulation. The size of the database

is 45x105.
e The simulation is executed for 100000 msec.

e Two parameters are introduced: change_speed_of_sensors, and change_speed_of _user_trans. These
parameters are used to set a point in the interval [0, max_change] that a data item increases its value with

once the data item is updated. The increase in the value of a data item is determined by

36

N(max_change/change_speed_X, max_change/(2X change_speed_X))

The first parameter is the average the distribution has, and the second parameter is the standard deviation

of the distribution. The _X in change_speed_X is substituted either for _sensors or _user_trans.

e The change_speed_of_sensors has initially, for the first 15000 msec, a low value (it is set to 1.2) which

implies rapid changes.

e At 15000 msec the change_speed_of _sensors parameter is changed to 50.0 which implies small changes in
the base items, i.e., a steady state is reached. This should be reflected in the number of generated triggered
updates for the value-aware algorithms, because the values of the base items are kept within the validity

bounds a longer time.

e At 75000 msec the change_speed_of_sensors parameter is changed to 2.0. A transient state is reached
again. The changes are not as rapid as during the first 15000 msec, but the changes are much more frequent

than in the steady state.
e During the simulation the parameter change_speed_of _user_trans has a value of 2.0.

Figure 20 contains the simulation results from the abovementioned simulation. The horizontal lines are the
average number of generated triggered transactions during the interval. The value-aware algorithms (figure 20(b)
(ODKB_V) and 20(d) (ODDFT)) clearly generate less number of triggered updates during the interval 15000-75000
msec than compared to the number of triggered updates that is generated during the transient states.® No such
difference can be seen for the age-aware algorithms (figure 20(a) (ODKB) and 20(c) (ODKB_AD)). Two of the
four algorithms, ODKB_AD and ODDFT, try to make sure that the read data items are valid at least until the
deadline of the user transaction. The other two algorithms, ODKB and ODKB_V, only make sure a read data item
is up to date, but not until the deadline of the user transaction. From the number of generated triggered updates
in figures 20(c) and 20(d), compared to those in figures 20(a) and 20(b), it notably requires more updates for the
former algorithms. This is due to the larger probability that a data item is outdated in a future point in time,
since there is more time where the data item can change. It is hard to compare the algorithms since they focus on
different things.

Table 4 lists the overall statistics for the total simulation time 0—100000 msec. At the slightly low arrival rate,
30 user transactions per second, there is time available for updates. This fact can be seen in figure 13 since without
updates at an arrival rate of 30 user transactions per second almost all arrived user transactions are able to meet
their deadlines (see figure 13(b)).

ODDEFT has the lowest number of committed transactions, but on the other hand it has the highest number of

committed transactions that are valid based on the data validity bound. If it is important to have a high number

6The difference in mean is due to statistical differences.

37

Arrival rate 30 trans/second. ODKB. Arrival rate 30 trans/second. ODKB_V.

50 T T T T T 50 T T T T T

a5 1 451 .
401 - 40+ -
351 . 35| 1
30| 8 30| 8
251 1 25 1

of generated triggered updates
0
5
7
i

of generated triggered updates

NN Ty |
VBTl A aa A WA Ry |

N

s e
5 &
T T
-
i
s e
5 &
; T
%
i i

VA"\/ \/’\\/\\//1\/

s 1 s 1

0 I L I i 0 I L I i

0 1 2 3 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (ms) «10° Time (ms) «10°

(a) On-demand remaining waiting time and avi (b) On-demand remaining waiting time and

data validity bound

Arrival rate 30 trans/second. ODKB_AD. Arrival rate 30 trans/second. ODDFT.
50 T T T T T T T T T 50 T T T T T T T T T
45 451 1
40 40 1

w
&
w
&
T
I

w

8
w
8

N
&
T
I
N
&

N
S
T
L
N
S

of generated triggered updates
of generated triggered updates

I L
EEAAITd

,_.
o
T
I
"
a

10r o 10r o
5 1 5 1
0 I N L I N i 0 I N L I N i
0 1 2 3 5 6 7 8 9 10 0 1 2 3 4 6 7 8 9 10
Time (ms) 10* Time (ms) 10°
(c) On-demand remaining waiting time and awvi (d) Depth-first scheduling

at deadline of user transaction

Figure 20. Number of generated trig gered updates for four diff erent algorithms. One simulation run

for each arriv al rate.

38

of committed user transactions, then ODDF'T is not a good algorithm. If it is important to, at all times, have

valid user transactions, then ODDFT is the best algorithm. Table 5 shows the percentage of valid committed

transactions for the different algorithms.

Table 4. Overall statistics for transient and steady state simulation. Arriv al rate 30 transactions per

second. Database size 45x105.

ODKB ODKB_V ODKB_AD
generated user trans. 2997.2+£23.9 29954 +£54.4 3013.0 £ 53.0
committed user trans. | 2650.8 £ 46.4 2666.2 + 39.7 2758.6 = 70.5
valid trans. validity b | 1999.8 £ 31.0 2028.0 £9.3 1876.0 £ 69.9
valid trans. avi 1452.8 +25.0 1255.6 +19.9 1310.0+ 33.4
ODDFT Without updates
generated user trans. | 3005.0 +£47.7 3037.8 +20.8
committed user trans. | 2330.8 +£79.1 3004.4+21.4
valid trans. validity b | 2092.24+97.0 1811.0+30.9
valid trans. avi 1448.2+44.8 1094.6 + 22.3

Table 5. Percentage of committed transactions that are valid. Average values are used.
ODDFT ODKB ODKB_V ODKB_AD Without updates

percentage of valid committed tr. | 90% 5% 76% 68% 60%

Simulations were performed with the same setup of the simulator where an arrival rate of 60 user transactions per
second was used. At this arrival rate, as can be seen in figure 13, there is not enough time to execute all arriving
user transactions. From figure 14 we can see that at high arrival rates ODDFT performs badly. The overall
simulation results are presented in table 6. The number of valid committed transactions is among the lowest for
the ODDFT algorithm. Without updates has among the highest number of valid committed transactions.

The knowledge-based option stops updates to be executed if there is not enough time available. Table 6 shows
that ODKB and ODKB_V is much closer to the performance Without updates has than ODDFT. ODKB_AD also
has the remaining waiting time estimation, but it cannot perform the same as ODKB and ODKB_V because it
generates more triggered updates due to the requirement that data items are valid by avi at commit time.

The reason ODDFT performs badly at high arrival rate is that all updates are executed before the user trans-

action starts to execute (see section 4). This makes it more likely that the most important transaction is executed

close to its deadline. Only one interruption from a sensor update and the user transaction might miss its deadline.

39

In section 5.7, slack is put in the, by ODDFT, generated schedule between the user transaction and the deadline.

Now the user transaction has more time to execute in, and it should also meet its deadline more often.

Table 6. Overall statistics for transient and steady state simulation. Arriv al rate 60 transactions per

second. Database size 45x105.

ODKB ODKB_V ODKB_AD
generated user trans. 6039.4 £ 71.8 5998.6 +119.4 6011.6 £29.3
committed user trans. | 4368.4 £98.4 4423.2 £ 94.7 4493.8 £37.4
valid trans. validity b | 3107.24+85.0 3252.8 + 35.4 3087.4 +44.2
valid trans. avi 2192.4 +25.2 2053.0 + 53.2 2112.2+24.7
ODDFET Without updates
generated user trans. 6031.0 +134.7 5978.0 + 57.0
committed user trans. | 3127.8 £53.7 4896.0 £ 87.0
valid trans. validity b | 2749.6 +=43.3 3210.8 £ 83.5
valid trans. avi 2054.6 £47.3 2052.8 £ 36.4

The test in the knowledge-based option stops almost all updates. Thus, at high arrival rates it might be better
to not run any updates at all. Still ODDFT has the highest percentage of valid transactions of those that commit,

89% in this case. Table 7 shows the results for the different algorithms.

Table 7. Percentage of valid committed transactions. Average values are used.

ODDFT ODKB ODKB_V ODKB_AD Without updates

percentage of valid committed tr. 88% 1% 1% 69% 66%

5.7 FeedbackControl Schedulingof Slack

As mentioned in section 5.6 the ODDFT algorithm performs bad at high arrival rates, both when it comes to
number of committed user transactions and number of valid committed user transactions. One way to resolve this
issue is to allot a certain part of the slack time to the generated schedule to make room for interruptions of the
user transaction. These interruptions are likely to occur at high arrival rates because a user transaction can arrive
with closer deadline than the currently executing user transaction. Triggered updates can also delay the start of
execution of an user transaction.

The parameters of the controller described in section 4.8 have to be set. First we start with setting a value on

G, which represents the database.

40

Slack ratio. Database size 45*105.
T T T

—b— 40 trans/s
—<&— 50 trans/s
055 —6- 60 trans/s

o
=

Miss ratio
o
w
&

L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
Slack ratio

Figure 21. Miss ratio as a function of slack ratio for a database with the size 45x105 and the arriv al

rate 40, 50, and 60 user transactions per second. One simulation run for each arriv al rate.

Figure 21 contains three plots at different arrival rates. Gy is calculated by taking the derivative at the chosen

miss ratio, 20% in this case, for each arrival rate:

Arrival rate | Gy

40 —0.56
50 —0.5
60 N.A.

Now it is possible to calculate a value for the controller K,. For the system to be stable K, should be in the
interval —3.56 > K, > 0. Gy = —0.56 has been used which is the largest slope in the table above. This gives the
lowest | K|, and, thus, for other values on Gy the poles still reside inside the unit circle. Hence, the system is
better designed for systems with other arrival rates than those listed above.

When the feedback control manipulation of the slack ratio is used, the plots in figure 14(d) look now as in figure
22.

Comparing figure 22(a) to 13(b) gives that the number of committed user transactions now is as high as Without
updates for high arrival rates. The reason can be seen in figure 22(b), where there are almost no triggered updates
at arrival rates above 60 user transactions per second. The miss ratio is above 20% at these arrival rates so the slack
ratio is set to a high value which implies no available time for triggered updates. Furthermore, the transient and
steady state simulation for the ODDFT algorithm was rerun with the feedback control enabled. For an arrival rate
of 30 user transactions per second, the numbers now look as follows: generated user transactions: 3005, committed
user transactions: 2391, valid committed user transactions based on awvi: 1470, valid committed user transactions
based on data validity bound: 2149. The numbers are almost the same as in table 4, i.e., for low arrival rates and,

thus, low miss ratios the controller do not need to increase the slack ratio because the miss ratio is kept below

41

10000

9000 FODDFT

8000

7000

6000

5000

4000

Number of transactions

3000

2000 L

Database size 45*105.

<44
‘V/ggi e

Database size 45*105. Number of generated transactions
T T T T T T T

—©- Comnmitted trans.
A |- A Generated trans.

<- Stale time domain
—>- Temporal trans.

a — Stale value domain
—#— Valid trans.

generated trans.

S Wiy euerd
FTrEg g

4000

3500
3000 -
2500~
2000 -
1500 -

1000 "‘

— - ODDFT

>
S

1000

50 60 70 80 920 100
Arrival rate

50 60 70 80 90 100 [10 40
Arrival rate

40

(a) Behavior of feedback control at different ar- (b) Number of generated triggered updates

rival rates

Figure 22. Feedback contr olled manipulation of slack ratio for the ODDFT algorithm.

the reference M,.. For an arrival rate of 60 user transactions per second, the numbers are as follows: generated
user transactions: 5851, committed user transactions: 4537, valid committed user transactions based on avi: 1999,
valid committed user transactions based on data validity bound: 3149. The miss ratio is always above the reference
M, and the controller sets a high slack ratio. The numbers are now as the remaining waiting time on-demand
algorithms, i.e., almost all updates are denied execution on the system.

One problem that has been noted during the simulations is that it is difficult to measure the miss ratio. A
sampling interval of 1 second has been used and still the measured miss ratio is oscillating. The reason is shown in
figure 20. Here the number of generated triggered updates is oscillating, suggesting that we have bursty arrivals at
workload and this influences the miss ratio, since, as mentioned above, a triggered update can delay the starting of
an user transaction. If there are many triggered updates then it is more likely that the user transaction is scheduled
close to its deadline, and then it is more likely that the user transaction misses its deadline. A moving average can
stabilize the miss ratio signal, but on the other hand, the controller becomes slower. Initial tests with a moving

average has been done, but this issue need to be further investigated.

5.8 Overhead

Figure 23 shows the total scheduling time over the whole simulation of several different algorithms. ODDFT
and ODBFT have the largest scheduling times. The graph complexity is calculated as the number of edges in all
paths from all leaves to the base items. The database size is 20x20 for all graphs, but the graphs are generated

with different random seeds to the DAG generator. A highly complex graph contains more and longer paths than

42

less complex graphs. The ODDFT and ODBFT scheduling algorithms traverses the graph and the more complex
the graph is the longer time it takes to traverse the graph and construct the update schedule. The overhead time
is bounded, though, since the update schedule generation can be stopped when the start time of an update is less
than the arrival time of the user transaction.

Total scheduling time

450000

400000

o

350000

300000 -

5\ —e—DD,DFS
250000 —=—DDBFS
V —&—ODREC
——0D
—%—DD,DFS,ADAPT

200000 -

Total time spent on scheduling [us]

150000
Y

100000

50000 v —hs

o T T
0 100 200 300 400 500 600
Graph complexity

Figure 23. Total scheduling time for diff erent algorithms and database sizes.

No investigations have been done to find out if the ODDFT and ODBF'T algorithms still perform better when the
overhead is accounted for in RADEx. The simulation in figure 23 is performed in a database that is implemented
on top of a real-time operating system [11]. In that particular setup the ODDFT and ODBFT algorithms perform
better than the on-demand algorithms, even though the overhead is larger.

The memory overhead of the proposed algorithms in section 4 consists of the following: say that each element in
the tuple in section 4.1.2 needs 4 bytes of memory, except R(d) that requires memory proportional to the read set
size. Moreover, the previous used value of the parent has to be stored, because it is needed for the data freshness
in the value domain (see definition 4.6). Each member of the read set then takes 12 bytes of memory, 4 bytes for
z, four bytes for d4 ,, and 4 bytes for the old value. Say that a read set has at maximum a cardinality of 6, then
the over head is 6 x 12+ 32 = 104 bytes. This is a significant overhead, but it can be reduced. For instance, in the
simulator all data items the same error function. This field is thus not necessary. Furthermore, the storing of old
values in the read set might not be an overhead, since the data item can request old values and these then have to

be stored elsewhere.

43

6 Related Work

Freshness in the form of intervals of time (absolute validity interval and relative validity interval) has been
used in research, e.g., [5,9,10,16,23 25]. Freshness in the form of value has been used in Kuo and Mok’s work
on similarity [18], where similarity mainly is used for concurrency control. A similarity bound is an interval of
value for a data item where two writes within the same interval are interchangeable. The notion of similarity is
thus mapped to an interval in time, much like the absolute validity interval. Similarity is also used for skipping
unnecessary transactions in [13]. The frequency of periodic transactions are determined such that they do not
produce similar values, i.e., the frequency is determined by the similarity bound. In this paper, similarity is given
by the data validity bound d4 .. Transactions producing similar results, i.e, the distance of the new and the old
values are within 4 ., do not set the change flag of its children in the data dependency graph. Thus, a transaction
that uses one of d’s children, d’, can skip all updates on the path from d’ to d. This scheme adapts the frequency
of transactions updating a data item to the current state of the system.

In [9] a system with rapid changes in the environment is considered, i.e., updates arrive to the system with
a high frequency. It is pointed out that even though a data item remains constant for a period longer than the
absolute validity interval (called Maximum Tolerable Delay, MTD, in [9]), the data item is not valid anymore, i.e.,
only recency (absolute consistency) is considered in [9]. It is assumed that a new update is reported at least once
every MTD unit of time. The update reports the same value, it only refreshes the timestamp of the data item,
i.e., the data item is fresh with respect to MTD. In this paper updates of data items can be skipped if the parents
have not changed. On-demand algorithms for installing the updates are not taken into consideration in [9] due to
difficulties in maintaining relative consistency with an on-demand updating scheme. In this paper, data items are
relatively consistent as long as all data items in the read set are fresh at the same time.

Two algorithms are presented in [14] that uses the notion of freshness in a feedback control scheduler [19]. The
system is divided into periodic update transactions” and user transactions. The user transactions use base items
to derive a result that is not used by other transactions. The deadlines on the user transactions are firm. The
algorithm QMF-1 (a QoS management architecture for Miss ratio and Freshness guarantees) uses two metrics:
miss ratio and perceived freshness. QMF-1 divides base items into those that are immediately updated and those
that are updated on-demand. If a base item is accessed at least as often as it is updated it is called hot and
should be updated immediately, otherwise it is called cold and can be updated on-demand when the system is
overloaded. When the system reaches an overload state some immediate updates are degraded to on-demand
updates in order to lessen the load. The feedback control scheduler tries not to overshoot miss ratio and perceived
freshness requirements that are specified by a database manager.

The other algorithm, QMF-2, uses flexible validity intervals on the sensor updates. That is, definition 4.2 is

"Here an update transaction updates a base item, for instance reading a sensor and installing the acquired value in the database.

44

reformulated to allow for changing validity intervals. Quality of data is defined as the sum of the ratio between
the minimum period and the new period for all update transactions. The quality of data is managed by defining
which validity intervals of the update transactions that can be changed, how much they can be changed, and by
how much each time. When the system becomes overloaded the update transactions whose period can be changed
are changed to keep the miss ratio within a given bound.

Derived data items are not used in user transactions in [14] as is allowed in our work. Furthermore, in our work,
the validity interval of a data item has no upper bound, since it is solely determined by the data validity bound
Od,z-

Triggered updates are used in [3] to update data items that are too old. A triggered update is generated on-
demand when such a data item is accessed. The basis for an update is only the age, defined as the difference of
version numbers of a data item, whereas in this paper the expected error is the triggering factor.

If several data items in a read-set need to be updated the triggered update strategies as described in [3] do not
consider any priority among the data items. In this paper, the data item with the highest contribution to the total
error is given a high priority and is given access to the slack time first. Even if a data item is old, i.e., its avi has
been passed, it can still reflect the true value reasonably well, this is captured by the function error in this paper.

As pointed out in section 4, the scheduling algorithms schedule the transactions as close to the deadline of the
arriving transaction as possible and then move the schedule as close to the release time as possible. Actually, the
freshness of data items would be better if the triggering transactions could be executed as close to the deadline as
possible, since the amount of time the data items can diverge from the stored value is less. There is an algorithm,
EDL [7] (Earliest Deadline Last), for this purpose, but it requires lists with tasks start times during a hyperperiod,
which in turn requires complete knowledge of tasks period times. In [7], EDL is used for scheduling arriving
a-periodic tasks. The amount of idle processor time for executing a-periodic tasks is maximized under EDL. The
periods of all tasks are known before hand. Lists with task finishing times and amount of available processing
time are constructed and used during run-time. The system we try to model in this work is not known before
hand to the extent needed for the EDL scheduling algorithm to work. The transactions with high priority are
sporadic, because their frequency depends on the rpm the engine is running at. Thus, the lists in [7] need to be
recalculated every time the periods change, and this take considerable amount of time. Note that the length of the
lists are proportional to the number of tasks starting within one hyperperiod. By using these pre-calculated lists
it is possible to do an acceptance test for a-periodic tasks during run-time in O(N) time where N is the number
of distinct requests in the hyperperiod. Another test was presented in [22] which runs in ©(n), n is the number
of periodic tasks. In our work, the scheduler tries to guarantee the execution of an arriving transaction. This is
done by using two scheduling queues and hard real-time transactions are scheduled only in the queue with highest

priority.

45

7 Conclusions

In this paper, the scheduling of updates of derived data items for maintaining data freshness are discussed. The
data items that are used during the derivation of a data item need to be reasonable fresh. In this paper, a scheme
for updates based on marking of possibly changed data items, data freshness based on current and previous values
of a data item, and approximation of error of values of data items. Data items that might need to be updated
are marked as possibly changed. The error in the value of a data item is approximated and used as a factor when
determining, together with marking of a possibly changed data item, which data items to update and the order
of the updates. Such an order is important, since the available time for executing updates is limited. Two ways
of scheduling the updates are presented; On-Demand Depth-First Traversal (ODDFT) that focuses on updating
one data item fully before continuing with the next, and On-Demand Breadth-First Traversal (ODBFT) that
first updates data items close to the deriving data item with respect to distance in the data dependency graph.
Moreover, in order to evaluate the proposed algorithms, their simulation results are compared to a set of baseline
algorithms. The baseline algorithms are taken from [3], but they have been extended with new triggering criteria.
The criteria are, except for triggering an update when a too old data item is encountered as in [3]: (i) when one
of the parents of a data item is invalid based in data freshness in the value domain, and (ii) when a data cannot
fulfill the avi at the deadline of the transaction.

Simulation results show that at moderate arrival rates, ODDFT and ODBFT perform the best concerning valid
committed user transactions. The ODDFT and ODBFT algorithms also have the highest ratio of valid committed
transactions. At higher arrival rates the ability to make user transactions to commit drops significantly for ODDFT
and ODBFT. By applying a feedback control loop the amount of slack used by the generated schedule of updates
can be controlled. The ratio of slack allocated for updates can be used to prepare for more interruptions and delays
of the user transactions. This shows to be enough to let more user transactions to commit and not generate as
many triggered updates as before. ODDFT and ODBFT still has the good performance at low arrival rates, but
now perform as the on-demand with knowledge-based option at high arrival rates.

The value-aware algorithms generate less triggered updates at states where base items are not changed often
(steady state) than in states where base items change much and often (transient state). This holds both for the
proposed algorithms and well-known on-demand algorithms changed to use the proposed scheme of updates and
the notion of data freshness. The age-aware algorithms generate the same number of triggered updates in both
states. This means that the age-aware algorithms generates too many triggered updates during a steady state.

The prize that has to be paid for the ability to automatically adapt to the changes in states in the environment
is larger overhead for both CPU and memory.

The concurrency control protocol used in the simulations is 2PL-HP [1]. A value-aware concurrency control

protocol might give better results, and this is an issue for future work.

46

References

(1]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]

R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance evaluation. ACM Transactions
on Database Systems (TODS), 17(3):513-560, 1992.

B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update streams in a soft real-time database system. pages
245-256, 1995.

Q. N. Ahmed and S. V. Vbrsky. Triggered updates for temporal consistency in real-time databases. Real-Time Systems,
19:209-243, 2000.

P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database System - Concepts, Languages and Architectures. McGraw-
Hill, 1999.

N. Audsley, A. Burns, M. Richardson, and A. Wellings. Absolute and relative temporal constraints in hard real-time
databases. In Fourth Euromicro workshop on Real-Time Systems, 1992. Proceedings., pages 148 153. IEEE, 1992.

G. C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, 1997.

H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm. IEEE Transactions on Software
Engineering, 15:1261-1269, oct 1989.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. The MIT Press, 2 edition, 2001.
A. Datta and 1. R. Viguier. Providing real-time response, state recency and temporal consistency in databases for
rapidly changing environments. Information Systems, 22(4):171-198, 1997.

L. B. C. DiPippo and V. F. Wolfe. Object-based semantic real-time concurrency control. In IEEE RealTime Systems
Symposium, 12 1993.

M. Eriksson. Efficient data management in engine control software for vehicles - development of a real-time data
repository. Master’s thesis, Linkoping University, Feb 2003.

J. Hansson. Value-Driven Multi-Class Overload Management in Real-Time Database Systems. PhD thesis, Institute of
technology, Linkdping University, 1999.

S.-J. Ho, T.-W. Kuo, and A. K. Mok. Similarity-based load adjustment for real-time data-intensive applications. 1997.
K.-D. Kang, S. H. Son, and J. A. Stankovic. Specifying and managing quality of real-time data services.

B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee. Maintaining temporal consistency of discrete objects in soft
real-time database systems. IEEE Transactions on Computers, 2002.

Y .-K. Kim and S. H. Son. Supporting predictability in real-time database systems. pages 38—48.

C. M. Krishna and K. G. Shin. Real-Time Systems. McGraw-Hill, 1997.

T.-W. Kuo and A. K. Mok. Real-time data semantics and similarity-based concurrency control. IEEE Transactions
on Computers, 49(11):1241-1254, November 2000.

C. Lu, J. A. Stankovic, and S. H. Son. Feedback control real-time scheduling: Framwork, modeling, and algorithms.
Real-Time Systems, 23(1 2):86 126, 2002.

K. Ramamritham. Real-time databases. Distributed and Parallel Databases, 1(2):199-226, 1993.

X. Song and J. W. S. Liu. Maintaining temporal consistency: Pessimistic vs. optimistic concurrency control. In

Proceedings of the IEEE Symposium on Computer-Aided Control System Design, Napa, California, Mar. 1992.

47

[22] M. E. Thomadakis and J. C. Liu. Linear time on-line feasibility testing algorithms for fixed-priority, hard real-time
systems. Technical Report TR00-006, Department of Computer Science, Texas A&M University, College Station, TX
77843-3112, Jan 2000.

[23] M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham, and D. Towsley. Scheduling transactions with temporal
constraints: Exploiting data semantics. pages 240-253.

[24] M. Xiong, J. A. Stankovic, K. Ramamritham, D. F. Towsley, and R. M. Sivasankaran. Maintaining temporal consis-
tency: Issues and algorithms. In R7T'DB, pages 1-6, 1996.

[25] D. Zébel. Schedulability analysis for real-time processes with age constraints. In Proceedings of the 24th IFAC/IFIP
Workshop on Real-1ime Programming (WR1TP’99), June 1999.

48

