Abstract

Increasing complexity of real-time systems and demands for enabling
their configurability and tailorability are strong motivations for apply-
ing new software engineering principles such as aspect-oriented and
component-based software development. The integration of these two
techniques into real-time systems development would enable: (i) effi-
cient system configuration from the components in the component li-
brary based on the system requirements, (ii) easy tailoring of compo-
nents and/or a system for a specific application by changing the behavior
(code) of the component by aspect weaving, and (iii) enhanced flexibil-
ity of the real-time and embedded software through the notion of system
configurability and component tailorability.

In this thesis we focus on applying aspect-oriented and component-
based software development to real-time system development. We pro-
pose a novel concept of aspectual component-based real-time system de-
velopment (ACCORD). ACCORD introduces the following into real-time
system development: (i) a design method that assumes the decomposi-
tion of the real-time system into a set of components and a set of aspects,
(ii) a real-time component model denoted RTCOM that supports aspect
weaving while enforcing information hiding, (iii) a method and a tool
for performing worst-case execution time analysis of different configura-
tions of aspects and components, and (iv) a new approach to modeling
of real-time policies as aspects.

We present a case study of the development of a configurable real-
time database system, called COMET, using ACCORD principles. In the



COMET example we show that applying ACCORD does have an impact
on the real-time system development in providing efficient configuration
of the real-time system. Thus, it could be a way for improved reusability
and flexibility of real-time software, and modularization of crosscutting
concerns.

In connection with development of ACCORD, we identify criteria
that a design method for component-based real-time systems needs
to address. The criteria include a well-defined component model for
real-time systems, aspect separation, support for system configuration,
and analysis of the composed real-time system. Using the identified
set of criteria we provide an evaluation of ACCORD. In comparison
with other approaches, ACCORD provides a distinct classification
of crosscutting concerns in the real-time domain into different types
of aspects, and provides a real-time component model that supports
weaving of aspects into the code of a component, as well as a tool for
temporal analysis of the weaved system.

Keywords: aspect-oriented software development, component-based
software development, real-time systems, embedded systems, database
systems, aspects, components, worst-case execution time
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Chapter 1

Introduction

This chapter is outlined as follows. In section 1.1 we motivate the need
for applying new software engineering principles in real-time systems
development. Our research goals are formulated in section 1.2, followed
by the main contributions of this thesis in section 1.3, and our vision of
the long term goals in section 1.4. Finally, section 1.5 gives a description
of the thesis structure.

1.1 Motivation

Real-time and embedded systems are widely used in the modern society
of today. However, successful deployment of embedded and real-time sys-
tems depends on low development costs, high degree of tailorability and
quickness to market [94]. Thus, the introduction of the component-based
software development (CBSD) into real-time and embedded systems de-
velopment offers significant benefits, namely:

e configuration of embedded and real-time software for a specific
application using components from the component library, thus
reducing the system complexity as components can be chosen to
provide the functionality needed by the system;

e rapid development and deployment of real-time software as many
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software components, if properly designed and verified, can be
reused in different embedded and real-time applications; and

e evolutionary design as components can be replaced or added to
the system, which is appropriate for complex embedded real-time
systems that require continuous hardware and software upgrades.

However, there are aspects of real-time and embedded systems that
cannot be encapsulated in a component with well-defined interfaces as
they crosscut the structure of the overall system, e.g., synchronization,
memory optimization, power consumption, and temporal attributes.
Aspect-oriented software development (AOSD) [45] has emerged as a
new principle for software development that provides an efficient way of
modularizing crosscutting concerns in software systems. AOSD allows
encapsulating crosscutting concerns of a system in “modules”, called as-
pects. Applying AOSD in real-time and embedded system development
would reduce the complexity of the system design and development, and,
thus, provide means for a structured and efficient way of handling cross-
cutting concerns in a real-time software system.

Hence, the integration of the two disciplines, CBSD and AOSD, into
real-time systems development would enable: (i) efficient system config-
uration from the components and aspects from the library based on the
system requirements, (ii) easy tailoring of components and/or a system
for a specific application, i.e., reuse context by changing the behavior
(code) of the component by applying aspects. This results in enhanced
flexibility of the real-time and embedded software through the notion
of system configurability and component tailorability. However, due to
specific demands of real-time systems, applying AOSD and CBSD to
real-time system development is not straightforward. For example, to be
able to apply AOSD or CBSD in real-time system development, we need
to provide methods for analyzing temporal behavior of individual aspects
and components as the development process of real-time systems has to
be based on a software technology that supports predictability in the
time domain. Furthermore, if we want to use both AOSD and CBSD in
real-time system development, we need to provide methods for efficient
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temporal analysis of different configurations of components and aspects,
i.e., components weaved with aspects. Additionally, CBSD assumes a
component to be a black box, where internals of components are not vis-
ible, while AOSD promotes white box components, i.e., the entire code of
the component is visible to the component user. Thus, to utilize benefits
of both technologies, we need to provide support for aspect weaving into
component code, while preserving information hiding of a component to
the largest degree possible.

1.2 Research Challenges

To successfully apply software engineering techniques such as AOSD and
CBSD when developing real-time systems, a number of research chal-
lenges need to be addressed. In this thesis we focus on the following:

e issues that should be addressed and the criteria that should be en-

forced by a design method to allow integration of the two software
engineering techniques into real-time systems;

e characteristics of a component model that can capture and adopt
principles of the CBSD and AOSD in a real-time and embedded
environment;

e relationship between components and tasks in real-time systems,
with a focus on questioning the traditional view of real-time sys-
tems as systems composed out of tasks only; and

e methods and tools for temporal analysis of different configurations
of aspects and components in a real-time system.

Investigating and resolving these issues would enable successful appli-
cation of the ideas and notions from software engineering approaches,
namely AOSD and CBSD, to the real-time system development.

1.3 Research Contributions

Our main contributions can be summarized as follows.



4 1.3. RESEARCH CONTRIBUTIONS

e A novel concept of aspectual component-based real-time
system development (ACCORD). Through the notion of as-
pects and components, ACCORD enforces the divide-and-conquer
approach to complex real-time system development. ACCORD
supports a decomposition process with the following two sequen-
tial phases: (i) decomposition of the real-time system into a set of
components and a set of aspects, corresponding to the structural
view of the components and the real-time system, and (ii) structur-
ing of tasks, corresponding to the temporal view of the components
and the real-time system.

e A real-time component model denoted RTCOM that describes
what a real-time component, supporting different types of aspects
and enforcing information hiding, should look like.

¢ A method and a tool for worst-case execution time analysis
of different configurations of aspects and components.

e A set of criteria for designing component-based real-time
systems, including: (i) a real-time component model that sup-
ports mapping of components to tasks, (ii) separation of concerns
in real-time systems in different types of aspects, and (iii) composi-
tion support, namely support for configuration and analysis of the
composed real-time software.

We developed ACCORD with hard real-time systems in mind; the
approach is also general enough to be used for building both firm and soft
real-time systems. In this thesis we focus only on hard real-time systems,
and present a case study that shows how ACCORD can be applied to
the design and development of a configurable embedded (hard) real-time
database, called COMET. Using the COMET system as an example,
we introduce an alternative way of handling concurrency in a real-time
database system, where concurrency is modeled as an aspect crosscutting
the overall system.
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1.4 Goals

The work presented in this thesis is part of the long term goals we en-
vision fulfilling in the future. Therefore, it is valuable to illustrate the
long term goals clearly and to express the current contributions in terms
of the extent to which we came in fulfilling these goals. Our long term
goals are the following.

e The complete ACCORD method for aspectual real-time system
development should:

— follow the development cycle of real-time systems from the
requirements specification to the implementation and verifi-
cation of the system on the target platform,

— provide a formalized design framework to exert sound system
design cycle, and

— provide automated tool support for each step of the design
process.

We want to verify the method by fully applying it to the develop-
ment of a real-world real-time system.

e The component model should provide support for: (i) run-time
environment of real-time systems, including support for specifying
the resource, temporal, and memory requirements of the compo-
nent for the target run-time environment, (ii) aspect weaving into
the component code, (iii) formal specification and verification of
component properties, e.g., worst-case execution time, (iv) com-
position process in terms of rules for component composition and
interaction, and (v) generalizing to other application domains.

We have developed ACCORD and RTCOM and, in the current stage of
their development, they have the following characteristics.

e ACCORD follows the development cycle from system design to the
verification. The ACCORD design method, in its current form, is
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not fully formal, and the ACCORD development process partially
addresses the verification of the system by providing a support for
temporal analysis of the system.

We have applied ACCORD to the COMET system development.
While the current COMET implementation does not support all
ACCORD notions, it provides a good experimental platform for
judgment of ACCORD success so far.

e RTCOM supports: (i) a subset of temporal requirements, (ii) func-
tional requirements in the form of different types of functional in-
terfaces, (iii) aspect weaving into component code, and (iv) semi-
formal specification. However, it does not have support for com-
position rules and generalization to other application domains.

1.5 Thesis Outline

The thesis has the following outline. Chapter 2 gives the background and
defines the basic terminology used throughout the thesis. In chapter 3
we provide a set of criteria that a design method for the component-
based real-time systems should fulfill. In chapter 4 we introduce the
basic constituents of ACCORD, including a design method, a real-time
component model, and a method for analyzing temporal behavior of the
systems built on the ACCORD concept. We provide an evaluation of AC-
CORD based on the previously identified criteria. Chapter 5 presents
the application of ACCORD to development of the COMET system.
Chapter 6 contrasts ACCORD with current state of the art research in
component-based and aspect-oriented real-time and database develop-
ment. Finally, contributions and conclusions, together with directions
for future research, are presented in chapter 7.
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Chapter 2

Background

This chapter introduces the terminology used throughout the thesis.
First, a background to real-time systems is presented in section 2.1. Basic
notions in component-based and aspects-oriented development are intro-
duced in sections 2.2, and 2.3, respectively. Main differences between
components in component-based and aspect-oriented software develop-
ment are discussed in section 2.4. In section 2.5 we give an overview of
software engineering techniques that primarily focus on software compo-
sition, thus giving a preview of the future trends in software engineering.
This work has been carried out as a part of the COMET project in which
a configurable embedded real-time database has being built. Therefore,
the chapter concludes with a discussion on embedded real-time database
systems in section 2.6.

2.1 Real-Time and Embedded Systems

Digital systems can be classified in two categories: general-purpose sys-
tems and application-specific systems [41]. General-purpose systems can
be programmed to run a variety of different applications, i.e., they are not
designed for any special application, as opposed to application-specific
systems. Application-specific systems can also be part of a larger host
system and perform specific functions within the host system [22], and
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such systems are usually referred to as embedded systems. An embed-
ded system is implemented partly on software and partly on hardware.
When standard microprocessors, micro-controllers or DSP processors are
used, specialization of an embedded system for a particular application
consists primarily on specialization of software. An embedded system is
required to be operational during the lifetime of the host system, which
may range from a few years, e.g., a low end audio component, to decades,
e.g., an avionic system. The nature of embedded systems also requires
the computer to interact with the external world (environment). They
need to monitor sensors and control actuators for a wide variety of real-
world devices. These devices interface to the computer via input and
output registers and their operational requirements are device and com-
puter dependent.

Most embedded systems are also real-time systems, i.e., the correct-
ness of the system depends both on the logical result of the computation,
and the time when the results are produced [92]. We refer to these sys-
tems as embedded real-time systems'. Embedded real-time systems are
the focus of this thesis and, if not otherwise specified, when referring to
real-time systems, we refer to embedded real-time systems.

In the last years the development and deployment of embedded and
real-time systems has increased dramatically. Below follows a list of
examples where embedded real-time systems can be found [21].

e Vehicle systems for automobiles, subways, aircrafts, railways, and
ships.

e Traffic control for highways, airspace, railway tracks, and shipping
lines.

e Process control for power plants and chemical plants.

e Medical systems for radiation therapy and patient monitoring.

!We distinguish between embedded and real-time systems, since there are some
embedded systems that do not enforce real-time behavior, and there are real-time
systems that are not embedded.
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e Military uses such as advanced firing weapons, tracking, and com-
mand and control.

e Manufacturing systems with robots.
e Telephone, radio, and satellite communications.

e Multimedia systems that provide text, graphic, audio and video
interfaces.

e Household systems for monitoring and controlling appliances.

¢ Building managers that control such entities as heat, lights, doors,
and elevators.

Real-time systems are typically constructed out of concurrent pro-
grams, called tasks. The most common type of temporal constraint that
a real-time system must satisfy is the completion of task deadlines. De-
pending on the consequence due to a missed deadline, real-time systems
can be classified as hard or soft. In a hard real-time system consequences
of missing a deadline can be catastrophic, e.g., aircraft control, while in
a soft real-time system, missing a deadline does not cause catastrophic
damage to the system, but may affect performance negatively.

In real-time systems it is necessary to specify the order in which tasks
should execute to ensure that tasks meet their respective deadlines. The
process of determining the order in which tasks should execute is known
as scheduling [21, 51]. Scheduling enables real-time system designers to
predict behavior of a real-time system, i.e., make the system predictable,
by ensuring that all tasks fulfill their execution requirements and meet
their deadlines. Scheduling theory greatly depends on the ability to mea-
sure or estimate the amount of CPU time tasks require for execution [20].
Typically, scheduling tests for tasks in real-time systems require that the
worst-case execution time (WCET) of a task is known. The execution
needs of a task can be obtained either by [20, page 59| (i) testing the task
set on a hardware with appropriate test data, (ii) analyzing the task set
by simulating the target system, or (iii) estimating the WCET by an-
alyzing the programs at the high language level, or possibly assembler
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language level. The first method has a disadvantage that test data usu-
ally does not completely cover the domain of interest, while the second
method heavily relying on the model of the underlying hardware. The
model used in the second method represents the approximation of the
actual system and therefore might not accurately represent the worst-
case behavior of tasks. In this thesis we adopt the third method, i.e.,
estimating bounds of the execution times of the tasks in the system by
means of WCET analysis of programs [82]. The estimated WCET should
be as tight as possible in order to make a real-time system as predictable
as possible.

2.1.1 Symbolic Worst-Case Execution Time Analysis

As mentioned, one of the most important elements in real-time system
development is temporal analysis of the real-time software. Determining
the WCET of the code provides guarantees that the execution time does
not exceed the WCET bound. WCET analysis is usually done on two
levels [82]: (i) low level, analyzing the object code and the effects of
hardware-level features, and (ii) high level, analyzing the source code
and characterizing the possible execution paths.

Symbolic WCET addresses the problem of obtaining the high-level
tight estimate of the WCET by characterizing the context in which code
is executed [13]. Hence, the symbolic WCET technique describes the
WCET as a symbolic expression, rather than a fixed constant.

To illustrate the main idea and benefits of the symbolic WCET tech-
nique, we provide an example of the WCET calculations for code of
the power function given in figure 2.1(a) (the example is adopted from
[13]). The function computes the n-th power of a float number f. If n is
negative the function computes fabﬁ'

Using traditional techniques to calculate WCET of the power func-
tion one first needs to estimate the maximum range of the exponent n,
thus, determining the maximum number of iterations of the loop in the
function (lines 14-16 in figure 2.1(a)). Then, the WCET of the function
is determined by adding the execution times of all sections of code, look-
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double power(double fkn, int e) {
double res = 0;
int times = 0;
bool pos = true;

if e < 0 then
times = -e;
else
pos = false;
times = e;
end if
res = 1.0;

for(iin 1 ... times loop
res = res * fkn;
end loop

if(pos)
res = 1/ res;

return res;
end power

Thenl (301)

(a) The code of the power function

S (50)

E1(111)

Elsel (583)

E (117)

Y
E2 (99)

Control-flow graph of the

power function (WCETs in paren-
thesis)

Figure 2.1: The power function
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ing for the longest path in conditional branches. Figure 2.1(b) shows
the control flow of the power function, with an example of the execution
times of each of the sections in the code (numbers in parenthesis). For
n in range [-10,10] and 10 as the maximum number of loop iterations,
adding the execution times of code sections (given in figure 2.1(b)) results
in the following WCET of the power function:

W CET power = 50 + 111 + maz (301, 583) + 270 + 10(117 + 317) +
99 + maz(560,0) + 244 = 6374

The obtained result is pessimistic as it holds dead paths, i.e., the two
if-statement branches with the maximum WCET can never be taken
together. Furthermore, this WCET calculation takes a pessimistic ap-
proach to calculations of loop iterations as it uses 10 as the maximum
number of iterations.

The symbolic WCET technique allows expressing the WCETs of the
code as algebraic expression. In this case, the WCET of the power
function can be formulated as a function of the exponent, denoted e, as
follows:

W CETpower(€) = 50 + 111 + [e < 0]301 + [e > 0]583 + 270 + 117 +
abs(e)

> (117 4 317) + 99 + [e < 0]560 + [e > 0]0 + 244
i=1

The above expression can be further simplified, e.g., by using Maple V,
into:

1752 —434e ife <0
WCETpower = § 1474 ife=0
1474 + 434e ife >0

The WCET is maximal for e = —10, and is WCETpoyer = 6092. The
maximal value of the WCET obtained by symbolic analysis (6092) is
tighter than the value of WCET obtained by traditional analysis (6374).
It is worth noting that the symbolic expression is left parameterized until
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the actual call to the function is made. When the call is made, based on
the passed value of the exponent e, the symbolic expression is evaluated
and the tight bound on the execution time is obtained.

2.2 Component-Based Software Development

The need for transition from monolithic to open and flexible systems has
emerged due to problems in traditional software development, such as
high development costs, inadequate support for long-term maintenance
and system evolution, and often unsatisfactory quality of software [19].
Component-based software development (CBSD) is an emerging devel-
opment paradigm that enables this transition by allowing systems to
be assembled from a pre-defined set of components explicitly developed
for multiple usages. Developing systems out of existing components of-
fers many advantages to developers and users. In component-based sys-
tems [19, 27, 29, 36]:

e Development costs are significantly decreased because systems are
built by simply plugging in existing components.

e System evolution is eased because system built on CBSD concepts
is open to changes and extensions, i.e., components with new func-
tionality can be plugged into an existing system.

e Quality of software is increased since it is assumed that components
are previously tested in different contexts and have validated be-
havior at their interfaces. Hence, validation efforts in these systems
have to primarily concentrate on validation of the architectural de-
sign.

e Time-to-market is shortened since systems do not have to be de-
veloped from scratch.

e Maintenance costs are reduced since components are designed to
be carried through different applications and, thus, changes in a
component are beneficial to multiple systems.
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As a result, efficiency in the development for the software vendor is
improved and flexibility of delivered product is enhanced for the user [52].

Component-based development also raises many challenging prob-
lems, such as [52]:

e Building good reusable components. This is not an easy task and a
significant effort must be invested to produce a component that can
be used in different software systems. In particular, components
must be tested and verified to be eligible for reuse.

e Composing a reliable system out of components. A system built
out of components is in risk of being unreliable if inadequate com-
ponents are used for the system assembly. The same problem arises
when a new component needs to be integrated into an existing sys-
tem.

e Verification of reusable components. Components are developed to
be reused in many different systems, which makes the component
verification a significant challenge. For every component use, the
developer of a new component-based system must be able to verify
the component, i.e., determine if the particular component meets
the needs of the system under construction.

e Dynamic and on-line configuration of components. Components
can be upgraded and introduced at run-time; this affects the con-
figuration of the complete system and it is important to keep track
of changes introduced in the system.

2.2.1 Software Component

Software components are the core of CBSD. However, different defini-
tions and interpretations of a component exist. In general, within soft-
ware architecture, a component is considered to be a unit of composition
with explicitly specified interfaces and quality attributes, e.g., perfor-
mance, real-time, and reliability [19]. In systems where COM [64] is
used as a component framework, a component is generally assumed to
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be a self-contained binary package with precisely defined standardized
interfaces [67]. Similarly, in the CORBA component framework [71], a
component is assumed to be a CORBA object with standardized inter-
faces. A component can be also viewed as a software artifact that models
and implements a well-defined set of functions, and has well-defined (but
not standardized) component interfaces [32].

Hence, there is no common definition of a component for every
component-based system. The definition of a component clearly depends
on the implementation, architectural assumptions, and the way the com-
ponent is to be reused in the system. However, all component-based
systems have one common fact: components are for composition [99].

While frameworks and standards for components today primarily fo-
cus on CORBA, COM, or JavaBeans, the need for component-based
development has been identified in the area of operating systems (OSs).
The aim is to facilitate OS evolution without endangering legacy appli-
cations and provide better support for distributed applications [37, 63].

Common for all types of components, independent of their definition,
is that they communicate with its environment through well-defined in-
terfaces, e.g., in COM and CORBA interfaces are defined in an interface
definition language (IDL), Microsoft IDL and CORBA IDL. Compo-
nents can have more than one interface. For example, a component
may have three types of interfaces: provided, required, and configura-

Connector
ﬂ—” Component
Component
P Requi rlea—'_I
1 Provided interface
interface

Figure 2.2: Components and interfaces
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tion interface [19]. Provided and required interfaces are intended for the
interaction with other components, whereas configuration interfaces are
intended for use by the user of the component, i.e., software engineer
(developer) who is constructing an application out of reusable compo-
nents. Each interface provided by a component is, upon instantiation of
the component, bound to one or more interfaces required by other com-
ponents. The component providing an interface may service multiple
components, i.e., there can be a one-to-many relation between provided
and required interfaces. When using components in an application there
might be syntactic mismatch between provided and required interfaces,
even when the semantics of the interfaces match. This requires adapta-
tion of one or both of the components or an adapting connector to be
used between components to perform the translation between compo-
nents (see figure 2.2).

Independently of application area, a software component is normally
considered to have black boz properties [36, 32]: each component sees
only interfaces to other components, thus, internal state and attributes
of the component are strongly encapsulated.

Every component implements some field of functionality, i.e., a do-
main [19]. Domains can be hierarchically decomposed into lower-level
domains, e.g., the domain of communication protocols can be decom-
posed into several layers of protocol domains as in the OSI model. This
means that components can also be organized hierarchically, i.e., a com-
ponent can be composed out of subcomponents. In this context, two con-
flicting forces need to be balanced when designing a component. First,
small components cover small domains and are likely to be reused, as it is
likely that such component would not contain large parts of functionality
not needed by the system. Second, large components give more leverage
than small components when reused, since choosing the large component
for the software system would reduce the cost associated with the effort
required to find the component, analyze its suitability for a certain soft-
ware product, etc. [19]. Hence, when designing a component, a designer
should find the balance between these two conflicting forces, as well as
actual demands of the system in the area of component application.
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2.2.2 Software Architecture

Generally, every software system has an architecture, although it may
not be explicitly modeled [62]. The software architecture represents a
high level of abstraction where a system is described as a collection of
interacting components [6]. A commonly used definition of software ar-
chitecture is [12]:

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which com-
prise software components, the externally visible properties
of those components, and the relationship among them.

Thus, the software architecture enables decomposition of the system into
well-defined components and their interconnections, and consequently
it provides means for building complex software systems [62]. Design
of the software architecture is the first step in the design process of a
software product, right after the specification of the system’s require-
ments. Hence, it allows early system testing, that is, as pointed out by
Bosch [19], assessment of design and quality attributes of a system. Qual-
ity attributes of a system are those that are relevant from the software
engineering perspective, e.g., maintainability, reusability, and those that
represent quality of the system in operation, e.g., performance, reliability,
robustness, fault-tolerance. These quality attributes of a system could be
further classified as functional (see table 2.1) and non-functional quality
attributes (see table 2.2), and used for architectural analysis [105].

The software architectural design process results in component qual-
ity requirements, as well as several constraints and design rules compo-
nents must obey, e.g., means of communication [19]. Hence, developing
reusable components depends on the software architecture, since the soft-
ware architecture to a large extent influences functionality and quality
attributes of a component [19]. Thus, the software architecture repre-
sents the effective basis for reuse of components [78]. Moreover, there
are indications that software evolution and reuse is more likely to receive
higher payoff if architectures and designs can be reused and can guide
low-level component reuse [60, 66].
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Quality attribute Description

Performance The capacity of a system to handle data or
events.
Reliability The probability of a system working correctly

over a given period of time.

Safety The property of the system that does not en-
danger human life or the environment.

Temporal constraints | The real-time attributes such as deadlines,
jitter, response time, worst-case execution
time, etc.

Security The ability of a software system to resist ma-
licious intended actions.

Availability The probability of a system functioning cor-
rectly at any given time.

Table 2.1: Functional quality attributes

Quality attribute | Description

Testability The ability to easily prove correctness of a sys-
tem by testing.

Reusability The extent to which the architecture can be
reused.

Portability The ability to move a software system to a dif-
ferent hardware and/or software platform.

Maintainability The ability of a system to undergo evolution
and repair.

Modifiability Sensitivity of the system to changes in one or

several components.

Table 2.2: Non-functional quality attributes
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During the architectural design phase of the system development, the
issue of handling conflicts in quality requirements should be explicitly
addressed, since a solution for improving one quality attribute may af-
fect other quality attributes negatively, e.g., reusability and performance
are considered to be contradicting, as are fault-tolerance and real-time
computing [19]. For example, consider a software system fine-tuned to
meet extreme performance requirements. In such a system, a compo-
nent is also optimized to meet specific performance requirements. Hence,
reusing the same component in a different system, with different perfor-
mance requirements, could result in degraded performance of the newly
developed system. In such a scenario, additional efforts have to be made
to ensure that the component and, thus, the system under construction
meet the initial performance requirements.

2.3 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) has emerged as a new
principle for software development, and is based on the notion of sepa-
ration of concerns [45]. Typically, AOSD implementation of a software
system has the following constituents:

e components, written in a component language, e.g., C, C+-+, and
Java;

e aspects, written in a corresponding aspect language2, e.g., AspectC
[25], AspectC++ [91], and Aspect] [100] developed for Java; and

e an aspect weaver, which is a special compiler that combines com-
ponents and aspects.

Components used for system composition in AOSD are not black box
components (as they are in CBSD), rather they are white bozx compo-
nents. A white box component is a piece of code, e.g., program, function,
and method, completely accessible by the component user. White box

2 All existing aspect languages are conceptually very similar to AspectJ.



20 2.3. ASPECT-ORIENTED SOFTWARE DEVELOPMENT

components do not enforce information hiding, and are fully open to
changes and modifications of their internal structure. In AOSD one can
modify the internal behavior of a component by weaving different aspects
into the code of the component.

Aspects are commonly considered to be a property of a system that
affect its performance or semantics, and that crosscuts the functionality
of the system [45]. Aspects of software such as persistence and debugging
can be described separately and exchanged independently of each other
without disturbing the modular structure of the system.

In existing aspect languages, each aspect declaration consists of ad-
vices and pointcuts. A pointcut in an aspect language consists of one
or more join points, and is described by a pointcut expression. A join
point refers to a point in the component code where aspects should be
weaved, e.g., a method, a type (struct or union). Figure 2.3 shows the
definition of a named pointcut getLockCall, which refers to all calls to
the function getLock() and exposes a single integer argument to that
call®.

poi nt cut getLockCall (int |ockld)=
call ("void getLock(int)”&&args(lockld);

Figure 2.3: An example of the pointcut definition

An advice is a declaration used to specify the code that should run
when the join points, specified by a pointcut expression, are reached.
Different kinds of advices can be declared, such as: (i) before advice,
which is executed before the join point, (ii) after advice, which is exe-
cuted immediately after the join point, and (iii) around advice, which is
executed in place of the join point. Figure 2.4 shows an example of an

3The example presented is written in AspectC++.
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advi ce getLockCal | (I ockld):
void after (int Iockld)

{
{

cout <<”Lock requested is”<<l| ockl d<<endl;

Figure 2.4: An example of the advice definition

after advice. With this advice each call to getLock() is followed by the
execution of the advice code, i.e., printing of the lock id.

2.4 Components vs. Aspects

The goal of this section is to clarify the notion of a component in CBSD
and AOSD with a particular focus on abstraction metaphors: a white
box and a black box component.

While CBSD uses black box as an abstraction metaphor for the com-
ponents, the AOSD uses white box component metaphor to emphasize
that all details of the component implementation should be revealed.
Both black box and white box component abstractions have their ad-
vantages and disadvantages. For example, hiding all details of a com-
ponent implementation in a black box manner has the advantage that
a component user does not have to deal with the component internals.
In contrast, having all details revealed in a white box manner allows
the component user to freely optimize and tailor the component for a
particular software system.

The main motivation and the main benefits of CBSD overlap and
complement the ones of AOSD. Furthermore, making aspects and aspect
weaving usable in CBSD would allow improved flexibility in tailoring of
components and, thus, enhanced reuse of components in different sys-
tems. To allow aspects to invasively change the component code and
still preserve information hiding to the largest extent possible requires
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opening a black box component. This, in turn, implies using the gray
box abstraction metaphor for the component. The gray box component
preserves some of the main features of a black box component, such as
well-defined interfaces as access points to the component, and it also al-
lows aspect weaving to change the behavior and the internal state of the
component.

2.5 From Components to Composition

Research in the component-based software engineering community in-
creasingly emphasizes composition of the system as the way to enable
development of reliable systems, and the way to improve reuse of com-
ponents. In this section we give an overview of the software engineering
techniques primarily focusing on system composition. Figure 2.5 pro-
vides hierarchical classification of composition-oriented approaches [10].
Component-based systems on the first level, e.g., CORBA, COM and
JavaBeans, represent the first generation of component-based systems,
and are referred to as “classical” component-based systems [10]. Frame-
works and standards for components of today in industry primarily fo-
cus on classical component-based systems. In these systems components
are black boxes and communicate through standard interfaces, providing
standard services to clients, i.e., components are standardized. Standard-
ization eases adding or exchanging of components in the software system,
and improves reuse of components. However, classical component-based
systems lack rules for the system composition, i.e., composition recipe.
The next level represents architecture systems, e.g., RAPIDE [59]
and UNICON [106]. These systems provide an architectural description
language (ADL), which is used to specify the architecture of the software
system. In an architecture system, components encapsulate application-
specific functionality and are also black boxes. Components communi-
cate through connectors [6], and a connector is a specific module that en-
capsulates the communication between application-specific components.
This gives significant advancement in the composition compared to clas-
sical component-based systems, since communication and the architec-
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Composition systems

Systems with composition operators

Architecture systems

Classical component-based
systems

Figure 2.5: Classes of component-based systems

ture can be varied independently of each other. Thus, architecture sys-
tems separate three major aspects of the software system: architecture,
communication, and application-specific functionality. One important
benefit of an architecture system is the possibility of early system testing.
Tests of the architecture can be performed with “dummy” components
leading to the system validation in the early stage of the development.
This also enables the developer to reason about the software system at
an abstract level. Classical component-based systems, adopted in the
industry, can be viewed as a subset of architecture systems (which are
not yet adopted by the industry), as they are in fact simple architecture
systems with fixed communication.

The third level represents aspect systems that are developed using
the AOSD principles [45]. Aspect systems separate more concerns of the
software system than architecture systems. Beside architecture, applica-
tion, and communication, aspects of the system can be separated further:
representation of data, control-flow, memory management, etc. Tempo-
ral constraints can also be viewed as an aspect of the software system,
implying that a real-time system could be developed using AOSD [15].
Only recently, several projects sponsored by DARPA (Defense Advanced
Research Projects Agency) have been established with the aim to inves-
tigate possibilities of reliable composition of embedded real-time systems
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using AOSD [81]. The projects include ARIES [2], ISIS PCES [3], and
FACET [4]. In aspect systems, aspects are separated from core compo-
nents; they are recombined automatically through weaving. In AOSD, a
core component is considered to be a unit of system functional decom-
position, i.e., application-specific functionality [45]. Weavers are special
compilers that combine aspects with core components at so-called joint
points either statically (at compile time) or dynamically (at run-time).
Weaving breaks the core component (at joint points) and cross-cuts as-
pects into the component and the weaving process results in an integrated
component-based system. Hence, core components are no longer black
boxes; rather they are white boxes as they are cross-cut with aspects.
However, aspect weavers can be viewed as black boxes since they are
written for a specific combination of aspects and core components, and
for each new combination of aspects and core components a new aspect
weaver needs to be written. The process of writing an aspect weaver is
not trivial, thus, introducing additional complexity in the development
of aspect systems and usability of aspects. Compared to architecture
systems, aspect systems are more general and allow separation of var-
ious additional aspects, thus, architecture systems can be viewed as a
subset of the class of aspect systems. Having different aspects improves
reusability since various aspects can be combined (reused) with different
core components. The main drawback of aspect systems is that they
are built on special languages for aspects, requiring system developers
to learn these languages.

At the fourth level are systems that provide composition operators by
which components can be composed. Composition operators are compa-
rable to component-based weaver, i.e., a weaver that is no longer a black
box, but is also composable out of components, and can be re-composed
for every combination of aspects and components, further improving the
reuse. Subject-oriented programming (SOP) [73], an example of systems
with composition operators, provides composition operators for classes,
e.g., merge (merges two views of a class), and equate (merges two defini-
tion of classes into one). SOP is a powerful technique for compositional
system development since it provides a simple set of operators for weav-
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ing aspects or views, and SOP programs support the process of system
composition. However, SOP focuses on composition and does not pro-
vide a well-defined component model. Instead, SOP treats C++ classes
as components.

Finally, the last level includes systems that contain a full-fledged
composition language, and are called composition systems. A compo-
sition language should contain basic composition operators to compose,
glue, adopt, combine, extend, and merge components. The composition
language should also be tailorable, i.e., component-based, and provide
support for composing (different) systems, in the large. Invasive software
composition [10] is one approach that aims to provide a language for the
system composition, and here components may consist of a set of arbi-
trary program elements, and are called boxes [10]. Boxes are connected
to the environment through very general connection points, called hooks,
and can be considered grey box components. Composition of the system
is encapsulated in composition operators (composers), which transform
a component with hooks into the component with code. The process of
system composition using composers is more general than aspect weav-
ing and composition operators, since invasive composition allows com-
position operators to be collected in libraries and to be invoked by the
composition programs (recipes) in a composition language. Composers
can be realized in any programming or specification language. Invasive
composition supports software architecture, separation of aspects, and
provides composition receipts, allowing production of families of variant
systems. Reuse is improved, as compared to systems in the lower levels,
since composition recipes can also be reused, leading to easy reuse of
components and architectures. An example of the system that supports
invasive composition is COMPOST [104]. However, COMPOST is not
suitable for systems that have limited amount of resources and enforce
real-time behavior, since it does not provide support for representing
temporal properties of the software components. Also, COMPOST is
language-dependent as it only supports Java source-to-source transfor-
mations.
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2.6 Embedded Real-Time Database Systems

The amount of data that needs to be managed by real-time and embed-
ded systems is increasing, e.g., the amount of information maintained by
real-time systems controlling a vehicle is increasing with the rate of 7-
10% per year [24]. Hence, database functionality suitable for embedded
and real-time systems is needed to provide efficient support for storage
and manipulation of data.

Embedding databases into embedded systems have significant gains:
(i) reduction of development costs due to the reuse of database systems;
(ii) improvement of quality in the design of embedded systems since the
database provides support for consistent and safe manipulation of data,
which makes the task of the programmer simpler; and (iii) increased
maintainability as the software evolves. Consequently, this improves
the overall reliability of the system. Furthermore, embedded databases
provide mechanisms that support porting of data to other embedded
systems or large central databases.

Naturally, embedded real-time systems put demands on such an em-
bedded database that originate from requirements on embedded and
real-time systems. For example, most embedded systems need to be
able to run without human presence, which means that a database in
such a system must be able to recover from a failure without external
intervention [69]. Also, the resource load the database imposes on the
embedded system should be carefully balanced, which includes memory
footprint and power consumption. For example, in embedded systems
used to control a vehicle minimization of the hardware cost is of utmost
importance. This usually implies that memory capacity must be kept as
low as possible, i.e., databases used in such systems must have a small
memory footprint. Embedded systems can be implemented in different
hardware environments supporting different operating system platforms;
this requires the embedded database to be portable to different operating
system platforms.

On the other hand, real-time systems put different set of demands
on a database system. The data in the database used in real-time sys-
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tems must be logically consistent, as well as temporally consistent [83].
Temporal consistency of data is needed in order to maintain consistency
between the actual state of the environment that is being controlled by
the real-time system, and the state reflected by the content of the data-
base. Temporal consistency has two components:

e Absolute consistency, between the state of the environment and its
reflection in the database.

e Relative consistency, among the data used to derive other data.

We use the notation introduced by Ramamritham [83] to give a formal
definition of temporal consistency.

A data element, denoted d, which is temporally constrained, is de-
fined by three attributes:

e value dyqiye, i-€., the current state of data element d in the data-
base,

e time-stamp dyg, i.e., the time when the observation relating to d
was made, and

e absolute validity interval dg,;, i.e., the length of the time interval
following d;s during which d is considered to be absolute consistent.

A set of data items used to derive a new data item forms a relative
consistency set, denoted R, and each such set is associated with a relative
validity interval, R,,;. Data in the database, such that d € R, has a
correct state if and only if [83]

1. dygiue is logically consistent, and

2. d is temporally consistent, both

e absolute, i.e., (t — dys) < dgui, and

e relative, ie., Vd' € R, |dys — d}y| < Ryyi-
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A transaction, i.e., a sequence of read and write operations on data
items, in conventional databases must satisfy the following properties:
atomicity, consistency, isolation, and durability, normally called ACID
properties [89]. In addition, transactions that process real-time data
must satisfy temporal constraints. Some of the temporal constraints on
transactions in a real-time database come from the temporal consistency
requirement, and some from requirements imposed on the system reac-
tion time (typically, periodicity requirements) [83]. These constraints
require time-cognizant transaction processing so that transactions can
be processed to meet their deadlines, both with respect to completion of
the transaction as well as satisfying the temporal correctness of the data
[67].

There are many embedded databases on the market, but they vary
widely from vendor to vendor. Existing commercial embedded database
systems, e.g., Polyhedra [80], RDM and Velocis [61], Pervasive.SQL [79],
Berkeley DB [90], and TimesTen [103], have different characteristics and
are designed with specific applications in mind. They support different
data models, e.g., relational vs. object-relational model, and different
operating system platforms [101]. Moreover, they have different memory
requirements and provide different types of interfaces for users to access
data in the database. Application developers must carefully choose the
embedded database their application requires, and find the balance be-
tween required and offered database functionality. Hence, finding the
right embedded database is a time-consuming, costly and difficult pro-
cess, often with a lot of compromises. Additionally, the designer is faced
with the problem of database evolution, i.e., the database must be able
to evolve during the life-time of an embedded system, with respect to
new functionality. However, traditional database systems are hard to
modify or extend with new required functionality, mainly because of
their monolithic structure and the fact that adding functionality results
in additional system complexity.

Although a significant amount of research in real-time databases has
been done in the past years, it has mainly focused on various schemes for
concurrency control, transaction scheduling, and logging and recovery,
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and less on configurability of software architectures. Research projects
that are building real-time database platforms, such as ART-RTDB [46],
BeeHive [96], DeeDS [8] and RODAIN [54], have monolithic structure,
and are built for a particular real-time application. Hence, the issue of
how to enable development of an embedded database system that can
be tailored for different embedded and real-time applications arises.
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Chapter 3

Component-Based Real-Time
Systems Design Criteria

This chapter presents a set of criteria for evaluating existing, and de-
veloping new, design methods for building component-based real-time
systems. We identify the main issues addressed by design approaches
developed by the real-time and software engineering research commu-
nity, respectively. These help us form a common ground for the criteria
that any design method for component-based real-time systems should
fulfill.!

Since the component-based paradigm is a product of the advance-
ments in the software engineering research community, to efficiently ap-
ply these ideas to real-time system development, it is essential to first
identify the issues considered to be of prime importance when developing
a general-purpose component-based software system (section 3.1), and
contrast those with the most relevant issues addressed by the design ap-
proaches in the real-time community (section 3.2). We show (section 3.3)
that there is a gap between the approaches from different communities
as the real-time community has focused primarily on the real-time issues
not exploiting modularity of software to the extent that the software en-

!We use italics to highlight the specific issues stressed by a particular design
method.
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gineering community has done. Hence, we present the first uniform set of
criteria for the design of component-based real-time systems, and discuss
the extent to which design approaches investigated fulfill the criteria.
The criteria include component model (section 3.4), aspect separation
(section 3.5), and system composability (section 3.6). The chapter fin-
ishes (section 3.7) with a summary and an observation that an existing
design method specifically addressing all the identified criteria is missing,
and a new design method fulfilling the criteria is needed.

3.1 Software Engineering Design Methods

The design methods for general-purpose software systems in software
engineering community are mostly targeted towards a component model.
The component model typically enables enforcement of the information
hiding criterion [76] as components are considered to be black boxes that
communicate with each other, or the environment, through well-defined
interfaces [99]. This is a component view taken by the first generation
of component-based systems, e.g., COM and CORBA. Both COM and
CORBA provide a standardized component model with an interface def-
inition languages, but lack support in composability of different system
configurations [33, 74].

Some design approaches [100, 10, 91, 25, 7| have taken one step fur-
ther in software configurability by providing support for aspects and
aspect weaving, thus adopting the main ideas of aspect-oriented soft-
ware development. A typical representative of programming languages
that explicitly provide ways for specifying aspects is AspectJ [100]. It
is accompanied by powerful configuration tools for development of soft-
ware systems using aspects written in AspectJ and components written
in Java. However, AspectJ is limited as it supports only the notion of
white box components, i.e., components are not encapsulated and their
behavior is visible to other parts of the system, thus not exploiting the
powers of information hiding. Invasive software composition (ISC) [10]
overcomes the drawbacks of pure aspect language approaches, and en-
forces information hiding by having a well-defined component model,
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called the box. The box is a general component model supporting two
types of interfaces: explicit interfaces and implicit interfaces. Explicit
interfaces are used for inter-component communication, while implicit in-
terfaces are used for aspect weaving into the code of components. Here,
components can be viewed as gray boxes in the sense that they are en-
capsulated, but still their behavior can be changed by aspect weaving.

3.2 Real-Time Design Methods

There are several established design methods developed by the real-time
community. We focus on a few representative approaches [39, 40, 50, 35,
20] to illustrate the types of requirements that a real-time domain places
on a design method.

DARTS

DARTS [39], a design approach for real-time systems, and ADARTS [40],
its extension for Ada-based systems, focus on the decomposition of real-
time systems into tasks. DARTS emphasizes the need for having task
structuring criteria that could help the designer to make the transition
from tasks to modules. Modules in DARTS typically represent tradi-
tional functions. DARTS partially enforces information hiding through
two different types of task interfaces: task communication and task syn-
chronization interface. Decomposition of real-time systems using DARTS
is done by decomposing a system into tasks that are then grouped into
software modules. Hence, the method offers two views on a real-time
system: (i) a temporal view where the system is composed out of tasks,
and (ii) a structural view where the system is composed out of modules
performing a specific (usually task-oriented) function. Configuration of
DARTS-based systems is done using configuration guidelines that are
very clear and have been refined over the years, especially through their
use in industry. However, it has been recognized that DARTS does not
provide mechanisms for checking and verifying temporal behavior of the
system under development [50, 20].
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TRSD

Kopetz et al. [50] introduced a method for real-time system design,
which is a transaction-oriented approach to real-time system develop-
ment. For the sake of presentation clarity, we refer to this method as
TRSD, a transactional real-time system design . Building blocks of a
real-time system are transactions consisting of one or several tasks. A
transaction, in this context a group of tasks, is associated with real-time
attributes, e.g., deadline and criticality. TRSD, in addition to rules for
decomposition of real-time systems into tasks, provides temporal analysis
of the overall real-time system. The TRSD method is complete in the
sense that it follows the design cycle of real-time systems from specifica-
tion to the implementation and verification. Moreover, TRSD goes one
step further than DARTS by providing support for temporal analysis of
the real-time system under development. However, TRSD does not focus
on providing the support for information hiding and configurability of
the real-time software.

HRT-HOOD

HRT-HOOD [20], a hard real-time hierarchical object oriented design,
introduces object-orientation into modeling of hard real-time systems.
HRT-HOOD is an extension of the well-defined HOOD design method
to the real-time domain. As such, it utilizes the HOOD tools to support
the real-time design process. Building blocks of a real-time system in
HRT-HOOD are HRT-HOOD objects, supplied with two different types
of interfaces, namely required interface and provided interface. Having
been based on the object-oriented technology and supporting different
types of interfaces, HRT-HOOD enforces information hiding in terms
of objects as entities that hide the information. HRT-HOOD makes a
distinction between the logical and physical architectural design. The
logical design results in a collection of terminal objects (these do not
require further decomposition) with a fully defined interaction. This
design step assumes that the designer knows the relationship of an ob-
ject to a task, since an object can represent one or more tasks. At the
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physical design stage, the logical architecture is mapped to the physical
resources on the target system. The physical design stage is primarily
concerned with object allocation, network scheduling, processor schedul-
ing, and dependability. Additionally, HRT-HOOD provides support for
static priority analysis of the overall real-time system. Although the
HRT-HOOD design process is well-defined and supported by tools, it
does not facilitate object reuse.

VEST

VEST [94, 95|, a Virginia embedded systems toolkit, is a configuration
tool for development of component-based real-time systems. VEST pro-
vides a graphical environment in which temporal behavior of the building
blocks of a real-time system can be specified and analyzed, e.g., WCETs,
deadlines, and periods. VEST supports two views of real-time compo-
nents, temporal and structural, and assumes that components making
the system configuration are later mapped to tasks. However, the ac-
tual process of mapping between a component and a task is not defined.
VEST recognizes the need for having separation of concerns in the real-
time system design. Hence, VEST provides support for analysis of the
component memory consumption, which is a concern that crosscuts the
structure of the overall component-based real-time system.

In its recent edition [95], the tool has been extended to support
design-level cross-cutting concerns by providing a description language
for design-level aspects of a real-time system. The VEST configuration
tool allows tool plug-ins, thus enabling temporal analysis of the com-
posed system by enabling plugging off-the-shelf analysis tools into the
VEST environment.

In the first version of VEST, components were fine-granule, but
VEST did not have an explicit component model, implying that compo-
nents could be pieces of code, classes, and objects [94]. Currently VEST
uses the well-defined CORBA component model [95].



36 3.3. WHAT CAN WE LEARN?

RT-UML

RT-UML [35], real-time unified modelling language, provides stereotypes
for specifying real-time notions. Namely, it provides support for model-
ing concurrency in a real-time system, i.e., identifying threads, assigning
objects to threads, as well as defining thread rendezvous and assigning
priorities to threads. RT-UML allows specifying and visualizing real-
time properties of a component, and, thus, supports both structural and
temporal dimension of a software artifact constituting a real-time sys-
tem. However, we omit the detailed description of RT-UML and its
evaluation for the following reason. Although RT-UML provides power-
ful notation for modeling real-time systems it essentially provides only
syntax, not semantics, for the real-time system design. Thus, RT-UML
cannot be considered a design method, rather it is an infrastructure for
a design method as it provides a visual language as a basis for enforc-
ing design methods, e.g., its powerful expressiveness could be used by
a design method as means of specifying real-time software components
[26].

3.3 What Can We Learn?

From early '80s till now real-time design methods have mostly focused
on task structuring and two different views on the system, temporal and
structural, and only with moderate emphasis on the information hiding.
The analysis of the real-time system under design, although missing from
early design approaches, has been highlighted as important for the real-
time system development. Furthermore, configuration guidelines and
tools for system decomposition and configuration have been an essential
part of all design methods for real-time systems so far and have, more or
less, been enforced by all design methods. On the other hand, modern
software engineering design methods primarily focus on the component
model, strong information hiding, and interfaces as means of component
communication. Also, the notion of separation of concerns is considered
to be fundamental in software engineering as it captures aspects of the
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software system early in the system design.

We can observe that there is a gap between the approaches from dif-
ferent communities, as the real-time community has focused primarily on
real-time issues not exploiting modularity of software to the extent that
the software engineering community has done. Bridging the gap between
the approaches could be done by providing a uniform view of the criteria
that a method for designing component-based real-time systems should
fulfill. Thus, in the following sections we present a set of criteria that a
design method for component-based real-time systems should fulfill.

3.4 Component Model

One of the most fundamental reasons behind the need to divide software
into modules is to guarantee exchange of parts. In mature industries,
e.g., mechanical engineering, an engineer constructs a product by de-
composition; the problem is decomposed into sub-problems until one
arrives to the basic problem for which basic solution elements can be
chosen. Software engineering is not different from other engineering dis-
ciplines in the effort to mature, i.e., enable software decomposition into
components and use of already developed components to build software
systems.

To be able to build software systems out of reusable components,
we need a way of specifying what a component should look like, i.e., we
need a component model. A component model describes what a software
component should look like, and it supports modularity of the software
in the sense that it defines what should be hidden in the component
such that it can be exchanged and reused in several systems [10, 99, 28|.
Further, a component model should enforce information hiding, imply-
ing that the deployers of a component cannot see when the manufacturer
changes the component internals, and that newer versions of components
can substitute older versions if the interfaces of components remain the
same. Hence, the interfaces of components should be well-defined by
the component model to provide necessary information to the compo-
nent user, e.g., reuse context and performance attributes. Most software
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Design approaches | pARTS | TRSD | VEST |ISC | COM | Aspectd HRT-
Criteria HOOD
Component model
CM1  Information
hiding ¢ e ¢
CM2  |nterfaces ° ( (] [ ]
CM3  Component ® ) }
Views
CM4  Tempord
. - [ J - - -
attributes °
CM5 Task ° ) _ )
mapping ) )
Aspect separation
ASlL  Aspect -
support - Bl o i )
AR Agpect _ _ _
weaving - o d -
A3 Multiple } } } ° °
interfaces
AS4  Multiple ) i} i} - -
aspect types .
System composability
SC1  Configuration ° ° °
support
L2 Tempora _ R - - - ®
analysis
LEGEND: | ® supported ® partially supported - not supported

DARTS: desing approach for real-time systems ISC: invasive software composition
TRSD: transactional real-time system design

VEST: Virginia embedded systems toolkit
HRT-HOOD: a hard real-time hierarchical object-oriented desing

Table 3.1: The criteria for the evaluation of design approaches
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engineering approaches enforce a good component model by providing
information hiding and having well-defined interfaces for accessing com-
ponents, e.g., COM, CORBA, and ISC (see table 3.1).

The most important criteria for a software component with respect
to component model (CM) can be summarized as follows [10].

CM1 Information hiding. A component has to maintain one or several
secrets, e.g., design, implementation, and programming language,
which are encapsulated to enable component exchangeability.

CM2 Interfaces. A component should have one or more well-defined
interfaces to the environment. The component can be accessed
only through these interfaces (thus complementing the information
hiding criterion).

Real-time systems sharing the component vision are faced with ad-
ditional requirements on the component model, as components in a
real-time system should provide mechanisms for handling temporal con-
straints. Moreover, since the traditional view of real-time systems implies
tasks as building elements of the system, the relationship between tasks
and components needs to be clearly identified. We argue that this re-
lationship (between a real-time software component and a task) should
not be fixed for several reasons. First, we would like to reuse not only
pieces of code that correspond to tasks in the system, but also any soft-
ware components applicable to the real-time system under construction,
i.e., we do not want to limit reusability of the real-time software only to
tasks. Second, perfect mapping of a component to a task for all appli-
cations is hard to determine. We illustrate this with a simple example
as follows. Assume that we have a set of components, e.g., ¢i..., ¢y,
in a component library or available on the market. When developing a
real-time system, denoted RTj, a designer determines that a subset of
components from a library is needed for the real-time system under con-

struction, namely ¢;..., ¢x (kK < n). Furthermore, the target run-time
environment of RT; is such that components c;..., cg are allocated to
one task (c1, ..., c3 = t1), while components ¢y, ..., ¢ each are allo-

cated to distinct tasks (cy = t2, ..., g = tx_3). On the other hand,
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when developing another real-time system (e.g., RT»), a different set of
components may be applicable, e.g., ¢1..., cg. Furthermore, the run-
time environment of RT, can differ from the one described for RT3, e.g.,
only two tasks in the system are allowed, so the resulting allocation of
the components and tasks is such that components ci, ..., c4 are al-
located to one task (ci, ..., c4 = t}), while components ¢5 and cg to
another task (cs,ce = t5). We can observe that the same set of software
components could be allocated differently to tasks in different real-time
systems, depending on the actual needs of the real-time system and its
underlying run-time environment.

The problem now is to distinguish between components and tasks in a
component-based real-time system, and to determine their relationship.
A similar problem is addressed in DARTS, since the DARTS method is
concerned with the relationship between tasks and modules, and the way
tasks can be efficiently structured into modules. To solve the problem
(modules vs. tasks) DARTS proposes a set of task structuring criteria
to guide the designer when grouping tasks into modules. Note that in
DARTS the system is first decomposed into tasks, corresponding to the
temporal view of the real-time system, and then tasks are grouped into
modules, corresponding to the structural view of the system.

In a component-based real-time system each component should be
specified in two dimensions (views):

e structural, and
e temporal.

We already argued for the necessity of having components and tasks dis-
tinguished from each other and their relationship clearly defined. One of
the ways to achieve this is to distinguish between a temporal and a struc-
tural dimension of a component. The structural dimension (or structural
view) of a component represents a traditional software component as
perceived by software engineering community, i.e., software artifact with
well-defined interfaces that enforces information hiding. The temporal
dimension should reflect the real-time attributes needed to map compo-
nents to tasks on the target platform and perform temporal analysis of
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the resulting real-time system. This is especially true for components
built for use in hard real-time systems. In all approaches discussed,
VEST is the only platform that can be considered to enforce the com-
ponent views as it allows components (pieces of code) to be mapped to
tasks for a particular platform (see table 3.1). However, VEST does not
provide detailed information on how the actual mapping should be done.
The graphical environment of VEST enables storing temporal attributes
of components that are used for schedulability analysis. More traditional
approaches to real-time system design, including DARTS and TRSD, do
not provide temporal information for their components (see table 3.1).
HRT-HOOQOD, in contrast, supports only a temporal dimension of objects
as building parts of a real-time system.

We conclude that in a real-time environment, a software component
model should support the following.

CM3 Component views. A design method should support decomposition
of real-time systems into components as basic building blocks, and,
further, components should support both a structural and a tem-
poral view. In the structural view a real-time software is composed
out of software components, and in the temporal view the real-time
software is composed out of tasks.

CM4 Temporal attributes. A component model should provide mecha-
nisms for handling temporal attributes of components, e.g., worst-
case execution time, to support temporal and structural views of
the real-time system, and enable static and dynamic temporal anal-
ysis of the overall real-time system.

CM5 Task mapping. A design method should provide clear guidelines
(or possibly tools) to support mapping of components into tasks.

3.5 Aspect Separation

While modularity helps to functionally decompose a system, designers
would like to have modular exchange in several dimensions so that differ-
ent features of components can be exchanged separately [10]. Separation
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of concerns is the main idea of AOSD [45]. Aspects of software such as
persistence and debugging can be described separately and exchanged
independently of each other without disturbing the modular structure of
the system. AOSD offers several important advantages [10]:

e aspect specifications can be exchanged separately from the compo-
nent? and independently from each other;

e aspect weaving creates system configurations that might have com-
pletely different functionality or non-functional features;

e separation of concerns into aspects eases configuration of the sys-
tem as fewer parts of the overall system need to be modified for a
particular system configuration; and

e a system becomes scalable as the same core components can be
reused elsewhere.

These are the reasons why some design approaches in software engi-
neering, e.g., ISC and AspectJ, provide support for aspects and aspect
weaving (see table 3.1). A restricted form of aspect separation is also
realized in COM and CORBA through defining multiple interfaces as
access points for the component, as each of the interfaces can be viewed
as one aspect.

It is clear that software engineering design methods increasingly em-
phasize support for aspects and aspect weaving, giving us the following
criteria with respect to aspect separation (AS) [45, 10, 7].

AS1 Aspect support. A design method should support separation of con-
cerns, namely it should provide support for identifying and speci-
fying aspects in the software system.

AS2 Aspect weaving A design method should provide tools that weave
aspect specifications to the final product.

2 As already mentioned, a component in AOSD is typically a white box component,
e.g., traditional program, function and method.
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AS3 Multiple interfaces. A component should have multiple interfaces
under which it can be accessed.

The frontier where aspects and aspect weaving meet real-time has
not been explored yet, although there is a strong motivation for us-
ing aspects in real-time system development. Namely, some of the core
real-time concerns such as synchronization, memory optimization, power
consumption, temporal attributes, etc., are crosscutting, in typical im-
plementations of real-time systems, the overall system. Moreover, these
concerns cannot be easily encapsulated in a component with well-defined
interfaces. However, some real-time design approaches do not support
aspects and aspect weaving at all, e.g., DARTS and TRSD (see table
3.1). HRT-HOOD supports two types of interfaces, hence, supporting
only the AS3 criterion. Some work on aspect separation in the design of
real-time systems has been addressed in VEST. However, VEST supports
aspects like memory consumption describing the run-time behavior of the
component with respect to memory consumption but not changing the
code of the VEST components. From this, it can be observed that real-
time systems have another different dimension of crosscutting compared
to general-purpose software systems, e.g., the VEST memory consump-
tion aspect describes the memory needs of components and crosscuts
the entire real-time system composed out of components. Hence, in a
real-time environment, not only is it desirable to support aspects that
crosscut the code of the components, but also aspects that crosscut the
structure of the system and describe the behavior of the components and
the system. This implies that a design method of configurable real-time
systems should support multiple aspect types. We express this in the
following criterion.

AS4 Multiple aspect types. The notion of separation of concerns in real-
time systems is influenced by the nature of real-time systems, e.g.,
temporal constraints and run-time environment. Thus, a real-time
system design method should support aspects that crosscut code of
core components, as well as additional aspect types to specify the
behavior of the real-time component in the run-time environment.
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3.6 System Composability

Software for real-time systems should be produced quickly, reliably, and
should be optimized for a particular application or a product. Success-
ful deployment of software components for building real-time systems
depends on the availability of tools that would improve development,
implementation, and evaluation of component-based real-time systems.
An example of an effort to create a tool helping the designer to configure
and analyze a component-based real-time system is VEST. Configura-
tion support, although not automated by tools, has also been addressed
by both DARTS and TRSD as they provide detailed design guidelines
for real-time system composition. Note that most approaches to de-
sign of general-purpose software systems, with the exception of COM
and CORBA, have powerful tools for software configuration. However,
analysis of the software behavior is of secondary (if any) interest as these
approaches do not provide means for analyzing behavior of the composed
software system (see table 3.1).

Temporal analysis of a real-time system is one of the key issues in
real-time system development, and there are a number of approaches
that provide support in performing temporal analysis of the real-time
system in their design method, namely TRSD, HRT-HOOD, and VEST
(see table 3.1).

We conclude that a design method for building reliable component-
based real-time systems should provide support for exchanging compo-
nents and configuring new systems out of existing, or newly developed,
components. Hence, the following should be considered with respect to
system composability (SC).

SC1 Configuration support. The design method should provide recipes
for combining different components into system configurations.

SC2 Temporal analysis. The design method should provide support
for temporal analysis of the composed real-time system. Tools to
achieve predictable software behavior are preferable.
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3.7 Observations

As can be observed, most of the design approaches discussed in this
chapter both in the software engineering and real-time communities ful-
fill only a subset of the criteria identified. However, to fully exploit the
benefits of component-based software development in real-time systems,
new requirements are put on the design method. We have identified nec-
essary criteria we have found so far that a design method needs to satisfy.
Specifically, a component model for real-time systems with two views,
temporal and structural, is required to facilitate easy system composition
and mapping of the components and the composed real-time system to
a particular run-time environment. Separation of concerns in real-time
systems through the support for aspects and aspect weaving is a valuable
feature as it allows efficient component and system tailoring, and this has
not been fully addressed by existing real-time design approaches. Hence,
a design method that would fully support aspects in the real-time system
design should provide support for aspect weaving into the code of the
components. Moreover, to satisfy the traditionally strong requirement
for temporal analysis of the overall real-time system, a real-time design
method supporting aspects and components should provide methods and
tools for the temporal analysis of the system composed out of compo-
nents and aspects. This requirement is essential if a design method for
building component-based real-time systems is targeted towards hard
real-time environments.
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3.7. OBSERVATIONS
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Chapter 4

ACCORD

We have argued that the growing need for enabling development of con-
figurable real-time and embedded systems that can be tailored for a
specific application, and managing the complexity of the requirements
in the real-time system design, calls for an introduction of new concepts
and new software engineering paradigms into real-time system develop-
ment. In this chapter we present ACCORD as a proposal to address these
new needs. Through the notion of aspects and components, ACCORD
enables efficient application of the divide-and-conquer approach to com-
plex system development. To effectively apply ACCORD, we provide a
design method with the following constituents.

e A decomposition process that supports the structural and temporal
view of the components, and consists of the following sequential
phases: (i) decomposition of the real-time system into a set of
components and a set of aspects, corresponding to the structural
view of the components and the real-time system; and (ii) task
structuring, corresponding to the temporal view of the components
and the real-time system.

e Aspects, as properties of a system affecting its performance or se-
mantics, and crosscutting the functionality of the system [45].

e A real-time component model (RTCOM) that describes what a
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real-time component, which supports aspects but also enforces the
information hiding, should look like. RTCOM is specifically devel-
oped to: (i) enable an efficient decomposition process, (ii) support
the notion of time and temporal constraints, and (iii) enable effi-
cient analysis of components and the composed system.

e A method for performing the worst-case execution time analysis of
different configurations of aspects and components, and a tool that
allows analysis automation.

The design of a real-time system using ACCORD is performed in
three phases. In the first phase, a real-time system is decomposed into
a set of components. Decomposition is guided by the need to have func-
tionally exchangeable units that are loosely coupled, but with strong
cohesion. In the second phase, a real-time system is decomposed into
a set of aspects (these aspects crosscut components and the overall sys-
tem). This phase typically deals with non-functional requirements’ and
crosscutting concerns of a real-time system, e.g., resource management
and temporal attributes. In the next phase, components and aspects are
implemented based on RTCOM. In the last phase, the structural view of
the real-time system, i.e., components and aspects, are mapped to the
temporal view using the task structuring criteria.

ACCORD supports both static WCET and dynamic schedulability
analysis. Task schedulability analysis is performed based on the WCET
information of each component (possibly colored with aspects) and the
mapping information obtained in the task structuring step. The WCET
analysis of components colored with aspects is performed using our tool
for automated aspect-level WCET analysis.

As non-functional requirements are essential in real-time system de-
velopment, in this chapter we first focus on aspects and aspectual decom-
position of real-systems (section 4.1), and then discuss RTCOM (section
4.2). Section 4.3 presents guidelines for mapping components to tasks. In
section 4.4 we present the method and the tool for aspect-level WCET

!Non-functional requirements are sometimes referred to as extra-functional re-
quirements [28].
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Aspects in Real-Time Systems

Run-Time Composition Application
Resource demand Compatibility Sg::;;mg I?Drgl?;gg
Temporal Versioning Memory
Constraints Flexibility Optimization
Portability Synchronization

Security

Figure 4.1: Classification of aspects in real-time systems

analysis of components, aspects, and the resulting system. Finally, in
section 4.5 we present an evaluation of ACCORD.

4.1 Aspects in Real-Time Systems

We classify aspects in a real-time system as follows (see figure 4.1):
e application aspects (section 4.1.1),
e run-time aspects (section 4.1.2), and
e composition aspects (section 4.1.3).

The following is the description of each class of aspects in real-time
systems.

4.1.1 Application Aspects

Application aspects can change the internal behavior of components as
they crosscut the code of the components in the system. The applica-
tion in this context refers to the application towards which a real-time
and embedded system should be configured, e.g., memory optimization
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aspect, synchronization aspect, security aspect, real-time property as-
pect, and real-time policy aspect. Since optimizing memory usage is one
of the key issues in embedded systems and it crosscuts the structure
of a real-time system, we view memory optimization as an application
aspect. Security is another application aspect that influences the behav-
ior and the structure of a system, e.g., the system should distinguish
users with different security clearance. Synchronization, entangled over
the entire system, is encapsulated and represented by a synchroniza-
tion aspect. Memory optimization, synchronization, and security aspect
are commonly mentioned aspects in AOSD [45]. Additionally, real-time
properties and policies are viewed as application aspects as they influ-
ence the overall structure of the system. Depending on the system’s
requirements, real-time properties and policies could be further refined,
which we show in detail in the example of the COMET system (see sec-
tion 5.3). Application aspects enable tailoring of the components for a
specific application, as they change the code of the components.

We informally define application aspects as programming (aspect)
language-level constructs encapsulating crosscutting concerns that inva-
sively change the code of the component. Formal definition of application
aspects is given in section 4.2.2.

4.1.2 Run-Time Aspects

Run-time aspects are critical as they refer to aspects of the monolithic
real-time system that need to be considered when integrating the system
into the run-time environment. Thus, run-time aspects give information
needed by the run-time system to ensure that integrating a real-time
system would not compromise timeliness, or available memory consump-
tion. Therefore, each component should have declared resource demands
in its resource demand aspect, and should have information of its tempo-
ral behavior, contained in the temporal constraints aspect, e.g., WCET.
The temporal aspect enables a component to be mapped to a task (or a
group of tasks) with specific temporal requirements. Additionally, each
component should contain information of the platform with which it is
compatible, e.g., real-time operating system supported, and other hard-
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ware related information. This information is contained in the portability
aspect. It is imperative that the information contained in the run-time
aspect is provided to ensure predictability of the composed system, ease
the integration into a run-time environment, and ensure portability to
different hardware and/or software platforms.

We informally define run-time aspects as language-independent
design-level constructs encapsulating crosscutting concerns that contain
the information describing the component behavior with respect to the
target run-time environment. This implies that the run-time aspects do
not invasively change the code of the component.

4.1.3 Composition Aspects

Composition aspects describe compositional constraints when combining
(compatibility aspect), the version of the component (version aspect),
and possibilities of extending the component with additional aspects
(flexibility aspect).

Composition aspects can be viewed as language-independent design-
level constructs encapsulating crosscutting concerns that describe the
component behavior with respect to the composition needs of each com-
ponent. This implies that composition aspects do not invasively change
the code of the component.

Having separation of aspects in different categories eases reasoning
about different embedded and real-time related requirements, as well as
the composition of the system and its integration into a run-time envi-
ronment. For example, the run-time system could define what (run-time)
aspects the real-time system should fulfill so that proper components and
application aspects could be chosen from the library, when composing
a monolithic system. This approach offers a significant flexibility since
additional aspect types can be added to components, and therefore, to
the monolithic real-time system, further improving the integration with
the run-time environment.
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Figure 4.2: A real-time component model (RTCOM)

4.2 Real-Time Component Model

In this section we present RTCOM, a real-time component model, which
allows easy and predictable weaving of aspects, i.e., integrating aspects
into components, thus reflecting decomposition of the system into com-
ponents and aspects. Furthermore, RTCOM supports information hiding
and three types of interfaces.

RTCOM can be viewed as a component colored with aspects, both
inside (application aspects), and outside (run-time and composition as-
pects). RTCOM is a language-independent component model, consisting
of the following parts (see figure 4.2):

e functional part (section 4.2.2),
e run-time system dependent part (section 4.2.3), and
e composition part (section 4.2.4).

RTCOM represents a coarse-granule component model as it provides a
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broad infrastructure within its functional part. This broad infrastruc-
ture enables tailoring of a component through weaving of application
aspects, thereby changing the functionality and the behavior of the com-
ponent to suit the needs of a specific application. In contrast, traditional
component models are fine-grained and allow controlled configuration
of a component to adopt it for use in different system. Although this
type of fine-grained component is typically more optimal for a particular
functionality provided by the component in terms of code size, it does
not allow component tailoring, but merely fine-tuning restricted set of
parameters in the component [28]. For each component implemented
based on RTCOM, the functional part of the component is first imple-
mented together with the application aspects, then the run-time system
dependent part and the run-time aspects are implemented, followed by
the composition part and rules for composing different components and
application aspects. Interfaces supported by RTCOM are discussed in
4.2.5.

4.2.1 Notation

We use the following notation to provide a formalized framework for
RTCOM:

e (' denotes a set of components of a real-time system under devel-
opment, i.e., the configuration, and ¢ € C represents a component
in the system;

M denotes a set of mechanisms;

O denotes a set of operations;

A denotes a set of application aspects of a real-time system under
development; and

I=1;UI.U I, is the set of component interfaces, where

— Iy is a set of functional interfaces of component c,



54 4.2. REAL-TIME COMPONENT MODEL

— I, is a set of compositional interfaces of component c,

— I, is a set of configuration interfaces of component c.

Within RTCOM we define a component as follows.

Definition 1 (Component) A component c is a tuple < M,0,I >,
where M is a set of mechanisms encapsulated by component ¢, O is a set
of operations of component c, and I is a set of component interfaces.

The following sections provide the follow-up definitions and exten-
sive elaboration on each of the constituents of the definition 1 using the
notation introduced in this section.

4.2.2 Functional Part of RTCOM

To define the functional part of the RTCOM, we first need to define the
notion of mechanisms and operations of a component, as follows.

Definition 2 (Mechanisms) A set of mechanisms M of component ¢
is a non-empty set of functions encapsulated by component c.

The implication of definition 2 is the establishment of mechanisms as
fine-granule methods or functions of each component.

Definition 3 (Operations) A set of operations O of component c is a
set of functions implemented in ¢ where for each operation o € O there
ezists a non-empty subset of mechanisms K C M, a subset of operations
L from other components (C\{c}), and a mapping such that o = f(K,L).

Definition 3 implies that each component provides a set of operations to
other components and/or to the system. Operations can be viewed as
coarse-granule methods or function calls as they are implemented using
the underlying component mechanisms. Additionally, each operation
within the component can call any number of operations provided by
other components in the system. An example of how operations and
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Figure 4.3: Operations and mechanisms in a component ¢

mechanisms could be related in the component is given in figure 4.3. For
example, operation o; € O is implemented using the subset of compo-
nent mechanisms {mj,m3}, while operation oy is implemented using the
subset {ma} of component mechanisms. Furthermore, each operation in
the component can use a mechanism in its implementation one or several
times, e.g., 01 uses my once and mg three times.

Definition 4 (Recursively non-cyclic set) Given the operation se-
quence < 01,...,0, > let f; be the mapping that defines the operation o;,
i.e., 0; = fi(K;, O;), where each O; is defined by:

— 0; ={0i1,---,0im} for some m, and
— oir = fir(Kix, Oix), 1 <k <m.

Let D; = O;1U...UQ;y be the operation domain of the functions at level
i. The operation sequence < 01,...,0n > 18 recursively non-cyclic if and

only if for all D;,D;, i < j, D; N\ D; # 0.

A set of operations {o1,09,03} is recursively cyclic if operation o; is
implemented using operation o2, which in turn is implemented using
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calls

0 calls 0 calls 0 )

1 2 3

Figure 4.4: An example of the recursively cyclic set of operations
{01702703}

operation o3, and operation o3 makes a recursive cycle by being imple-
mented using the operation oy (see figure 4.4). Having recursively cyclic
sets of operations in the component, and between different components,
makes temporal analysis, e.g., WCET analysis, of the system composed
out of components inherently difficult. Hence, RTCOM in its current
form only supports recursively non-cyclic operation sets. The following
definition characterizes this property.

Definition 5 A component configuration C for which the operations O
can be ordered into a sequence < o1,...,0, > with the recursively non-

cyclic property, is considered to be well-formed for the purpose of the
WCET analysis.

The functional part of RTCOM represents the actual code imple-
mented in the component, and is characterized by definition 6.

Definition 6 (Functional part) Let ¢ belong to a well-formed compo-
nent set C. Then the functional part of component c is represented by
the tuple < M, O >, where M is the set of mechanisms of the component
and O 1is the set of operations implemented by the component.

Definition 7 (Application aspects) An application aspect a € A is
a set of tuples < a®, P > where:

— t € {before,after,around};

— a! is an advice of type t defined by mapping o' = f(K), K C M;
and
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— P is a set of pointcuts that describes the subset of operations in
components that can be preceded, succeeded, or replaced by advice
al depending on the type of the advice.

Definition 7 extends the traditional definition of programming-language
level aspects by specifying pointcuts and advices in terms of mecha-
nisms and operations. This enables performing temporal analysis? of
the weaved system, and thereby use of aspects in real-time environments.
This also enables existing aspect languages to be used for implementing
application aspects in real-time systems, and enables existing weavers
to be used to integrate aspects into components while maintaining pre-
dictability of the real-time system. Hence, in RTCOM, pointcuts refer
to operations. This implies that a pointcut in an application aspect
points to one or several operation of a component where modifications
of the component code are allowed. Also, having the mechanisms of
the components as basic building blocks of the advices enables temporal
analysis of the resulting weaved code. Furthermore, the implementation
of a whole application aspect is not limited only to mechanisms of one
component since an aspect can contain any finite number of advices that
can precede, succeed, or replace operations through out the system con-
figuration. Advices, and, hence, application aspects can be implemented
using the mechanisms from a number of components.

If x and y represent two code fragments then zy denotes sequential
composition of the two code fragments (resulting from a textual concate-
nation of the two pieces of code).

Definition 8 Let x and y be two pieces of code (two sequences of state-
ments in some programming language). Let o and o' be the mathematical
representation of x and y, respectively. Then we denote the mathematical
representation of the code zy by glue(o,o').

Definition 9 (Weaving of application aspects) Let a =< a!, P >
be an application aspect where at = f(K), K C M, and P is a set of

2Temporal analysis refers both to static WCET analysis of the code and dynamic
schedulability analysis of the tasks.
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pointcuts, P C O. Weaving of application aspect a € A in the component
c =< M,O,I >, results in a component ¢ =< M,O’,I > where for all
o, € O the following holds:

— if 0; € O\P then 0}=o;
— if 0; € P then

glue(at,o0;) if t=before
o = { glue(o;,a’) if t=after

at if t=around

For example, assume that we have component ¢ =< M, O, I > such
that M is the set of mechanisms, O = {o1,...,06} is the set of opera-
tions, and I the set of component interfaces. Then, weaving of applica-

. - . before _after . :
tion aspect a, consisting of advices a; , ay’ , and their respective
pointcut sets, P; = {01,035} and P> = {o0g}, would result in component

¢ =< M,0O', I > where

b t
lefore af er)}.

OI = {glue(al{efore? 01)7 02, glue(a ) 03)7 04, 05, glue(oﬁ, ay

Hence, in component ¢/, the execution of operations o; and o3 are pre-

ceded by the execution of the code of advice a’{ef "¢ and the execution of

t .
gf ". Operations

operation og is succeeded by the execution of advice a
02, 04 and o5 remain unchanged.

Weaving application aspects into the code of a component does not
change the implementation of mechanisms, only the implementation of
operations within the component. Thus, operations are flexible parts
of the component as their implementation can change by weaving ap-
plication aspects, while mechanisms are fixed parts of the component
infrastructure. Since advices are implemented using the mechanisms of
the components, each advice can change the behavior of the component
by changing one or more operations in the component.

To enable easy implementation of application aspects into a compo-
nent, the design of the functional part of the component is performed
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in the following manner. First, mechanisms, as basic blocks of the com-
ponent, are implemented. Here, particular attention should be given to
the identified application aspects, and the table that reflects the cross-
cutting effects of application aspects to different components should be
made to help the designer in the remaining steps of the RTCOM design
and implementation. Next, the operations of the component are imple-
mented using component mechanisms (see definition 3). Note that the
implemented operations provide an initial component policy, i.e., basic
and somewhat generic component functionality. This initial policy we
denote a policy framework of the component. The policy framework
could be modified by weaving different application aspects to change the
component policy. If all crosscutting application aspects are considered
when implementing operations and mechanisms, then the framework is
generic and highly flexible.

The development process of the functional part of a component re-
sults in a component colored with application aspects. Therefore, in the
graphical view of RTCOM in figure 4.2, application aspects are repre-
sented as vertical layers in the functional part of the component as they
influence component behavior, i.e., change component policy.

Consider a simple example of an ordinary linked list implemented
based on RTCOM. The functional part of the component, i.e., the
code, consists of mechanisms and the policy framework. The mecha-
nisms needed are the ones for the manipulation of nodes in the list, i.e.,
createNode, deleteNode, getNextNode, linkNode, and unlinkNode
(see figure 4.5). Operations implementing the policy framework, e.g.,
listInsert, listRemove, listFindFirst, define the behavior of the
component, and are implemented using the underlying mechanisms.
In this example, listInsert uses the mechanisms createNode and
linkNode to create and link a new node into the list in first-in-first-out
(FIFO) order. Hence, the policy framework is FIFO.

Assume that we want to change the policy of the component from
FIFO to priority-based ordering of the nodes. Then, this can be
achieved by weaving an appropriate application aspect. Figure 4.6 shows
the listPriority application aspect, which consists of one pointcut
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listlnsert()
_ |'i st Renove()
—policy— I'i st FindFirst()

creat eNode()
—mechanisms | del et eNode()
get Next Node()
| i nkNode()
unl i nkNode()

Figure 4.5: The functional part of the linked list component

listInsertCall, identifying listInsert as a join point in the compo-
nent code (lines 2-3). When this join point is reached, the code in the
before advice listInsertCall is executed. Hence, the application as-
pect listPriority intercepts the operation (a method or a function call
to) listInsert, and before the code in listInsert is executed, the ad-
vice, using the component mechanisms (getNextNode), determines the
position of the node based on its priority (lines 5-14).

4.2.3 Run-Time System Dependent Part of RTCOM

The run-time system dependent part of RTCOM accounts for temporal
behavior of the functional part of the component code, not only without
aspects but also when aspects are weaved into the component. Hence,
run-time aspects are part of the run-time dependent part of RTCOM;
they are represented as horizontal parallel layers to the functional part
of the component as they describe component behavior (see figure 4.2).
In the run-time part of the component, run-time aspects are expressed
as attributes of operations, mechanisms, and application aspects, since
those are the elements of the functional part of the component, and
thereby influence the temporal behavior of the component.

We now illustrate how run-time aspects are represented and handled
in RTCOM using one of the most important run-time aspects as an ex-
ample, i.e., WCET. One way of enabling predictable aspect weaving is
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aspect listPriority{

1:

2: pointcut listlnsertCall (List_Operands * op)=

3: call ("void listlnsert(List_Operands*)")&&args(op);
4:

5: advice listlnsertCall (op):

6: voi d before(List_Operands * op){

7: whi l e

8: the node position is not determ ned

9: do

10: node = get Next Node( node);

11: /* determ ne position of op->node based

12: onits priority and the priority of the

13: node in the list*/

14: }
\15: ) Y,

Figure 4.6: The listPriority application aspect

to ensure an efficient way of determining the WCET of the operations
and/or real-time system that have been modified by weaving of aspects.
WCET specifications in RTCOM are based on the following two obser-
vations:

e aspect weaving does not change WCET of mechanisms since mech-
anisms are fixed parts of the RTCOM; and

e aspect weaving changes operations by changing the number of
mechanisms that an operation uses, thus, changing their tempo-
ral behavior.

Therefore, if the WCETs of mechanisms are known and fixed, and the
WCET of the policy framework and aspects are given as a function of
mechanism used, then the WCET of a component weaved with aspect(s)
can be computed by calculating the impact of aspect weaving to WCETs
of operations within the component (in terms of mechanism usage). To
facilitate efficient WCET analysis of different configurations of aspects
and components, WCET specifications within run-time part of RTCOM
should satisfy the following:
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e the WCET for each mechanism is known and declared in the
WCET specification;

e the WCET of every operation is determined based on the WCETs
of the mechanisms, used for implementing the operation, and the
internal WCET of the body of the function or the method that
implements the operation, i.e., manages the mechanisms; and

e the WCET of every advice that changes the implementation of
the operation is based on the WCETs of the mechanisms used for
implementing the advice and the internal WCET of the body of
the advice, i.e., code that manages the mechanisms.

mechani sms( | i st Of Par amet er s) {
mechani sn{
nane [ nameOF Mechani snj ;
wcet [val ue of wcet];
}
mechani sm{
name [ nameOf Mechani sni ;
weet [val ue of wcet];
}
}

Figure 4.7: Specification of the WCET of component mechanisms

Figure 4.7 shows the WCET specification for mechanisms in the com-
ponent, where for each mechanism the WCET is declared and assumed
to be known. Similarly, figure 4.8 shows the WCET specification of
the component policy framework. Each operation defining the policy of
the component declares what mechanisms it uses, and how many times
it uses a specific mechanism. This declaration is used for computing
WCETs of the operations or the component (without aspects). Figure
4.9 shows the WCET specification of an application aspect. For each
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policy(listCOf Paraneters){
oper ati on{
name [ nameCf Qper ati on] ;
uses{
[ Name of nechanisni [ Nunber of tines used];

intWet [Value of internal operation wcet
(call ed mechani snms excl uded) ]

}

operat i on{

.

Figure 4.8: Specification of the WCET of a component policy framework

aspect (i st Of Par anet er s) {
advi ce{
nanme [ nanmeOf Advi ce];
type [typeOf Advice: before, after, around];
changes{
name [named Operation];
uses{
[ nameO Mechani snj [ Nunber of tines used];

int Wet [Value of internal advice wcet
(cal | ed nmechani sns excl uded)]

Figure 4.9: Specification of the WCET of an application aspect
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advice type (before, around, after) that modifies an operation, the oper-
ation it modifies is declared together with the mechanisms used for the
implementation of the advice, and the number of times the advice uses
these mechanisms. WCET specifications of aspects and components can
also have a list of parameters used for expressing the value of WCETs.
The resulting WCET of the component (or one operation within the
component), colored with application aspects, is computed using the al-
gorithm presented in [102] and described in detail in section 4.4.2. The
algorithm utilizes the knowledge obtained from WCET specifications of
the mechanisms and operations involved, as well as WCET specifications
of aspects that change a specific operation.

As a consequence of weaving an application aspect into the code of
the component, the temporal behavior of the resulting component, col-
ored with aspects, changes. Hence, run-time aspects need to be defined
for the policy framework (the component without application aspects) as
well as the application aspects, so we can determine the run-time aspects
of a component colored with different application aspects. Figure 4.10
presents an instantiation of a WCET specification for the policy frame-
work of the linked list component. Each operation in the framework is
named and its internal WCET (intWcet) with the number of times it
uses a particular mechanism are declared (see figure 4.10). The WCET
specification for the application aspect listPriority that changes the
policy framework is shown in figure 4.11. Since the maximum number of
elements in the linked list can vary, the WCET specifications are param-
eterized with the noOfElements parameter. We continue this example
of WCET specifications of the linked list component in section 4.4 and
use it to illustrate the way WCET analysis is performed within the AC-
CORD.

4.2.4 Composition Part of RTCOM

The composition part refers both to the functional part and the run-
time part of a component, and is represented as the third dimension of
the component model (see figure 4.2). Given that there are different ap-
plication aspects that can be weaved into the component, composition
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pol i cy(noCX El enent s) {
oper ati on{
nane |istlnsert;
uses{
creat eNode 1;
| i nkNode 1;

intWet 1ms;

}

oper ati on{
nane |istRenove;
uses{

unl i nkNode 1;
del et eNode 1;
}
int\Wet 4ns;
}

get Next Node noOf El enent s;

mechani sns{

mechani sm{
nane creat eNode;
wcet 5ns;

}

nechani sn{
name del et eNode;
wcet  4ns;

}

mechani sm{
nanme get Next Node;
wcet  2ns;

}

Figure 4.10: The WCET specification of the policy framework

advi ce{

aspect listPriority(noOkEl enents){

}

name listlnsertCall;
type before;
changes{
nanme |istlnsert;
uses{
get Next Node noCf El enent s;

}
}
i nt Wet 4nms+0. 4*noCX El enent s;

Figure 4.11: The WCET specification of the 1listPriority application

aspect
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E RTCOM

Functional
interface
(required)

Functional f
interface

(provided)

Configuration
interface

Figure 4.12: Interfaces supported by the RTCOM

aspects represented in the composition part of RTCOM should contain
information about component compatibility with respect to different ap-
plication aspects, as well as with respect to different components. This
part of RTCOM has not been a main focus of our work so far, and it is
currently under development.

4.2.5 RTCOM Interfaces

RTCOM supports three different types of interfaces (see figure 4.12):
(i) functional interface, (ii) configuration interface, and (iii) composition
interface.

Typically, in a component-based software system, a component func-
tional interface specification reflects the operations of the component.
Namely, the interface specification provides the operation name, type,
and parameters of the operation, e.g., input, output, or input/output
parameters [26]. We denote such operation specification as operation
signature and use this notation in the remainder of this section.

Functional Interface

A functional interface I of component c is a tuple < I%, I} >, where I]’c’ is
an interface provided by the component consisting of a set of signatures of
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operations O provided by the component, and I; is an interface required
by the component ¢ consisting of a set of signatures of operations L from
other components (C\{c}) called from the component c.

Thus, functional interfaces of components are classified in two cat-
egories, namely provided functional interfaces and required functional
interfaces. The way required and provided interfaces are implemented in
the first application of RTCOM is illustrated in the figure 4.13. Provided
interfaces reflect a set of operations that a component provides to other
components or to the system (see figure 4.13(a)). Required interfaces
reflect a set of operations that a component, i.e., each operation within
the component, requires from other components (see figure 4.13(b)). In

required interface {
interface{
name [ naneCf Oper ati on]
requires{
[ oper ati onRequi r ed]

provided interface {
nane [naneCf Operation];
nane [naneCf Operation];
nanme [naneOf Operation];

}
(a) The provided functional in- (b) The required functional in-
terface terface

Figure 4.13: An example of the specification of the functional interface

general, it is considered that having separation to provided and required
interfaces eases component exchange and addition of new components
into the system [19].

Configuration Interface

A configuration interface I, of a component c is a tuple < O, X >, where
O is a set of signatures of operations implemented in the component,



68 4.2. REAL-TIME COMPONENT MODEL
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Figure 4.14: Interfaces and their role in the composition process

and X is a set of changeable parameters specifying the behavior of the
operations.

The configuration interface is intended for supporting the integration
of a real-time system with the run-time environment. This interface pro-
vides a set of parameters X that can be changed within the component
so that the mapping of the component on the target run-time environ-
ment is eased. Combining multiple components results in a system that
also has a configuration interface, which enables the designer to inspect
the behavior of the system towards the run-time environment (see figure
4.14). The precise role and the full functionality of this interface are still
under development.

Composition Interface

A composition interface I. of component c is a set of signatures of mech-
anisms M of the component.

Composition interfaces, which correspond to join points, are em-
bedded into the functional part of a component in form of the mech-
anism declarations. The weaver identifies composition interfaces and
uses them for aspect weaving. Composition interfaces are ignored at
component/system compile-time if they are not needed; they are “acti-
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vated” only when certain application aspects are weaved into the system.
Thus, the composition interface allows integration of the component and
aspectual part of the system. Aspect weaving can be performed either on
the component level, weaving application aspects into component func-
tionality, or on the system level, weaving application aspects into the
monolithic system.

4.3 Task Structuring

When aspects and components are identified in the real-time system un-
der development, the final step is to map those to tasks in the system.
We argued (see section 3.4) that the need for having reusable components
in a component library results in a real-time system decomposition into
components and aspects as building blocks of the system. The map-
ping of these into tasks is dependent on the current system in which the
component is to be used and, hence, should be done after the compo-
nents and aspects required in the system have been identified. To help
designers in the mapping process we have adopted the task structuring
guidelines from DARTS [39] to perform mapping from components to
tasks. The guidelines should be applied after the software components
in the system have been identified. Hence, components can be mapped
to tasks based on the following.

e Event dependency, which includes the following;:

— Asynchronous I/O device dependency. A component, pro-
viding certain operations dependent on the device input and
output, is often constrained to execute at the speed of the
I/0O device with which it interacts. In particular, if the device
is asynchronous then such a component could be structured
into a separate I/O dependent task.

— Periodic event. If operations provided by one or more com-
ponents need to be executed at regular intervals of time, the
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component providing these operations could be structured as
a periodically activated task.

e Task cohesion, which includes the following:

— Sequential cohesion. Certain components have operations
that need to be performed sequentially with respect to op-
erations of some other components. The first operation of
the first component in the sequence is triggered by an asyn-
chronous or periodic event. These sequential components can
be combined into one task.

— Temporal cohesion. Components that perform operations ac-
tivated on the same event may be grouped into a task so that
they are executed each time the task receives a stimulus.

e Task priority, which includes the following:

— Time criticality. Time critical operations of the component
need to run at a high priority and, thus, a component provid-
ing these operations should be structured as a separate high
priority task.

— Computational intensity. Non-time-critical computationally
intensive operations of the component may run as a low pri-
ority task consuming spare CPU cycles.

The given guidelines present a way of assigning components to tasks.
The assignments result in the “ownership” relation between tasks and
components in the system, where each task can “own” one or more com-
ponents. The mapping information describing the ownership of each
task obtained in this step should be the end result of this process. Note,
however, that the guidelines presented in this section represent the initial
effort in defining the way components can be mapped to tasks, and issues
not discussed here, such as inter-process synchronization, are subject to
further research.
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Figure 4.15: Temporal analysis in ACCORD

4.3.1 Task Analysis

Temporal analysis is rather straightforward in ACCORD. The analysis
is based on the following elements:

e the WCET information contained in the run-time part of the com-
ponent (components can possibly be modified with aspects), and

e the mapping information describing the task ownership of compo-
nents obtained in the task structuring step.

Given the configuration of the system consisting of N components
(c1, ...,cn), the information about the WCET of each operation pro-
vided by a component is contained in the run-time part of the compo-
nents (see figure 4.15). For example, in the run-time part of the com-
ponent c¢; the value of the WCET of the operations (op;, i=1,2), is pro-
vided. The task mapping information specifies on which task’s thread
of execution a component runs, e.g., component ¢; runs on task; thread
of execution together with component cy. By combining the WCET
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Figure 4.16: An overview of the automated aspect-level WCET analysis
process

knowledge of the operations in the component with the task mapping
information we obtain precise WCETs of each task in the system, which
then makes it easy to analyze a given task set with respect to finding a
feasible schedule on a specific platform, e.g., by using some off-the-shelf
tool for schedulability analysis.

4.4 Aspect-Level Worst-Case Execution Time
Analysis

In this section we present an approach for determining the WCET of
a real-time system composed using aspects® and components, called
aspect-level WCET analysis. The aspect-level WCET analysis is based
on the concept of symbolic WCET analysis [13]. The main goal of aspect-
level WCET analysis is determining the WCET of different real-time
system configurations consisting of aspects and components before any
actual aspect weaving (system configuration) is performed, and, hence,
help the designer of a configurable real-time system to choose the system
configuration fitting the WCET needs of the underlying real-time envi-

8 Aspects here refer exclusively to application aspects, i.e., language-dependent
aspects that invasively change the code of the components.



ACCORD 73

ronment without paying the price of aspect weaving for each individual
candidate configuration.

Figure 4.16 presents an overview of the automated aspect-level
WCET analysis with its main constituents, namely:

e input files, which are aspect-level WCET specifications of aspects
and components,

e the aspect-level WCET analyzer, which performs the actual com-
putation of the WCET of components weaved with aspect, and

e output files, which are the result of the aspect-level WCET analy-
sis.

Our tool, the aspect-level WCET analyzer, produces WCET estimates
of components weaved with aspects to determine if the configuration of
aspects and components under consideration can be integrated into the
target run-time environment. If necessary, i.e., if very precise WCET
estimates are needed, the tool for aspect-level WCET analysis can be
followed by further analysis of the resulting weaved code using a more
specialized WCET tool (that performs both low level and high level
WCET analysis).

The following sections provide a detailed description of each of the
elements involved in aspect-level WCET analysis.

4.4.1 Aspect-Level WCET Specification

Aspect-level specifications of components and aspects correspond to the
run-time part of the RTCOM that implements the WCET aspect. The
reason we introduce a notion of aspect-level specifications to represent
WCET aspect is to emphasize that the approach to aspect-level WCET
analysis could be generalized beyond the RTCOM model and ACCORD,
if aspects and components are implemented in conformance with the
guidelines presented in section 4.2.2.

The aspect-level WCET specification of an aspect and a component
consists of internal and external WCET specifications. The internal
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Aspect-level WCET
Internal WCET | External WCET
Components/Aspects symbolic function of
expression mechanisms
Component | Mechanism X
Operation X x
Aspect Before advice X X
After advice X X
Around advice X X

Table 4.1: Aspect-level WCET specifications of aspects and components

WCET specification is a fixed part of the aspect-level WCET specifica-
tion and it is obtained by symbolic WCET analysis. It represents the
WCET of the code not changed by aspect weaving. The external WCET
specification is a variable part of the aspect-level WCET specification as
it represents the WCET of the code that can be modified by aspect weav-
ing, i.e., the temporal behavior can be changed by “external” influence.

Table 4.1 presents the relationship between components, aspects, and
the aspect-level WCET specification. The temporal behavior of mech-
anisms, being fixed parts of a component, does not change by aspect
weaving. Hence, the WCETs of mechanisms in a component are deter-
mined by the internal WCETS, specified as symbolic expressions. As
operations can be modified by aspect weaving, their aspect-level WCET
specifications consist both of fixed internal WCET specifications and
variable external WCET specifications (see table 4.1). External WCETs
of an operation is specified through usage of mechanisms in the operation
as aspect weaving changes the operation implementation by changing the
number of the mechanisms used by the operation. Similarly, the WCET
specification of an advice also consists of the fixed internal WCET spec-
ification and the variable external WCET specification.

Figure 4.17 illustrates the aspect-level WCET specifications for the
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pol i cy(noOf El ement s) {

External WCET
specification of
an operation

]

Internal WCET
specification

oper ati on{
name |listlnsert
uses{
createNode 1
I'i nkNode 1;
}
i nt Wet 1ns;
s
oper ati on{
nanme |ist Renove
uses{

get Next Node noCf El enent s;
unl i nkNode 1;
del et eNode 1;
}
intWet 4ns;
}

nechani sne{
nechani sn{
nane createNode;
wcet  5ms;

mechani sn{
nane |inkNode;
™ wcet 4ns;

mechani sm{
nane get Next Node;
wecet  2ns;

}

WCET specification of the policy
framework

WCET specification of the
mechanisms

Figure 4.17: Aspect-level WCET specifications of the operations and
mechanisms of the locking component

advi ce{

type before;
changes{

aspect listPriority(noOf El ements){

nanme listlnsertCall;

name listlnsert;

External WCET
specification {

uses{
get Next Node noCf El enent s;
X

Internal WCET{
specification

}
intWet 4ms+0. 4*noCf El ement s;

}

Figure 4.18: The aspect-level WCET specification of the CCpolicy aspect
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policy(noCX El enents) {
operation{
name listlnsert; aspect |istPriority(noCtEl ements){
uses{ advi ce{
creat eNode 1; nane |istinsertCall;
i |'i nkNode 1: type before;
filename.cdl } e st nser
intWet 1ns; filename.adl USZZE Next Node noCf El enent s:
} } '
}
intWet 4ns+0. 4*noCf El enent s;
(a) Component description (b) Application aspect descrip-
language tion language

Figure 4.19: An example of the input and output files

operation(){
nane listlnsert;
Wet 3ms;

}

operation(){
nane |istlnsert;
Wet 3ns;

filename.sdl|

Figure 4.20: An example of the output file of the aspect-level WCET
analyzer
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Figure 4.21: Main constituents of the aspect-level WCET analyzer

linked list component. The aspect-level specification for the aspect
listPriority changing the code of the linked list component is shown
in figure 4.18.

Aspect-level WCET specifications of aspects and components are in-
puts to the aspect-level WCET analyzer. The specifications are currently
implemented such that an aspect-level WCET specification of a compo-
nent is contained in a file that has the extension cdl (component descrip-
tion language) (see figure 4.19(a)), while aspect-level WCET specifica-
tions of aspects have the extension adl (aspect description language) (see
figure 4.19(b)). The tool outputs the file with an extension sdl (system
description language) that contains all the operations of the components
in the configuration of the real-time system under analysis, and their
respective resulting WCETs (see figure 4.20).

4.4.2 Aspect-Level WCET Analyzer

The aspect-level WCET analyzer consists of two main parts, the prepro-
cessor and the WCET analyzer, as shown in figure 4.21. In the remainder
of this section we give detailed description of these parts of the tool and
discuss their interaction.

Preprocessor

The task of the preprocessor of the aspect-level WCET analyzer is to
transform the information contained in aspect-level WCET specifica-
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Preprocessor

request for
token

parser scanner
token

Figure 4.22: The structure of the preprocessor

tions, which are given as an input in the form of the files with extensions
cdl and adl, to a form useful for the WCET analyzer. The preproces-
sor analyzes the WCET specifications given, and produces data struc-
tures containing the WCET values and interdependency information for
all components and aspects. These data structures are internal to the
aspect-level WCET analyzer and they are coupling the preprocessing
and the analyzing part of the tool (see figure 4.21).

The preprocessor has a typical structure consisting of a parser and a
scanner as shown in figure 4.22. It was implemented using Flex [77] and
Bison [34], which are code-generating tools designed to assist in compiler
development. Their detailed description is out of the scope of this thesis,
and here we only give a short overview of these tools focusing primarily on
the issues important to understand preprocessing part of the aspect-level
WCET analyzer. Flex, a fast lexical analyzer, is a tool for generating
scanners, which are programs that recognize lexical patterns in the text.
Bison is a tool used for generating parsers, which convert the grammar
descriptions into a C or C++ program to facilitate easy parsing.

The parser and scanner are interrelated as parser cannot complete
its actions without the interaction with the scanner. As shown in the
figure 4.22, the interaction is realized in the form of token request-reply.
The parser breaks down all the expressions and sentences in the descrip-
tion files into words, i.e., tokens, and in communication with scanner
checks if the token is a valid part of the description language. It then
groups the tokens into sentences based on the grammar rules. When a
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grammar rule is recognized, a semantic action is executed. The seman-
tic action for the preprocessor is to generate a data structure to store
the information contained in the aspect-level WCET specification files.
The structures created by semantic actions are realized in the form of
maps and vectors to facilitate fast access (for the WCET analyzer) to
the data. The data structures store: (i) values of internal and external
WCETs for operations and advices, (ii) values of external WCETs of
and mechanisms, (iii) parameters existing in the symbolic expressions of
operations, mechanisms, and advices, and (iv) dependency information,
e.g., the mechanisms used by an operation, and advices modifying an
operation.

WCET Analyzer

The WCET analyzer implements the aspect-level WCET algorithm that
computes the WCETs of components weaved with aspects. After the pre-
processing step, the internal data structures created by the preprocessor
contain the parameters and the WCET values needed by the algorithm.
Since internal WCETs in the aspect-level specifications are symbolic ex-
pressions, the values of these need to be determined, and the fist step is
to obtain the values of parameters in the expressions.

This is done by the aspect-level WCET analyzer in the step before
actually applying the aspect-level WCET algorithm. The global function
checkParameters() of the aspect-level WCET analyzer checks the data
structures created in the preprocessing step detecting the parameters of
operations and mechanisms (used in symbolic expressions), and prompts
the human user for their values. The values of the parameters of an
operation are then stored within the same data structure (e.g., an object)
in a vector that contains all the information and a WCET values for a
particular operation. The resulting parameterized data structures are
then used by the WCET analyzer as input to calculate the WCETs
of all the operations within the real-time system configuration under
development.
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Algorithm aspect-level WCET

WCETanalyzer ()

1:
2:
3:

for every operation; do
newWCET=operationWCET (operation;)
end for

operationWCET (operation)

1:
2:
3:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

operationWCET= 0
if an advice is modifying the operation then
for every advice; in the aspect; modifying the operation do
if around advice then
operationWCET=operationWCET+codeBlockWCET (advice; )
else return before or after advice
operationWCET=operationWCET+codeBlockWCET (advice; )+
codeBlockWCET (operation)
end if
end for
else
operationWCET=codeBlockWCET (operation)
end if

if operation requires other operations then
for every operation required by the operation do
operationWCET=operationWCET+operationWCET (operationy,)
end for
end if
return operationWCET

codeBlockWCET (codeBlock)

1:

codeBlockWCET=intcodeBlockWCET

for every mechanism; used by the codeBlock do
codeBlockWCET=codeBlock WCET+WCET; * INV;

end for

return codeBlockWCET
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The aspect-level WCET algorithm, used for calculating the total
WCET of components, possibly colored with aspects, consists of three
interdependent parts (top-down description):

e WCETanalyzer (), which is the main program of the WCET ana-
lyzer that computes the WCETs of every operation in the chosen
system configuration;

e operationWCET(), which is called from WCETanalyzer() to com-
pute the WCET of an operation in the component; and

e codeBlockWCET(), which is called from the operationWCET() to
compute the WCET of an advice or an operation that is not weaved

with aspects (note, advices and operations use mechanisms as basic
blocks).

operationWCET () computes the WCET of an operation taking into
account that the operation might be modified by aspect weaving. If the
operation is modified by aspect weaving, the following is applicable (lines
2-10). For every advice within the aspect that modifies an operation we
need to recalculate the WCET of the operation, depending on the ad-
vice type. The WCET of an around advice is calculated directly by a
codeBlockWCET (), where around advice now is a code block (lines 4-5).
The WCETs of before and after advices are calculated by taking into
account not only the WCET of an advice as a code block, but also the
WCET of the operation since the advice runs before or after the opera-
tion (lines 6-10). If the operation is not modified by aspect weaving, then
the above described actions are ignored (lines 2-10) and the value of the
WCET of the operation is obtained simply by calling codeBlockWCET ()
(lines 10-12). Finally, if the operation for which we are calculating the
WCET is implemented using operations from other components, then in
the WCET of the operation we need to include all the WCETs of ev-
ery other operation called (these are calculated by the same principle).
Thus, we need to have a recursive call to the operationWCET() itself
(lines 14-18).
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codeBlockWCET() is used for calculating the WCET of a code
block (codeBlock), which can be either an advice or an operation.
codeBlockWCET () does so by first calculating the value of the internal
WCET of a given code block based on a symbolic expression (line 1).
Then, to obtain an aspect-level WCET of a codeBlock, the internal value
of the WCET is augmented with the value of the external WCET. The
external WCET is computed using the values of WCET for each mech-
anism called by the codeBlock (lines 2-4) such that the value of WCET
of a mechanism (a symbolic expression) is multiplied with the number
of times the codeBlock uses the mechanism (line 3).

Example

Consider that we want to develop a real-time system using aspect and
components that has to conform to specific WCET requirements. Hence,
we need to apply aspect-level WCET analysis to the chosen configura-
tion. Here, to simplify the explanations, we consider a simple configu-
ration consisting of one component and one aspect, namely linked list
component and the 1istPriority aspect. The aspect-level WCET spec-
ification of these we already discussed in 4.4.1. Hence, if the specifications
of liked list component in figure 4.17, and the aspect 1istPriority in
figure 4.18, are given as an input to the aspect-level WCET analyzer,
then the preprocessor extracts the information needed by the WCET
analyzer in a suitable form. In this case, the information would be in
the form illustrated in figure 4.23. The policy object is created for the
linked list component containing the pointers to the list of parameters
found in symbolic expressions, and the list of operations. In this case, the
list of parameters consists of only one parameter noOfElements, while
the list of operations consists of all the operations within the linked list
component, e.g., listInsert operation. The aspect object is also cre-
ated and contains the pointer to all the advices within the aspect. In
our example, only one advice 1istInsertCall exists, thus, there is only
one object created for that advice. The advice object consists of the
name of the advice, type of the advice, the list of all mechanisms used
by the advice, the pointer to the list of parameters, and the node that
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aspect

parameters name: listPriority
policy ____—wjname:noOfElements advice
parameterListPtr «— | value: . »name:listinsertCall
operationListPtr -~ __ type: before
\o eration [
m‘/mechnanismust ‘ ‘ ‘ ‘ ‘ ‘
mechnanismList ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ intWeet: node
intWcet node

Figure 4.23: An example of internal data structures in the aspect-level
WCET analyzer

points to the symbolic expression representing the internal WCET of
the advice. Similarly, for the operation listInsert an object is created
that contains the name of the operation, the list of mechanisms used
by the operation, and the node of the symbolic expression. The list of
mechanisms contains names of each of the mechanisms used by the op-
eration listInsert together with the number of times listInsert uses
a particular mechanism. When these data structures are created by the
preprocessor, the function checkParameters() detects that there exists
a parameter noOfElements, and prompts the human user for its value.
Let us assume that, when prompted by the aspect-level WCET analyzer,
we set this value to 5. Now the WCET analyzer can apply the algorithm
to compute the WCET values of the operations in the linked list com-
ponent as follows. Since the operation listInsert is modified by the
advice listInsertCall of the listPriority aspect, the WCET ana-
lyzer applies lines 2-10 of the operationWCET () part of the aspect-level
WCET algorithm to compute a new value of the WCET of the operation
listInsert weaved with the before advice 1istInsertCall, as follows:

operationW CET = operationW CET +
code BlockW CET (listInsertCall) + code BlockW CET (listInsert).

This results, after applying the codeB1ockWCET () part of the algorithm,
in:

operationListInsertWCET = 0 +
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Tool for aspect-level aspect-level
calculating WCET " WCET
aspect specifications specifications Aspect- WCET values
SYMBOLIC| L ofaspects .- L ofaspects |- level of components
WCET weaved with
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met?

Figure 4.24: An overview of the aspect-level WCET analysis lifecycle

(1 + createNodeW CET * 1 + linkNodeW CET 1) +
(4 + 0.4 x noO f Elements + getNextNode * noO f Elements) =
=0+ (1+5%14+2x4)+(44+04x5+2x5)=30.

4.4.3 Limitations and Benefits

The aspect-level WCET analyzer assumes that the aspect-level WCET
specifications of the aspects and components are provided by symbolic
WCET analysis. Hence, the aspect-level WCET analyzer depends on
the ability to extract this WCET information (in the form presented in
this section) from aspects and components.

Ideally, the complete process of the aspect-level WCET analysis
should have a lifecycle as presented in figure 4.24. The process starts
with the implementation files of components and aspects, which are fed
into a tool that performs the symbolic WCET analysis on the code,
i.e., computes symbolic expressions for WCETs, and extracts these into
aspect-level WCET specifications. These specifications are stored in a li-
brary and are used by the aspect-level WCET analyzer, which computes
the WCET the different configurations of components and aspects to
determine the configuration eligibility for use in the underlying real-time
environment with respect to WCET constraints of the environment. If a
given configuration does not fulfill the requirements with respect to the
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WCET, the designer can choose another configuration, i.e., another set
of aspect-level WCET specifications, until the WCET requirements are
met, and the actual weaving can be performed.

Figure 4.24 also illustrates limitations of current automated aspect-
level WCET analysis. The tool that computes WCETs in the form of
symbolic expressions and extracts these to aspect-level WCET specifica-
tions should be an adaptation of the tool for symbolic WCET analysis
to the aspect-level WCET analysis. The current implementation of the
aspect-level WCET analyzer works only with aspect-level WCET spec-
ifications. The current implementation, although given the limitations,
provides benefits over traditional WCET analysis performed on weaved
code since it enables calculations on WCET specifications, not on actual
components and aspects. This way we reduce the overhead of performing
the weaving and then WCET analysis for each potential configuration of
aspects and components.

4.5 ACCORD Evaluation

This section provides an evaluation of ACCORD and it main con-
stituents. The evaluation is performed by relating the design criteria
for component-based real-time systems we identified in chapter 3 to AC-
CORD. The recap of the main criteria identified previously is given in
table 4.2. The table also gives the comparison of ACCORD and the
design approaches discussed previously (see chapter 3), as well as its
evaluation with respect to the criteria.

Component model - relation to ACCORD. ACCORD provides
a component model for real-time systems, which enforces information
hiding and supports three different types of interfaces, hence, fulfilling
the criteria CM1 and CM2, respectively (see section 4.2). The method
assumes that a real-time system should first be decomposed into a set
of components, which are later mapped to tasks. Hence, the relation-
ship between tasks and components is not fixed. ACCORD has adopted
and refined task structuring criteria from DARTS to provide guidelines
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DARTS: desing approach for real-time systems
TRSD: transactional real-time system design
HRT-HOOD: a hard real-time hierarchical object-oriented desing

ACCORD: Aspectual component-based real-time system development

ISC: invasive software composition
VEST: Virginia embedded systems toolkit

Design approaches | pARTS | TRSD | VEST |ISC | COM | Aspect] HRT- |\ ~coRD
Criteria HOOD
Component model
CM1 | r_lf(?rmatl on o . . o

hiding
CM2  Interfaces ° ° ° ° °
CM3  Component i ) o
Views
CM4  Tempora
- ° - - -
attributes L4 L
CM5  Task o i ) ]
mapping - -
Aspect separation
ASL  Aspect ) ) °
support - - L4 o
A2 Aspect _ ) )
weaving - ) L] - )
AS3  Multiple ) ) i ° .
interfaces
ASA  Multiple ) ) i ) )
aspect types - -
System composability
SC1  Configuration ° ° .
support
SC2  Tempord ) ) i i ) o
analysis
LEGEND: | ® Supported ® partially supported - not supported

Table 4.2: Evaluation criteria for ACCORD
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for mapping of components into tasks (see section 4.3). However, the
guidelines need to be refined to include issues not addressed, such as
inter-process communication. Hence, ACCORD partially fulfills CM5
(task mapping).

ACCORD provides a description language for defining temporal at-
tributes of components (see section 4.2.3), corresponding to the CM4
criterion, and aims at providing tools that can automatically extract
temporal information from any real-time software component build on
RTCOM. The description language for temporal attributes of compo-
nents and guidelines for mapping of components to tasks, enable AC-
CORD to enforce the CM3 criterion by supporting both temporal and
structural views of components and the overall real-time system.

Aspect separation - relation to ACCORD. ACCORD enforces
the criterion AS1 and AS4 by supporting three different types of aspects:
application, run-time and composition aspects (see section 4.1). It also
fulfills the criterion AS2 as application aspects can change the code of
components by aspect weaving. Run-time aspects describe the behav-
ior of components, e.g., temporal properties, and resource consumption.
Composition aspects refer to composability issues and relate both to the
functional and the temporal compatibility of components in the real-time
system. The criterion AS3 is supported as RTCOM provides three types
of interfaces: functional, configuration and composition interfaces (see
section 4.2.5).

System composability - relation to ACCORD. ACCORD pro-
vides configuration support for the component-based real-time system
design by providing design guidelines, but not the tools, for configura-
tion of the real-time system using components and aspects, hence par-
tially meeting the criterion SC1. ACCORD also partially enforces the
SC2 criterion as it supports static WCET analysis of composed system
(see section 4.4); the dynamic schedulability analysis is not automated
and relies on the guidelines for the task mapping, and, hence, requires
additional refinements (see section 4.3.1).
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ArprLYING ACCORD 1O COMET: A CASE STUDY &9

Chapter 5

Applying ACCORD to
COMET: a Case Study

In this chapter we present how we applied ACCORD when develop-
ing COMET - a component-based embedded real-time database. The
goal with the COMET platform is to enable development of a config-
urable real-time database for embedded systems, i.e., enable develop-
ment of different database configurations for different embedded and
real-time applications. The types of requirements we are dealing with
can best be illustrated by example of one of the COMET targeting ap-
plication areas: vehicle control systems. Hence, first we present a study
of two different hard real-time systems developed at Volvo Construction
Equipment Components AB, Sweden, with respect to data management
(section 5.1). We then show how we have reached our goal by apply-
ing ACCORD when developing COMET. We present decomposition of
COMET into components (section 5.2), the decomposition of COMET
into aspects (section 5.3), and a detailed description of the implementa-
tion of COMET components based on RTCOM (section 5.4). The chap-
ter finishes with a discussion on experienced benefits and drawbacks of
ACCORD (section 5.5).
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Figure 5.1: The overall architecture of the vehicle controlling system

5.1 Data Management in Vehicle Control Sys-
tems

In this section we present the case study of two different hard real-time
systems developed at Volvo Construction Equipment Components AB,
Sweden, with respect to data management [68]. These systems are em-
bedded into two different vehicles, an articulated hauler and a wheel
loader. These are typical representative real-time systems for this class
of vehicular systems. Both of these vehicle control systems consist of sev-
eral subsystems called electronic control units (ECU), connected through
two serial communication links: the fast CAN link and the slow diagnos-
tic link, as shown in the figure 5.1. Both the CAN link and the diagnostic
link are used for data exchange between different ECUs. Additionally,
the diagnostic link is used by diagnostic (service) tools. The number of
ECUs can vary depending on the way functionality is divided between
ECUs for a particular type of vehicle. For example, the articulated
hauler consists of five ECUs: instrumental, cabin, vehicle, transmission
and engine ECU, denoted IECU, CECU, VECU, TECU, and EECU, re-
spectively. In contrast, the wheel loader control system consists of three
ECUs, namely IECU, VECU, and EECU.

We have studied the architecture and data management of the VECU
in the articulated hauler, and the IECU in the wheel loader. The VECU
and the IECU are implemented on hardware platforms supporting three
different storage types: EEPROM, Flash, and RAM. The memory in an
ECU is limited, normally 64Kb RAM, 512Kb Flash, and 32Kb EEP-
ROM. Processors are chosen such that power consumption and cost of
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Figure 5.2: The structure of an ECU.

the ECU are minimized. Thus, processors run at 20MHz (VECU) and
16MHz (IECU) depending on the workload.

Both VECU and IECU software systems consist of two layers: a
run-time system layer and an application layer (see figure 5.2). The
run-time system layer on the lower level contains all hardware-related
functionality. The higher level of the run-time system layer contains an
operating system, a communication system, and an I/O manager. Every
ECU uses the real-time operating system Rubus. The communication
system handles transfer and reception of messages on different networks,
e.g., CAN. The application is implemented on top of the run-time system
layer. The focus of our case study is data management in the application
layer. In the following section we briefly discuss the Rubus operating
system. This is followed by sections where functionality and a structure
of the application layer of both VECU and IECU, are discussed in more
detail (in following sections we refer to the application layer of the VECU
and IECU as the VECU (software) system and the IECU (software)
system).

5.1.1 Rubus

Rubus is a real-time operating system designed to be used in systems
with limited resources [9]. Rubus supports both off-line and on-line
scheduling, and consists of two parts: (i) red part, which deals with
hard real-time; and (ii) blue part, which deals with soft real-time.
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The red part of Rubus executes tasks scheduled off-line. The tasks
in the red part, also referred to as red tasks, are periodic and have
higher priority than the tasks in the blue part (referred to as blue tasks).
The blue part supports tasks that can be invoked in an event-driven
manner. The blue part of Rubus supports functionality that can be
found in many standard commercial real-time operating system, e.g.,
priority-based scheduling, message handling, and synchronization via
semaphores. Each task has a set of input and output ports that are
used for communication with other red tasks. Rubus is used in all the
ECUs.

5.1.2 VECU

The vehicle system is used to control and observe the state of the vehi-
cle. The system can identify anomalies, e.g., an unnormal temperature.
Depending on the criticality of the anomaly, different actions, such as
warning the driver, system shutdown etc., can be taken. Furthermore,
some of the functionality of the vehicle is controlled by this system via
sensors and actuators. Finally, logging and maintenance via the diagnos-
tics link can also be performed using a service tool that can be connected
to the vehicle.

All tasks in the system, except the communication task, are non-
preemptive tasks being scheduled off-line. The communication task uses
its own data structures, e.g., message queues, and, thus, no resources are
shared with other tasks. Since non-preemptive tasks run until comple-
tion and cannot be preempted, mutual exclusion is not necessary. The
reason for using non-preemptive off-line scheduled tasks is to minimize
the runtime overhead and to simplify the verification of the system.

The data in the system can be divided into five different categories:
(1) sensor/actuator raw data, (2) sensor/actuator parameter data, (3)
sensor/actuator engineering data, (4) logging data, and (5) parameter
data.

The sensor/actuator raw data is a set of data elements that are ei-
ther read from sensors or written to actuators. The data is stored in the
same format as they are read/written. This data, together with the sen-
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sor/actuator parameter data, is used to derive the sensor/actuator engi-
neering data, which can be used by the application. The sensor/actuator
parameter data contains reference information about how to convert raw
data received from the sensors into engineering data. For example, con-
sider a temperature sensor, which outputs the measured temperature as
a voltage T,,;;. This voltage needs to be converted to a temperature 7’
using a reference value T}.¢, e.g., T' = Tyopt * Trey-

In the current system, the sensor/actuator (raw and parameter) data
are stored in a vector of data called a hardware database (HW Db), see
figure 5.3. The HW Db is, despite its name, not a database but merely
a memory structure. The engineering data is not stored in the system
but is derived “on the fly” by data derivation tasks. Apart from data
collected from local sensors and the application, sensor and actuator
data derived in other ECUs is stored in the HW Db. The distributed
data is sent periodically over the CAN bus. From the application’s point
of view, the locality of the data is transparent in the sense that it does
not matter if the data is gathered locally or remotely.

Some of the data derived in the applications is of interest for statisti-
cal and maintenance purposes and therefore the data is logged (referred
to as logging data) on permanent storage media, e.g., EEPROM. Most of
the logging data is cumulative, e.g., the total running time of the vehi-
cle. These logs are copied from EEPROM to RAM in the startup phase
of the vehicle and are then kept in RAM during runtime, to finally be
written back to EEPROM memory before shutdown. However, logs that
are considered critical are copied to EEPROM memory immediately at
an update, e.g., warnings. The parameter data is stored in a parame-
ter area. There are two different types of parameters, permanent and
changeable. The permanent parameters can never be changed and are set
to fulfill certain regulations, e.g., pollution and environment regulations.
The changeable parameters can be changed using a service tool.

Most controlling applications in the VECU follow a common struc-
ture residing in one precedence graph. The sensors (Sig In) are peri-
odically polled by I/O tasks (typically every 10 ms) and the values are
stored in their respective slot in the HW Db. The data derivation task
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then reads the raw data from the HW Db, converts it, and sends it to
the application task. The application task then derives a result that is
passed to the I/O task, which both writes it back to the HW Db and to
the actuator I/O port.

5.1.3 IECU

The IECU is a display electronic control unit that controls and moni-
tors all instrumental functions, such as displaying warnings, errors, and
driver information on the driver display. The IECU also controls dis-
playing service information on the service display (a unit for servicing
the vehicle). It furthermore controls the I/O in the driver cabin, e.g.,
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accelerator pedal, and communicates with other ECUs via CAN and the
diagnostic link.

The IECU differs from the VECU in several ways. Firstly, the data
volume in the system is significantly higher since the IECU controls
displays and, thus, works with a large amount of images and text infor-
mation. Moreover, the data is scattered in the system and depending
on its nature, stored in a number of different data structures as shown
in figure 5.4. Similarly to the HW Db, data structures in the IECU are
referred to as databases, e.g., image databases, menu databases and lan-
guage databases. Since every text and image information in the system
can be displayed in thirteen different languages, the interrelationships of
data in different data storages are significant.

A dominating task in the system is the task updating the driver
display. This is a red task, but it differs from other red tasks in the system
since it can be preempted by other red tasks in the IECU. However,
scheduling of all tasks is performed such that all possible data conflicts
are avoided.

Data from the HW Db in the IECU is periodically pushed on to the
CAN link and copied to the HW Db of the VECU. Warnings or errors
(WoE) are periodically sent through the CAN link from/to the VECU
and are stored in the dedicated part of RAM, referred to as the WoE
database (WoE Db). Hence, the WoE Db contains information of active
warnings and errors in the overall wheel loader control system. While
WoE Db and HW Db allow both read and write operations, the image
and menu databases are read-only databases.

The driver display is updated as follows (see figure 5.4). The driver
display task periodically scans the databases (HW Db, WoE Db, and
menu Db) to determine the information that needs to be displayed on
the driver display. If any active WoE exists in the system, the driver
display task reads the corresponding image, in the specified language,
from the image database located in a persistent storage and then writes
the retrieved image to the image buffer. The image is then read by the
blue I/O task, which then updates the driver display with an image as
many times as defined in the WoE Db. Similarly, the driver display task
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scans the HW Db and menu database. If the hardware database has
been updated and this needs to be visualized on the driver display, or
if data in the menu organization has been changed, the driver display
task reads the corresponding image and writes it to the driver display as
described previously. In case the service tool is plugged into the system,
the service display task updates the service display in the same way as
described for the driver display, but then uses its own menu organization
and image database, buffer, and the corresponding blue I/O task.

5.1.4 Data Management Requirements

Table 5.1 gives an overview of data management characteristics in the
VECU and IECU systems. The following symbols are used in the table:

— feature is true for the data type in the VECU,
— feature is true for the data type in the IECU, and

— feature is true for the data type in both
VECU and IECU.

Moo <

As can be seen from the table 5.1, all data elements in both systems
are scattered in groups of different flat data structures referred to as
databases, e.g., HW Db, image Db, WoE Db and language Db. These
databases are flat because the data is structured mostly in vectors, and
the databases only contain data with no support for DBMS functionality.

The nature of the systems put special requirements on data manage-
ment (see table 5.1): (i) static memory allocation only, since dynamic
memory allocation is not allowed due to the safety-critical aspect of the
systems; (ii) small memory consumption, since production costs should
be kept as low as possible; and (iii) diverse data accesses, since data can
be stored in different storages, e.g., EEPROM, Flash, and RAM.

Most data, from different databases and even within the same data-
base, is logically related. These relations are not intuitive, which makes
the data hard to maintain for the designer and programmer as the soft-
ware of the current system evolves. Raw values of sensor readings and
actuator writings in the HW Db are transformed into engineering values
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by the data derivation task, as explained in section 5.1.2. The engineer-
ing values are not stored in any of the databases, rather they are placed
in ports (shared memory) and given to application tasks when needed.

Yo

123 A
8 &

56 &

g 9 =

5
& B &
Data types S’«o § b% :i§ 9 45
Management characteristics 3 < ‘5 & S §S
HW Db x| x i
Data Parameter Db X
source WoE Db i
Image Db i
Language Db i
Menu Db i
Log Db v
Memory RAM x| x| x| x| x v
type Flash i
EEPROM X v
Memory Static x| x| x| x|x|1]|V
allocation Dynamic
Interrelated with other data x| x| x| x| x|i]|vV
Temporal validity x| x| x X s
Logging Startup v
Shutdown v
Immediately v?
Persistence x| x| vl x| x
Logically consistent x| x| x| x
Indexing i
Transaction | Update x| x| x| x| x v
type Write-only b'e be
Read-only x| x| x i
Complex update | x| x| x v
Complex queries | x| x| x| x| x| i |V

Table 5.1: Data management characteristics for the systems

The period times of updating tasks ensure that data in both systems
(VECU and IECU) is correct at all times with respect to absolute con-
sistency. Furthermore, task scheduling, which is done off-line, enforces

!The feature is true only for some engineering data in the VECU.
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relative consistency of data by using an off-line scheduling tool. Thus,
data in the system is temporally consistent (we denote this data property
in the table as temporal validity). Exceptions are permanent data, e.g.,
images and text, which is not temporally constrained (see table 5.1).

One implication of the systems’ demand on reliability, i.e., the re-
quirement that a vehicle must be movable at all times, is that data must
always be temporally consistent. Violation of temporal consistency is
viewed as a system error, in which case three possible actions can be
taken by the system: use a predefined default data value (most often),
use an old data value or shutdown of the functions involved (system
exposes degraded functionality).

Some data is associated with a range of valid values, and is kept log-
ically consistent by tasks in the application (see table 5.1). The negative
effect of enforcing logical consistency by the tasks is that programmers
must ensure consistency of the task set with respect to logical constraints.

Persistence in the systems is maintained by storing data on stable
storage, but there are some exceptions to the rule, e.g., RPM data is
never copied to stable storage. Also, some of the data is only stored in
stable storage, e.g., internal system parameters. In contrast, data im-
perative to systems’ functioning is immediately copied to stable storage,
e.g., WoE logs are copied to/from stable storage at startup/shutdown.

Several transactions exist in the VECU and IECU systems: (i) up-
date transactions, which are application tasks reading data from the HW
Db; (ii) write-only transactions, which are sensor value update tasks; (iii)
read-only transactions, which are actuator reading tasks; and (iv) com-
plex update transactions, which originate from other ECUs. In addition,
complex queries are performed periodically to distribute data from the
HW Db to other ECUs.

Data in the VECU is organized in two major data storages, RAM and
Flash. Logs are stored in EEPROM and RAM (one vector of records),
while 251 items structured in vectors are stored in the HW Db. Data in
the IECU is scattered and interrelated throughout the system even more
in comparison to the VECU (see table 5.1). For example, the menu
database is related to the image database, which in turn is related to
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the language Db and the HW Db. Additionally, data structures in the
IECU are fairly large. HW Db and WoE Db resides in RAM. HW Db
contains 64 data items in one vector, while WoE Db consists of 425 data
items structured as 106 records with four items each. The image Db and
the language Db reside in Flash. All images can be found in 13 different
languages, each occupying 10Kb of memory. The large volume of data in
the image and language databases requires indexing. Indexing is today
implemented separately in every database, and even every language in
the language Db has separate indexing on data.

The main problems we have identified in existing data management
can be summarized as follows:

e data is scattered in the system in a variety of databases, each
representing a specialized data store for a specific type of data;

e engineering values are not stored in any of the data stores, but are
placed in ports, which complicates maintenance and makes adding
of functionality in the system a difficult task;

e application tasks must communicate with different data stores to
get the data they require, i.e., the application does not have a
uniform access or view of the data;

e temporal and logical consistency of data is maintained by the tasks,
increasing the level of complexity for programmers when maintain-
ing a task set; and

e data from different databases exposes different properties and con-
straints, which complicates maintenance and modification of the
systems.

5.1.5 Observations

The vehicle control systems are typically hard real-time safety-critical
systems consisting of several distributed nodes implementing specific
functionality. Although nodes depend on each other and collaborate
to provide required behavior for the overall vehicle control system, each
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node can be viewed as a stand-alone real-time system. The size of the
nodes can vary significantly, from very small nodes to large nodes. De-
pending on the functionality of a node and the available memory, differ-
ent database configurations are preferred. In safety-critical nodes tasks
are often non-preemptive and scheduled off-line, avoiding concurrency
by allowing only one task to be active at any given time. This, in turn,
influences functionality of a database in a given node with respect to con-
currency control. Less critical nodes, having preemptable tasks, would
require concurrency control mechanisms. Furthermore, some nodes re-
quire critical data to be logged, e.g., warning and errors, and require
backups on startup and shutdown, while other nodes only have RAM
(main-memory), and do not require non-volatile backup facilities from
the database. Hence, in the narrow sense of this application area, the
goal was to enable development of different COMET configurations to
suit the needs of each node with respect to memory consumption, con-
currency control, recovery, different scheduling techniques, transaction
models and storage models. In the following sections we show how we
have reached our goal by applying ACCORD to the design and develop-
ment of the COMET system.

5.2 COMET Components

Following the ACCORD design method presented in chapter 4 we have
first performed the decomposition of COMET into a set of components
with well-defined functions and interfaces. COMET has seven basic com-
ponents (see figure 5.5): user interface component, transaction scheduler
component, locking component, indexing component, recovery and log-
ging component, memory handling component, and transaction manager
component.

The user interface component (UIC) enables users to access data in
the database, and different applications often require different ways of
accessing data in the system. All the operations on data in the database
are received via the UIC. The main activities of the UIC consist of re-
ceiving and parsing the incoming requests from the application and the
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Figure 5.5: COMET functional decomposition

user. UIC takes the incoming requests and devises the execution plans.

The transaction scheduler component (TSC) provides mechanisms for
performing scheduling of transactions coming into the system, based on
the scheduling policy chosen. COMET is designed to support a vari-
ety of scheduling policies, e.g., EDF and RM [55]. The TSC is also in
charge of maintaining the list of all transactions in the system, including
scheduled transactions as well as unscheduled but active transactions,
i.e., transactions submitted for execution. Hard real-time applications,
such as real-time embedded systems controlling a vehicle, typically do
not require sophisticated transaction scheduling and concurrency con-
trol, i.e., the system allows only one transaction to access the database
at a time [68]. Therefore, the TSC should be a flexible and exchangeable
part of the database architecture.

The locking component (LC) deals with locking of data, and it pro-
vides mechanisms for lock manipulation and it maintains lock records in
the database. The LC provides the policy framework for the lock ad-
ministration in which all locks are granted. This policy framework can
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be changed into a specific policy according to which the LC deals with
lock conflicts by weaving concurrency-control aspect (see section 5.4).

The indezing component (IC) deals with indexing of data. Indexing
strategies could vary depending on the real-time application with which
the database should be integrated, e.g., t-trees [58] and multi-versioning
suitable for applications with a large number of read-only transactions
[87]. Additionally, it is possible to customize the indexing strategy de-
pending on the number of transactions active in the system. For example,
in vehicle control applications, where only one transaction is active at
a time, non-thread safe indexing can be used, while in more complex
applications appropriate aspects could be weaved into the component to
allow thread-safe processing of indexing strategy (this can be achieved
by weaving the synchronization aspect).

The memory handling component (MHC) manages access to data in
the physical storage. For example, each time a tuple is added or deleted,
the MHC is invoked to allocate and release memory. Generally, all reads
or writes to/from the memory in COMET involve the MHC.

The transaction manager component (TMC) coordinates the activi-
ties of all components in the system with respect to transaction execu-
tion. For example, the TMC manages the execution of a transaction by
requesting lock and unlock operations provided by the LC, followed by
requests to the operations, which are provided by the IC, for inserting
or updating data items.

5.3 COMET Aspects

Following ACCORD, after decomposing the system into a set of com-
ponents with well-defined interfaces, we decompose the system into a
set of aspects. The decomposition of COMET into aspects is presented
in figure 5.6, and it fully corresponds to the ACCORD decomposition
(given in section 4.1) in three types of aspects: run-time, composition,
and application aspects. As COMET is a real-time database system,
the application aspects are made to reflect both real-time and database
issues. Hence, in the COMET decomposition of application aspects,
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system

the real-time policy aspect is refined to include real-time scheduling and
concurrency control policy aspects, while the real-time property aspect
(in ACCORD) is replaced with the transaction model aspect, which is
database-specific. The crosscutting effects of the application aspects to
COMET components are shown in table 5.2. As can be seen from the
table, all identified application aspects crosscut more than one compo-
nent. For example, the concurrency control (CC) aspect crosscuts several
components, namely TSC, LC, and TMC in the following manner. The
TMC is responsible for invoking the LC to obtain and release locks. The
way the LC is invoked by the TMC depends on the CC policy enforced
in the database and, hence, needs to be adjusted separately for each type
of CC policy, i.e., each type of the CC aspect. Furthermore, the way to
deal with lock conflicts is enforced by the LC. Hence, the LC should be
modified with CC aspect to facilitate lock resolution policy prescribed
by the CC policy of the CC aspect. Since scheduling and CC are tightly
coupled in the sense that CC polices typically require information about
the transactions in the system maintained by the TSC, this means that
the TSC should be modified by CC aspect to provide adequate support
for the chosen CC policy.

The application aspects could vary depending on the particular ap-
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Components
cl|ld|les|l 5| m|Z| 4
_ = n O
Applicatio 5 181]° 513 %
aspects
Transaction X | X | X| X]| X|X] X
Real-time
scheduling X X
Concurrency X | x X
control
Memory X | x| x| x| x X
optimization
Synchronization X | X X] X X
Security X X | X X | X

Table 5.2: Crosscutting effects of different application aspects on the
COMET components

plication of the real-time system, thus particular attention should be
made to identify the application aspects for each real-time system.

54 COMET RTCOM

Components and aspects in COMET are implemented based on RTCOM
(discussed in section 4.2). Hence, the functional part of components is
implemented first, together with application aspects. We illustrate this
process, its benefits and drawbacks, by the example of one component
(namely LC) and one application aspect (namely concurrency control).

The LC performs the following functionality: assigning locks to re-
questing transactions and maintaining a lock table, thus, it records all
locks obtained by transactions in the system. As can be seen from the
table 5.2, the LC is crosscut with several application aspects. The appli-
cation aspect that influences the policy, i.e., changes the behavior of the
LC, is concurrency control (CC) aspect, which defines the way lock con-
flicts should be handled in the system. To enable tailorability of the LC,
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Figure 5.7: The locking component and the concurrency control aspect
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and reuse of code to the largest possible extent, the LC is implemented
with a policy framework where lock conflicts are ignored and locks are
granted to all transactions. The policy framework can be modified by
weaving CC aspects that define other ways of handling lock conflicts. As
different CC policies in real-time database systems exist, the mechanisms
in the LC should be compatible with most of the existing CC algorithms.

The LC contains mechanisms such as (see left part of the figure 5.7):
insertLockRecord(), removeLockRecord(), etc., for maintaining the
table of all locks held by transactions in the system. The policy part con-
sists of the operations performed on lock records and transactions hold-
ing and/or requesting locks, e.g., getReadLock(), getWriteLock(),
releaseLock(). The operations in the LC are implemented using un-
derlying LC mechanisms. The mechanisms provided by the LC are used
by the CC aspects implementing the class of pessimistic (locking) pro-
tocols, e.g., HP-2PL [5] and RWPCP [88]. However, as a large class of
optimistic protocols is implemented using locking mechanisms, the mech-
anisms provided by the LC can also be used by CC aspects implementing
optimistic protocols, e.g., OCC-TI [53] and OCC-APR |[30].

The right part of figure 5.7 represents the specification for the real-
time CC aspect (lines 1-30) that can be applied to a class of pessimistic
locking CC protocols. We choose to give more specific details for the
HP-2PL protocol as it is both commonly used in main-memory database
systems and a well-known pessimistic CC protocol.

The CC aspect has several pointcuts and advices that execute
when the pointcut is reached. As defined by the RTCOM pointcut
model, the pointcuts refer to the operations getReadLockCall() and
getWriteLockCall() (lines 10 and 12). The first pointcut intercepts
the call to the function getReadLock(), which grants a read lock to
the transaction and records it in the lock table. Similarly, the second
pointcut intercepts the call to the function that gives a write lock to the
transaction and records it in the lock table. Before granting a read or
write lock, the advices in lines 14-21 and 22-29 check if there is a lock
conflict. If a conflict exists, the advices deal with it by calling the local
aspect function resolveConflict () (lines 1-9), where the resolution of
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the conflict should be done by implementing a specific CC policy. The
advices that check for conflicts are implemented using the LC mech-
anisms to traverse the lock table and the list of transactions holding
locks.

So far we have shown that the CC aspect affects the policy of the LC,
but the CC aspect also crosscuts other components (see table 5.2). In
the example of the CC aspect implementing pessimistic HP-2PL protocol
(see figure 5.7), the aspect uses the information about transaction pri-
ority (lines 5-8), which is maintained by the T'SC, thus crosscutting the
TSC. Optimistic protocols, e.g., OCC-TI, require additional pointcuts to
be defined in the TMC, as the protocols (as compared to pessimistic pro-
tocols) assume execution of transactions in three phases: read, validate,
and write.

Additionally, depending on the CC policy implemented, the number
of pointcuts and advices varies. For example, some CC policies (like
RWPCP, or optimistic policies) require additional data structures to be
initialized. In such cases, an additional pointcut named initPolicy()
could be added to the aspect that would intercept the call to initialize
the LC. The before advice initPolicy would then initialize all necessary
data structures in the CC aspect after data structures in the LC have
been initialized.

5.5 Wrap-up

Here, we give the benefits and drawbacks of applying ACCORD to the
development of COMET platform. We use the given example of the LC
and CC aspect (see section 5.4) to draw our conclusions. The benefits
of applying ACCORD to the development of COMET platform are the
following (in the context of the given example of the LC and CC aspect).

e (Clean separation of concurrency control as an aspect that crosscuts
the LC code is enabled, thus, allowing high code reusability as the
same component mechanisms are used in almost all CC aspects.

e KEfficient tailoring of the component and the system to fit a specific
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requirement (in this case specific CC policy), as weaving of a CC
aspect into the LC changes the policy of the component by chang-
ing the component code, and leaving the configuration of COMET
unchanged.

e Having the LC functionality encapsulated into a component, and
the CC encapsulated into an application aspect enables reconfig-
uring COMET to support non-locking transaction execution (ex-
cluding the LC), if other completely non-locking CC protocol is
needed.

The drawbacks experienced in applying ACCORD to real-time sys-
tem development are the following.

e A great number of components and aspects available for system
composition can result in an explosion of possible combinations of
components and aspects. This is a common problem for all software
systems using aspect and components, and extensive research has
being done in identifying and defining good composition rules for
the components and aspects [19, 11, 10].

e The coarse-granularity of RTCOM may result in non-negligible
component code overhead, e.g., due to a large number of mech-
anisms implemented in the component in order to support tai-
lorability through weaving of application aspects.

Hence, there is a trade-off between achieving good tailorability and
flexibility of components, tractable combinations of aspects and compo-
nents, and the optimization of the component infrastructure, i.e., number
of mechanisms, for a particular application.
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Chapter 6

Related Work

This chapter focuses on alternative approaches and related research rele-
vant to our work, namely component-based and aspect-oriented real-time
and database systems. As the research in applying AOSD to real-time
system development is in its early stages and, thus, considerably sparse,
we focus primarily on component-based real-time systems and discuss
how they relate to aspects. Hence, in section 6.1 we survey existing
component-based real-time systems. In section 6.2 we discuss related
work on aspects-oriented and component-based database systems. This
chapter finishes with a tabular overview comparing COMET, an example
of an ACCORD-based system, to other approaches.

6.1 Component-Based Real-Time Systems

We have identified three distinct types of component-based embedded
real-time systems:

e Extensible systems. An example of this type of systems is
SPIN [14], an extensible microkernel. Extensions in the system
are possible by plugging components, which provide non-standard
features or functionality.

e Middleware systems. These are characterized by providing efficient
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management of resources in dynamic heterogeneous environments,
e.g., 2K [47] is a distributed operating system specifically developed
for management of resources in a distributed environment.

e Configurable systems. An architecture of a configurable system
allows new components to be developed and integrated into the
system. Components in such systems are true building parts of
the system. A variety of configurable systems exists, e.g., VEST
[93], Ensemble [56], and the port-based object (PBO) approach
[98].

6.1.1 Extensible Systems
SPIN

SPIN [14, 75] is an extensible operating system that allows applications
to define customized application-specific operating system services. An
application-specific service is one that precisely satisfies the functional
and performance requirements of an application, e.g., multimedia appli-
cations impose special demands on the scheduling, communication and
memory allocation policies of an operating system. SPIN provides a set
of core services that manage memory and processor resources, such as
device access, dynamic linking, and events. All other services, such as
user-space threads and virtual memory, are provided as extensions. A
reusable component, called an extension, is a code sequence that can be
installed dynamically into the operating system kernel by the application
or on behalf of it. The mechanism that integrates extensions (compo-
nents) with the core system are events, i.e., communication in SPIN is
event-based. Event-based communication allows considerable flexibility
of the system composition as all relationships between the core system
and components are subject to changes by changing the set of event
handlers associated with any given event.

The correctness of the composed system depends only on the lan-
guage safety and encapsulation mechanisms; specifically interfaces, type
safety, and automatic storage management. Analysis of the composed
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system is not performed since it is assumed that the configuration sup-
port provided within the Modula-3 language is enough to guarantee the
system to be correct and safe. Provided the right extension for real-time
scheduling policy, this operating system can be used for soft real-time
applications such as multimedia applications.

6.1.2 Middleware Systems
2K

2K [49, 47] is an operating system specifically developed for manipula-
tion of resources in a distributed heterogeneous environment (different
software systems on different hardware platforms). As shown in figure
6.1, the 2K middleware architecture is realized using standard CORBA
services such as naming, trading, security, and persistence, as well as
extending the CORBA service model with additional services, such as
QoS-aware management, automatic configuration, and code distribution.

- - - - - LK
Video-conferencing Video-on-demand ! applications
User .
Component ; Security :
Automatic reggr?:—:?/n:ﬁ = repository EREELS 2K
configuration = Trading " middleware
o . . Naming :
Distributed operating system services Persistency
[ dynamic TAO| [ dynamic TAO LegORB LegORB LegORB
Solaris Windows Windows| Palm OS Solaris
CE
hardware ‘ ‘ hardware hardware hardware

Figure 6.1: The 2K middleware architecture

Integration of components into the middleware is done through a
component called dynamic TAO, the adaptive communication environ-
ment ORB. The dynamic TAO is a CORBA compliant reflective ORB as
it allows inspection and reconfiguration of its internal engine [48]. The
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dynamic TAO component has a memory footprint greater than a few
megabytes, which makes it inappropriate for use in environments with
limited resources. A variant to the dynamic TAO, a LegORB compo-
nent, is developed by the 2K group and it has a small footprint and is
appropriate for embedded environments, e.g., 6 Kbytes on the PalmPilot
running on PalmOS.

2K provides automated installation and configuration of new compo-
nents and the development of new components is done using CORBA
component specifications [71]. However, it is assumed that inter-
component dependencies provide good basis for the system integration,
and guarantee correct system behavior (other guarantees of the system
behavior, obtained by appropriate analysis, do not exist).

6.1.3 Configurable Systems
Ensemble

Ensemble is a high performance network protocol architecture designed
to support group membership and communication protocols [56]. Ensem-
ble does not enforce real-time behavior, but is nevertheless interesting
because of the configurable architecture and the way it addresses the
problem of configuration and analysis of the system. Ensemble includes
a library of over sixty micro-protocol components that can be stacked,
i.e., formed into a protocol in a variety of ways to meet communication
demands of an application. Each component has a common event-driven
Ensemble micro-protocol interface, and uses message-passing as commu-
nication. Ensemble’s micro-protocols implement basic sliding window
protocols and functionality such as fragmentation and re-assembly, flow
control, signing and encryption, group membership, message ordering
etc. The Ensemble system provides an algorithm for calculating the
stack, i.e., composing a protocol out of micro-protocols, given the set of
properties that an application requires. This algorithm encodes knowl-
edge of protocol designers and appears to work quite well, but it does
not assure generation of a correct stack (the methodology for checking
correctness is not automated yet). Thus, Ensemble can be efficiently
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customized for different protocols, i.e., it has a high level of tailorability.
In addition, Ensemble gives the possibility of formal optimization of the
composed protocol. This is done in Nuprl [56] and appears to give good
results in optimizing a protocol for a particular application.

VEST

VEST aims to enable the construction of an embedded real-time system
with strengthened resource needs [93]. The VEST development process is
fairly well-defined with an emphasis on configuration and analysis tools.
System development starts with the design of the infrastructure, which
can be saved in a library for further reuse (see figure 6.2). The infras-
tructure consists of micro-components: interrupt handlers, indirection
tables, dispatchers, plug and unplug primitives, and proxies for state
mapping.

After a system is composed, dependency checks are invoked to es-
tablish certain properties of the composed system. If the properties are
satisfied and the system does not need to be refined, the user can invoke
analysis tools to perform real-time and reliability analysis. As can be
seen, VEST offers a high degree of tailorability for the designer, i.e., a
specific system can be composed out of appropriate components as well
as infrastructure from the component library.

It should be noted that components in VEST are passive (collection
of code fragments, functions and objects) and are mapped into run-time
structures (tasks). Each component can be composed out of subcom-
ponents. For example, the task management component can be made
of components such as create task, delete task, and set task priority.
Components have real-time properties such as WCET, deadline, and
precedence and exclusion constraints, which enable real-time analysis of
the composed system. In addition to temporal properties, each compo-
nent has explicit memory needs and power consumption requirements,
needed for efficient use in an embedded system.

Designing and selecting the appropriate component(s) is a fairly com-
plex process, since both real-time and non-real-time aspects of a compo-
nent must be considered and appropriate configuration support has to
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Figure 6.2: Embedded system development in VEST

be available. Dependency checks proposed in VEST are one good way of
providing configuration support and the strength of the VEST approach.
Due to its complexity dependency checks are broken into four types:

e factual: component-by-component dependency checks (WCET,
memory, importance, deadline, etc.),

e inter-component: pairwise component checks (interface require-
ments, version compatibility, is a component included in another,
etc.),

e aspects: checks that include issues that affect the performance or
semantics of components (real-time, concurrency synchronization
and reliability issues), and

e general: checks of global properties of the system (e.g., the system
should not experience deadlocks and hierarchical locking rules must
be followed).

Having well-defined dependency checks is vital since they minimize pos-
sible errors in the system composition. Interface problems in VEST are
only identified but are not further addressed; thus it is not obvious how
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components can be interconnected. Also, analysis of the system is possi-
ble plugging off-the shelf analysis tools into the VEST platform. Finally,
VEST is an ongoing project developing the platform for configuration
and analysis of embedded real-time systems.

PBO Model

A component-based system based on the PBO model can be classified
as configurable, and is suitable for development of embedded real-time
control software system [98]. Components from the component library,
in addition to newly created ones, can be used for the system assem-
bly. A component is the PBO that is implemented as an independent
concurrent process. Components are interconnected through ports, and
communicate through shared memory.

The PBO defines module specific code, including input and output
ports, configuration constants (for adopting components for different ap-
plications), the type of the process (periodic and aperiodic), and tem-
poral parameters such as deadline, frequency, and priority. Support for
composing a system out of components is limited to general guidelines
given to the designer and the design process is not automated. This ap-
proach to componentization is somewhat unique since it gives methods
for creating a framework that handles the communication, synchroniza-
tion and scheduling of each component. Any C programming environ-
ment can be used to create components with minimal increase in perfor-
mance or memory usage. Creating code using PBO methodology is an
“inside out” programming paradigm as compared to a traditional coding
of real-time processes.

The PBO method provides consistent structure for every process and
OS system services, such as communication, synchronization, scheduling.
Only when necessary, OS calls methods of PBO to execute application
code. Analysis of the composed system is not considered.
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6.2 Aspects and Components in Database Sys-
tems

6.2.1 Aspects in Database Systems

In the area of database systems the AOD [1], aspect-oriented databases,
initiative aims to incorporate the notion of separation of concerns into
databases. The focus of this initiative is on providing a non-real-time
database that can be effectively customized using aspects [85].

The AOD initiative separates aspects in database systems in two
levels [86]:

e DBMS level, which are aspects that provide features affecting the
software architecture of the database system, and

e database level, which are aspects that relate to the data maintained
by the database and their relationship, i.e., database schema.

Aspects on the DBMS level correspond to application aspects defined
within ACCORD. Within the AOD initiative, the aspect-oriented ap-
proach has been employed to achieve customization in SADES [84], a
semi-autonomous database evolution system.

Following is a description of main features of SADES with the focus
on aspect support.

SADES

As mentioned, SADES is a database system that incorporates the notions
from AOSD to provide support for effective customization. SADES has
been implemented on top of the commercially available Jasmine object
DBMS [86]. The SADES architecture is divided into a set of spaces, as
follows:

e object space, which holds all objects, i.e., data, residing in the
database,

e meta-object space, which holds meta-data, i.e., the classes, their
member definitions, definition scopes, etc.,
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e meta-class space, which holds entities that are used to instantiate
meta-objects in the meta-object space, and

e aspect space, which holds all the aspects residing in the database.

Meta-class “aspect” residing in the meta-class space is used to instantiate
aspects. SADES uses aspects to provide customization of the following
features on the database level [86]:

e changes to links among entities, such as predecessor/successor links
between object versions or class versions, inheritance links between
classes, etc.,

e changes to version strategy for object and class versioning,
e changes to structural consistency approach, and

e extending the system with new meta-classes.

Although COMET goals overlap partly with the goals for SADES
in the effort to enable customization of the database system by aspect
weaving, aspects supported by SADES differ from aspects supported by
COMET. Namely, COMET supports aspects on the DBMS level, while
the main focus of SADES is aspect support on the database level. SADES
has been developed for non-real-time environments and, thus, does not
address the real-time issues at all. Although it is claimed that the SADES
approach to aspect support could be applied to existing component-based
database systems [86], it is not clear how this can be achieved since the
components in SADES are typical AOSD-type components, i.e., white-
box components.

6.2.2 Components in Database Systems

Four different categories of component-based database management sys-
tems (CDBMSs) have been identified in [32]:

o FEzrtensible DBMS extends existing DBMS with non-standard func-
tionality, e.g., Oracle8: [72], Informix Universal Server with its
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DataBlade technology [43], Sybase Adaptive Server [70], and DB2
Universal Database [23].

e Database middleware integrates existing data stores into a database
system and provide users and applications with a uniform view of
the entire system, e.g., OLE DB [65].

e DBMS service provides database functionality in a standardized
form unbundled into services, e.g., CORBAService [74].

e Configurable DBMS enables composition of a non-standard DBMS
out of reusable components, e.g., KIDS [38].

Sections that follow focus on characteristics of systems in each of these
four different categories.

6.2.3 Extensible DBMS
Oracle8:

Oracle8: allows developers to create their own application-domain-
specific data types [72]. Capabilities of the Oracle data server can be
extended by means of data cartridges, which represent components in the
Oracle8i architecture. A data cartridge consists of one or more domain-
specific types and can be integrated with the server. Data cartridges
can be integrated into a system through extensibility interfaces. There
are three types of these interfaces: DBMS and data cartridge interfaces,
used for communication between components and the DBMS, and service
interfaces used by the developers of a component.

The architecture of the Oracle8: is fixed and defines the places where
extensions can be made (components added), i.e., the system has low
degree of tailorability. Provided configuration support by the Oracle
Designer family of products is adequate, since the system already has
a fixed architecture and pre-defined extensions, and that extensions are
allowed only in well-defined places of the architecture. This type of
system emphasizes on satisfying only one requirement - handling non-
standard data types. Also, these systems cannot easily be integrated in
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Figure 6.3: The Oracle extensibility architecture

all application domains, e.g., real-time system, since there is no analysis
support for checking temporal behavior.

Informix DataBlade Technology

DataBlade modules are standard software modules that can be plugged
into the Informix Universal Server database to extend its capability [43].
DataBlade modules are components in the Informix Universal Server.
These components are designed specifically to enable users to store, re-
trieve, update, and manipulate any domain-specific type of data. Sim-
ilar to Oracle, Informix has provided low degree of tailoring, since the
database can only be extended with standardized components that en-
able manipulation of non-standard data types. Configuration support is
provided for development and installation of DataBlade modules, e.g.,
BladeSmith, BladePack, and BladeManager.

DB2 Universal Database

DB2 Universal Database [23, 31] also allows extensions in the architec-
ture to provide support for comprehensive management of application-
specific data types. Application-specific data types and new index struc-
tures for that data types are provided by DB2 Relational Extenders,
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reusable components in the DB2 Universal Database architecture. There
are DB2 Relation Extenders for text (text extender), image (image ex-
tender), audio and video (extender). Each extender provides the appro-
priate functions for creating, updating, deleting, and searching through
data stored in its data type. An extender developer’s kit with wizards for
generating and registering extenders provides support for the develop-
ment and integration of new extenders in the DB2 Universal Database.

Sybase Adaptive Server

Similar to other database systems in this category, the Sybase Adaptive
Server [70] enables extensions in its architecture, called Sybase’s adaptive
component architecture (ACA), to enable manipulation of application-
specific data types. Components that enable manipulation of these data
types are called Speciality Data Stores, e.g., speciality data stores for
text, time series, and geospatial data. The Sybase Adaptive Server dif-
fers from other database systems in the extensible DBMS category in
that it provides support for standard components in distributed com-
puting environments. Through open (Java) interfaces, Sybase’s ACA
provides mechanisms for communication with other database servers.
Also, Sybase enables interoperability with other standardized compo-
nents in the network, such as JavaBeans.

6.2.4 Database Middleware
OLE DB

OLE DB [16, 17] is a specification for a set of data access interfaces
designed to enable a variety of data stores to work together. OLE DB
provides a way for any type of data store to expose its data in a stan-
dard and tabular form, thus unifying data access and manipulation. In
Microsoft’s OLE-DB infrastructure, a component is thought of as [65]:

”...the combination of both process and data into a secure,
reusable object...”
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Figure 6.4: The Universal Data Access (UDA) architecture

and as a result, both consumers and providers of data are treated as
components. A data consumer can be any piece of the system or the
application code that needs access to a broad range of data. In contrast,
data providers are reusable components that represent data sources, such
as Microsoft ODBC, Microsoft SQL server, Oracle, Microsoft Access,
which are all standard OLE DB providers. Thus, OLE DB enables
building component-based solutions by linking data providers and data
consumers through providing services that add functionality to exist-
ing OLE DB data and where the services are treated as components
in the system (see figure 6.4). The architecture in figure 6.4 is called
the universal data access (UDA) architecture. It is possible to develop
new, customized, data providers that reuse existing data providers as the
underlying component or a component building block of more complex
(data provider) components.

Although OLE DB provides unified access to data and enables de-
velopers to build their own data providers, there is no common imple-
mentation on either the provider or consumer side of the interface [18].
Compatibility is provided only through the specification and developers
must follow the specification exactly to make interoperable components,
i.e., adequate configuration support for this is not yet provided. To make
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up for inadequate configuration support, Microsoft has made available,
in Microsoft’s software developer’s kit (SDK), tests that validate confor-
mance of the specification. However, analysis of the composed system is
missing.

OLE DB is not applicable for the real-time domain since it does
not provide support for specifying and enforcing temporal constraints
on the components and the system. Additionally, OLE DB is limited
with respect to software platforms, since it can only be used in Microsoft
software environments.

6.2.5 DBMS Service
CORBAservices

One single DBMS could be obtained by gluing together CORBAservices
that are relevant for databases, such as transaction service, backup and
recovery service, and concurrency service. CORBAservices are imple-
mented on the top of the object request broker (ORB). Service interfaces
are defined using the interface definition language [33]. In this scenario a
component would be one of the database relevant CORBAservices. This
would mean that applications could choose, from a set of stand-alone
services, those services (components) that they need. However, this ap-
proach is (still) not viable because it requires writing significant amount
of glue code. In addition, performance overhead could be a problem due
to the inability of an ORB to efficiently deal with fine-granularity objects
[74]. Also, an adequate value-added framework that allows development
of components and use of these components in other applications is still
missing. Also, there is no support for performing configuration of the
system nor analyzing it.

6.2.6 Configurable DBMS
KIDS

The KIDS [38], kernel-based implementation of database management
systems, approach to constructing CDBMSs is an interesting research
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project at the University of Ziirich, since it offers a high level of reusabil-
ity, where virtually any results obtained in a previous system construc-
tion is reused (designs, architectures, specifications, etc.). Components
in KIDS are DBMS subsystems that are collections of brokers. Brokers
are responsible for a related set of tasks, e.g., object management, trans-
action management, and integrity management. A structural view of
the KIDS architecture is shown in figure 6.5. The DBMS architecture
consists of two layers. The first layer is the object server component,
which supports the storage and retrieval of storage objects. The object
server component is reused in its entirety, and it belongs to the fixed
part of the DBMS architecture (this is because the object server imple-
ments functionality needed by any DBMS). The second layer is variable
to a large extent, and can be decomposed into various subsystems. In
the initial decomposition of KIDS, three major subsystems exist in the
second layer:

e the object management subsystem (OMS), which implements the
mapping from data model objects into storage objects, retrieval of
data model objects, and meta data management;

e the transaction management subsystem (TSM), which implements
the concept of a transaction, including concurrency control, recov-
ery, and logging; and

e the integrity management subsystem (IMS), which implements the
(DBMS-specific) notion of semantic integrity, and is responsible
for checking whether database state transitions result in consistent
states.

These three subsystems (OMS, TMS, and IMS) implement basic data-
base functionality. Additional functionality can be provided by adding
new subsystems in the second layer of the KIDS architecture, i.e., ex-
panding decomposition of this layer to more than three subsystems.

By expanding the initial set of components in the KIDS architec-
ture with the functionality (components) needed by a particular appli-
cation, one could be able to design “plain” object-oriented DBMS, a
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Figure 6.5: The KIDS subsystem architecture

DBMS video-server, or a real-time plant control DBMS. Of course, in
the proposed initial design of KIDS, real-time properties of the system
or components are not considered.

A defined process of a DBMS construction, reusability of components
and architectures, and high degree of componentization (tailorability) of
a system differentiates this CDBMS from all others.

6.3 Tabular Overview

This chapter concludes with a tabular summary of investigated systems
and their characteristics. The tables 6.1 and 6.2 provide an additional
instrument for comparing and analyzing discussed approached, and con-
trasting them to COMET, an example of the real-time system built on
ACCORD.

The following symbols are used in the table:

x — feature is supported in/true for the system, and

x/p — feature is partially supported in/true for the system,
i.e, the system fulfills the feature to a moderate extent.

Below follows a description of the criteria.
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DBMS platforms

Embedded and real-time platforms

Q
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E. Real-time 1) not preserved X X X X X X
properties 2) preserved X xIp X xIp
F. Interface 1) standardized X X X
communication 2) system specific X X X X X X
H. Configuration 1) not supported X X X
tools 2) supported X xIp XIp | xip | xip X X
X X X X X X
I. Analysis tools 1) not supported
2) supported xIp X X x/p
E. Tailoring ability 1) low X X
2) moderate X X X
3) high X X X X X
X
F. Aspects 1) not supported X X X X X X X
2) supported X x/p

Table 6.2: Evaluation criteria for component-based real-time, embedded and database systems
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A. Type of the system We investigated integration of the
component-based and aspect-oriented software development for the sys-
tem development in the following areas:

1. database,
2. embedded, and
3. real-time.

As can be seen from table 6.1, there are few component-based systems
that can be classified as embedded real-time; all component-based sys-
tems are either embedded and real-time systems, or database systems.
COMET is the only component-based system that can be classified both
as an embedded real-time, and a database system.

B. Component granularity There are two major granularity levels
of components:

1. system as a component, and

2. part of the system as a component.

As can be seen from table 6.1, most embedded real-time systems have
lightweight components, i.e., parts of the system. An exception is
COMET where a component can even be the entire database system
that needs to be integrated with a particular real-time and embedded
system.

C. Category of the system The investigated component-based sys-
tems can be classified as follows (see sections 6.2.2 and 6.1):

1. extensible,
2. middleware,
3. service, and

4. configurable.
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D. Component type A component in a component-based embedded
real-time system and a component-based database system is one of the
following:

1. domain-specific data type or a new index,
2. service,

3. CORBA object,

4. microprotocol,

5. passive component,

6. PBO, and

7. general-purpose component model.

In some systems components are not explicitly defined, and can only
be classified as passive components, e.g., in VEST. Note that almost
every system, with the exception of COMET that is built using a general
RTCOM component model, has its own notion and a definition of a
component that suites the purpose and requirements of the system.

E. Real-time properties Component-based database and embedded
real-time systems may:

1. not preserve, or
2. preserve

real time properties. All component-based database systems, except
COMET, do not enforce real-time behavior (see table 6.2). In addition,
issues related to embedded systems such as low-resource consumption
are not addressed at all. Accent in a database component is on provid-
ing a certain database functionality. In contrast, a component in existing
component-based embedded real-time systems is usually assumed to be
mapped to a task, i.e., passive components [93], PBO components [98],
and RTCOM components are all mapped to a task.
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F. Interfaces / communication The component communicates with
its environment (other components) through well-defined interfaces.
Generally, existing solutions use:

1. standard interfaces, or

2. system specific.

For example, standardized interfaces defined in the IDL are used in COR-
BAservices and in 2K. Also, OLE DB interface is used in the Microsoft’s
Universal Data Access architecture. Interfaces developed within the sys-
tem are used in other systems, e.g., Oracle87 has extensibility interfaces
and KIDS has component-specific interfaces. Inter-component commu-
nication in database systems and embedded real-time systems has dif-
ferent goals. Interfaces in embedded real-time systems must be such
that inter-component communication can be performed in a timely pre-
dictable manner. There are two possible ways of a real-time component
communication:

e Buffered communication. The communication is done through
message passing, e.g., ENSEMBLE [56].

e Unbuffered communication. Unbuffered data is accessed through
shared memory, e.g., PBO [97, 44].

Note that most component-based database systems use buffered com-
munication since predictability of communication is not of importance
in such systems. Traditionally, systems enforcing real-time behavior use
unbuffered communication (an exception is VEST where interfaces of
components are not defined), due to several disadvantages of buffered
communication [42, 44]:

e Sending and receiving messages incur significant overhead.

e Tasks waiting for data might block for an undetermined amount of
time.

e Crucial messages can get lost as a result of the buffer overflow if
tasks do not execute at the same frequency.
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e Sending messages in control systems, which have many feedback
loops, creates a risk for deadlock.

e The upper bound on the number of produced/consumed messages
must be determined to enable guarantee of temporal properties.

Generally, a real-time system using buffered communication is difficult to
analyze due to dependencies among tasks. Unbuffered communication
eliminates direct dependencies between tasks, since they only need to
bind to a single element in the shared memory. Communication through
shared memory incurs less overhead as compared to a message-passing
system. Also, it is easier to check system temporal behavior if unbuffered
communication is used [44]. Hence, unbuffered style of communication
is the preferred style of communication in embedded real-time systems.
It is suggested that interfaces in (hard) real-time systems should be un-
buffered [44]. RTCOM (and thus COMET) has general enough interfaces
to enable support for both buffered and unbuffered communication.

G. Configuration tools The development process should be well de-
fined to enable efficient system assembly out of existing components from
the component library or newly created ones. Adequate and automated
configuration support must exist to help system designer with this pro-
cess, e.g., rules for composing a system out of components, support for
selection of an appropriate component from the component library, and
support for the development of new components. However, in some sys-
tems configuration tools are not supported. Hence, we identify that
configuration tools in investigated systems can be either:

1. not supported, or
2. supported.

In most configurable embedded real-time systems, some configuration
support is provided. For example, PBO model gives good guidelines
to help the designer when composing a system out of components. In
VEST, the necessity of having good configuration tools is recognized.
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Composition rules are defined through four types of dependency checks.
COMET has been built using the ACCORD design guidelines.

H. Analysis tools Since the reliability of the composed system de-
pends on the level of correctness of the component, analysis tools are
needed to verify the behavior of the component and the composed sys-
tem. In particular, real-time systems must meet their temporal con-
straints, and adequate analysis to ensure that the system has meet the
temporal constraints is required. Thus, analysis tools can be either:

1. not supported, or
2. supported.

The problem of analysis of the composed component-based database sys-
tem is rather straightforward. In most cases, analysis of the composed
system is unavailable (see table 6.2). Importance of having good analysis
of the composed system is recognized in KIDS, but is not pursued be-
yond that, i.e., analysis tools are not provided. Some component-based
embedded and real-time systems also do not support analysis of the
composed system. This is true for SPIN, 2K, and systems based on the
PBO model. VEST introduces notion of reliability and real-time anal-
ysis of the system, but does not give more detailed description of such
analysis. ACCORD provides automated analysis of WCET of different
configurations of aspects and components.

I. Tailoring ability The benefit of using component-based develop-
ment in database systems is customization of the database for different
applications. There are four degrees of tailorability in component-based
database and embedded real-time systems:

1. none,
2. low,

3. moderate, and
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4. high.

It can be observed that extensible systems have low tailorability, mid-
dleware moderate, while configurable systems have high tailorability as
those are built out of components only (see table 6.2). Since the goal is
to provide an optimized real-time system for a specific application with
low development costs and short time-to-market, it is safe to say that
configurable systems are the most suitable in this respect.

J. Aspects In the investigated systems aspects are either:
1. not supported, or
2. supported.

Typically, software systems are build either using components or us-
ing aspects (see table 6.2). Besides COMET, there are only two more
approaches that provide support for aspects. In the real-time and em-
bedded domain, VEST provides support for aspects that do not crosscut
the functional code of components, rather, they describe the component
behavior. These aspect can be viewed as one out of three types of as-
pects, namely run-time aspects, that are supported by COMET. In the
database area, SADES is developed with the explicit support for aspects.
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Chapter 7

Conclusions

This final chapter presents a summary of our work and the research
contributions in section 7.1. The issues for our future work are identified
in section 7.2.

7.1 Summary

The integration of component-based and aspect-oriented software devel-
opment into real-time systems development would enable (i) efficient sys-
tem configuration from the components in the component library based
on the system requirements, (ii) easy tailoring of components and/or
a system for a specific application by changing the behavior (code) of
the component by applying aspects, and (iii) enhanced flexibility of the
real-time and embedded software through the notion of system config-
urability and component tailorability. However, due to specific demands
of real-time systems, applying aspect-oriented and component-based no-
tions to real-time system development is not straightforward for several
reasons. First, the real-time system design should support decomposi-
tion of the system into a set of components and a set of aspects. Second,
the component model should provide mechanisms for handling tempo-
ral constraints if used for building real-time systems. Furthermore, to
support tailorability and separation of concerns in the form of aspects,
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the real-time component model should also provide explicit support for
aspect weaving, while preserving the information hiding. Since the tra-
ditional view of real-time systems implies tasks as building elements of
the system, the relationship between tasks and components needs to be
clearly identified. Additionally, temporal analysis, both static worst-case
and dynamic schedulability analysis, of different configurations of aspects
and components in a real-time system should be provided. Resolving
these issues would enable successful integration of the ideas and notions
from component-based and aspect-oriented software development into
the real-time system development.
In this thesis we have presented the following.

e A novel concept of aspectual component-based real-time system
development (ACCORD). Through the notion of aspects and com-
ponents, ACCORD enforces the divide-and-conquer approach to
complex real-time system development. ACCORD supports a de-
composition process with the following two sequential phases: (i)
decomposition of the real-time system into a set of components and
a set of aspects, corresponding to the structural view of the com-
ponents and the real-time system, and (ii) structuring of tasks,
corresponding to the temporal view of the components and the
real-time system.

e A real-time component model denoted RTCOM that describes
what a real-time component, supporting different types of aspects
and enforcing information hiding, should look like.

e A method and a tool for worst-case execution time analysis of
different configurations of aspects and components.

e A set of criteria for designing component-based real-time systems,
including: (i) a real-time component model that supports mapping
of components to tasks, (ii) separation of concerns in real-time sys-
tems through the notion of different types of aspects, and (iii) com-
position support, namely support for configuration and analysis of
the composed real-time software.
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We have shown how ACCORD can be applied in practice by de-
scribing the way we have applied it in the design and development of
COMET, a configurable real-time database. Analyzing the impact of
applying ACCORD, we conclude that ACCORD could have a positive
impact on real-time system development in general by enabling efficient
configuration of real-time systems, and improving reusability and flexi-
bility of real-time software.

7.2 Future Work

There is a number of research challenges left to be resolved. We consider
the following issues crucial to successful application of ACCORD, and,
thus, the focus of our future work.

To successfully apply ACCORD to real-time system development we
should provide a fully formalized framework for ACCORD and develop
a tool environment that would support the ACCORD development pro-
cess, including: (i) identification of components and aspects based on sys-
tem requirements, (ii) automated extraction of information that reflects
run-time behavior of components and aspects built on RTCOM, (iii) au-
tomated extraction of the compositional needs of components, and (iv)
automated configuration of a real-time systems out of chosen set of com-
ponents and aspects. An essential issue is mapping components to tasks
to embrace all the elements found to be important in real-time systems,
and especially hard real-time systems. We intend to address this issue
by extending the guidelines for mapping of components to tasks based
on case studies where ACCORD is applied. This also includes providing
a framework, possibly using synchronization aspects, for efficiently deal-
ing with inter-process communication of mapped tasks. Currently, there
is a limited understanding of effects on the performance and memory
consumption when building systems with components and aspects. Fur-
ther investigation is essential for this class of performance-constrained
systems.

RTCOM needs to be expanded to fully embrace resource and tem-
poral constraints in a real-time system in its run-time part (now we
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provide support for WCET). We also need to refine the composition
part of RTCOM, i.e., a language for describing the composition needs
of each component is valuable, as well as develop composition rules that
account both for functional and run-time needs of components and as-
pects. Currently the component model is constrained with respect to the
relationship between operations and mechanisms as mechanisms cannot
use operations for their implementation. We intend to relax the com-
ponent model such that an application aspect can be derived both from
operations and mechanisms of a component, and mechanisms can be de-
rived from operations in the component and operations required from
other components. Relaxing RTCOM could result in several challenges,
as follows. First, the number of possible conflicting application aspect
weavings in one or several components might increase, and, thus, increas-
ing the need for an efficient way of resolving these. Second, the weaving
of application aspects in the components could result in the need for
weaving of required interfaces as weaved application aspects could inject
new required operations in the component. Finally, the run-time aspects
need to be refined to reflect the new relationship between the component
constituents, namely operations and mechanisms. Additionally, tempo-
ral analysis of aspects and components becomes more complex as mech-
anisms can be modified by aspect weaving. This implies modifications of
the preprocessing part of the automated aspect-level WCET analysis to
include the variability of mechanisms WCETs, as well as modification of
the WCET analyzer part, i.e., the algorithm, of the aspect-level WCET
analyzer.

The ideas and notions introduced by RTCOM could be applicable to
a wider spectrum of application domains, and not necessarily limited to
real-time systems. Thus, on a larger scale, formalizing the model would
help generalizing it to different application domains. On a smaller scale,
we need to identify tradeoffs in the model with respect to mechanisms
in the component that enable tailorability by aspect weaving.
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Appendix A

Abbreviations

ACCORD

ACID
ADL
ADARTS
AOSD
AOD

AS
CBSD
CC
CDBMS
CM
COMET
DARTS
DBMS

AspeCtual COmponent-based Real-time system
Development

Atomicity, Consistency, Isolation, Durability
Architectural Description Language

ADA-based Design Approach for Real-Time Systems
Aspect-Oriented Software Development
Aspect-Oriented Databases

Aspect Separation

Component-Based Software Development
Concurrency Control

Component-based DataBase Management Services
Component Model

COMponent-based Embedded real-Time database
Design Approach for Real-Time Systems
DataBase Management Service
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HP-2PL
HRT-HOOD
Hw Db
WoE
WoE Db
IC

IDL
IECU
ISC
ECU
EDF
KIDS

LC
MHC
PBO
RLC
RM
RTCOM
RT-UML
occC
0S
ORB
SADES
SC
SOP
T™™C
TRSD
TSC
UIC
UML
VECU
VEST
QoS
WCET

Hight Priority - Two Phase Locking
Hard Real-Time Hierarchical Object Oriented Design
Hardware Database

Warnings or Errors

Warnings or Errors Database

Indexing Component

Interface Definition Language
Instrumental Electronic Control Unit
Invasive Software Composition
Electronic Control Unit

Earliest Deadline First

Kernel-based Implementation of Database management
Systems

Locking Component

Memory Handler Component
Port-Based Object

Recovery and Logging Component

Rate Monotonic

Real-Time Component Model
Real-Time Unified Modeling Language
Optimistic Concurrency Control
Operating System

Object Request Broker
Semi-Autonomous Database Evolution System
System Composability
Subject-Oriented Programming
Transaction Manager Component
Transactional Real-Time System Design
Transaction Scheduler Component

User Interface Component

Unified Modeling Language

Vehicle Electronic Control Unit
Virginia Embedded Systems Toolkit
Quality of Service

Worst-Case Execution Time
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