Link6pings universitet
Institutionen for datavetenskap

Examensarbete

Analysis of an Engine Control System in Prepa-
ration of a Real-Time Database

av

Martin Jinnelév

LiTH-IDA-EXx-02/83

2002-10-01

Handledare: Thomas Gustafson
Examinator: Jorgen Hansson



Abstract

In this report the engine control system used in Saab automobiles
is analyzed. The focus of the report is on the real-time abilities
of the system software and to identify the system’s demands on a
real-time database. A study of several commercial real-time data-
bases is presented and the result shows that none of the available
real-time databases matches the system’s demands. The analy-
sis of the system also shows that the engine control system lacks
adequate real-time operating system support to enable the in-
tegration of a real-time database. An application programming
interface for real-time database transactions fitting this specific
system is developed and described.
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Chapter 1

Introduction

This chapter introduces the background and goals of the project
as well as the people involved. At the end a report overview is
given.

1.1 Background

The car industry has for a long time used a lot of electronics inside
cars and there is probably more waiting in the future. Together
with electronics there is also software that is run on the special-
ized hardware and that software is often big and complex. These
systems of software on specialized hardware are commonly called
embedded systems.

The system examined in this report is the engine control soft-
ware used in Saab engines.

This master’s thesis is part of an ISIS project that is called
Real-Time Databases for Engine Control in Automobiles [8], and
is, at the time of writing, an ongoing project at RTSLAB, Depart-
ment of computer science at the University of Linkdping.

Problems of today Today data used in the program is stored as
global data directly in the RAM (some in flash). It is also hard to
keep track of all the variables in the system and this gives that it
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is usually more efficient to allocate more memory resources than
to find the specific data that is wanted.

Vision The vision for the ISIS project is to integrate the system
with a database so that the data can be protected and organized.
Another hope is that it could be proved useful to have a real-
time database that also handles the temporal aspects, e.g. timing
constraints on database activity and freshness of data.

1.2 The Role of This Master’s Thesis

The role of this master’s project is to develop an experimental
research platform for evaluating the benefits of invoking a data-
base. The goal is to perform preliminary studies of the system
and hardware and by that building the first stage of a research
platform in the system.

1.3 Project Goals

The main goal is to create an experimental platform to be used
in research. This led to the following goals:

e Set up the hardware and install the needed software on the
PC.

e Find out what commercial real-time databases are available
on the market and if any of them suits the system.

e Design an API for transaction commands of a real-time data-
base (RTDB).

e Locate transactions in the system source code.
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e Optimize memory usage in both flash and RAM to make
room for an RTDB system and find out how much memory
that is available.

1.4 Method

To achieve the goals given in section 1.3 the following method
is used. First an examination of available real-time databases is
done and at the same time theories about them is learned. Second
an analysis of the system is done. This includes setting up the
hardware and then apply some reverse engineering to understand
how the engine control system software works. During this phase,
code is removed to make room for a real-time database. Third an
API for transactions is designed and from this wrapper functions
can be implemented to attach any real-time database found to fit
the system. During this phase, transactions are to be refined from
the system. Last a method of measuring free memory is found.

1.5 Report Overview

This section describes what is in the chapters of this master’s
thesis.

Chapter 1 gives an introduction to this master’s thesis and the
goals of the project.

Chapter 2 describes the preliminaries needed to understand the
rest of the report. Theories about real-time systems, data-
bases, real-time databases and engine control are discussed.

Chapter 3 analyses the engine control system provided by Saab
Automobile AB. First the hardware is described and then
the software. The real-time properties of the software are
also analyzed.



Chapter 4 describes two metrics that needs to be measured dur-
ing evaluation of the engine control system. It is also shown
how to measure these metrics in the system.

Chapter 5 analyses what the engine control demands of a real-
time database. The results of an examination of commercial
real-time databases are also shown in this chapter.

Chapter 6 shows how the design of an API for real-time data-
base transactions evolved. It also presents two example trans-
actions refined from the engine control system software.

Chapter 7 presents the conclusions drawn throughout the re-
port. The goals are revisited to see if they are fulfilled or
not. Finally some pointers to future work are given.



Chapter 2

Preliminaries

This chapter presents the preliminaries needed to read and under-
stand the rest of the report.

2.1 Real-Time Systems

This section presents the basic theories about real-time and em-
bedded systems. It is recommended that the reader is somewhat
familiar with the subject of real-time systems. The material in
this section is taken from [4].

2.1.1 Definition of a Real-Time System

Defining a real-time system is not as easy as it looks. Burns
and Wellings give three different definitions from different sources.
The meaning of them all is that a real-time system responds to
one or more stimuli within a required time. In some systems
the response time is critical and a catastrophe may follow if the
deadline of the response is missed. In other systems it is only
preferred to finish in time but nothing serious happens if it is not.
Other names for these different types of systems are hard and soft
real-time systems. Hard real-time systems must of course meet
their deadlines every time.
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2.1.2 Short on Scheduling Algorithms

Although a real-time system might only have one task to do, it
often has several tasks to take care of and several different re-
sponses to produce. This leads to a need for the real-time system
to choose what task to do next to be able to reach the goal of
keeping all deadlines. To solve this problem a scheduler is used.

A scheduler decides which task that should run next by using a
scheduling algorithm. These algorithms are of various kinds and
use different input about the tasks to decide their execution order.

There are three general scheduling approaches discussed in
Burns and Wellings namely Fixed Priority Scheduling (FPS), Ear-
liest Deadline First (EDF) and Value-Based Scheduling (VBS).

The simplest one is rate monotonic priority assignment and it
is one of many FPS approaches. With this algorithm the task gets
a priority from its period. The task with the smallest period gets
the highest priority. When all tasks have been given a priority the
scheduler uses the priorities of the tasks to decide which task that
should run. Thus, the assigning of priorities only has to be done
once (or several times if some task’s periodicity changes) and it is
done offline.

When scheduling with priorities there is a choice to use pre-
emptive or non-preemptive scheduling. Preemption means that if
a task A with higher priority starts when a lower priority task B is
running, task B pauses and task A runs instead. When task A fin-
ishes task B resumes again where it stopped. Non-preemption is
then when a higher priority task has to wait for any lower priority
task, already running, to finish before it can run.

2.1.3 Worst Case Execution Time WCET

The rate monotonic algorithm can be proved to work for a certain
set, of tasks if the execution time is known in advance. The same
goes for many different scheduling algorithms, which have resulted
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in a separate research area to find out the execution time for tasks.

A first glance at the subject may give the impression that there
is no problem, but when one looks deep into the characteristics of
a programming language one realizes the difficulties. For example
if the task examined uses a while-statement that goes on until the
while-condition breaks, how many iterations it executes before it
stops? In some cases this is known. In other cases one can predict
a worst case but sometimes that is not possible.

At those times when a worst case can be calculated it might be
an exception that does not occur unless the system breaks down.
Should it then be considered in the scheduling problem or should
the normal case be used? This is only one issue of the subject and
there is no exact knowledge of everything in this area yet. Thus,
this report not go deeper into the subject of WCET than this.

2.2 Databases and Real-Time Databases

This section briefly describes the basics about databases and then
describes features of real-time databases. It is presumed that the
reader is familiar with database basics as this section is just a
reminder.

2.2.1 Databases

The material in this section can be found in more detail in [12].
Ordinary databases are often used to maintain and organize large
amounts of data. It could for example be a banking system that
keeps track of people’s account transactions.

Big databases often change all the time. Banks get new cus-
tomers and lose others. This requires a language to speak with the
database to create new accounts or erase others. This language
also provides the tools to search the database.
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If there had been only one bank man in the bank with only one
computer working with the database then everything would be
fine but if there are several computers manipulating accounts bad
things can happen. For example if two transactions, connected
to the same account, are executed at the same time then the
result can be very strange and money can disappear or pop up
from nowhere. This problem has created the four properties that
have to hold for transactions in a database. Those are Atomicity,
Consistency, Isolation and Durability or in short, ACID.

2.2.2 Real-Time Databases

RTDBs have, as described in [14], all the properties of a traditional
database but also adds some properties on top of that. A real-
time database has a demand on the time it may take to find the
information asked for, or put another way, the RTDB has to be
predictable. Thus a real-time system must know how long time it
takes for the database to respond. To make this possible one has
to find the uncertainties in the database. Ramamritham lists four
uncertainties in his paper [14]:

e Dependence of the transaction’s execution sequence on data
values.

e Data and resource conflicts.
e Dynamic paging and 1/0.
e Transaction aborts and the resulting rollbacks and restarts.

It is of course also important that the execution time of the trans-
actions in the database is known to be able to decide if a transac-
tion finishes before the deadline or not (see also section 2.1.3).
Ramamritham also brings up another issue that does not ap-
pear in traditional databases. It is the need of timestamps on
data in the database. These timestamps are needed to check that
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the data is not too old. This of course also requires data to have

an absolute validity interval (avi) connected to it. If, for exam-

ple, the temperature of an engine is valid for 1 second then the

avt for that data is 1 second. When the current time minus the

timestamp exceeds 1 second the data is not valid any more.
Thus a data d has three values:

® dyaiue, the value to store,
® diimestamp, time of last update,

® dgyi, the time from diimestamp that dyarue is valid.

It is often necessary to derive data from other data. A set of
data used to derive another is called a relative consistency set,
denoted with R. It is vital that the data in R was created close to
each other in time, which means the timestamps should be close
together.

To this comes the term relative validity interval (rvi) that tells
how close the timestamps for all data in the set R must be. This
is denoted R,.;.

Thus, for deR to be temporally consistent the following must
hold.

(CurrentTime — diimestamp) < davi

VdIER, |dtimestamp — dy | < Ry

timestamp

There is also the matter of the data created, namely what value
the temestamp of the new data should have. This should somehow
be connected to the timestamps of the data in R. An example of
such a relation is given in [15]. There the timestamp of d’ derived
from R is set to mingeg(dtimestamp)- Thus d' is only as recent as
the oldest data in R.

It is, however, said that this is likely to be application depen-
dent and thus di;,.samp can be created by any function using all
dtimestampER [14]
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2.3 Engine Control

This section describes the basics in engine control theory. It is
very brief but enough for the reader to get the idea of what can
be controlled in an engine. For the interested reader [11] is rec-
ommended.

2.3.1 Stoichiometric Four Stroke Cycle Engine

A combustion engine works by compressing an air and fuel mixture
and then igniting it. To do this in the best manner possible the
ratio between air and fuel has to be optimal. Too much or too
little fuel gives emissions, misfires etc.

A common car engine is of a type called four stroke cycle com-
bustion engine. The simplified steps for any cylinder in the engine
can be described as follows:

1. The intake step where the piston is moving down while fuel
and air is sucked in or injected into the cylinder (the later is
most common today).

2. The piston is now moving up while the cylinder is closed and
thus compressing the gas mixture inside the cylinder. This
is the compression step.

3. When the piston reaches its Top Dead Center (TDC)! the
sparkplug ignites the mixture. The expansion caused by the
explosion pushes the piston down and this step is therefore
called the expansion step.

4. In the exhaust step the exhaust valve opens as the piston
turns at the bottom and presses the rest products out.

1This is the point where a cylinder reaches its highest position and the compression is
highest.
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As one can see, power to move the engine is only created in
the expansion step and that is why such engines have at least
four cylinders, since then there is always one expansion step in
progress.

2.3.2 Controlled Parameters

Here is a small list of examples of what can be controlled in an
engine.

e Regulate the amount of fuel to be injected as a response to
how much air is taken in.

e Add fuel due to the extra air from a turbo boost.
e Tell the spark plug when to ignite.
e Sense if there was a misfire or knock.

e Check the emission level in the exhaust system to know if
there is a need to adjust the fuel.

e Check the temperature of the engine and catalytic converter.

The list is longer in reality but this is enough to show that there
is a lot that can be done to make the engine run smoothly, eco-
nomically and with high power when that is needed.
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Chapter 3

System Analysis

This chapter describes the system platform that this master’s the-
sis deals with.

3.1 The Hardware

The hardware is a special purpose hardware designed to control
engines. This is done by two processors. They have the role
of main processor and slave processor. The main processor is a
Motorola MC68332 and the slave processor is just denoted 592.

There are two types of memory available in the system. First
there is 512 KB of flash memory that is mainly used for the pro-
gram code. It is also used for flash writing routines and processor
settings. There are also some permanent data values stored in
flash to be loaded into RAM on startup of the system. The RAM
is the second type of memory and is used to store data. There is
64 KB of RAM in the system.

The hardware communicates over a controlled area network
(CAN) that is often used in cars. Through this network the flash
memory can be reprogrammed. The program code in the flash is
used by the main processor.

The slave processor is not reprogramable and it has only one
main task, to control the throttle. It is also used to get redundancy

13
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on some sensor signals, for example the gas pedal position.

3.2 The Software

The software in the system is programmed in Assembler, C and
C++. The drivers for hardware and boot program are written in
Assembler. The diagnosis functions are written in C++ and the
rest in C.

The diagnose functions checks the system, looks for errors in
the engine and reports this by writing data into certain memory
areas in the flash. These messages can then be read by a mechanic
and help in finding out what is wrong with the enginel.

The assembler code, containing the boot code and drivers, is
accepted as code that has to be there and is not changed at all.
This code for example sets up the processor with the correct values
in certain registers.

The C code is the program that makes sure the engine runs.
It takes the sensor values and calculates what to do and then
sends signals to actuators. The sensors might measure engine
temperature or engine speed? and the actuators are ignition time
or fuel injection time.

3.3 The Structure of the Software

The software is divided into different modules. These modules are
described in the following list.

Air makes all the calculations about the amount of air taken into
the engine.

!However, these functions where removed from the system during this project to make
room for new program code.

2The sensor values are actually measurements of voltage or resistance that are trans-
formed to usable numbers by drivers. These drivers are programmed in C or Assembler.
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Boost makes additional calculations to the air module to calcu-
late the added effects of the turbo boost.

Ignition makes the calculations about when to ignite the fuel and
air mixture.

Fuel makes the calculations about the amount of fuel that should
be injected into a cylinder.

Diagnosis checks the engine for all kinds of things that can mal-
function.

VIOS contains all the drivers to get sensor values and to set
actuator signals.

Misc is the module in which everything else is in. There is e.g.
a hard coded real-time scheduler that ticks every 5 ms. The
background function that runs whenever nothing else runs is
also in this module.

Almost all modules have a master function that is the con-
trol function for that module. This master function decides what
functions is to be run depending on how much load that is on
the processor or the amount of time that has passed since certain
calculations were done last time.

There are five different kinds of data in the system. Here is a
description of them.

Global data is shared between the modules of the system and it
is this data that should be in the RTDB.

Protected data is global only within the module where it was
defined.

Calibration data is read only data for the system. It can be
altered from Apptool (see appendix E).
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Adaptive data is calibration data that adapts to the wear of the
engine.

Local data is data used only in the function it is defined in.

3.4 The Real-Time Perspective of the Software

There are two time bases in the system. One is based on time as
we know it and ticks every 5 ms. The other one is angle based
and depends on the cycle of the crank-shaft. One cycle is 720°
which corresponds to two rotations of the crank-shaft.

The system works with different interrupt levels. The processor
has eight interrupt levels (0-7) with 7 as the highest priority, and
they are used as described in the following list®.

0 Background

1 Time, interrupt every 5 ms

2 Not used

3 CAN, interrupt when CAN message arrives or is sent
4 Not used

5 Time processing unit (TPU), Angle interrupt

6 Communication with slave processor 592

7 Not used.

The two most important interrupt levels are time interrupts
and TPU interrupts. They are presented in the following subsec-
tions.

3More information about these interrupt levels can be found in the file
Vios.77\Source\Neng i.c.
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3.4.1 Time Base

A time based interrupt occurs every 5 ms. This starts an interrupt
handler that is the hard coded real-time scheduler. This scheduler
has tasks to perform in certain intervals and those intervals are 5,
10, 20, 50, 100, 250 and 1000 ms. The master function for this is
called TimeInterrupt and it can be found in the file:

misc\Source\Time.c.

The tasks are scheduled according to rate monotonic scheduling,
with the task with the shortest period as the highest priority.

3.4.2 Angle Base

This is the part that makes the scheduling of tasks difficult and
complex. These interrupts are created by a 58x cog-wheel. This
is a cog-wheel dimensioned for 60 cogs but with two missing to
be able to calculate the speed and position* of the engine. For
every cylinder (4 in a regular engine) there are 5 interrupts to be
performed at certain degrees before and after the TDC. Since these
interrupts are based on the angle of the crank-shaft, interrupts
occur more frequently with a higher rpm.

For example if the rpm is 1500 then during one minute 750 cy-
cles of 720° are completed. For every such cycle 5 TPU interrupts
occur for every cylinder. This sums up to 20 interrupts in every
cycle, which gives a total of 15000 interrupts in one minute at the
engine speed of 1500 rpm. The same calculations for 6000 rpm
gives 60000 interrupts in one minute. Still, for every interrupt
the same task has to be performed. Hence, this gives that with
higher engine speed there is less processor time left to the rest of
the system such as time based calculations and the background
process.

4The position is not exactly determined until the engine starts since every cycle is not
360° but 720° and therefore the engine position could be either X° or (X + 360)° where
X is between 0 and 359.
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Examples of data calculated in these interrupts are the amount
of fuel to inject and the time of ignition.

3.5 Real-Time Operating System

A real-time operating system (RTOS) provides the following basic
services [5]:

® process management
e interrupt handling

e process synchronization.

3.5.1 Process Management

Process management is the primary service provided in an RTOS
and includes functionality like process creation, scheduling and
context switching. The system provided by Saab does not have
any functionality for processes in this sense.> The only type of
context switch is when a higher interrupt preempts an ongoing
execution.

If one considers the time interrupts (mentioned in section 3.4.1)
one would find that different functions are called with different pe-
riods. Although the execution order is in practice like it would be
in rate monotonic, the order is statically determined by program-
ming. Also there is no context switching between the different
tasks. This is instead forced by lowering the interrupt level one
step so that tasks with higher priority is run even if a lower pri-
ority task is already running. An example is that when the 1000
ms task is running, the interrupt level is lowered one level. Now
when a 5 ms interrupt occurs it, in a way, pre-empts the 1000 ms
task.

5The newer systems probably uses some kind of real-time operating system and thus
enabling this property.
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Instead of this static way of scheduling there should be a gen-
eral scheduler that controls which task is supposed to run by using
data about the tasks. This data is often called a Task Control
Block (TCB) and contains information like task identifier, prior-
ity, execution time, period etc.

It should also be possible to change the scheduling algorithm
and the participating tasks easy. This is not the case in the given
system where a change in the scheduling algorithm is quite hard
to do without rewriting a lot of code. The adding and removal of
tasks is harder than it appears. Even if the tasks are only function
calls that are to be performed in the task and thus it is only a
matter of removing or adding functions called, this changes the
execution time and then the fixed period of a task might not be
the right one.

3.5.2 Interrupt Handling

The interrupt handling is solved in the system but it is not an
RTOS kernel that handles it. Instead there are interrupt functions
programmed that handle the interrupt.

The interrupt handlers are a large part of the system code
and the main functionality is in these interrupts. Some data is
updated periodically and this is done in the time interrupt that
triggers every b ms. This interrupt handler is the static scheduler
and the tasks called from there have more or less soft deadlines.

The angle interrupts in this sense have the hard deadlines since
some of these tasks must perform their calculations before the
TDC is reached. Also, these interrupts do not appear in a periodic
manner. Instead it is the angle that decides when the interrupt
appears and this is variable, depending on the rpm of the engine.
These tasks could therefore be looked at as aperiodic tasks.
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3.5.3 Process Synchronization

Process synchronization deals with the synchronization and com-
munication between processes and tasks.

In the system, communication between functions of different
modules or interrupt levels is done by using global data structures.
There are no semaphores to control the access to them at all. This
is not appropriate because it is hard to detect if any errors occur
when more than one function updates the same data.

If processes are to be used, some security is needed to protect

the memory area of each process. This should also be provided
by an RTOS.

3.5.4 The Need for an RTOS

Since there is no process management nor any process synchro-
nization services one can conclude that there is no RTOS in the
engine control system. Process management is needed so that
the RTDB can do context switches within one interrupt level and
thus an RTOS is needed in the system. Another reason to have
an RTOS is that most of the commercial RTDB systems require
an RTOS.

With this conclusion at hand Saab and Mecel was asked for
advice. A decision was made that the software in the system
should be replaced by a later version that has been ported to
the RTOS Rubus platform. The new software runs on the same
hardware as before though. This software change does not effect
this master’s thesis since the software was not delivered in time
for this.



Chapter 4

Performance Measurements
Theory

This chapter describes a number of metrics that one might want
to measure during the research and development of an RTDB. It
is also described how these metrics can be measured.

4.1 What to Measure

In most systems there is a large amount of metrics one can measure
but not all of them are of any use when evaluating an RTDB. This
section focuses on which metrics are important, and why. The
metrics handled are execution time and memory usage.

4.1.1 Execution Time

In all real-time related problems there is always a need to know
how long time a segment of the code needs to execute. The RTDB
also needs this kind of information to know how to choose what
code to execute and when. The information can be used once
to set priorities to every segment of code. It could also be used
during runtime to decide priorities but to do that there has to be
a list with the execution times of all tasks and that uses valuable
memory.
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Saab has tried to minimize the uncertainties about execution
times. For example, unbounded iterations should generally be
avoided. But if used anyway the iteration must be proved to be
predictable.

The RTDB needs the execution times for the functions to be
used in the scheduling algorithms inside the RTDB.

4.1.2 Memory Usage

Memory is basically needed for two things, executable code and
data. The system has two different kinds of memory, namely
flash memory and RAM. The flash memory is used for code and
constant values! while the RAM is used for variable data. The
amount of flash memory is 512 KB and the amount of RAM is 64
KB

There is a need to know the amount of flash memory that is
available because that is where the program code for an RTDB
ends up. The same goes for the RAM since that is where the
possible overhead of stored data ends up.

4.2 How to Measure

This chapter describes how to measure the metrics described in
section 4.1.

4.2.1 Execution Time

The ECU gives time interrupts every 5 ms and when that interrupt
is executed a counter is increased. This counter thus has the
granularity of 5 ms. The name of this counter is ms_Counter and
is declared in:

LA special kind of constant data is calibration data which is used to calibrate the basic
behavior of the engine.
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Vios.77\Source\X_appif.c.

To measure the execution time the value of the counter is saved
at the start of the process to be measured. When the process is
finished the value of the counter is again saved and the first save
is subtracted from the second. The result is put in a variable
that is marked as a symbol and it can then be read through the
Apptool application when running the system. See appendix E
for a description of Apptool and symbols.

Since many of the processes are shorter than 5 ms a finer gran-
ularity is needed to measure execution times.

The main processor of the ECU has a special register that
counts the clock ticks of the processor. The processor speed is
16.778 MHz and the time between two successive clock ticks is

1

16778 106 — 5.9601859578 - 10~ 5s.

However, the system has set the processor prescale to 128 which
means that the counter updates only every 128 clock ticks [10].
Thus, the register is updated every

128 - 5.9601859578 - 1078 ~ 7.629038s.

The counter value is accessed through a macro that points out the
register. The macro’s name is FCSMCNT and is defined in:

Vios.77\Source\CTM.H.

With this macro there is now a possibility to measure time with
the granularity of about 7.6 ps. This is done in the same way as
described for the 5 ms counter.

The counter is an unsigned short of 16 bits. Thus the time it
takes for the counter to reset is:

216 . 7.629038s > 0.4999s
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As long as the code segment to measure needs less than 0.49s
to execute this method works. If the counter should reset during
the measuring there is a solution to this. If S is the value from
the counter at the start of the execution and E is the end of the
measurement, the following pseudo code shows how to always get
the execution time (given that the measured fraction of code does
not have to execute more than 0.49s). The result is placed in A.

if(E < S) then

A = (65536 + E) - S;
else
A=E-S;

It is good to be able to measure things right but one also has
to be sure to measure the right things. Because of the different
interrupt levels an error source is introduced. The lower levels
suffer more than the higher levels.

For example if part of the background code is to be measured
then during execution another interrupt level could interfere and
block the lower level. This adds execution time that does not have
its origin in the background code. Avoiding this error is tricky and
could be handled in different ways.

If it is possible one could make sure that the measured code
fraction is executed at the highest interrupt level during develop-
ment.

Another way is to measure how much time the interrupt takes
and then subtract that from the total time but this would be
harder to program.

4.2.2 Memory Usage

To find out how much memory that is used by the system one has
to compile the source code and then look in the link file called:

build\list\Linkl.map.
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This file gives information about where in memory different vari-
ables and function are stored. In the beginning of the file there
is an interesting section called SECTION SUMMARY. Here one can
find out how much memory that is used and by subtracting that
number from the total amount of available memory the amount
of available memory is produced.

The memory addresses go from 000000h to FFFFFFh and is
divided into flash and RAM as described in appendix G.

The system acquired from Saab originally had 83791 bytes of
flash and 751 bytes of RAM available to use for new program code.
After the removal of the diagnose functionality the memory usage
was reduced. Now the amount of free flash memory is 228131
bytes (or 222 KB) and the amount of free RAM is 16623 bytes (or
16 KB). A printout of the SECTION SUMMARY before and after the
removal can be found in appendix F.
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Chapter 5

Real-Time Database Analysis

This chapter describes the database properties that have to be
considered and which ones that can be discarded. It also describes
what kind of demands the system has on the RTDB. The last part
of the chapter summarizes the demands and lists some commercial
RTDBs of today to see if there are any that fits the profile created.

5.1 The ACID Properties

This section analyses the four properties of a transaction of ordi-
nary databases.

5.1.1 Atomicity

The property of atomicity must hold in a database since otherwise
errors can occur if two or more transactions use the same data.
It is not necessary that transactions block all other transactions
internally in the database as long as an observer can only see
atomic transactions. Another way to put it is, either the trans-
action makes all its changes to the database or none, nothing in
between.

In the system observed there are eight interrupt levels and it
is only if two transactions in two different interrupt levels use the
same data that an error violating this property can appear.
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There are at least two interrupt levels in the system that work
closely together. It is the timer interrupt level and the angle TPU
interrupt level. Both levels use data connected to sensor values
and data that is updated in the timer interrupt level is then used in
the angle interrupt level. Thus, the property of atomicity should
be considered in the RTDB.

5.1.2 Consistency

Consistency means that transactions must not violate any in-
tegrity constraints set up in the database. Integrity constraints in
an ordinary database are predicates between tuples in a relational
table. For example if the database keeps data about different
squares, there should be a constraint between the height and the
area. If a transaction changes one but not the other it violates
the integrity constraint. This is discovered when the transaction
tries to commit.

The RTDB wanted in this project should probably not have
relational tables since the data is known in advance. This also
gives that the RTDB does not change during execution as ordinary
databases can by using SQL statements. Because of this there are
no tuples to make predicates of, either in or between tables. From
this point of view no consistency check is needed.

There are however timestamps and an awv: attached to every
data and certain conditions have to hold between them and other
data in a transaction. This can be compared to tuples in or be-
tween relational tables that can have predicates. This altogether
gives that consistency has to be considered in the RTDB.

5.1.3 Isolation

The property of isolation is the independence between parallel
transactions. If they are dependent and if one transaction fails
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and performs rollback, all other transactions depending on the
first have to rollback also.

In the ECU one transaction may be stopped and rollbacked
and cause an earlier value to be used. This must not affect the

other transactions and, thus, the isolation of transactions must be
considered in the RTDB.

5.1.4 Durability

Durability concerns ordinary databases in the way that data must
not be lost. This is appropriate for databases handling data like
bank accounts that is stored on secondary memory.

The engine control system does not have to store data perma-
nently and the amount of data does not change when development
is finished. Most data is considered momentanious and thus not
valuable after some time.

Thus durability is not a property that affects the RTDB very
much. During the time when some data is valid though, it must
not be lost or destroyed.

5.2 Demands of the System

This section describes the demands set on the RTDB by the en-
vironment and tasks of the system.

5.2.1 Temporal Database

One could imagine that the name real-time database in some way
implies that the database has temporal knowledge, but this is not
the case. Instead most of the commercial RTDBs examined have
no temporal knowledge. The project demands an RTDB that has
temporal knowledge such as awvt, rvi and timestamps, see section
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2.2.2. These things are necessary to determine if some particular
data can be used or not.

5.2.2 Active Database

In a system like the ECU data is refined from raw data to usable
data. Sensors often give either the voltage or current of the value
wanted. Then this raw value has to be transformed to some usable
value that can be used to calculate actuator values. One problem
of today’s system is that there is a large amount of refined data and
it is hard to locate the correct data during implementation. This
problem arises from the fact that hundreds of people are involved
in the programming. Thus, when a new feature is implemented
the person developing it does not even know that a needed variable
already exists and instead defines a new one.

It is also hard to know how long a certain data is valid and as a
result over sampling is used. This means that the data is updated
just before it is to be used even if it is still valid from another
updating.

Instead it would be better if the database updates everything
automatically! in a real-time fashion. Then it is the RTDB that
makes sure that the value asked for is valid.

In an active database one can define actions that should be
performed if certain conditions are fulfilled. For example one could
define that when two values are fresher than a third, the third
should be derived from the first two.

5.2.3 Data to be Stored

In the system there is only data in RAM or flash memory. The
only data that is to be updated is the data in RAM. The variables

UIf everything is calculated automatically then maybe the database could replace the
control calculations since the system basically takes sensor values and produces actuator
values.
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are also known from the beginning. This implies that there is no
real need for a general database query language that can create
new meta-data (e.g. tables in a relation database). Therefore a
query language should preferably be excluded since that would
save important memory resources.

Instead of a query language there has to be some way of ex-
pressing the contents in the database from the beginning. This
would then be done in the source code of the system.

Another aspect is that there is no need for an RTDB that uses
a secondary memory like disk or tape since there is no such device
in the system.

5.2.4 Size and Overhead

Since the engine control system has 512 KB of flash and 64 KB
of RAM there is of course no room for a big database. Next
generation systems perhaps have more memory available, but still
less is better since new functionalities also needs memory. This
requirement has ruled out some databases available on the market.

The overhead (the extra amount of data needed for every value
stored in the RTDB) must also be small since Saab and Mecel
have estimated the number of global variables to about 4000. This
means that if n is the number of variables stored in the RTDB and
the overhead for each variable is two integers, each of 4 bytes, we
get a total overhead of n times 8 bytes. If the amount of variables
is 4000 then the total overhead is around 32 KB which is almost
half of the RAM in the system.

It is also presumed that the amount of variables increases as the
system evolve since engine researchers find more things to regulate
in an engine control system.
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5.2.5 Concurrency Control

Since the system must work it has to recover from conflicts that
occur. Conflicts can appear if transactions are allowed to run in
parallel and this is the case in the ECU since there are multiple
levels of interrupts. There are four anomalies that can appear
during execution of parallel transactions [12]. If one or more of
the anomalies can appear in the database system then there is a
need for concurrency control. The four anomalies are:

e Update loss
e Dirty read
e Inconsistent read

e Ghost update.

It is obvious that if a system has several interrupt levels there
can be two transactions that can alter the value of one data and
thus the update loss anomaly can occur. This fact is enough to
conclude that there is a need for a concurrency control mechanism
in the RTDB.

There are two general approaches to attack the problem of
concurrency control, optimistic and pessimistic.

The optimistic approach makes all the changes demanded by
the transaction and delays control of the actions until the trans-
action is verified. Then the system checks that no concurrency
conflicts have occurred. To do this everything has to be logged
so that if a conflict is detected the system is able to reverse the
transaction and try it again. This approach is efficient if conflicts
seldom occur [9].

The pessimistic approach makes sure that the transactions
do not interfere with each other. This is done with the use of
semaphores, monitors or other control mechanisms. This takes
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a lot of processor power to maintain and if the system seldom
generates conflicts of this kind it is considered expensive.

Since the system only has eight interrupt levels the risk of a
conflict to occur between two of them is not so high. Thus the
concurrency control should be optimistic.

5.2.6 Open Source vs. Precompiled Libraries

A commercial RTDB can be acquired in two different ways, as
open source or as precompiled libraries. The most common in a
commercial context is of course precompiled libraries since many
companies do not whish to share the code with their customers.
Since the memory usage in this project is of high importance one
has to have much control over the RT'DB. This can be achieved if
the vendor has implemented a way to cut out unused features.

The best is of course if the source code is available. This gives
full control of how things are done inside the database.

5.2.7 RTOS Compatibility

In section 3.5 it was shown that an RTOS is needed in the system.
This gives that the RTDB should be compatible with different
RTOSs or at least be easy to port to another RTOS.

5.3 Summary of Demands

Here follows a list of the demands on the RTDB. The ideal RTDB
should:

e have temporal knowledge such as avi, rvi and timestamps
e be an active database

e be a main memory database
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e not have a query language

e not use more than 200 KB of flash for executable code
e have small footprint per data entry in RAM

e have an optimistic concurrency control mechanism

e have source libraries available

e support multiple platforms.

5.4 Available Databases

This section presents the result of an analysis of the commercial
RTDBs available.

The items on the list in section 5.3 are the ones in the table of
each RTDB except that the footprint per data is excluded. This
information was not found for any of the presented databases.

Most of the material for four of the databases is taken from [2].
Other sources are presented at each table.

Of the examined RTDBs in tables 5.1 to 5.5, Berkeley DB
appears to be best suited for the engine control system. It is
fairly small and the source is open and free. It is also possible to
eliminate components that are not needed, thus the footprint of
the DB can be reduced a bit more.

But still, Berkeley DB does not fulfill demands like being an
active and temporal RTDB. Since the source code is open one
possibility is to extend Berkeley DB with these features. Then of
course the memory usage would go up and the query language has
to be removed.

Refining Berkeley DB in these ways might actually be harder
than building a new RTDB. Since the database needed is not like
any database seen on the market it is probably more beneficial to
build a new RTDB.
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TimesTen
Temporal NO
Active NO
Main memory YES
Query language YES
Footprint 5 MB
Concurrency ctrl. type | Info N/A
Code available NO
Free of charge NO
RTOS support VxWorks, LynxOS

Table 5.1: Examination of TimesTen, [7, 2].

Berkeley DB
Temporal NO
Active NO
Main memory YES
Query language YES
Footprint 175 KB
Concurrency ctrl. type | Info N/A
Code available YES
Free of charge YES
RTOS support VxWorks, QNX, Embedix

Table 5.2: Examination of Berkeley DB, [6, 2].
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Polyhedra
Temporal NO
Active YES
Main memory YES
Query language YES
Footprint 1.5 MB
Concurrency ctrl. type | Info N/A
Code available NO
Free of charge NO

RTOS support

VxWorks, OSE, pSOS, LynxOS

Table 5.3: Examination of Polyhedra, [13, 2].

RDM Embedded
Temporal NO
Active NO
Main memory Info N/A
Query language Info N/A
Footprint 230 KB
Concurrency ctrl. type | Info N/A
Code available YES
Free of charge NO
RTOS support VxWorks

Table 5.4: Examination of RDM Embedded, [2].
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MIMER SQL
Temporal NO
Active YES
Main memory NO
Query language YES
Footprint 150 KB
Concurrency ctrl. type | Optimistic
Code available NO
Free of charge NO
RTOS support Info N/A

Table 5.5: Examination of MIMER SQL, [1]
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Chapter 6

Design

In this chapter the API of RTDB transactions is presented. There
are also descriptions of two example transactions made from the
engine control system.

6.1 Possible API of RTDB transactions

This section describes the API that evolved from the studies of
the engine control system.

6.1.1 Transaction Overview

What is a transaction? A transaction can be one of three types
and that is write-only transaction, update transaction and read-
only transaction [14]. To do these kinds of transactions we need
to have the commands Read and Write. (There is no need for a
separate command named Update since this can be done with the
commands Read and Write.)

To create a transaction one first has to let the system know
that we want to start a transaction. This is done with the com-
mand BeginTransaction. After this one is allowed to read and
write data from and to the database with the commands Read
and Write. Then when all is done, the changes take effect with
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a CommitTransaction. An example in pseudo C-code follows be-
low.

BeginTransaction();
a = Read(d);

b = Read(B);
c=a+b;

Write(C, c);
CommitTransaction();

The transaction reads the values A and B from the database,
calculates the value C and writes it into the database.

It is meant that these commands should be used in the origi-
nal code of the system. Thus transactions have to be created by
hand, not by any query language. All this boils down to four com-
mands, BeginTransaction (6.1.4), Read (6.1.5), Write (6.1.6)
and CommitTransaction (6.1.7).

For each of these commands there are some questions to be
answered when designing the API to the database, but first some
preconditions have to be defined.

6.1.2 Log vs. No Log

First a decision has to be made whether to use a log or not. A log
is used to remember what has been done in the active transactions.
When it is time for CommitTransaction the log is consulted to
check for errors in the Read and Write commands of the trans-
action. If everything is correct then the transaction is committed
and the entries of that transaction are removed from the log. If
an error occurs then the transactions involved are reversed and
removed from the log.

If no log is to be used every command would have to return a
status value. These values for the transaction would have to be
gathered and somehow be given to CommitTransaction. Then
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CommitTransaction decides if the transaction caused errors or
not. This makes the programming complex and boring.

On the other hand the system does not have infinite RAM for
a log. This, however, is not a problem. Every transaction should
be small so there are not many entries per transaction in the log.
Also, there can only be eight transactions active at the same time
since there are only eight interrupt levels.

Hence, with this in mind a log should be used. By having
a log, reporting of errors in Read and Write commands can be
automatized.

6.1.3 Use of Process Control Blocks

If there is an RTOS in the system then it probably has some
process data for each process, saved in a process control block,
(PCB). If this PCB is available for use it could be used to hold
some information for the RTDB as well. For example, one could
save the active transaction number for that process so that the
programmer does not have to deal with the forwarding of this
number to all commands in a transaction. Every process can only
have one transaction active at a time so the number saved in the
PCB is always the one to use when a read or write is done. Also,
if the process is pre-empted by another process or interrupt, the
transaction number is saved with the PCB.

The API should not be based on the use of PCB, since this
demands that the PCB is available to the RTDB. In section 5.2.7
the demand is that the RTDB should be compatible with different
RTOSs. This cannot be fulfilled if not all RTOSs provides the
possibility to access the PCB.

6.1.4 BeginTransaction()

BeginTransaction is supposed to tell the system that a trans-
action has been commenced. This is easy when there is only one
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transaction active at once. However, since the system has several
interrupt levels and thus several concurrent tasks, it can also have
several transactions active at one time. As a consequence of this
one has to keep track of which transaction that runs right now.

To do this BeginTransaction creates an identification number
for the transaction and the programmer gives this number to the
other commands when they are used.

For this to work there has to be some functionality that pro-
duces these numbers and checks that they are unique. Also, since
the computer world is not infinite we have to define an upper
limit to the number of transactions that can be active at any
time. There can be at most eight tasks running in parallel at
most since there is only eight interrupt levels but in the future, if
an RTOS is introduced in the system then there can be context
switches within a level. A byte can represent 256 unique transac-
tion numbers. This is enough and if the number of tasks is greater
than 256, then two bytes have to be used but this should be easy
to modify when needed.

The tracking of the transaction number gives more work than
if it would be saved in a data area that belongs to the task it is
performed in.!

The tracking could be made easier if BeginTransaction takes
a pointer to where the transaction number should be stored. This
saves the work of assigning a value in a separate statement. The
transaction number variable would of course still have to be given
a value in the transaction.

The use of the command should thus be like:

u8 TransNr

BeginTransaction(&TransNr)

In addition BeginTransaction should return a value. Also two

1Such data area is discussed in section 6.1.3.
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special values of the transaction number have to be reserved for
other use than to identify a unique transaction. This is explained
in section 6.1.8.

BeginTransaction()

Arguments

u8* TransactionNumber To know if the transaction has to be
restarted. See the list in section 6.1.8
for an explanation on what different in-
puts do.

Returns

u8 Status Is zero if transaction is done and any-
thing else if a restart is required.

Table 6.1: API summary of BeginTransaction.

6.1.5 Read()

A Read command collects a value from the database. This is done
by sending a local variable destination address into the command,
which acts as a copy of the searched value. The important thing
to remember is that the pointer must not be changed to point into
the memory of the RTDB because then the concurrency control
mechanism is disabled. Another way to say it is that the pointer
given as an argument to Read must point to a copy of the data,
not to the original data in the RTDB.

A second argument has to be given that tells which data to
get. How this is solved depends on how one can index the dif-
ferent value entries. Every data in the engine control system has
a unique name so we could just give a string with the name to
the Read command. This would most certainly solve the prob-
lem but introduces another problem instead. The average length
of the variable names is quite long and this in combination with
the amount of variables translates to a lot of memory usage for
strings of variable names. Instead the proposition is to use an
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enumeration type. This means that we have names in the source
code but the preprocessor translates them to integers. For exam-
ple to point out the variable In.n_Engine the enumeration item
IN_N_ENGINE would be created and then connected to an integer
value.

Thus every variable name takes up 4 bytes? which is the same
as 4 characters in a string instead of using 10 characters or even
more.

A third argument should be the transaction number that was
given from BeginTransaction.

The last argument is a value that tells the Read command
how old values that are accepted. This is given as a behavior
of transactions instead of a time value. There are three types of
acceptance of transactions in a real-time system namely hard, soft
and firm [14]. Hard deadlines exist for some variables like sensor
values that detect knocks in the combustions. These values must
be read at the right time and the values may absolutely not be
used later than the avi says.

In some cases with soft real-time there is no upper time limit
for using a value but it might be beneficial with some scaling
alternatives of the soft style like soft, softer, softest. But that
could perhaps be considered more as a feature than a necessary
functionality.

For example if some transaction is firm, which means that when
the deadline is missed the transaction has no value to the system,
but unlike the case with a hard deadline the system does not
fail because of it. If the transaction has a value after the missed
deadline the transaction is soft and this is where the differences
in the alternatives appear. The value of the transaction after its
deadline can be different functions of time allowing the transaction

2If it is possible the enumeration type should use a short (2 bytes) to represent the
different variable names since a short can represent 65356 unique values which would be
more than enough.
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to take longer time to finish. This creates gradients in the softness
of the transactions.

The actions taken by Read has to be written to the log and
the transaction number has to be included in the entries. The
address to the copy of the value should also be included so that
the concurrency control can reverse the transaction if needed.

The Read returns the value of the read data since sometimes
there is no need to have the value more than once and in these
cases it would be better to use the Read directly in a statement.

In table 6.2 the type of some arguments, any, means that the
function should be overloaded to handle all the different data types
in the system. In C, however, this is not possible since overloading
of functions are not allowed. A solution to this problem is to name
them different.

Read()

Arguments

u8* TransactionNumber To know which transaction that makes
the Read.

ul6 DataName Identifier telling what data is wanted
from the RTDB.

any* DataCopy Pointer to the address where to put the
read data.

u8 Demand The type of demand we have on the
read data. (Hard, Soft, etc.)

Returns

any Value The value of the data read from the
RTDB.

Table 6.2: API summary of Read.

6.1.6 Write()

Write works in the same way as Read except for two differences.
First instead of the data to get, the name of the data to be written
and the new value is given. Second, instead of checking if the data
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is new enough Write should be able to set this information. The
information to set in that case is avt, and a timestamp. The avi
is set by the programmer of the transaction and the timestamp
is set from the CPU clock. The timestamp must always be set
but the av: might not always be needed since the avi is set at
the definition of the data. But, since the avi can be derived from
other entries avt values it is necessary to do so sometimes.

This gives that Write should have an optional argument for
the avi value.

Write()

Arguments

u8* TransactionNumber To know which transaction that makes
the Write.

ul6 DataName Identifier telling what data to write in
the RTDB.

any* Value Pointer to the value that is to be writ-
ten to the RTDB.

Optional arguments

u3d2 | avi | The avi value.

Table 6.3: API summary of Write.

6.1.7 CommitTransaction()

When the CommitTransaction command is called we have to test
if all the reads and writes worked as they should without any
concurrency conflicts (see section 5.2.5). If there has been a con-
flict the changes to the database has to be reversed by looking
into the log. Inside the log the right entries can be found with
the transaction number which should be given as an argument to
CommitTransaction.

As with BeginTransaction it is the address to the transaction
number that is given as an argument to CommitTransaction.

A second argument should be given to CommitTransaction.
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This is the deadline for the transaction. The deadline value should
be the amount of time that is allowed to pass from the start of
the transaction until it has been successfully committed. This
is needed since CommitTransaction makes the decision about
restarting the transaction or not. If there is not enough time
left to execute the transaction one more time then it should not
be restarted and the variable containing the transaction number
is set to zero.

So if s is the start timestamp, c is the clock right now and d
is the deadline value given to CommitTransaction the following
condition must hold:

c—s<d

If not, the deadline has been missed and the transaction should
not be restarted.

If CommitTransaction approves the transaction the entries in
the log are erased and the transaction number is set to zero. Oth-
erwise the transaction is reversed and restarted by letting the
transaction number be. The reason for this is given in section
6.1.8.

If the deadline missed is a hard deadline then the transaction
is aborted and appropriate error handling must be done to save
the situation, if possible. Otherwise if the deadline is soft the
transaction may be restarted again or if the deadline is firm the
transaction is aborted but no error handling has to be done.

CommitTransaction()

Arquments

u8* TransactionNumber To know which transaction that wants
to commit.

u32 TTD Time To Deadline for this transaction.
The unit is ~ 7.629us.

Table 6.4: API summary of CommitTransaction.
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6.1.8 Restarting a Transaction

To make the transaction restart if an error has occurred is not
possible by writing a transaction in the way written in section
6.1.1. In C-code there is no nice way to jump back a couple of
lines® so we have to settle for the best solution that can be found
at the moment.

This solution is built on the use of a while statement even
though section 4.1.1 mentioned that while statements are pro-
hibited or have to be proved to be predictable. Since the deadline
is checked by CommitTransaction its behavior is predictable and
can thus be used.

A transaction would look something like this:

u8 TransNr;

while(BeginTransaction(&TransNr))

{

CommitTransaction(&TransNr, 500);

+

For the while loop to end, BeginTransaction must return
zero. This is why BeginTransaction has to return a value as
mentioned in section 6.1.4. Depending on the value of TransNr
BeginTransaction returns different values, as presented in the
following list:

—=(0 The transaction is done or aborted and zero is returned and
thus stopping the while loop.

=1 A new transaction is started and BeginTransaction should
produce a new unique transaction number. BeginTrans-
action also has to put a timestamp in the log for tracking
when the transaction started.

3Goto is not an option!
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>2 The transaction with this number has failed and is to be
restarted. The number is returned to keep the while loop

going.

TransNr must then be set to the value one before the while
loop as shown in the following example.

u8 TransNr = 1;

while(BeginTransaction(&TransNr))

{

CommitTransaction(&TransNr, 500);

}

It is then CommitTransaction that decides if the transaction
should be restarted. Either the transaction finished correctly and
then it is not restarted or it failed and is restarted. But it can also
fail and not be restarted if CommitTransaction decides that there
is no time to restart the transaction. In this case the transaction
is aborted. This is decided with the help of the deadline argument
and the timestamp of the transaction start found in the log.

To sum up this the example transaction from section 6.1.1 is
presented again as it could look with the API.

u8 TransNr = 1;
while(BeginTransaction(&TransNr))
{
ulé a, b, c;
Read (&TransNr, A, &a, SOFT);
Read (&TransNr, B, &b, HARD);
c =a+b;
Write(&TransNr, C, &c);
CommitTransaction(&TransNr, 500);
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6.2 Finding Possible Transactions in the Sys-
tem

This section presents two example transactions that are derived
from the original system.

6.2.1 TempCompensationMaster()
The source code for this function is in the file:
Fuel.app\Source\Warmup.c

This function only makes changes to fuel enrichment if the
engine temperature is below 68°C. The simulator? starts with
the engine/water temperature at 90°C' and therefore the function
does not perform any calculations and, thus, be useless as a test
transaction. An if statement was removed to solve this problem.
After this the function always performs its calculations when it is
called.

The system is compiled with the option of automatic gear box,
which means that code for manual gear is never executed and was,
thus, removed.

The result of the removal of source code is a function that takes
two global variables and creates a third. This is done by interpo-
lation which also uses two calibration tables and one calibration
map. The data flow for this function is shown in figure 6.1. In
appendix A a transaction example built on this function is given.

The variables used in the function is presented below.

MAF.m_AirInletFuel

The variable is updated in the function ReadMAF (), which is called
from FuelMaster () on an angle interrupt 48° after the TDC for

“Instead of testing the software on a real engine there is an engine simulator one can
use.
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MAF. m Al r | nl et Fuel I n. n_Engi ne

( enr _fac ]‘ TCompProt. T_EngEnr Fac

TConpPr ot . Enr Fac

Fuel Fac[ pos] . Mul Fac

Figure 6.1: Graph  showing the relation of data in
TempCompensationMaster(). See appendix D at page 73 on how to
interpret the flowchart.

each cylinder. But it is only run if 10 ms has passed since it was
run last time. Thus this variable has an avi of 10 ms.

In.n_Engine

The variable is updated in the function GetVIOS n Engine()
which is called from an angle interrupt when the engine is mov-
ing. If the engine is standing still it is updated every 10ms (the
function is called from ms10_routinel () that is run every other
5 ms interrupt, thus every 10 ms.) Thus, the variable’s avi is 10
ms.
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FuelFac| pos |.MulFac

This is the place where the result is placed. It is an array of
structs, which contain a function pointer, a multiplication factor,
and a division factor. This struct is only used inside the fuel
module so it could be in or out of the RTDB, but for the purpose
of testing it should be in the RTDB. The timestamp is set to the
earliest of the timestamps of the variables that it depends on.

The number in pos points out which element in the array that
is to be used, and the index for TempCompensationMaster() is
SiX.

6.2.2 CalcAirFlowFromArea()

This function calculates data concerning the air flow to the engine.
[t is defined in the file:

\Air.app\Source\Maf.c

The function is called periodically every 100 ms. It is a quite
straight forward function with few if statements. It uses nine
global variables of which two are updated in this function. To
perform the calculations some temporary variables and protected
data are also used. These should not be in the database and
are thus not presented further. They are however included in
the data flow shown in figure 6.2 where the variable dependen-
cies can be seen. The goal of the function is to set the variable
MAF.Q AirFromArea. In appendix A a transaction example built
on this function is given.

In.p_AirInlet

This variable is updated in GetVios_p_AirInlet() which is
called from three different functions. If the engine is just started
then the variable is updated in the initiation of all data that is
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done only once. If the engine speed is below 300 rpm it is updated
every 100 ms, and if it is over 300 rpm it is updated every com-
bustion if 10 ms has passed. Thus, the awvt of this variable should
be 10 ms.

In.p_AirBefThrottle

This variable is updated in GetVIOS_p_AirBefThrottle(). It is
called in the exact same way as GetVios_p_AirInlet(), thus,
this variable should also have an avi of 10 ms.

MAF.p_InlBefQuote

This variable is created from the previous ones. The timestamp
should be the same as the earliest timestamp of the previous two
but the avi should be 100 ms since CalcAirFlowFromArea() has
a period of 100 ms.

In.T AirInlet

Updated in GetVIOS_T_AirInlet(), which is called every 1000
ms and, thus, the avi should be 1000 ms.

In.A Throttle

Updated in GetVIOS_A_Throttle(), which is called every 20 ms
and, thus, the avi should be 20 ms.
Purge.Q_AirPrg

Updated in PurgeCalc (), which is called every 20 ms and, thus,
the avi should be 20 ms.
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AreaData.Q_Venturi

Updated in ControllerCutputs(), which is called every 10 ms
and, thus, the avi should be 10 ms.

In.p_AirAmbient

Updated in GetVIOS_p_AirAmbient () which is called every 250
ms and thus the avi should be 250 ms.

MAF.Q_AirFromArea

This is the variable that is to be set in the CalcAirFlowFromArea
function. As with MAF.p_InlBefQuote the avi should be 100 ms
and the timestamp should be the earliest of the timestamps of the
variables that it depends on.

6.2.3 Setting rvi and avi Values

As mentioned in section 2.2.2, the set of data, denoted R, used to
produce new data, denoted d’, must fulfill temporal consistency.
To do this the R,,; has to be determined.

In CalcAirFlowFromArea() the d,,; of deR range from 10
ms to 1000 ms. This makes it hard to set a value to R,,. If
set too low, like 10 ms, In.T AirInlet with d,,; = 1000ms is
nearly never new enough. For example set R,,;, = 20. Then
the only time the two variables are temporally consistent is if the
absolute difference between their timestamps are 20 ms. This
seldom happens since In.T_AirInlet only updates every 1000
ms.

Thus, to begin with R,,; should be set to 1000 ms and later
on the set R could be split into subsets and each of them given
appropriate values.

Generally it is not a good idea to set values like R,,; by looking
at the intervals and periods of the already existing system. The
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RTDB should improve the system and this is not the case if the
same periods is used since that would create the same system but
with slower code. This holds for all d,,; values also, but there are
at least some hints of how often those values change in the real
world.

Thus the d,,; values given in sections 6.2.1 and 6.2.2 are only
numbers extracted from the system as a guideline. Later when an
RTDB system is available, the values should be reexamined to see
if a change makes the system perform more efficient.

6.2.4 Setting Derived Timestamps

In both functions the created data got their timestamp the same
way, by taking the minimum value of the dtjmestamp in the set R.
In section 2.2.2, it is said that the timestamp could be derived in
any way from the dymestamp€ . This is because it is likely to be
application dependent. Thus, even if the description given for the
two transactions says to use this way of deriving the timestamp
it is not necessarily the best way for this system.
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In.p_Airlnlet In.p_AirBefThrottle

\I In. T_Arlnlet

MAF. p_I nl Bef Quot e

In. A Throttle

!

rt nmplu32 N t np3s32 Purge. Q AirPrg

AreaDat a. Q Vent uri

MAF. Q Ai r Fr omAr ea

MAFProt. Q Al titudeConp

MAFPr ot . Al t ConpPer cent MAFCal . Al titudeMil Fac

I n. p_Air Anbi ent

tnpAltitudeD ff MAFCal . cd_| evel

Figure 6.2: Graph showing the relation of data in CalcAirFlowFromArea().
See appendix D at page 73 on how to interpret the flowchart.



Chapter 7

Summary

This chapter summarizes the report by presenting the conclusions
made in the report and discuss them. There is also an evaluation
of the project goals to see if they have been fulfilled. Last in the
chapter are suggestions for future work presented.

7.1 Conclusions and Discussion

In this report the engine control system provided by Saab was
analyzed. Both hardware and software were analyzed but the
software is the most important of them and therefore the main
target of the analysis.

The software analysis revealed that the system has two time
bases, time and angle. The angle base is variable in time since
the periods are decreased as the engine’s rpm increases. It is also
in the angle based interrupts that the hard deadlines are found.
These interrupts are scheduled with the TPU unit in the main
processor.

The time base is scheduled by a fix scheduler using a kind of
rate monotonic algorithm.

Because there are two different time bases the scheduling of
them in the same system becomes hard. From a real-time point
of view the angle based tasks can be seen as aperiodic tasks and

o7
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the time based as periodic tasks.

It was also shown that there is no RTOS in the system since
it misses functionalities for process management and process syn-
chronization. Also the interrupts are not set through an RTOS
although there is interrupt handling in the system.

Because of this and since most of the commercial RTDBs avail-
able on the market requires an RTOS, the conclusion was drawn
that an RTOS is needed in the system. This RTOS is Rubus and
a new version of the software ported to Rubus will be provided by
Mecel and Saab.

Another subject handled in this report is about the two metrics
execution time and memory usage. It is shown that one can mea-
sure execution time with the granularity of approx 7.6 us although
errors are introduced due to prioritized interrupts.

It is also explained how to calculate the amount of free memory
in both flash memory and RAM.

The properties of the RTDB are also described. Of the ACID
properties the atomicity, consistency and isolation have to be fully
considered but durability is not as important since the RTDB
operates only on volatile data. Of course the data should not
be changed by accident when the system is run but there is long
term memory storage to maintain as is the case with an ordinary
DBMS in for example a banking system.

Then the demands on the RTDB set by the system are dis-
cussed. Here the conclusion that the RTDB needed for this sys-
tem does not look like any database ever seen can be drawn. It
has no query language since everything is known from advance
and therefore relatively static. Instead it could be looked at as a
kind of memory management with real-time properties.

The evaluation of commercial RTDBs showed that none of
them fitted the system so a new RTDB has to be developed. The
second best alternative is to modify one of the commercial data-
bases.
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The main part of this report is the description of an API of
RTDB transactions. It ends up with four commands, Begin-
Transaction, Read, Write and CommitTransaction. The con-
currency control is found in CommitTransaction.

To solve the restarting problem a while statement is used al-
though it is usually prohibited. This can be done since Commit-
Transaction decides if there is time enough to restart the trans-
action or if it has to be aborted and thus the while statement is
predictable.

Two potential transactions derived from the engine control sys-
tem are shown. At the same time the matters of avi, rvi and
timestamps are discussed. Since there is no RTDB to test dif-
ferent configurations of how these values should be set in derived
data, it is of no use to define a way to do this until experiments
can be performed.

One transaction represents the angle base and is thus aperiodic,
while the other is periodic from the time base.

7.2 Project Goals Revisited

In this section the project goals are revisited to determine if they
have been completed or not.

e Set up the hardware and install the needed software on the

PC.

This has been done and the hardware setup is described in Ap-
pendix E as well as the programs used to develop software to the
engine control system.

e Find out what commercial real-time databases are available
on the market and if any of them suits the system.

To know if an RTDB suits the system one must first find out what
is required. This is discussed in the beginning of chapter 5. The
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end of the same chapter presents a selection of the databases found
and gives the conclusion that none of them suits the system.

e Design an API for transaction commands of an RTDB.
The design of an API is done i chapter 6.
e Locate possible transactions in the system source code.

Two possible transactions in the system are described in section
6.2.

e Free memory in both flash and RAM to make room for an

RTDB system and find out how much memory that is avail-
able.

This has been done by removing the diagnose functions. Sec-
tion 4.2.2 describes how to measure free memory and Appendix F
shows the resulting map files.

7.3 Future Work

This master’s thesis has brought the experimental platform for-
ward but there is still work to be done.

For example, mechanisms like a log, transaction numbers and
R, check can be prepared. These can be implemented even if
there is no RTDB at hand.

Problems to solve with the log is for example how to represent
different inputs since ordinary text should not be saved in the main
memory since it is a very limited resource. Also, some primitive
functions like handling the input of entries and removal of entries
can be implemented.

The mechanisms handling the unique transaction numbers
(transaction number pool) can also be implemented. Here func-
tions to get a new unique number and to return a number to the
pool is needed.
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There is also work to be done preparing the new system with
Rubus and thus put the periodic and aperiodic tasks into the red
and blue kernels [3]. This would also include setting up a new
compiler needed to compile the new system.
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Appendix A

Transaction Examples

This appendix shows two examples of transactions built with the
API designed in chapter 6. It is the same two transactions that
are described in section 6.2.

A.1 TempCompensationMaster

void TempCompensationMaster( ul6 pos )

{
ulé enr_fac;
u8 TransNr = 1;

while(BeginTransaction(&TransNr))

{
ul6é local_MAF_m_AirInletFuel;
816 local_In.n_Engine;

Read (&TransNr, MAF_m_AIRINLETFUEL,
&local_MAF_m_AirInletFuel, HARD);

Read (&TransNr, IN_n_ENGINE,
&local_In_n_Engine, HARD);

enr_fac = (ul6)MATu8_Xul6_Yul6(

63
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(sizeof (TCompCal.EnrFacAutXSP)
/sizeof (TCompCal .EnrFacAutXSP[0])),
(sizeof (TCompCal.EnrFacAutYSP)
/sizeof (TCompCal .EnrFacAutYSP[0])),

TCompCal.EnrFacAutXSP,
TCompCal.EnrFacAutYSP,

local _MAF_m_AirInletFuel,
local_In_n_Engine,

TCompCal .EnrFacAutMap ) ;

TCompProt .EnrFac =
(u16) (((TCompProt .T_EngEnrFac -
1000L) *enr_fac)/100L + 1000);

Write(&TransNr, FUELFAC_POS_MULFAC,
&TCompProt .EnrFac, 10);

CommitTransaction(&TransNr, 20);
}
}

A.2 CalcAirFlowFromArea

while(BeginTransaction(&TransNr))
{
816 local_In_p_AirInlet;
816 local_In_p_AirBefThrottle;
816 local_In_A_Throttle;
s16 local_In_T_AirInlet;
s16 local_AreaData_Q_Venturi;
816 local_Purge_Q_AirPrg;
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s16 local_In_p_AirAmbient;

ul6é local_MAF_p_InlBefQuote;
ulé local_MAF_Q_AirFromArea;

Read (&TransNr, IN_p_AIRINLET,
&local_In_p_AirInlet, SOFT);

Read (&TransNr, IN_p_AIRBEFTHROTTLE,
&local_In_p_AirBefThrottle, SOFT);

Read (&TransNr, IN_A_THROTTLE,
&local_In_A_Throttle, SOFT);

Read (&TransNr, IN_T_AirInlet,
glocal_In_T_AirInlet, SOFT);

Read (&TransNr, AREADATA_Q_VENTURI,
&local_AreaData_Q_Venturi, SOFT);

Read (&TransNr, PURGE_Q_AIRPRG,
&local_Purge_Q_AirPrg, SOFT);

Read (&TransNr, IN_p_AIRAMBIENT,
&local_In_p_AirAmbient, SOFT);

local _MAF_p_InlBefQuote =
(u16) ((local_In_p_AirInlet * 100L)
/ local_In_p_AirBefThrottle);

Write(&TransNr, MAF_p_INLBEFQUOTE,
&local _MAF_p_InlBefQuote, 100);

tmp_cd = MATul6_Xul6_Yul6(
sizeof (MAFCal.AreaXSP)/sizeof (ul6),
sizeof (MAFCal.PQuoteYSP)/sizeof (u16),
MAFCal.AreaXSP,
MAFCal .PQuoteYSP,
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local_In_A_Throttle,
local_MAF_p_InlBefQuote,
MAFCal.cd_ThrottleMap);

tmp_pdiff = TABul6_SPul6(
sizeof (MAFCal.PDiffSP)/sizeof (ul6),
MAFCal .PDiffSP,
local_MAF_p_InlBefQuote,
MAFCal.p_DiffCoeffTab);

tmp_temp = TABul6_SPs16(
sizeof (MAFCal.TCompSP)
/ sizeof(s16),
MAFCal.TCompSP,
local_In_T_AirImnlet,
MAFCal.T_TempCoeffTab) ;

(u32) (local_In_A_Throttle
* tmp_cd * 0x80L)
/ 0x0400L;

tmplu32

tmp2u32 = (u32) (tmp_pdiff
* local_In_p_AirBefThrottle
* 0x80L)

/ (tmp_temp * 0x0400L);

tmp3s32 = (832) ((tmp1u32 * tmp2u32)/0x4000L)
+ local_AreaData_Q_Venturi

+ local_Purge_Q_AirPrg;
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tmpAltitudeDiff = (ul6) (MAFCal.cd_Level);

if (tmpAltitudeDiff == 0)
tmpAltitudeDiff = 280;

MAFProt.AltCompPercent =
(s16) ( ((s32)MAFCal.cd_Level -
(s32)1local_In_p_AirAmbient)
*((s32)MAFCal.AltitudeMulFac
* 100)
/(s32) tmpAltitudeDiff);

if (MAFProt.AltCompPercent < 0)
MAFProt .AltCompPercent = O;

MAFProt.Q_AltitudeComp = (s16) (tmp3s32 *
MAFProt.AltCompPercent
/ 10000L) ;

local _MAF_Q_AirFromArea = (ul6) (tmp3s32 +
MAFProt.Q_AltitudeComp) ;

Write(&TransNr, MAF_Q_AIRFROMAREA,
&local_MAF_Q_AirFromArea, 100);

CommitTransaction(&TransNr, 40);
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Jouko Gaddevik , Software engineer at Saab Automobile AB
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Gunnar Jansson , Project Manager at Mecel AB in Amal. Con-
tact person at Mecel.

Anders Goras , Engineering Manager at Mecel AB in Amal

Sven-Anders Melin , Manager at Saab Automobile AB in S6d-
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Appendix C

Word and Abbreviation
Definitions

This appendix defines some words and abbreviations used in the
report.

CAN Controlled area network.

ECU Engine control unit, the box containing the main board for
the engine control system.

ECM Engine control module, is in this project the same thing
as ECU. ECM is used if there are several modules for one
engine (e.g. one per cylinder) but the system in this project
only has one module and it is called ECU in this report.

PPCAN Hardware adapter connected to the parallel port on the
PC. Used to connect a PC to a CAN.

API Application program interface.
avi Absolute validity interval.
EDF Earliest deadline first scheduling.

Engine Control System is a system that takes in sensor values
and produces actuator signals to control an engine.
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FPS Fixed priority scheduling.

PCB Process control block.

RTDB Real-time database.

RTOS Real-time operating system.

rvi Relative validity interval.

TCB Task control block.

TDC Top dead center is when a cylinder is at it’s top position.

The system Sometimes used instead of “the engine control” sys-
tem but means the same thing.

TPU Time processing unit is a subunit in the Motorola processor.
Transaction A transaction reads and writes data to a database.

VBS Value-based scheduling.

WCET Worst case execution time of a function is the longest
time it takes for it to finish.



Appendix D

Flowchart Definitions

The two flowcharts presented in figures 6.1 on page 51 and 6.2 on
page 56 are defined as follows:

Plain boxes are protected data that are not in the RTDB.
Boxes with thick lines are global data that are in the RTDB.

The shaded box is the variable created in the function de-
scribed by the flow.

The boxes with rounded corners are local variables in the
function.

The arrows represent that a data is used in the creation of
the data it is pointing at.
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Appendix E
The Platform

This appendix describes the hardware and software used around
the engine control system and its development. There is also a
section of how to do some important actions like compiling and
loading a new program into the ECU.

Upon request of our industrial partners, this appendix can not
be published in the official report.
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Appendix F

Memory Map

This appendix presents the SECTION SUMMARY of the file
build\list\Link1.map

before and after the removal of the diagnose functionality.
Upon request of our industrial partners, this appendiz can not
be published in the official report.
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Appendix G

Memory Address Definitions

This Appendix shows how the memory addresses are divided be-
tween flash and RAM.

Upon request of our industrial partners, this appendiz can not
be published in the official report.

79



80

APPENDIX G. MEMORY ADDRESS DEFINITIONS



Bibliography

[1] Upright Database Technology AB. http://developer.mimer.
com/. Internet, August 2002.

[2] Aleksandra TeSanovi¢, Dag Nystrom, Jorgen Hansson and
Christer Norstrom. Embedded databases for embedded real-
time systems: A component-based approach. Technical re-
port, Linkoping University Department of Computer Science,
Linkoping, Sweden and Malardalen University Department of
Computer Engineering, Visteras, Sweden, January 2002.

[3] Arcticus Systems AB. Reference Manual, Rubus OS, Decem-
ber 2001.

[4] Alan Burns and Andy Wellings. Real-Time Systems and Pro-
gramming Languages. Addison-Wesley, 3 edition, 2001.

[5] Giorgio C. Buttazzo. Hard Real-Time Computing Systems,
Predictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[6] Sleepycat Software Inc. http://www.sleepycat.com. Internet,
August 2002.

[7] TimesTen Inc. http://www.timesten.com. Internet, August
2002.

[8] ISIS. Real-Time Databases for Engine Control in auto-
mobiles, http://www.ida.liu.se/labs/rtslab/projects/ISIS
DB _ EngineControl/. Internet, August 2002.

81



82 BIBLIOGRAPHY

[9] James H. Anderson, Srikanth Ramamurthy, Mark Moir and
Kevin Jeffay. Lock-free transactions for real-time systems.
March 1996.

[10] Motorola Inc. Technical Summary 32-Bit Modular Microcon-
troller, MC68332, 1996.

[11] Lars Nielsen and Lars Eriksson. Course Material Vehicular
Systems. University of Linkdping, Sweden, 2001.

[12] Stefano Paraboschi Paolo Atzeni, Stefano Ceri and Riccardo
Torlone. Database Systems Concepts, Languages and Archi-
tectures. McGraw-Hill Publishing Company, 1999.

[13] Polyhedra Plc. http://www.polyhedra.com. Internet, August
2002.

[14] Krithi Ramamritham. Real-Time Databases. International
Journal of Distributed and Parallell Databases, February
1996.

[15] X. Song and J.W.S. Liu. How well can data temporal consis-
tency be maintained? Proceedings of the IEEE Symposium
on Computer-Aided Control Systems Design, 1992.



Index

58x cog-wheel, 23

absolute validity interval, 15
ACID, 14, 33

active database, 36

API, 8, 45

atomicity, 33

avi, 60

BeginTransaction, 45, 47, 49

CAN, 77
cog-wheel, 23
CommitTransaction, 46, 52, 53
compression step, 16
concurrency control, 38
optimistic, 38
pessimistic, 38
consistency, 34
crank-shaft, 22
cylinder, 16

database
ordinary, 13
real-time, 33

diagnose, 20

durability, 35

ECM, 77

83

ECU, 77

EDF, 78

engine, 16
exhaust step, 17
expansion step, 17

flash, 9, 19, 31
FPS, 12, 78

intake step, 16
interrupt handling, 24

ISIS, 7
isolation, 35

memory usage, 30
modules, 20

non-preemption, 12

PPCAN, 77

preemption, 12

process management, 24
process synchronization, 24, 26

RAM, 9, 31

rate monotonic, 12

Read, 45, 49, 51

relative validity interval, 15
RTDB, 77

rvi, 60



84 INDEX

semaphores, 26
slave processor, 19

Task Control Block, 25
temporal database, 35
timestamp, 61
transactions, 14, 38, 45, 56

VBS, 78

WCET, 12, 78
Write, 45, 51, 52



