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Abstract: Increasing complexity of real-time systems, and demands for enabling
their configurability and tailorability are strong motivations for applying new
software engineering principles such as aspect-oriented software development.
However, to successfully apply aspect-orientation to real-time systems, methods for
designing real-time systems using aspects and components, and analyzing temporal
behavior of the resulting software are needed. We contribute by introducing an
approach for analyzing the worst-case execution time (WCET) of a real-time
system compositioned using aspects and components. The approach consists of
aspect-level WCET analysis of components, aspects and the compositioned real-
time system, as well as design guidelines for the implementation of components
and aspects in a real-time environment. Copyright (©) 2003 IFAC
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1. INTRODUCTION

The correctness of real-time systems depends both
on the logical result of the computation, and the
time when the results are produced, expressed
explicitly as temporal constraints. It follows that
development of real-time systems should be based
on software technology that supports predictabil-
ity in the time domain. Thus, one of the most im-
portant elements when determining temporal be-
havior of real-time systems is the worst-case exe-
cution time (WCET) analysis, computing bounds
of the execution times of the tasks in the system
(Puschner and Burns, 2000).

Increasing complexity in development of real-
time systems and the demand for enabling their
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configurability are strong motivations for adopt-
ing new software technologies, such as aspect-
oriented software development (AOSD). AOSD al-
lows encapsulating system’s crosscutting concerns
in “modules”, called aspects. AOSD considers com-
ponents and aspects as two distinct entities where
aspects are automatically weaved into functional
behavior of components in order to produce the
overall system (Lopes et al., 2000).

Applying AOSD in real-time and embedded sys-
tem development is expected to reduce the com-
plexity of the system design and development, and
provide means for a structured and efficient way of
handling crosscutting concerns, e.g., synchroniza-
tion, memory optimization, power consumption,
and temporal attributes. However, AOSD does
not, in its current form, support predictability
in the time domain. Hence, in order to apply



AOSD to real-time system development, we need
to provide ways of analyzing temporal behavior of
aspects, components, and the resulting system.

We contribute by introducing an approach for
analyzing WCET of a real-time system compo-
sitioned using aspects and components, thus en-
abling predictable aspect weaving. The approach
consists of aspect-level WCET analysis of com-
ponents, aspects and the compositioned real-time
system, and design guidelines for component and
aspect implementation in the real-time environ-
ment. The aspect-level WCET analysis is based on
the concept of symbolic WCET analysis (Bernat
and Burns, 2000).

Throughout the paper, to illustrate our approach,
we use concrete examples from an on-going re-
search project that is building a configurable
embedded real-time database, called COMET
(TeSanovié et al., 2003). COMET consists of a
set of components (e.g., user interface compo-
nent, transaction scheduler component, and lock-
ing component) and a set of aspects (e.g., syn-
chronization, transaction model, security, real-
time scheduling, and concurrency control). To
show how the implementation of aspects and
components supporting predictable aspect weav-
ing should be done, we focus our presentation
of one component and one aspect, namely the
locking component (LC) and the concurrency con-
trol (CC) aspect. Moreover, by implementing CC
as an aspect we present a new way of handling
concurrency in the real-time database system.

The paper is organized as follows. In section 2
we provide concise background to aspect-oriented
software development and symbolic WCET analy-
sis. Design guidelines for aspects and components
in real-time systems are presented in section 3.
The aspect-level WCET analysis is presented in
section 4. The paper finishes with the main con-
clusions in section 5.

2. BACKGROUND
2.1 Aspect-Oriented Software Development

Typically, AOSD implementation of a software
system has the following constituents (Kiczales et
al., 1997): (i) components, written in a component
language, e.g., C, C++, Java, (ii) aspects, written
in the corresponding aspect language?, e.g., As-
pectC (Coady et al., 2002), AspectC++ (Spinczyk
et al., 2002), AspectJ (Team, 2002), (iii) an aspect
weaver, which is a special compiler that combines
components and aspects.

2 All existing aspect languages are conceptually very sim-
ilar to AspectJ, developed for Java.

Components used for system composition in
AOSD are not traditional black box components,
rather they are gray as we can modify their inter-
nal behavior by weaving different aspects in the
code of a component 3.

Aspects are commonly considered to be a property
of a system that affects its performance or seman-
tics, and that crosscuts the system’s functionality
(Kiczales et al., 1997). Each aspect declaration
consists of advices and pointcuts. A pointcut in
an aspect language consists of one or more join
points, and is described by a pointcut expression.
A join point refers to a point in the component
code where aspects should be weaved, e.g., a
method, or a type (struct or union). An advice is
a declaration used to specify the code that should
run when the join points, specified by a pointcut
expression, are reached. Different kinds of advices
can be declared, such as: (i) before advice, which
is executed before the join point, (ii) after advice,
which is executed immediately after the join point,
and (iii) around advice, which is executed in place
of the join point.

2.2 Symbolic WCET Analysis

One of the most important elements in real-time
system development is temporal analysis of the
real-time software. Determining the WCET of the
code provides guarantees that the execution time
does not exceed the WCET bound. WCET anal-
ysis is usually done on two levels (Puschner and
Burns, 2000): (i) low-level, analyzing the object
code and the effects of hardware-level features,
and (ii) high-level, analyzing the source code and
characterizing the possible execution paths. Sym-
bolic WCET addresses the problem of obtain-
ing the high-level tight estimation of the WCET
by characterizing the context in which code is
executed (Bernat and Burns, 2000). Hence, the
symbolic WCET technique describes the WCET
as a symbolic expression, rather than a fixed con-
stant, in order to provide tighter bounds on the
execution time. Typically, the symbolic expression
is a function of a variable. For example: for dif-
ferent values of n in the loop for(i = 1;i <
n;i + +) the program has different execution
times, so the WCET is a function of n, e.g.,
WCET (n) =2ms+n*0. 1ms.

3. DESIGN GUIDELINES

To enable predictable aspect weaving, i.e., tem-
poral analysis of the real-time aspect-oriented

3 The internal behavior and attributes of the black
box component are strongly encapsulated and cannot be
changed or modified.



system, aspects and components should be pro-
grammed to conform to the following simple de-
sign guidelines. Our experience so far is that these
guidelines are not very restrictive.

e FEach component provides a set of mecha-
nisms, which are basic and fixed parts of
the component infrastructure. Mechanisms
are fine granule methods or function calls.

e Each component provides a set of operations
to other components and/or to the system.
Operations are represented by coarse granule
methods or function calls. Operations are im-
plemented using the underlying mechanisms,
which are fixed parts of the component.

e The implementation of the operations deter-
mines the initial component policy, as opera-
tions implement certain behavior of the com-
ponent. This initial policy of the component
(before any aspects are weaved) we call the
policy framework, and it is a flexible part of
the component, as the implementation of the
operations within the framework can change
by aspect weaving.

e Aspects can be viewed as policies, since they
can change the policy framework of the com-
ponent by changing one or more operations
in the framework.

e The advices in an aspect are implemented
using only the mechanisms of the compo-
nents. Each advice can change the behav-
ior of the component (policy framework) by
changing one or more operations in the com-
ponent. The around advice in an aspect can
change the behavior of the policy framework
by changing the operation implementation
(as it is executed instead of the code in the
operation). Before advices and after advices
change the behavior of the policy framework
without changing the original behavior of the
operation (as they are executed before or
after the code in the operation).

e The pointcuts in aspects can refer only to the
mechanisms, operations in the component,
and a type (struct).

Figure 1 shows the LC implemented using these
guidelines. The LC assigns locks to request-
ing transactions and maintains a lock table,
thus, it records all locks obtained by trans-
actions in the system. The LC contains the
mechanisms (see figure 1) insertLockRecord(),
removeLockRecord(), etc., for maintaining the
table of all locks held by transactions. The policy
part consists of the operations performed on lock
records and transactions holding and/or request-
ing locks, e.g., getReadLock (), getWriteLock(),
releaselLock(). All operations are implemented
using underlying mechanisms. The policy frame-
work of the LC, i.e., initial policy of the compo-
nent, is that lock conflicts are ignored and locks

getReadLock()
getWriteLock()
releaseLock()

- policy

insertLockRecord()
removeLockRecord()
findLockRecord()
deallocLock()
insertLockHolder()
removeLockHolder()

-mechanisms

Fig. 1. The locking component

are granted to all transactions (in this case dead-
locks are handled by the application using the
LC).

aspect CCpolicy {

1: resolveConflict(LC_Operands * op){
2: [*apply specific CC policy to resolve
3: lock conflict*/

4:}

5. pointcut getReadLockCall (LC_Operands * op)=
6: cal | ("voi d get ReadLock(LC Qperands*)") &ar gs(op);
7:  pointcut getReadWriteCall (LC_Operands * op)=
8: call ("void getWitelLock(LC Operands)") &args(op);
9:  advice getReadLockCall (op):

10: void before (LC_Operands * op){

11: if the write-lock is already held

12: then

13: [*there is a conflict which needs

14: to be resolved by applying CC policy */

15: resolveConflict(op);

16: }

17:  advice getWriteLockCall (op):

18: void before (LC_Operands * op){

19:  if write- or read-lock is already held

20: then

21: [*there is a conflict which needs

22: to be resolved by applying CC policy */

23: resolveConflict(op);

24: '}

25:}

Fig. 2. The concurrency control aspect

One aspect that influences the policy of the
LC, changing its behavior, is the CC aspect,
which defines how lock conflicts should be handled
in the system. Figure 2 shows the CC aspect
CCpolicy implementing the pessimistic CC pol-
icy HP-2PL (Abbott and Garcia-Molina, 1992),
and it has several pointcuts and advices. As de-
fined by the given design guidelines, the point-
cuts refer to the operations getReadLockCall ()
and getWriteLockCall() (lines 5 and 7). The
first pointcut intercepts the call to the function
getReadLock (), which grants a read lock to the
transaction and records it in the lock table. Sim-
ilarly, the second pointcut intercepts the call to
the function that grants a write lock and records
it in the lock table. Before granting a read or
write lock, the advices (lines 9-16 and 17-24) use
the underlying LC’s mechanism findLockRecord
to find the lock record, and then check if there
is a lock conflict. If a conflict exists, the advices
deal with it by calling the local aspect function
resolveConflict () (lines 1-9), where the conflict
resolution is done by implementing the HP-2PL
CC policy. Hence, the CCpolicy aspect changes
the policy of the LC to HP-2PL.




4. ASPECT-LEVEL WCET ANALYSIS

Aspect-level WCET analysis of the real-time sys-
tem compositioned using components and aspects
is based on:

e aspect-level WCET specifications of compo-
nents and aspects (section 4.1), and

e aspect-level WCET algorithm, which takes
the aspect-level WCET specifications as an
input and computes the WCET of the com-
ponents weaved with aspects (section 4.2).

4.1 Aspect-Level WCET Specification

The aspect-level WCET specification of an aspect
and a component consists of internal and external
WCET specifications. The internal WCET speci-
fication is a fixed part of the aspect-level WCET
specification, and is obtained by symbolic WCET
analysis. It represents the WCET of the code not
changed by aspect weaving. The external WCET
specification is a variable part of the aspect-level
WCET specification, as it represents the WCET
of the code that can be modified by aspect weav-
ing, i.e., which temporal behavior can be changed
by “external” influence.

Table 1 gives the relationship between compo-
nents, aspects, and the aspect-level WCET speci-
fication. The temporal behavior of mechanisms,
being fixed parts of the component, does not
change by aspect weaving. Hence, the WCETs of
the mechanisms in the component are determined
by the internal WCETs, specified as symbolic
expressions. As operations can be modified by
aspect weaving, the aspect-level WCET specifi-
cations of operations consist both of fixed inter-
nal WCET specifications and variable external
WCET specifications. External WCETs are spec-
ified through usage of mechanisms in operations
as aspect weaving changes the operation imple-
mentation by changing the number of mechanisms
used by the operation. Similarly, advices also have
fixed internal WCET specifications and variable
external WCET specifications.

Table 1. Aspect-level WCET specifica-
tions of aspects and components

Internal WCET  External WCET
Mechanism x
Operation X b'e
Advices X X

Figures 3 and 4 show the aspect-level WCET
specification of the LC. For each mechanism,
the WCET is determined by symbolic WCET
analysis and specified as a symbolic expression
(see figure 3). Furthermore, a WCET specifi-
cation of an operation consists of the internal

mechanisms {
mechanism{
name insertLockRecord;
wcet 1ms;

mechanism{
name findLockRecord;
wcet 0.5ms+noOfLocks*1ms
//}'

Internal
WCET
specification
ofa
mechanism }

mechanism{
name insertLockHolder;
wcet 4ms;

Fig. 3. Aspect-level WCET specifications of the
mechanisms of the locking component

operations  (noOfLocks){

operation{
External naTJzeg?se{tReadLock;
s :(\:/i(f:itl:z;ion findLockRecord  1;
P of an insertLockRecord 1;
. insertLockHolder 1;
operation

)

_—"| operation{
name getWriteLock;
uses{

Internal

WCET findLockRecord  1;
specification . .
ofan !nsertLockRecord 1;
operation insertLockHolder 1;

}

intOperationWcet 4ms;

}

Fig. 4. Aspect-level WCET specifications of the
policy framework of the locking component

aspect CCpolicy
advice {
name getReadLockCall;
type before ;

(noOfLocks)y{

changes {
name getReadLock ;
External WCET uses {
specification { findLockRecord 1;
i

Internal WCET{ }
specification j

Fig. 5. The aspect-level WCET specification of the
CCpolicy aspect

intAdviceWcet 4 ms;

WCET specification given as a symbolic ex-
pression (intOperationWcet), and the external
WCET specification expressed through the num-
ber of times an operation uses a particular mech-
anism (see figure 4). As the maximal number of
locks in the LC can vary, influencing the execution
time of the code, the internal WCETs of opera-
tions and mechanisms may be represented as a
function of the maximal number of locks in the
system, i.e., noOfLocks.

The aspect-level WCET specification for the

CCpolicy aspect, changing the policy framework
of the LC, is shown in figure 5.



operationWcet ( operation)

1: operationWcet =0

2:

3: for every advice; in the aspect, modifying the operation

4: do

5: if around advice

6: then

7. operationWcet = operationWcet + codeBlockWcet( advice; )
8: if before or after advice

9: then

10: operationWcet = operationWcet + codeBlockWcet( advice,) +
11: codeBlockWcet( operation )

12:

13: if operation calls other operations

14: then

15:  for every operation, called from the operation

16: do

17:  operationWcet = operationWcet + operationWcet( operation , )
19: return operationWcet

codeBlock Wcet( codeBlock )

1: codeBlockWcet = intCodeBlockWcet

2:

3. for every mechanism, used by the codeBlock
4: do

5.  codeBlockWcet = codeBlockWcet + wcet *N;
6
7

: return codeBlockWcet

Fig. 6. The algorithm for aspect-level WCET
analysis

The specification includes the internal WCET
specification (symbolic expression) of an advice
that modified the operation, and the external
WCET specification, i.e., the information of the
mechanisms used by the advice. For example, the
before advice getReadLockCall has both an inter-
nal and an external WCET specification, which
specifies that the advice getReadLockCall finds
the lock record using findLockRecord mechanism
of the operation getReadLock once, thus influenc-
ing the temporal behavior of the real-time system
when the CCpolicy aspect is weaved into the LC.

4.2 Aspect-Level WCET Algorithm

The algorithm for calculating the WCET of com-
ponents weaved with aspects, i.e., determining the
WCET of the real-time aspect-oriented system, is
shown in figure 6. The input data to the algorithm
is aspect-level WCET specifications of compo-
nents and aspects that should be weaved to pro-
duce the resulting real-time system. As internal
WCET specifications are symbolic expressions, in
the initial step of the analysis (before applying
the algorithm) all the variables used in symbolic
expressions are detected and their values obtained
from either a human user or an application.

The algorithm consists of two inter-dependent
parts (top-down description):

e operationWcet (), which takes the aspect-
level WCET specifications of components
and aspects and computes the WCET of
components weaved with aspects by com-

puting the WCET of all operations in the
component modified by aspect weaving, and

e codeBlockWcet (), which is called from the
operationWcet () to compute the WCET of
an advice or an operation not weaved with
aspects (note, advices and operations use
mechanisms as basic blocks).

operationWcet () computes the WCET of an op-
eration taking into account that the operation
might be modified by aspect weaving. For every
advice within an aspect that modifies an operation
we need to recalculate the WCET of the opera-
tion, depending on the advice type, i.e., whether
the advice is type around, before, or after. The
WCET of an around advice is calculated directly
by a codeBlockWcet (), where around advice now
is a code block (lines 5-7). The WCETs of before
and after advices are calculated by taking into
account not only the WCET of an advice as a code
block, but also the WCET of the operation since
the advice runs before or after the operation (lines
8-11). If the operation for which we are recalculat-
ing the WCET calls other operations, then in the
WCET of the operation we need to include all the
WCETs of every other operation called (which are
calculated by the same principle). Thus, we need
to have a recursive call to the operationWcet ()
itself (lines 14-17).

codeBlockWcet () is used for calculating the
WCET of a code block (codeBlock), which can be
either an advice or an operation. codeBlockWcet ()
does so by first calculating the value of the internal
WCET of a given code block based on a symbolic
expression (line 1). Then, to obtain an aspect-level
WCET of a codeBlock, the internal value of the
WCET is augmented with the value of the ex-
ternal WCET. The external WCET is computed
using the the values of WCET for each mechanism
called by the codeBlock (lines 3-5), such that
the value of WCET of a mechanism (a symbolic
expression) is multiplied with the number of times
the codeBlock uses the mechanism (line 5).

Steps performed in the algorithm are summarized
in figure 7. Aspect-level WCET analysis, applied
on the LC weaved with the CCpolicy aspect, is
presented in figure 8. The aspect-level WCET of
the LC depends on the WCETs of the operations
in the component modified by aspect weaving.
The aspect-level WCET of the getReadLock oper-
ation is calculated by first calculating the WCET
of the operation without aspect and then aug-
menting it for the value of WCET of an advice
that modified the operation (see figure 8). As can
be seen, for different number of locks in the system
this would result in different values of WCET.



(aspectualized)operationWcet = operationWcet (without aspects) + (before/after)adviceWcet

(aspectualized)operationWcet = (around)adviceWcet

operationWcet(without aspects) = codeBlockWcet = internalWcet + externalWcet = intOperationWcet +2. mechanism*usage
adviceWcet = codeBlockWcet = internalWcet + externalWcet =intAdviceWcet + 2. mechanism*usage

Fig. 7. Steps performed in the algorithm for obtaining the aspect-level WCET

(aspectualized)getReadLock

= (1.1) = getReadLockWcet (without aspects)
+ (before)getReadLockCallWcet

=11 + noOfLocks*2

where

getReadLockWcet(without aspects)
=(2.1) = intOperationWcet + 2 mechanism*usage
=1 +findLockRecordWcet*1 + insertLockRecordWcet*1
+ insertLockHolderWcet*1
=1+ (0.5+noOfLocks*1)*1 + 1*1 + 1*4 = 6.5 + noOfLocks*1

adviceWcet

=(2.2) = intAdviceWcet + 2 mechanism*usage
=4 + 1*findLockRecordWcet

=4.5 + noOfLocks*1

Fig. 8. Example of applying the aspect-level
WCET algorithm to the LC weaved with the
CCpolicy aspect

5. SUMMARY

In this paper we have presented an approach that
enables predictable aspect weaving. The approach
is called aspect-level WCET analysis and is based
on a new algorithm for analyzing the WCET of
real-time software composed of aspects and com-
ponents. The algorithm is based on the symbolic
WCET analysis of real-time software systems.
While the symbolic WCET technique provides an
efficient way for analyzing the WCET of a mono-
lithic (already configured) real-time software, the
main goal of aspect-level WCET analysis is deter-
mining the WCET of different real-time system
configurations consisting of aspects and compo-
nents before any actual aspect weaving (system
configuration) is performed, and, hence, help the
designer of a configurable real-time system to
choose the system configuration fitting the WCET
needs of the underlying real-time environment
without paying the price of aspect weaving for
each individual candidate configuration.

To efficiently analyze aspects when weaved into
components, we have given design guidelines for
implementing aspects and components in the real-
time environment. Although there is a significant
body of research done in the area of WCET for
real-time software, to the best of our knowledge,
this is the first work that focuses on integrat-
ing WCET analysis with AOSD, thus gearing
towards predictable aspect weaving. As these are
initial stages of the work on predictable aspect
weaving, there are several open research issues,

and we are currently focusing on the following:
(i) determining composition rules for combining
different configurations of aspect and components,
and (ii) developing a tool for aspect-level WCET
analysis of the real-time systems compositioned
using aspect and components.
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