
Data Management Issues in Vehicle Control Systems: a Case Study�

D. Nyströmy, A. Tešanović�, C. Norströmy, J. Hansson�, and N-E. Bånkestadz

yMälardalen University �Linköping University zVolvo Construction
Dept. of Computer Engineering Dept. of Computer Science Equipment Components AB

Västerås, Sweden Link¨oping, Sweden Eskilstuna, Sweden
fdnm,ceng@mdh.se falete,jorhag@ida.liu.se nils-erik.bankestad@volvo.com

Abstract

In this paper we present a case study of a class of em-
bedded hard real-time control applications in the vehicular
industry that, in addition to meeting transaction and task
deadlines, emphasize data validity requirements. We elab-
orate on how a database could be integrated into the stud-
ied application and how the database management system
(DBMS) could be designed to suit this particular class of
systems.

1 Introduction

In the last ten years, control systems in vehicles have
evolved from simple single processor systems to complex
distributed systems. At the same time, the amount of infor-
mation in these systems has increased dramatically and is
predicted to increase further with 7-10% per year [5]. In a
modern car there can be several hundreds of sensor values
to keep track of. Ad hoc techniques that are normally used
for storing and manipulating data objects as internal data
structures in the application result in costly development
with respect to design, implementation and verification of
the system. Further, the system becomes hard to maintain
and extend. Since the data is handled ad hoc, it is also diffi-
cult to maintain its temporal properties. Thus, the need for
a uniform and efficient way to store and manipulate data is
obvious. An embedded real-time database providing sup-
port for storage and manipulation of data would satisfy this
need.

In this paper we study two different hard real-time sys-
tems developed at Volvo Construction Equipment Compo-
nents AB, Sweden, with respect to data management. These
systems are embedded into two different vehicles, an artic-
ulated hauler and a wheel loader. These are typical repre-
sentative systems for this class of vehicular systems. Both
systems consist of a number of nodes distributed over a con-

�This work is supported by ARTES, a network for real-time and grad-
uate education in Sweden.

trol area network (CAN).
The system in the articulated hauler is responsible for

I/O management and controlling of the vehicle. The system
in the wheel loader is, in addition to controlling the vehicle,
responsible for updating the driver display. We study struc-
tures of the systems and their data management require-
ments to find that today data management is implemented
as multiple data storages scattered throughout the system.
The systems are constructed out of a finite number of tasks.
Each task in the system is equipped with a finite amount of
input and output ports, through which inter-task communi-
cation is performed. Due to intense communication in both
systems, several hundred ports are used. These ports are
implemented as shared memory locations in main memory,
scattering the data even more.

We study temporal properties of the data in the systems
and conclude that the they could benefit from a real-time
database (RTDB). Furthermore, we discuss how the cur-
rent architecture could be redesigned to include a RTDB.
The important feature of a RTDB in these systems is to
guarantee temporal consistency and validity [8] rather than
advanced transaction handling. In a typical vehicular sys-
tem, nodes vary both in memory size and computation and,
hence, there is a need for a scalable RTDB that can be tai-
lored to suit different kinds of systems. In this paper trans-
actions refer to a number of reads and/or updates of data in
a database. Thus, tasks can contain transactions.

The contribution of this paper is a detailed case-study
of the two Volvo applications. Furthermore, we elaborate
on how the existing hard real-time system could be trans-
formed to incorporate a RTDB. This architectural transition
would allow data in the system to be handled in a structured
way. In this architecture, the database is placed between
the application and the I/O management. We elaborate on
why concurrency control, for this transformed system, is
not necessarily needed for retaining the integrity of transac-
tions. Moreover, we argue that a hard real-time database
that would suit this system could be implemented using
passive components only, i.e., a transaction is executed on
the calling task’s thread of execution. This implies that the

1



VECU TECU EECUIECU

CAN

Diagnostic link

CECU
Service

tool

Figure 1. The overall architecture of the vehi-
cle controlling system.

worst-case transaction execution time is added to the worst-
case execution time of the task, retaining a bounded execu-
tion time for all tasks.

In section 2 we study the existing vehicle systems and
their data management requirements in detail. In section 3
we discuss: how the systems could be redesigned to use a
RTDB, the implications for the application and the RTDB,
and how existing real-time database platforms would suit
the studied application. We conclude our work and present
future challenges in section 4.

2 The Case Study

The vehicle control system consists of several sub-
systems called electronic control units (ECU), connected
through two serial communication links: the fast CAN link
and the slow diagnostic link, as shown in the figure 1. Both
the CAN link and the diagnostic link are used for data ex-
change between different ECUs. Additionally, the diagnos-
tic link is used by diagnostic (service) tools. The number
of ECUs can vary depending on the way functionality is di-
vided between ECUs for a particular type of vehicle. For
example, the articulated hauler consists of five ECUs: in-
strumental, cabin, vehicle, transmission and engine ECU,
denoted IECU, CECU, VECU, TECU, and EECU, respec-
tively. In contrast, the wheel loader control system consists
of three ECUs, namely IECU, VECU, and TECU.

We have studied the architecture and data management
of the VECU in the articulated hauler, and the IECU in the
wheel loader. The VECU and the IECU are implemented on
hardware platforms supporting three different storage types:
EEPROM, Flash, and RAM. The memory in an ECU is lim-
ited, normally 64Kb RAM, 512Kb Flash, and 32Kb EEP-
ROM. Processors are chosen such that power consumption
and cost of the ECU are minimized. Thus, processors run
at 20MHz (VECU) and 16MHz (IECU) depending on the
workload.

Both VECU and IECU software systems consist of two
layers: a run-time system layer and an application layer (see
figure 2). The run-time system layer on the lower level con-
tains all hardware-related functionality. The higher level of
the run-time system layer contains an operating system, a
communication system, and an I/O manager. Every ECU
uses the real-time operating system Rubus. The communi-
cation system handles transfer and reception of messages
on different networks, e.g., CAN. The application is imple-

Rubus OSCommunication

Hardware layer

ECU software system

Run-
time

system

I/O
Application layer

Figure 2. The structure of an ECU.

mented on top of the run-time system layer. The focus of
our case study is data management in the application layer.
In the following section we briefly discuss the Rubus oper-
ating system. This is followed by sections where function-
ality and a structure of the application layer of both VECU
and IECU, are discussed in more detail (in following sec-
tions we refer to the application layer of the VECU and
IECU as the VECU (software) system and the IECU (soft-
ware) system).

2.1 Rubus

Rubus is a real-time operating system designed to be
used in systems with limited resources [1]. Rubus supports
both off-line and on-line scheduling, and consists of two
parts: (i) red part, which deals with hard real-time; and (ii)
blue part, which deals with soft real-time.

The red part of Rubus executes tasks scheduled off-line.
The tasks in the red part, also referred to as red tasks, are
periodic and have higher priority than the tasks in the blue
part (referred to as blue tasks). The blue part supports tasks
that can be invoked in an event-driven manner. The blue
part of Rubus supports functionality that can be found in
many standard commercial real-time operating system, e.g.,
priority-based scheduling, message handling, and synchro-
nization via semaphores. Each task has a set of input and
output ports that are used for communication with other red
tasks. Rubus is used in all ECUs.

2.2 VECU

The vehicle system is used to control and observe the
state of the vehicle. The system can identify anomalies, e.g.,
an unnormal temperature. Depending on the criticality of
the anomaly, different actions, such as warning the driver,
system shutdown etc., can be taken. Furthermore, some of
the vehicle’s functionality is controlled by this system via
sensors and actuators. Finally, logging and maintenance via
the diagnostics link can also be performed using a service
tool that can be connected to the vehicle.

All tasks in the system, except the communication task,
are non-preemptive tasks scheduled off-line. The commu-
nication task uses its own data structures, e.g., message
queues, thus no resources are shared with other tasks. Since
non-preemptive tasks run until completion and cannot be
preempted, mutual exclusion is not necessary. The reason



Vehicle ECU

EEPROM

Backup/
restoration

Task

Logging
Task

Logs
(RAM)

Para-
meters

CAN
Diagnostics

link

Service tool

Communication
Task

Subsystems

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

.

.

.

HWDb

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

Figure 3. The original architecture of the
VECU.

for using non-preemptive off-line scheduled tasks is to min-
imize the runtime overhead and to simplify the verification
of the system.

The data in the system can be divided into five different
categories: (1) sensor/actuator raw data, (2) sensor/actuator
parameter data, (3) sensor/actuator engineering data, (4)
logging data, and (5) parameter data.

The sensor/actuator raw data is a set of data elements
that are either read from sensors or written to actuators. The
data is stored in the same format as they are read/written.
This data, together with thesensor/actuator parameter
data, is used to derive thesensor/actuator engineering data,
which can be used by the application. The sensor/actuator
parameter data contains reference information about how to
convert raw data received from the sensors into engineering
data. For example, consider a temperature sensor, which
outputs the measured temperature as a voltageTvolt. This
voltage needs to be converted to a temperatureT using a
reference valueTref , e.g.,T � Tvolt � Tref .

In the current system, the sensor/actuator (raw and pa-
rameter) data are stored in a vector of data called a hardware
database (HW Db), see figure 3. The HW Db is, despite its
name, not a database but merely a memory structure. The
engineering data is not stored at all in the system but is de-
rived “on the fly” by the data derivation tasks. Apart from
data collected from local sensors and the application, sensor
and actuator data derived in other ECUs is stored in the HW
Db. The distributed data is sent periodically over the CAN
bus. From the application’s point of view the locality of the
data is transparent in the sense that it does not matter if the
data is gathered locally or remotely.

Some of the data derived in the applications is of inter-

est for statistical and maintenance purposes and therefore
the data is logged (referred to aslogging data) on perma-
nent storage media, e.g., EEPROM. Most of the logging
data is cumulative, e.g., the vehicle’s total running time.
These logs are copied from EEPROM to RAM in the startup
phase of the vehicle and are then kept in RAM during run-
time, to finally be written back to EEPROM memory be-
fore shutdown. However, logs that are considered critical
are copied to EEPROM memory immediately at an update,
e.g., warnings. Theparameter data is stored in a parameter
area. There are two different types of parameters, perma-
nent and changeable. The permanent parameters can never
be changed and are set to fulfill certain regulations, e.g.,
pollution and environment regulations. The changeable pa-
rameters can be changed using a service tool.

Most controlling applications in the VECU follow a
common structure residing in one precedence-graph. The
sensors (Sig In) are periodically polled by I/O tasks (typi-
cally every 10 ms) and the values are stored in their respec-
tive slot in the HW Db. The data derivation task then reads
the raw data from the HW Db, converts it, and sends it to
the application task. The application task then derives a re-
sult that is passed to the I/O task that both writes it back to
the HW Db and to the actuator I/O port.

2.3 IECU

The IECU is a display electronic control unit that con-
trols and monitors all instrumental functions, such as dis-
playing warnings, errors, and driver information on the
driver display. The IECU also controls displaying service
information on the service display (a unit for servicing the
vehicle). It furthermore controls the I/O in the driver cabin,
e.g., accelerator pedal, and communicates with other ECUs
via CAN and the diagnostic link.

The IECU differs from the VECU in several ways.
Firstly, the data volume in the system is significantly higher

Flash

Other systems

.

.

.

Instrumental ECU
HWDb

Image
buffer

Driver display

WarningDriver display
Task

I/O
Task

Sig out

CAN

Communication task

VECU

Driver warning
Task

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

WoE Db

RAM

Service display

Test-calibraton Db

Serivce display
Task

I/O
Task

Diagnostic
link

Service menu Service
image Db

Language

Driver image DbDriver menu

Language

Text
buffer

RAM

EEPROM

Flash

Figure 4. The original architecture of the IECU.



since the IECU controls displays and, thus, works with a
large amount of images and text information. Moreover,
the data is scattered in the system and depending on its na-
ture, stored in a number of different data structures as shown
in figure 4. Similarly to the HW Db, data structures in the
IECU are referred to as databases, e.g., image databases,
menu databases and language databases. Since every text
and image information in the system can be displayed in
thirteen different languages, the interrelationships of data in
different data storages are significant.

A dominating task in the system is the task updating the
driver display. This is a red task, but it differs from other
red tasks in the system since it can be preempted by other
red tasks in the IECU. However, scheduling of all tasks is
performed such that all possible data conflicts are avoided.

Data from the HW Db in the IECU is periodically pushed
on to the CAN link and copied to the VECU’s HW Db.
Warnings or errors (WoE) are periodically sent through the
CAN link from/to the VECU and are stored in the dedicated
part of RAM, referred to as the WoE database (WoE Db).
Hence, the WoE Db contains information of active warnings
and errors in the overall wheel loader control system. While
WoE Db and HW Db allow both read and write operations,
the image and menu databases are read-only databases.

The driver display is updated as follows (see figure 4).
The driver display task periodically scans the databases
(HW Db, WoE Db, menu Db) to determine the information
that needs to be displayed on the driver display. If any ac-
tive WoE exists in the system, the driver display task reads
the corresponding image, in the specified language, from
the image database located in a persistent storage and then
writes the retrieved image to the image buffer. The image is
then read by the blue I/O task, which then updates the driver
display with an image as many times as defined in the WoE
Db. Similarly, the driver display task scans the HW Db and
menu database. If the hardware database has been updated
and this needs to be visualized on the driver display, or if
data in the menu organization has been changed, the driver
display task reads the corresponding image and writes it to
the driver display as described previously. In case the ser-
vice tool is plugged into the system, the service display task
updates the service display in the same way as described for
the driver display, but using its own menu organization and
image database, buffer, and the corresponding blue I/O task.

2.4 Data Management Requirements

The table gives an overview of data management char-
acteristics in the VECU and IECU systems. The following
symbols are used in the table:

v — feature is true for the data type in the VECU,
i — feature is true for the data type in the IECU, and
x — feature is true for the data type in both

VECU and IECU.

Data types
Management characteristics S

en
so

r
A

ct
ua

to
r

E
ng

in
ee

rin
g

P
ar

am
et

er
s

W
oE

Im
ag

e&
Te

xt
Lo

gs

HW Db x x i
Data Parameter Db x
source WoE Db i

Image Db i
Language Db i
Menu Db i
Log Db v

Memory RAM x x x x x v
type Flash i

EEPROM x v
Memory Static x x x x x i v
allocation Dynamic
Interrelated with other data x x x x x i v
Temporal validity x x x x v
Logging Startup v

Shutdown v
Immediately v1

Persistence x x v1 x x
Logically consistent x x x x
Indexing i
Transaction Update x x x x x v
type Write-only x x

Read-only x x x i
Complex update x x x v
Complex queries x x x x x i v

Table 1:Data management characteristics for the systems.

As can be seen from the table 1, all the data in both sys-
tems are scattered in groups of different flat data structures
referred to as databases, e.g., HW Db, image Db, WoE Db
and language Db. These databases are flat because data is
structured mostly in vectors, and the databases only contain
data with no support for DBMS functionality.

The nature of the systems put special requirements on
data management (see table 1): (i) static memory allocation
only, since dynamic memory allocation is not allowed due
to the safety-critical aspect of the systems; (ii) small mem-
ory consumption, since production costs should be kept as
low as possible; and (iii) diverse data accesses, since data
can be stored in different storages, e.g., EEPROM, Flash,
and RAM.

Most data, from different databases and even within the
same database, is logically related. These relations are not
intuitive, which makes the data hard to maintain for the de-
signer and programmer as the software of the current system
evolves. Raw values of sensor readings and actuator writ-
ings in the HW Db are transformed into engineering values

1The feature is true only for some engineering data in the VECU.



by the data derivation task, as explained in section 2.2. The
engineering values are not stored in any of the databases,
rather they are placed in ports (shared memory) and given
to application tasks when needed.

The period times of updating tasks ensure that data in
both systems (VECU and IECU) are correct at all times with
respect to absolute consistency. Furthermore, task schedul-
ing, which is done off-line, enforces relative consistency of
data by using an off-line scheduling tool. Thus, data in the
system is temporally consistent (we denote this data prop-
erty in the table as temporal validity). Exceptions are per-
manent data, e.g., images and text, which is not temporally
constrained (see table 1).

One implication of the systems’ demand on reliability,
i.e., the requirement that a vehicle must be movable at all
times, is that data must always be temporally consistent. Vi-
olation of temporal consistency is viewed as a system error,
in which case three possible actions can be taken by the sys-
tem: use a predefined default data value (most often), use an
old data value, or shutdown of the functions involved (sys-
tem exposes degraded functionality).

Some data is associated with a range of valid values, and
is kept logically consistent by tasks in the application (see
table 1). The negative effect of enforcing logical consis-
tency by the tasks is that programmers must ensure consis-
tency of the task set with respect to logical constraints.

Persistence in the systems is maintained by storing data
on stable storage, but there are some exceptions to the rule,
e.g., RPM data is never copied to stable storage. Also,
some of the data is only stored in stable storage, e.g., in-
ternal system parameters. In contrast, data imperative to
systems’ functioning is immediately copied to stable stor-
age, e.g., WoE logs are copied to/from stable storage at
startup/shutdown.

Several transactions exist in the VECU and IECU sys-
tems: (i) update transactions, which are application tasks
reading data from the HW Db; (ii) write-only transactions,
which are sensor value update tasks; (iii) read-only trans-
actions, which are actuator reading tasks; and (iv) complex
update transactions, which originate from other ECUs. In
addition, complex queries are performed periodically to dis-
tribute data from the HW Db to other ECUs.

Data in the VECU is organized in two major data stor-
ages, RAM and Flash. Logs are stored in EEPROM and
RAM (one vector of records), while 251 items structured
in vectors are stored in the HW Db. Data in the IECU is
scattered and interrelated throughout the system even more
in comparison to the VECU (see table 1). For example, the
menu database is related to the image database, which in
turn is related to the language Db and the HW Db. Addi-
tionally, data structures in the IECU are fairly large. HW
Db and WoE Db resides in RAM. HW Db contains 64 data
items in one vector, while WoE Db consists of 425 data

items structured as 106 records with four items each. The
image Db and the language Db reside in Flash. All im-
ages can be found in 13 different languages, each occupy-
ing 10Kb of memory. The large volume of data in the im-
age and language databases requires indexing. Indexing is
today implemented separately in every database, and even
every language in the language Db has separate indexing on
data.

The main problems we have identified in existing data
management can be summarized as follows:

� all data is scattered in the system in a variety of
databases, each representing a specialized data store
for a specific type of data;

� engineering values are not stored in any of the data
stores, but are placed in ports, which enlarges mainte-
nance complexity and makes adding of functionality in
the system a difficult task;

� application tasks must communicate with different
data stores to get the data they require, i.e., the appli-
cation does not have a uniform access or view of the
data;

� temporal and logical consistency of data is maintained
by the tasks, increasing the level of complexity for pro-
grammers when maintaining a task set; and

� data from different databases exposes different prop-
erties and constraints, which complicates maintenance
and modification of the systems.

3 Modeling the System to Support a RTDB

To be able to implement a database in the real-time
system, the system needs to be redesigned to support a
database. For the studied application, this could be done
by separating I/O management from the application.

As mentioned in section 2.2 and shown in figure 3, the
data flow goes from the I/O tasks, via the HW Db and ap-
plication tasks to the I/O tasks to the right, sending the val-
ues to the actuators. The transition of such a system could,
at a high level, be performed in three steps. The first step
is to separate all I/O tasks from the application. This can
be viewed as “folding the architecture”. By doing this an
I/O management is formed that is separated from the con-
trol application. The second step is to place the real-time
database between the I/O management and the control ap-
plication as shown in figure 5. In the Volvo case, the HW
Db is replaced by a RTDB which is designed using a passive
library. The desired properties of this RTDB are described
more in detail in section 3.1. The I/O tasks are modified to
communicate with the database instead of the data deriva-
tion tasks. The application is, analogue to the I/O tasks,



VECU with a database

I/O
Task

I/O
Task

Sig in

Sig in

Flash/EEPROM

Backup/restoration service

Service tool Subsystems

I/O
Task

Sig out

Logging
Task

Sensor and
actuator raw data

Sensor, and
actuator

engineering values

Logging
data

Application
Task 1

Application
Task n

.

.

.

I/O MGNT

Parameters

CANDiagnostics link

Communication
Task

DBMS

Figure 5. The new architecture of the VECU.

also modified to communicate with the database only. At
this stage the database splits two domains, the I/O domain
and the application domain. The last step is to collect ad-
ditional data that might be scattered in the system into the
database, e.g., parameter and logging data. The tasks that
communicate with these data stores are, similar to the I/O
and application tasks, modified to communicate with the
database only. With this architecture we have separated the
application from the I/O management and the I/O ports. The
database could be viewed as a layer between the application
and the operating system, extending the real-time operating
system functionality to embrace data management, see fig-
ure 6. All data in the system is furthermore collected in
one database, satisfying the need for a uniform and efficient
way to store data. Another important issue, shown in figure
5, is that both the raw sensor data and the engineering data,
previously derived by the data derivation task, are now in-
cluded in the database. The actual process of deriving the
engineering values could be performed in multiple ways.
The I/O tasks could be modified to embrace this functional-
ity, so that they write both the raw value and the engineering
value to the database. Another, perhaps more elegant, way
of solving this is to use database rules, where a rule is trig-
gered inside the database as soon as a data item is updated.
This rule would execute the code that derive the engineering
value.

3.1 Data Management Implications

When designing a system running on the described hard-
ware, one of the main goals is to make it run with as small
processor and memory footprint as possible. Traditionally,
for data, this is achieved by using as small data structures
as possible. A common misconception is that a database is
a very large and complex application that will not fit into a
system such as this [10]. However, there are, even commer-
cial DBMSs that are as small as 8Kb, e.g., Pervasive.SQL. It

Rubus OSCommunication

Hardware layer

ECU software system

Run-
time

system

I/O
DATABASE LAYER

Application layer

Figure 6. The structure of an ECU with an em-
bedded database.

should be added, though, that even if the size of the DBMS
is very small, the total memory used for data storage can
increase because of the added overhead for each data el-
ement stored in the database. This is because memory is
used to store the database indexing system, data element
locks, etc. Clearly, there is a trade-off between function-
ality and memory requirements. The most important issue
in this application is timeliness. The system cannot be al-
lowed to miss deadlines and behave unpredictable in any
way. It is off-line scheduled with non-preemptable tasks.
This fact provides some interesting implications. No task,
except the driver display task (see section 2.3), can pre-
empt another task. Thus, database conflicts are automati-
cally avoided since the tasks themselves are mutually exclu-
sive. This makes database concurrency control and locking
mechanisms unnecessary because only one transaction can
be active in such a system at any given time, thus serializa-
tion of transactions are handled “manually”. This is similar
to why semaphores are not needed for non-preemptive real-
time systems [13].

Implementing a database into the existing system will
have benefits. All data, regardless of on which media it is
stored, can be viewed as one consistent database. The rela-
tions between the data elements can be made clearer than to-
day. For example, currently an image retrieval in the IECU
is performed by first looking in the image Db, then in the
language Db, and finally in the HW Db. A database query
asking for an image, using the current language and the cor-
rect value from the HW Db, can be done in one operation.
Furthermore, constraints on data can be enforced centrally
by the database. If a data element has a maximum and a
minimum value, the database can be aware of this and raise
an exception if an erroneous value is inserted. Today, this is
performed in the application, implying a responsibility that
constraints are made consistent between all tasks that use
the data.

In this system the transaction dispatching delay is re-
moved since a database scheduler is not needed. Also,
conflict resolution is removed since no conflicts will oc-
cur because only one transaction is running at any given
time. Regarding the data access time, it will increase as
the database grows larger. However, this can be tolerated
since the increase can be controlled in two ways. First of



all, as the database is a main-memory database, any access
to data will be significantly shorter than the execution times
of the transactions. To decrease the transaction response
times various indexing strategies especially suited for main-
memory databases can be used, e.g., t-tree [7] and hashing
algorithms [6].

The application investigated in this paper consists of,
as previously mentioned, primarily non-preemptable tasks,
hence no concurrency control is needed. One interesting
question is how this approach would fit into a preemptable
off-line scheduled system. This would call for some kind
of concurrency control in the database, thus possibly result-
ing in unpredictable response times for transactions due to
serialization conflicts. However, this could be avoided by
solving all conflicts off-line. Since all transactions in the
system are known a priori, we know all data elements that
each transaction touches. This allows us to feed the off-line
scheduler with information about which transactions might
cause conflicts if preempted by each other. The scheduler
can then generate a schedule where tasks containing possi-
bly conflicting transactions do not preempt each other.

3.2 DBMS Design Implications

If we can bound the worst case response time for a spe-
cific transaction, we can add this time to the calling tasks
worst-case execution time (WCET) without violating the
hard real-time properties of the system.1 Execution of the
transaction on its task’s thread instead of having separate
database tasks, decreases the number of tasks in the sched-
ule, making it easier for the off-line scheduling tool to find
a feasible schedule. However a question one should ask is:
How do we find the worst case response time for a transac-
tion? There are basically four different circumstances that
define the response time of a transaction, namely: (i) the
time it takes from the instant a transaction is released until
the instant it is dispatched; (ii) the actual execution time of
the code that needs to be executed; (iii) the time it takes to
access the data elements through the indexing system; and
(iv) the time it takes to resolve any serialization conflicts
between transactions. For an optimistic concurrency con-
trol this would imply the time it takes to run the transaction
again, and for a pessimistic concurrency control it would be
the time waiting for locks.

In future versions of this application, it is expected that
some of the functionality is moved to the blue part, thus
requiring concurrency control and transaction scheduling
since we cannot predict the arrival times of blue tasks. Mov-
ing parts of the application to the blue part could imply re-
structuring the data model if a database is not used. If new
functionality from the database will be needed in the fu-

1The response time is defined as the time from transaction initiation to
the completion of the transaction.

Red Rubus part Blue Rubus part

DB

Appl. task

Appl. task

Appl. task

DB scheduler

Transaction
queue

Result
queue

Blue task

Blue task

Figure 7. A database that supports non-
periodic transactions via an external sched-
uler.

ture, the database schema can be reused. Still, this would
not allow non-periodic transactions. Furthermore, it would
not allow tasks scheduled online, e.g., blue tasks. However,
an extension that would allow this is shown in figure 7. A
non-preemptable scheduler task is placed in the red part of
Rubus. Since this task is non-preemptable it is mutually
exclusive towards all other tasks and can therefore have ac-
cess to the entire database. If this task is scheduled as a
periodic task, it acts like a server for transaction schedul-
ing. Thus, the server reads all transactions submitted to the
transaction queue, process them and return the results in the
result queue (blue tasks are preemptable and, hence, their
execution can be interleaved).

From the blue tasks’ perspective, they can submit
queries, and since we know the periodicity of the scheduler
task we can determine the worst-case execution time for
these transactions. From the red tasks’ perspective, nothing
has changed, they are still, either as in the current system,
non-preemptive resulting in no conflicts, or they are sched-
uled so that no conflicts can occur. It is important to em-
phasize that this method is feasible only if any transaction
processed by the scheduler task can be finished during one
instance of the scheduling task. If this requirement cannot
be met an online concurrency control is needed.

3.3 Mapping Data Requirements to Existing
Database Platforms

Today there are database platforms, both research and
commercial platforms, which fulfill a subset of the system
requirements. The DeeDS [3] platform, for example, is a
hard real-time research database system that support hard
periodic transactions. It also has a soft and a hard part.
Furthermore, the DeeDS system uses milestones and con-
tingency plans. These hard periodic transactions would suit
the red Rubus tasks and would, if used with milestones and
contingency plans, suit the Volvo application. The mile-
stones would check that no deadlines are about to be missed,
and the contingency plans would execute alternate actions if
that is the case. DeeDS is, as the STRIP system [2] a main
memory database that would suit this application. The Bee-
hive [11] system implements the concept of temporal valid-
ity, that would ensure that temporal consistency always ex-



ists in the database. These platforms are designed as mono-
lithic databases with the primary intent to meet multiple
application requirements with respect to real-time proper-
ties, and on a lesser extent the embedded requirements. As
such, they are considered to provide more functionality than
needed, and as a consequence, they are not optimal for this
application given the need to minimize resource usage as
well as overall system complexity.

On the commercial side, embedded databases exist that
are small enough to fit into the current system, e.g., the
Berkeley DB by Sleepycat Software Inc. and the Perva-
sive.SQL database for embedded systems. There are also
pure main-memory databases on the market, e.g., Polyhe-
dra and TimesTen. Polyhedra, DeeDS, STRIP, and REACH
[4] are active database systems, which can enforce consis-
tency between the raw values and the engineering values,
and thereby removing the need for the data derivation task.
However, integrating active behavior in a database makes
timing analysis of the system more difficult. The Berkeley
DB system allows the user to select between no concurrency
control and an pessimistic concurrency control [9]. If Volvo
should decide upon moving part of the functionality to the
blue part, concurrency in the database would be necessary.
The option of choosing whether or not to use concurrency
control would enable the use of the same DBMS, database
scheme, and database interface regardless of the strategy be-
ing used. Unfortunately, none of the commercial systems
mentioned have any real-time guarantees and are therefore
not suitable for this type of application.

4 Conclusions

We have studied two different hard real-time systems
from the vehicular industry with respect to data manage-
ment, and we have found that data is scattered throughout
the system. This implies that getting a full picture of all
existing data and its interrelations in the system is difficult.

Further, we have redesigned the architecture of the sys-
tem to support a real-time database. In this new architecture
all tasks communicate through the database instead of using
ports, and the database provides a uniform access to data.
This application does not need all the functionality provided
by existing real-time database research platforms, and is-
sues like concurrency and scheduling have been solved in
an easy way. Currently the application is designed so that
all tasks are off-line scheduled. All tasks, except the driver
display task, are non-preemptive. However, future versions
of the application are expected to embrace preemption as
well as online scheduled tasks.

Finally, we have discussed mapping the data manage-
ment requirements to existing databases. Some of the
database platforms, both research and commercial, offer
functionality that is needed by the system, but at the same

time they introduce a number of unnecessary features.
Our future work will focus on the design and imple-

mentation of a tailorable real-time embedded database [12].
This includes: (i) developing a set of real-time components
and aspects, (ii) defining rules for composing these compo-
nents into a real-time database system, and (iii) developing
a set of tools to support the designer when composing and
analyzing the database system. A continuation of this case
study where we will implement our database in the Volvo
system is planned.

References

[1] Rubus OS - reference manual. Articus Systems, 1996.
[2] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview

of the STanford Real-time Information Processor (STRIP).
SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 25(1), 1996.

[3] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndts-
son, and B. Eftring. DeeDS towards a distributed and active
real-time database system.ACM SIGMOD Record, Volume
25, 1996.

[4] A. P. Buchmann, A. Deutsch, J. Zimmermann, and M. Higa.
The REACH active OODBMS. InProceedings of the 1995
ACM SIGMOD International Conference on Management of
Data, pages 476–476, 1995.

[5] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-
cano - a revolution in on-board communications. Technical
report, Volvo Technology Report, 1998.

[6] W. Litwin. Linear hashing: A new tool for file and table ad-
dressing. InProceedings of the 6th International Conference
on Very Large Databases, 1980.

[7] H. Lu, Y. Ng, and Z. Tian. T-tree or b-tree: Main mem-
ory database index structure revisited.11th Australasian
Database Conference, 2000.

[8] K. Ramamritham. Real-time databases.International Jour-
nal of distributed and Parallel Databases, pages 199–226,
1993.

[9] X. Song and J. Liu. Maintaining temporal consistency: Pes-
simistic vs. optimistic concurrency control.IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 7, October
1995.

[10] J. Stankovic, S. Son, and J. Hansson. Misconceptions about
real-time databases.IEEE Computer, 32, June 1999.

[11] J. A. Stankovic, S. H. Son, and J. Liebeherr.Real-
Time Databases and Information Systems, chapter BeeHive:
Global Multimedia Database Support for Dependable, Real-
Time Applications, pages 409–422. Kluwer Academic Pub-
lishers, 1997.

[12] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Embedded databases for embedded real-time systems: A
component-based approach. Technical report, Dept. of
Computer Science, Link¨oping University, and Dept. of
Computer Engineering, M¨alardalen University, 2002.

[13] J. Xu and D. L. Parnas. Scheduling processes with re-
lease times, deadlines, precedence, and exclusion relations.
IEEE Transactions on Software Engineering, 16(3):360–
369, 1990.


