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ABSTRACT
The amount of data handled by real-time and embedded
applications is increasing. Also, applications normally have
constraints with respect to freshness and timeliness of the
data they use, i.e., results must be produced within a dead-
line using accurate data. This calls for data-centric ap-
proaches when designing embedded systems, where data
and its meta-information (temporal correctness require-
ments etc) are stored centrally. The focus of this paper
is on maintaining data freshness in soft real-time embedded
systems and the target application is vehicular systems. The
contributions of this paper are three-fold. We (i) define a
specific notion of data freshness by adopting data similar-
ity in the value-domain of data items using data validity
bounds that express required accuracy of data, (ii) present
a scheme for managing updates in response to changes in
the data items; and (iii) present a new on-demand schedul-
ing algorithm, On-Demand Depth-First Traversal denoted
ODDFT, for enforcing data freshness by scheduling and ex-
ecuting update transactions. Performance experiments show
that, by using our updating scheme and introduced notion of
data freshness in the value-domain, computational work im-
posed by updates is reduced for both the new ODDFT and
well-established on-demand algorithms. Moreover, ODDFT
improves the consistency of produced results compared to
well-established algorithms.

Keywords
Real-time database, triggered updates, derived data items,
resource management, vehicular systems

1. INTRODUCTION
Real-time and embedded software increases in complexity

due to the larger amount of available resources such as mem-
ory, CPU power, and bus bandwidth. In addition, the re-
quired number of data items that need to be handled by the
software as well as the application programmer is immense
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in real-time applications. Data items may have requirements
on freshness, i.e., such data items should be updated often
enough to always have a reasonable fresh value. Further-
more, the results have to be finished in time, e.g., control
loop calculations have to be sent to actuators in time. Hence,
in such systems a real-time database is needed for the fol-
lowing reasons: (R1) to arrange the data items to ease the
programmers’ task, (R2) to maintain data items with fresh-
ness demands, and (R3) to support timely calculations of
important data items that have deadlines.

Dynamically changing systems can enter different states,
e.g., when a driver presses the gas pedal to accelerate (tran-
sient state) or when the driver drives at constant speed
(steady state). In our approach, we adjust the frequency
of recalculating data items (updates) due to state changes.
Update frequencies are dynamically adjusted based on how
rapidly sensor values change in the environment. Assigning
adequate update frequencies has a positive effect on the over-
all available CPU (as opposed to approaches where sensor
values are always updated when data is assumed to become
obsolete at the end of a constant time period, representing
the worst case). In resource-limited systems, like embed-
ded systems, it becomes increasingly important that the al-
gorithms maintaining data freshness consider adapting the
update frequencies to reduce the imposed workload.

The focus of this work is on maintaining data items
with freshness demands, particularly aimed at performance-
critical systems such as control units in automotive vehi-
cles. Previous work [12, 14, 17, 9] proposed fixed updating
schemes of data items to maintain fresh data, but the dy-
namic adaptability to new states is not achieved. The best
performance, when handling updates, is obtained when up-
dates are generated on-demand [2, 11]. Furthermore, Kuo
and Mok introduced a relation called similarity that reflects
that small changes to data items do not affect the end re-
sult [13]. Our course of action when constructing adaptive
algorithms for maintaining data freshness is to use the value-
domain, as the similarity relation, to define freshness and use
on-demand generation of updates. Similarity is already used
by application programmers, although in an ad hoc way [13].

The contributions of this paper are three-fold: (i) a no-
tion of data freshness in the value-domain of data items, (ii)
a scheme for handling changes in data items allowing for
adaptability to new states, and (iii) an on-demand schedul-
ing algorithm of updates using the introduced data fresh-
ness notion. The performance evaluation shows that the
proposed updating scheme and scheduling algorithm per-
form better than existing updating algorithms. Moreover,
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Figure 1: The EECU software is layered. Black
boxes are tasks and arrows represent the way data
is read and stored and the way sporadic tasks are
invoked by the scheduler.

the scheme and the algorithm can also adapt the workload
imposed by updates to the current state of the system.

The outline of the paper is as follows. An overview of an
engine control unit that requires efficient data maintenance
and enforcement of data freshness is presented in section 2.
We give a detailed problem description together with our
objectives in section 3. Section 4 introduces the freshness
notion, the scheme for managing updates, the ODDFT algo-
rithm, and well-established on-demand algorithms. Section
5 presents a performance evaluation. Related work is pre-
sented in section 6 and the paper is concluded in section
7.

2. OVERVIEW OF ENGINE CONTROL
SOFTWARE

Here we give an overview of a vehicular electronic control
system (ECU), which is our target application. A vehicle
control system consists of several ECUs connected through
a communication link normally based on CAN.1 A typical
example of an ECU is the engine electronic control unit (de-
noted EECU).2 The memory of the EECU is limited to 64kb
RAM, and 512kb Flash. The 32-bit CPU runs at 16.67MHz.
The EECU is responsible for controlling the engine. For ex-
ample the EECU controls the fuel injection and spark plug
ignition in order to have an optimal air/fuel mixture for the
catalyst, and to avoid knocking of the engine (knocking is a
state where the air/fuel mixture is misfired and can destroy
the engine). Data that the system reacts upon are collected
from the engine environment, e.g., temperature and air pres-
sure.

The system is divided into an I/O layer, a scheduler, and
applications as depicted in figure 1. The I/O handling rou-
tines read sensor and write actuator values. The scheduler
executes tasks periodically based on 5 msec time ticks and
sporadically based on crank angles, i.e., start times of spo-
radic tasks depend on the speed of the engine. The tasks
are executed on a best-effort basis implying that no hard
real-time deadlines are associated with the tasks. The soft-
ware is divided into applications, e.g., fuel, air, and diagno-
sis. The applications are further divided into tasks and they
communicate internally via application-wide shared memory

1We use the same notation as in [15], where each subsystem
is called an electronic control unit (ECU).
2This research project is done in collaboration with Fiat-GM
Powertrain.

and externally, i.e., between tasks in different applications,
via global shared memory. This is depicted as gd (global
data) and ad (application data) in figure 1. The total num-
ber of data items maintained by the system is in the order
of thousands. Data is derived from sensors and/or global
and application-wide data, i.e., a relationship between data
items exists. For derived data values to be operational, a
derivation has to be based on fresh and accurate data. To
guarantee freshness, data values are refreshed at fixed up-
dating frequencies or right before they are used.

3. PROBLEM DESCRIPTION
Current ad hoc solutions, such as application-specific data

areas and global data areas that use traditional data struc-
tures, make software maintenance a very expensive and com-
plicated task. Embedding database functionality in ECUs
for maintaining data would overcome the identified prob-
lems (see R1-R3) [15]. Furthermore, it is important, from
the perspective of memory and CPU consumption that in-
termediate results are stored only once and calculated only
when necessary.

A data-centric approach, where data is stored in a reposi-
tory aware of freshness and timeliness requirements, could be
the foundation of efficient data maintenance in an applica-
tion. In such a case information about data items and calcu-
lations is stored in one location and freshness and timeliness
requirements are handled by the storage system. In effect
all three requirements (R1-R3) for central storage, freshness,
and timeliness, are fulfilled.

The objective of this work is to propose and evaluate al-
gorithms for maintaining data freshness and timeliness of
transactions in a soft real-time system consisting of base
and derived data. Moreover, the objective is to utilize avail-
able computing resources efficiently such that unnecessary
updates are avoided.

The characteristics of the database and the system are
outlined next. A database consists of data items divided
into two sets: base items and derived items, denoted B and
D respectively. Base items reflect an external environment
and can be of two types as follows.

1. Continuous items that change continuously in the ex-
ternal environment, e.g., a temperature sensor. The
base items need to be fetched often enough to have a
current view of the environment.

2. Discrete items that change at discrete points in time
in the external environment, e.g., engine on or off.

A derived data item d is derived from base items and/or
other derived items, i.e., each derived data item has a read
set denoted R(d) that can have members from both B and
D. Hence, the value of a data item d is dependent on data
items in R(d). Additionally each data item x from R(d) has
a (possibly empty) read set R(x).

In this paper, base items are continuous items, i.e., the
sensor values of the EECU, and derived items are discrete
items as they are derived sporadically when needed. Trans-
actions in the system are computational tasks, e.g., the
derivation of a data item such as fuel amount to inject in a
cylinder, has a soft real-time deadline and consists of read
and write operations of data items and some computations.
Each transaction has a known worst-case execution time.
Base items and derived items have freshness requirements



that have to be fulfilled in all calculations where these data
items are used.

4. ALGORITHMS
This section describes our approach for maintaining data

freshness. We define data and transaction model in section
4.1. A data freshness notion based on the value-domain is
presented in section 4.2. Our scheme for adaptive handling
of updates of data items and a new scheduling algorithm of
needed updates are presented in section 4.3 and section 4.4,
respectively. We also review previous work on an on-demand
algorithm with different triggering criteria (section 4.5) and
extend those with two new triggering criteria (section 4.6).

4.1 Data and Transaction Model
The relationship between data items in the database is

represented in the form of a directed acyclic graph (DAG)
G = (V, E), with nodes V and edges E, which we denote
data dependency graph. A node in G represents one data
item, and a directed edge represents an item in a read set.
A data item d resides in a particular level based on the path
from the base items.

Definition 4.1. Let b be a base item and d a derived
item. Then the level of b is 1 and the level of d is the longest
path from a base item, i.e., level(d) = max∀x∈R(d)(level(x))+
1.

A continuous data item is said to be absolutely consistent
[16] with the entity it represents as long as the age of the
data item is below a predefined limit.

Definition 4.2. Let x be a data item (base or derived).
Let timestamp(x) be the time when x was created and avi(x),
the absolute validity interval, is the allowed age of x. Data
item x is absolutely consistent when:

current time − timestamp(x) ≤ avi(x). (1)

Note that a discrete data item is absolutely consistent until
it is updated. Since updates can be aperiodic, there is no
absolute validity interval on a discrete data item.

Relative consistency on a set of data items states the re-
quirements on the data items to let derivations produce fresh
data items. In this paper we adopt the following view of rel-
ative consistency [11].

Definition 4.3. Let x be a data item and V I(x) be the
interval when x is valid. If x is a discrete data item that is
currently valid, then the end time in V I(x) is set to ∞. A
set of data items W is relatively consistent if

T{V I(xi)|xi ∈
W} �= ∅.
Definition 4.3 implies that a result derived from W is fresh
as long as all data items in W are fresh at the same time,
i.e., when the intersection of their validity intervals is not
empty.

A transaction in this paper has zero or more read oper-
ations and one write operation writing one data item, i.e.,
a transaction is represented by one node in G that is the
data item it writes. Furthermore, transactions are divided
into: (i) write-only sensor transactions (ST) updating base
items to give a current view of the environment, (ii) user

transactions (UT) generated by the application and consist-
ing of several read operations and one write operation, and
(iii) triggered transactions or triggered updates (TU) that
are generated by the database system to update data items
read by the UTs. The distinction between the latter two is
done for evaluation purposes. We denote a user transaction
as τUT , and the data item it derives as dUT .

4.2 Data Validity Bounds
Definition 4.2 defines freshness as an age, i.e., during a

certain interval of time all possible values of a data item can
be summarized by the value that is already stored in the
database. When a data item gets too old, its value can still
be within a tacitly accepted bound. The required update is
thus unnecessary. Another way to define freshness is to use
the bound on the value of a data item defined as follows.

Definition 4.4. Each pair (d, x) where d is a derived
data item and x is an item from R(d) has a data validity
bound, denoted δd,x, that states how much the value of x can
change before the value of d is affected.

No recalculations of derived data items are needed as long as
the values of used data items are within acceptable bounds
given by definition 4.4 from the used values. Hence, the
values are considered to be similar [13]. The freshness of a
data item with respect to one of the read set members is
defined as follows.

Definition 4.5. Let d be a derived data item, x a data
item from R(d), and vt0

x , vt
x be values of x at times t0 and

t, respectively. Then d is fresh with respect to x when |vt0
x −

vt
x| ≤ δd,x.

Building on the definitions 4.4 and 4.5, the freshness of a
data item can be defined as follows.

Definition 4.6. Let d be a data item derived at time t0
using values of data items in R(d). Then d is fresh at time
t if it is fresh with respect to all data items from R(d), i.e.,

^

∀x∈R(d)

{|vt0
x − vt

x| ≤ δd,x} (2)

evaluates to true.

4.3 Scheme of Base Item Updates and Approx-
imation of Error

In this section we describe our scheme for updating base
items and annotating derived data items that need to be
updated. The scheme is divided into three steps. The first
step considers base items while the second and third consider
derived data items.

In the first step, all base items are updated at frequencies
derived from absolute validity intervals (see definition 4.2).
Note that all updates of derived data items originate from
changes in the base items. When a base item b is updated its
new value can affect the value of its children in G, i.e., those
data items in level 2 having b in their read sets. Thus, when
b is updated the freshness (see definition 4.6) is checked for
each child of b.

The second step is done if the freshness check of a child
d of base item b evaluates to false. In this step, data item
d and all its descendants are marked as possibly changed by
setting a flag changed to true. For example, let us assume
that the first step applied on data illustrated in figure 2



discovered that an update on b3 makes d2 stale. Then in
the second step d2 together with its descendants d4–d6 are
marked as possibly changed by setting their flag changed to
true. Although derived data items d4, d5, and d6 are also
marked as changed we cannot determine if d4 and d5 are
really stale until d2 is recalculated using the new value of b3

(for determining staleness of d6 a derivation of d4 is needed
with the new value of d2). Hence, a recently derived data
item is likely to still be fresh even though it is marked as
changed, e.g., data items d4–d6. A time-dependent function
and a threshold can, together with changed, determine if a
data item is really stale. The function we use is based on
the change in the value of the data item at a time t given
by error(x, t). Hence, a data item d is then stale when:

∃x ∈ R(d)((changed(d) = true)∧ (error(x, t) > δd,x)). (3)

For a data item d4 to be considered stale at time t1 then
changed has to be true, and the error of all parents need to
be outside their data validity bounds, i.e.,

changed(d4) ∧ error(d2, t1) > δd4,d2 .

In the third step, using equation (3) we deduce whether a
data item is stale every time it is accessed.

When a derived data item d is updated the data freshness
is checked for all its children, and if necessary, changed on
a child and its descendants is set to true as described above
for base items.

4.4 Data Validity Bound Aware Algorithms
for Scheduling of Updates

We now introduce a new algorithm On-Demand Depth-
First Traversal, denoted ODDFT, which schedules triggered
updates based on data validity bounds. The main idea is to
update a data item only when it is necessary to do so. Hence,
the algorithm is able to adapt the updating frequency to the
current changes in the external environment.

We use the scheme presented in section 4.3 to keep base
items fresh and sets changed of derived data items to true
when a base or derived item changes. Moreover, a user trans-
action arrives in the system in one of two queues: high or
low; high for important transactions, such as spark ignition,
and low for all other transactions. The UT creates a derived
data item that is sent to an actuator. On the arrival of a
UT a schedule of triggered updates is generated based on
the data dependency graph, flag changed, and the approxi-
mated error error(d, t).

In this paper we set t of error(x, t) in equation (3) to
the deadline of τUT to make sure that all data items are
fresh during the execution of τUT . This time is called the
freshness deadline. The relative consistency is according
to definition 4.3, since all members of R(dUT ) have to be
valid at the same time and until deadline of τUT . Thus, the
intersection of the validity intervals spans the execution of
τUT (see [7] for an extensive discussion).

Let us now describe the algorithmic steps of ODDFT used
to schedule triggered updates. ODDFT is a recursive algo-
rithm that works as follows.3

1. Construct a graph G′ by reversing the directions of all
edges in G.

3Presentation of pseudo-code and a timing analysis see [7].

2. Assign deadline(τUT ) − releasetime(τUT ) time units
to the schedule.

3. Traverse G′ in a depth-first manner as follows starting
from di = dUT .

(a) Determine stale data items from the set R(di) us-
ing equation (3). Prioritize4 stale data items.

(b) If there is time left in the schedule, then put the
stale data item dj ∈ R(di) with highest priority
in the schedule; otherwise stop the algorithm for
this branch. The schedule is a last in first out
(LIFO) queue and the latest possible release time
of an update is stored in the schedule.

(c) If there are no stale data items, then stop traver-
sal of this branch.

(d) Go to step 3 and use dj as the reached node.

Triggered updates are picked from the schedule and exe-
cute with the same priority as τUT . If current time is larger
than the latest possible release time of a triggered update in
the schedule, then skip the update.

To simplify the scheduling algorithm there is no check to
see if a triggered update for a data item makes the data
item fresh until freshness deadline. Further, any dupli-
cates of triggered updates are removed assuming the re-
maining triggered update makes the data item fresh until
freshness deadline.

An example is given in figure 2. A UT deriving and using
data item d6 starts to execute. Assume all ancestors need
to be updated. Triggered updates are added at the head of
the schedule when a needed update is found. G′ is traversed
in a depth-first manner. Note that a triggered update for d1

is put twice in the queue, because d1 is a parent both for d3

and d4. During scheduling, duplicates are removed and the
final schedule looks as the bottom schedule in figure 2.
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Figure 2: Example of an ODDFT schedule.

4.5 On-Demand Algorithms
Here we review an on-demand algorithm for triggered up-

dates presented in [3]. Generally, an on-demand algorithm
checks a triggering criterion when a particular resource is
accessed and an action is taken if the criterion is fulfilled.
For ODDFT the resource is the derivation of a data item
and the triggering criterion is equation (3).

4Can be done by calculating a normalized error for each stale
value by taking error(d, freshness deadline)/vt0

d . Highest
normalized error has highest priority.



In [3] the basic triggering criterion is inequality (1) from
definition 4.2, i.e., the age of a data item. A triggering crite-
rion is checked in each read operation, and if it is evaluated
to false a triggering update is generated that updates the
data item before τUT continues to execute.

Ahmed and Vbrsky introduce three different triggering
criteria (referred to as options in their paper) of how the
triggering criterion could work. These focus on either being
consistency-centric or throughput-centric. They are [3]:

• No option. This is the same as the basic triggering
criterion. This option is consistency-centric as a trig-
gered update is always generated when a stale data
item is encountered.

• Optimistic option. This checks to decide if the con-
ceivable triggering update can fit in the available slack
time. This option is throughput-centric as triggered
updates are stopped if they cannot fit in the available
time, and the user transaction is executed even though
stale values are read. The user transaction is more im-
portant than the updates.

• Knowledge-based option. The check now also includes
remaining response time of the user transaction, and
the triggering update has to fit in the time the remain-
ing response time has been accounted for. This check
is more accurate than the one in the optimistic option
and, thus, user transactions have the chance of being
committed before the deadline.

The three proposed triggering algorithms are abbreviated
as shown in the column “Age at current time” in table 1.

4.6 Extension of On-Demand Algorithms
The triggering criteria of the on-demand algorithm (see

4.5) triggers updates based on current age and a validity
interval. With freshness based on data validity bounds, it
is possible to trigger updates based on value instead. Fur-
thermore, the triggering criterion can base the age of a data
item, not at the current time, but at the deadline of τUT as
ODDFT does. Thus, we have two new types of triggering cri-
teria: (i) the data validity bound criterion triggers an update
of d if equation (3) is true, and (ii) the age criterion triggers
an update of d if deadline(τUT ) − timestamp(d) > avi(d).
The on-demand algorithms are denoted as in table 1. The
columns “Age at deadline” and “Value” are our extensions.

Table 1: Abbreviations of triggering algorithms.
Option Domain

Time Value
Age at Age at
current time deadline

No OD OD AD OD V
Optimistic ODO ODO AD ODO V
Knowledge- ODKB ODKB AD ODKB V
based
AD: Age at Deadline.
V: invalid based on Value.

5. PERFORMANCE EVALUATION
This section describes the simulator and the simulator

setup used in our experiments. The following simulations
are conducted and evaluated:

• Consistency of user transactions: Number of com-
mitted UTs, number of valid committed UTs, and
number of generated triggered updates are used to in-
vestigate the throughput and consistency of UTs.

• Transient and steady states: Two different states
are modeled. A transient state that lasts for 15–20
sec, where the sensor values change significantly and
a steady state that lasts for 60 sec where the sensor
values do not change much. This test for adaptability
to state changes. The number of generated triggered
updates for OD, ODKB V, and ODDFT is measured.

5.1 Simulator Setup
The simulator used is a discrete-event simulator called

RADEx++ [8], which is setup to function as a real-time
main-memory database. Two queues are used: STs in the
high priority queue, and UTs in the low priority queue. HP-
2PL [1] is used as concurrency control protocol and trans-
actions are scheduled based on earliest deadline first (EDF)
[4]. The updating frequency of base items is determined by
their avi. An avi is also assigned to each derived data item
to determine freshness for on-demand algorithms with trig-
gering criteria using the time-domain. UTs are aperiodic
and the arrival times of UTs are exponentially distributed.
A ST only consists of a write operation writing data item
bST . UTs consist of read operations, computational work,
and finally a write operation of data item dUT . The num-
ber of read operations is the cardinality of read set R(dUT ).
The WCET of a transaction is determined by the number of
operations and the maximum execution time of these. For
ST the single write operation always takes STProcCPU time.
The maximum execution time for operations in a UT is UT-
ProcCPU. During simulation each operation in a UT takes a
uniform time to execute, which has an average determined
during initialization of the database. This randomness mod-
els caches, pipelines, but also the usage of different branches
of an algorithm. The deadline of a transaction is its WCET
times a uniformly chosen value in the interval [1,7]. The
derived data item a transaction updates is randomly chosen
from the set of all derived data items.

Values of the data items are simulated with the parameter
max_change, which is individual for each data item and it
says how much a value can change during its avi. When
a new value for a data item is written to the database, the
stored value is increased with an amount that is proportional
to U(0,max_change), where max_change and avi are derived
from the same distribution U(0,800). δi,j , where j is a parent
of i, is given by avi(j) times factor; factor equal to one
implies that the avis give a good reflection of the changes
of values, whereas if factor is greater than one, the avis
are pessimistic, i.e., the values of data items are generally
fresh for a longer time than the avis indicate. The database
parameters and the settings are given in table 2.

A database is described by |B|× |D|. The directed acyclic
graph giving the relationships among data items is randomly
generated once for each database, i.e., the same relationships
are used during all simulations. In our experiments we use
a 45 × 105 database, implying that we have 150 data items



Table 2: Parameter settings for database simulator.
Parameter Explanation Setting
avi absolute validity interval U(200,800) msec
δi,j data validity bound for i factor × avi(j)
max_change max change of a data

item during its avi
U(200,800)

STProcCPU max execution time of
ST operation

1 msec

UTProcCPU max execution time of
UT operation

10 msec

in the database; the ratio of base items and derived items is
0.3. Moreover, cardinality of a read set R(d) is 6, and the
likelihood that a member of R(d) is a base item is 0.6. The
error function is defined as: error(x, t) = t− timestamp(x),
since max_change and avi are taken from the same distribu-
tion.

5.2 Experiment 1: Consistency of User Trans-
actions

The goal of this experiment is to investigate how many
valid user transactions there are for different triggering cri-
teria. Validity is measured either as age (see definition 4.2),
or data validity bound (see definition 4.6). The simulator
is executed for 100 sec of simulated time. Each triggering
criterion is simulated five times for arrival rates from 0 to
100 transactions per second with steps of 5 transactions.

At an arrival rate of 50 UTs/sec, the number of commit-
ted transactions can be found in table 3. At higher arrival
rates, the number of committed and valid committed UTs
do not increase (or increase only slightly) see [7], due to high
load; there is not enough time to execute all transactions.
This can be seen in figure 4 where the throughput-centric
algorithms skip triggered updates to a greater extent than
the consistency-centric algorithms.
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Figure 3: Ratio of valid committed user transac-
tions. 95% confidence interval is ±0.059.

Table 3: Ratio of valid committed user transactions
and committed user transactions at arrival rate of
50 UTs/sec. 95% confidence interval is given.

Alg. comm UTs valid ratio
comm. UTs

OD 2818.0 ± 26.9 2015.0 ± 56.6 0.72
ODKB V 3950.8 ± 66.7 2245.6 ± 37.2 0.57
ODDFT 2796.2 ± 78.3 2332.6 ± 73.4 0.83

When triggered updates are skipped the consistency is
degraded. Figure 3 shows the ratio of number of valid com-

mitted UT and number of possible committed UT, which
is taken from a simulation where no updates are gener-
ated. Validity is measured by definition 4.6. ODDFT has
the largest number of valid committed UT up to an ar-
rival rate of 50 UTs per second. Above 50 UTs per sec-
ond no updating scheme does better than the no updates
scheme, because there is no time to execute the updates.
OD has less valid committed UTs than throughput-centric
options, but from table 3 we can see that the ratios of num-
ber of valid committed UTs and committed UTs are higher
for consistency-centric algorithms, i.e., OD and ODDFT,
than for throughput-centric, i.e., ODBK V. This shows that
OD has a better consistency among committed UTs than
throughput-centric options and ODDFT has the best con-
sistency among all updating algorithms.

5.3 Experiment 2: Transient and Steady States
At transient states the base items might change frequently

which implies more frequent updates of the derived data
items. At steady states the changes of base items are less fre-
quent, and, thus, the derived items need to be updated less
frequent. This experiment shows that value-aware5 trigger-
ing mechanisms can adapt to these changes, but avi-aware6

triggering mechanisms, at least for static avis, cannot.
The number of generated triggered updates during a sim-

ulation is counted. The simulation is conducted as fol-
lows: the arrival rate is 30 UTs/second, the size of the
database is 45 × 105, and 100 sec is simulated. Two pa-
rameters are introduced: change_speed_of_sensors and
change_speed_of_user_trans. Data items change with
the following speed: N(max_change/change_speed_of_X,
max_change/(2×change_speed_of_X), where X is substi-
tuted with sensors or user_trans. For the first 15
sec, change_speed_of_sensors is set to 1.2 which gives
rapid changes (transient state), from 15 sec to 75 sec
change_speed_of_sensors is set to 50 (steady state), and
from 75 sec the system enters again a transient state where
change_speed_of_sensors is set to 2.0. During the simula-
tion change_speed_of_user_trans is set to 2.0.

Figure 5 contains the simulation results. The horizontal
lines represent the average number of generated triggered
updates during the indicated interval. ODDFT clearly gen-
erates less number of triggered updates during the interval
15–75 sec than OD, which is not aware of that base items
live longer in this interval. ODKB V, which uses a value-
aware triggering criterion also has less generated triggered
updates in steady state. The load on the CPU is thus lower
for ODDFT during a steady state than OD, and the extra
load for OD consists of unnecessary triggered updates, which
can be seen from the fact, with a 95% confidence interval,
that ODDFT has 2092.2 ± 97.0 valid committed UTs and
OD has 1514.2 ± 24.6 even though OD generates more up-
dates., ODKB V has 2028±9.3 valid committed UTs, which
on average is less than for ODDFT.

5.4 Summary and Discussion
It has been shown that value-aware triggering criteria can

adapt to state changes of the system (ODDFT and ODKB V
in the simulations). ODDFT lets the highest number of
valid user transactions to commit up to an arrival rate of
50 user transactions per second, i.e., the consistency is high

5Using data freshness in the value-domain.
6Using data freshness in the time-domain.
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Figure 5: Number of triggered updates for different states.

among committed user transactions, but the total number
of committed user transactions is considerable less than for
throughput-centric criteria, e.g., the knowledge-based op-
tion. If it is acceptable to derive values that use stale
data, then optimistic and knowledge-based options are bet-
ter suited than ODDFT, but if it is important to always
use fresh values then ODDFT gives the best results. One
way to increase the throughput of UT at high arrival rates
for ODDFT is to use a feedback control process to adjust
the permissible time for updates (that is initially investi-
gated in [7]). With this scheme it should be possible to have
the benefits of a consistency-centric triggering mechanism as
ODDFT at low arrival rates and the benefits of throughput-
centric triggering mechanisms at high arrival rates.

6. RELATED WORK
For hard real-time systems static period times for updates

and calculations are derived to guarantee freshness and time-
liness of produced results [12, 14, 17, 9]. If unnecessary up-
dates should be avoided, static period times are not feasible.
In this paper we are considering a soft real-time system and
the objective is to achieve a high effective utilization of the
CPU. Hence, static period times are not appropriate. Mode
changes could be used with different updating frequencies
of data items in each mode (see [16]). The proposed updat-
ing scheme for freshness maintenance does not need mode
changes since all modes are covered by the data validity
bounds, which represents the updating frequencies in each
mode.

Kuo and Mok [13] introduced a binary relation called sim-
ilarity to capture the fact that small changes in a value of

a data item might not affect the end result. Their work on
similarity found different applications in real-time systems
[13, 9]. In these applications a fixed time interval called
a similarity bound is used, i.e., similarity is applied to the
time-domain much like an absolute validity interval (see sec-
tion 4.1). The similarity bound states that writes to the
same data item within the prescribed time interval are sim-
ilar. However, in our work we use a data similarity such
that data freshness can be stated and used in the value-
domain (in contrast to time-domain), i.e., we use data va-
lidity bounds in the value-domain (see section 4.2). By using
data validity bounds we are able to construct an updating
scheme that automatically adapts the required number of
updates to the current state of the system, which is not pos-
sible with fixed time intervals such as similarity bounds and
absolute validity intervals (avi).

Datta and Viguier [5] describe transaction processing for
rapidly changing systems, where base item updates are com-
mitted even though the updates do not affect other data
items, i.e., unnecessary updates are executed. Moreover, in
their work calculations only depend on base items, i.e., in-
termediate results are not considered, whereas in our work
arbitrary dependencies among data items are allowed.

Flexible period times are used in [10] to adjust period
times between two limits by a feedback controller such that
the workload of updates is lessened when the miss ratio of
transactions is above a specific reference. Here all produced
values are valid if the updating frequency lies within the
bounds, but similarity of data values is not considered at
all. Thus, unnecessary updates can still happen if the value
is similar between updates.



Data-deadline and forced wait is used in [18] to achieve
freshness at the deadline of a user transaction as in our
work indicated by freshness deadline, but no derived data
is used, only base data that is updated periodically, i.e.,
data-deadline and forced wait cannot deal with derived data.
Our work considers derived data where a derived data item
can be derived from other derived data items.

7. CONCLUSIONS AND FUTURE WORK
This paper addresses the maintenance of data in an em-

bedded real-time system using a central storage. In par-
ticular, algorithms for keeping data fresh are proposed and
evaluated. A scheme for generating necessary updates that
is based on data validity bounds and that does not allow
updates as long as values are considered similar. Similarity
is defined elsewhere as a relation in the value-domain of data
[13]. However, in the shown applications of the similarity re-
lation a fixed time interval, similarity bound, is introduced
meaning that data freshness is moved to the time-domain.
In this work the updating scheme works in the value-domain
of data giving good performance when it comes to number
of needed updates compared to static time intervals.

Furthermore, well-known on-demand algorithms are ex-
tended with two new triggering criteria: (i) to use data va-
lidity bounds, and (ii) to measure the age of a data item
from the deadline of the user transaction.

Simulations are conducted and the proposed updating
scheme and a new scheduling algorithm (ODDFT) are com-
pared to well-known on-demand algorithms. It is found
that ODDFT maintains consistency among committed user
transactions well. ODDFT also adapts updating frequencies
to the current state of the system. Hence, available comput-
ing resources are better utilized compared to when static
updating frequencies are used. It is also shown that the
well-known on-demand algorithms can adapt updating fre-
quencies to the current state by using data validity bounds.
Consistency among committed user transactions is highest
for ODDFT.

Our current work focuses on integrating the ODDFT trig-
gering mechanism together with an existing database [6] in
an engine electronic control unit. This should increase the
understanding of the overhead costs of CPU and memory. It
also seems that developing validity-aware concurrency con-
trol protocol should have merits in increasing data consis-
tency and concurrency of transactions.
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