
Database Pointers: a Predictable Way of

Manipulating Hot Data in Hard Real-Time

Systems?

Dag Nystr�om1, Aleksandra Te�sanovi�c2,
Christer Norstr�om1, and J�orgen Hansson2

1 Dept. of Computer Engineering, M�alardalen University
fdag.nystrom,christer.norstromg@mdh.se

2 Dept. of Computer Science, Link�oping University
falete,jorhag@ida.liu.se

Abstract. Traditionally, control systems use ad hoc techniques such as
shared internal data structures, to store control data. However, due to
the increasing data volume in control systems, these internal data struc-
tures become increasingly diÆcult to maintain. A real-time database
management system can provide an eÆcient and uniform way to struc-
ture and access data. However the drawback with database management
systems is the overhead added when accessing data. In this paper we
introduce a new concept called database pointers, which provides fast
and deterministic accesses to data in hard real-time database manage-
ment systems compared to traditional database management systems.
The concept is especially bene�cial for hard real-time control systems
where many control tasks each use few data elements at high frequen-
cies. Database pointers can co-reside with a relational data model, and
any updates made from the database pointer interface are immediately
visible from the relational view. We show the eÆciency with our approach
by comparing it to tuple identi�ers and relational processing.

1 Introduction

In recent years, the complexity of embedded real-time controlling systems has
increased. This is especially true for the automotive industry [1]. Along with this
increased complexity, the amount of data that needs to be handled has grown in
a similar fashion. Since data in real-time systems traditionally is handled using
ad hoc techniques and internal data structures, this increase of data is imposing
problems when it comes to maintenance and development.

One possible solution to these problems is to integrate an embedded real-
time database management system (RTDBMS) within the real-time system. A
RTDBMS can provide the real-time system with a uniform view and access of
data. This is especially useful for distributed real-time systems where data is

? This work is supported by ARTES, a network for real-time research and graduate
education in Sweden.



shared between nodes. Because of the uniform access of data, the same database
request is issued regardless if the data is read at the local node or from a dis-
tributed node. Furthermore, RTDBMSs can ensure consistency, both logical and
temporal [2]. Finally, RTDBMSs allow so called ad hoc queries, i.e., requests for
a view of data performed during run-time. This is especially useful for manage-
ment and system monitoring. For example, consider a large control system being
monitored from a control room. Suddenly, a temperature warning is issued. An
ad hoc query showing the temperatures and pressures of multiple sub-systems
might help the engineers to determine the cause of the overheating.

Integrating a RTDBMS into a real-time system also has drawbacks. There
will most certainly be an added overhead for retrieving data elements. This
is partly because of the indexing system used by most database management
systems (DBMS). The indexing system is used to locate where in the memory a
certain data element is stored. Usually, indexing systems use some tree structure,
such as the B-tree [3] and T-tree [4] structures, or a hashing table [5].

An increase of the retrieval times for data has, apart from longer task execu-
tion, one additional drawback. Since shared data in a concurrent system needs to
be protected using semaphores or database locking systems, the blocking factor
for hot data can be signi�cant. Hot data are data elements used frequently by
multiple tasks. Hot data is sensitive to congestion and therefore it is of utmost
importance to lock hot data for as short time as possible. Furthermore, it is im-
portant to bound blocking times to allow response time analysis of the system.
Examples of hot data are sensor readings for motor control of a vehicle, e.g.,
rpm and piston position. These readings are continuously stored by I/O tasks
and continuously read by controlling tasks. A congestion involving these heav-
ily accessed data elements might result in a malfunction. On the other hand,
information regarding the level in the fuel tank is not as crucial and might be
accessed less frequent, and can therefore be considered non-hot data.

In this paper we propose the concept of database pointers, which is an exten-
sion to the widely used tuple identi�ers [6]. Tuple identi�ers contain information
about the location of a tuple, typically a block number and an o�set. Database
pointers have the eÆciency of a shared variable combined with the advantages
of using a RTDBMS. They allow a fast and predictable way of accessing data in
a database without the need of consulting the DBMS indexing system. Further-
more database pointers provide an interface that uses a \pointer-like" syntax.
This interface is suitable for control system applications using numerous small
tasks running at high frequencies. Database pointers allow fast and predictable
accesses of data without violating neither temporal or logical consistency nor
transaction serialization. It can be used together with the relational data model
without risking a violation of the database integrity.

The paper is outlined as follows. In section 2 we describe the type of systems
we are focusing on. In addition, we give a short overview of tuple identi�ers and
other related work. Database pointers are explained in section 3, followed by
an evaluation of the concept, which is presented in section 4. In section 5 we
conclude the paper.



2 Background and Related Work

This paper focuses on real-time applications that are used to control a process,
e.g., critical control functions in a vehicle such as motor control and brake con-
trol. The ow of execution in such a system is: (i) periodic scanning of sensors,
(ii) execution of control algorithms such as a PID-regulators, and (iii) propaga-
tion of the result to the actuators.

The execution is divided into a number of tasks, e.g., I/O-tasks and control
tasks. The functions of these tasks are �xed and often limited to a speci�c
activity. For example, an I/O-task's only responsibility could be to read the
sensor-value on an input-port and write it to a speci�c location in memory, e.g.,
a shared variable [7].

In addition to these, relatively �xed control tasks, a number of management
tasks exists, which are generally more exible than the control tasks, e.g., man-
agement tasks responsible for the user interface.

2.1 Relational Query Processing

Relational query processing is performed using a data manipulation language
(DML), such as SQL. A relational DML provides a exible way of viewing and
manipulating data. The backside of this exibility is performance loss.

Figure 1 shows a typical architecture of a DBMS. The DBMS provides access
to data through the SQL interface. A query, requesting value x, passed to this
interface will go through the following steps:

1. The query is passed from the application to the SQL interface.

2. The SQL interface requests that the query should be scheduled by the trans-
action scheduler.

3. The relational query processor parses the query and creates an execution
plan.

4. The locks needed to process the query are obtained by the concurrency
controller.

5. The tuple containing x is located by the index manager.

6. The tuple is then fetched from the database.

7. All locks are released by the concurrency controller.

8. The result is returned to the application.

Finally, since the result from a query issued to a relational DBMS is a relation
in itself, a retrieval of the data element x from the resulting relation is necessary.
This is done by the application.

In this example we assume a pessimistic concurrency control policy. However,
the ow of execution will be roughly the same if a di�erent policy is used.



Tuples

Index

Relational Query processor

SQL
interface

Queries

Transaction
scheduler

Lock table

Concurrency
controller

x

Fig. 1. Architecture of a typical Database Management System.

2.2 Tuple Identi�ers

The concept of tuple identi�ers was �rst proposed back in the 70's as internal
mechanisms for achieving fast accesses to data while performing relational oper-
ations, such as joins and unions. It was implemented by IBM in an experimental
prototype database called System R [6]. A tuple identi�er is a data type con-
taining a pointer to one tuple stored either on a hard drive or in main memory.
Usually, a tuple is a rather short array of bytes containing some data. For a
relational model, one tuple contains the data for one row of a relation.

A decade later, it was proposed in [8] that tuple identi�ers could be used
directly from the application via the DBMS interface. This would enable appli-
cations to create shortcuts to hot data, in order to retrieve them faster. The
concept is also implemented in the Adabas relational DBMS [9] under the name
Adabas Direct Access Method. In Adabas, tuple identi�ers are stored in a hash
table and can be retrieved by the user for direct data access. A disadvantage
of this concept is the inability to move or delete tuples at run-time. To be able
to perform deletions or movements of tuples in Adabas, a reorganization utility
must be run, during which the entire database is blocked.

Applications using tuple identi�ers must be aware of the structure of the
data stored in the tuples, e.g., o�sets to speci�c attributes in the tuple. This
makes it diÆcult to add or remove attributes from relations, since this changes
the structure of the tuples.

2.3 Related Work

Apart from tuple identi�ers, the concept of bypassing the index system to achieve
faster data access has been recognized in other database systems. The RDM
database [10] uses a concept called network access, which consist of a network



of pointers. Network pointers shortcut data used in a prede�ned order. The
implementation is, however, static and cannot be dynamically changed during
run-time.

In the Berkeley database [11], a concept called queue access is implemented,
which allows enqueueing and dequeueing of data elements without accessing
the index manager. The approach is primarily suited for data production and
consumption, e.g., state machines.

The Pervasive.SQL database [12], uses the interface Btrieve to eÆciently ac-
cess data. Btrieve supports both physical and logical accesses of tuples. Logical
accesses uses a tuple key to search for a tuple using an index, while physical
access retrieves tuples based on their �xed physical locations. One database �le
contains tuples of the same length in an array. Btrieve provides a number of
operations that allows stepping between the tuples, e.g., stepNext or stepLast.
The Btrieve access method is eÆcient for applications in which the order of
accesses is prede�ned and the tuples are never moved during run-time. Further-
more, restructuring the data within the tuples is not possible.

Some database management systems use the concept of database cursors as
a part of their embedded SQL interface [13]. Despite the syntactical similarities
between database pointers and database cursors they represent fundamentally
di�erent concepts. While database cursors are used to access data elements from
within query results, i.e., result-sets, database pointers are used to bypass the
index system in order to make data accesses more eÆcient and deterministic.

3 Database Pointers

The concept of database pointers consists of four di�erent components:

{ The DBPointer data type, which is the actual pointer de�ned in the appli-
cation.

{ The database pointer table, which contains all information needed by the
pointers.

{ The database pointer interface, which provides a number of operations on
the database pointer.

{ The database pointer ag, which is used to ensure consistency in the database.

Using the concept of database pointers, the architecture of the DBMS given
in �gure 1, is modi�ed to include database pointer components, as shown in
�gure 2. To illustrate the way database pointers work, and its bene�ts, we use
the example presented in section 2.1, i.e., the request for retrieving the data x

from the database.
Using the database pointer interface, the request could be made signi�cantly

faster and more predictable. First, a read operation together with the database
pointer would be submitted to the database pointer interface. The database
pointer, acting as an index to the database pointer table array would then
be used to get the corresponding database pointer table entry. Each database
pointer table entry consists of three �elds: the physical address of data element



x, information about the data type of x, and eventual locking information that
shows which lock x belongs to. Next the lock would be obtained and x would be
read. Finally, the lock would be released and the value of x would be returned
to the calling application. The four components of the database pointer and its
operations are described in detail in sections 3.1 to 3.4.

Out

In

Out

In

I/O task

I/O task

I/O task

I/O task

Non critical
control task

User
interface

task

Hard RT-system Soft RT-system

Non critical
control task

Critical control task

Critical control task

D
B
M
S

D
b

 p
o

in
ter

in
terface

S
Q

L
in

terface

 Tuples

Index

Lock table

Relational Query processor

Db pointer table

ptr
lockinfo
type

Sched-
uler

CC-
control

DBMS

Db pointer
interface

x

SQL
interface

bot()
query()
commit()

bind()
read()
write()
remove()

ptr
lockinfo
type

Fig. 2. Architecture of a controlling system that uses a DBMS with database pointers.

3.1 The DBPointer Data Type

The DBPointer data type is a pointer declared in the application task. When the
pointer is initialized, it points to a database pointer table entry, which in its turn
points to the actual data element. Hence the DBPointer could be viewed as a
handle to a database pointer. However, due to the database pointer's syntactical
similarities with a pointer variable, we have chosen to refer to it as a pointer.



3.2 The Database Pointer Table

The database pointer table contains all information needed for the database
pointer, namely:

1. A pointer to the physical memory location of the data element inside the
tuple. Typically, the information stored is the data block the tuple resides
in, an o�set to the tuple, and an o�set to the data element within the tuple.

2. The data type of the data element pointed by the database pointer. This is
necessary in order to ensure that any write to the data element matches its
type, e.g., it is not feasible to write a oating point value to an integer.

3. Lock information describing the lock that corresponds to the tuple, i.e., if
locking is done on relation granules, the name of the relation should be stored
in as lock information. Note, if locks are not used in the DBMS, i.e., if opti-
mistic concurrency control is used, some other serialization information can
be stored in the database pointer table entry instead of the lock information.

3.3 The Database Pointer Interface

The database pointer interface consists of four operations:

1. bind(ptr,q) This operation initializes the database pointer ptr by binding
it to a database pointer table entry, which in turn points to the physical
address of the data. The physical binding is done via the execution of the
query q, which is written using a logical data manipulation language, e.g.,
SQL. The query should be formulated in such a way that it always returns
the address of a single data element. By using the bind operation, the binding
of the data element to the database pointer is done using a logical query,
even though the result of the binding is physical, i.e., the physical address is
bound to the database pointer entry. This implies that no knowledge of the
internal physical structures of the database is required by the application
programmer.

2. remove(ptr) This operation deletes a database pointer table entry.
3. read(ptr) This operation returns the value of the data element pointed by

ptr. It uses locking if necessary.
4. write(ptr,v)This operation writes the value v to the data element pointed

by ptr. It also uses locking if necessary. Furthermore, the type information in
the database pointer entry is compared with the type of v so that a correct
type is written.

The pseudo codes for the write and read operations are shown in �gure
3. The write operation �rst checks that the types of the new value matches
the type of the data element (line 2), and then obtains a write lock for the
corresponding lock (line 4), i.e., locks the relation that the data element resides
in. The data element is then updated (line 5), and �nally the lock is released
(line 6). The read operation obtains the corresponding read lock (line 10), reads
the data element (line 11), releases the lock (line 12), and then returns the value
to the application (line 13).



1 write(DBPointer dbp, Data value){

2 if(DataTypeOf(value) != dbp->type)

3 return DATA_TYPE_MISMATCH;

4 DbGetWriteLock(dbp->lockInfo);

5 *(dbp->ptr) = value;

6 DbReleaseLock(dbp->lockInfo);

7 return TRUE;

}

8 read(DBPointer dbp){

9 Data value;

10 DbGetReadLock(dbp->lockInfo);

11 value = *(dbp->ptr);

12 DbReleaseLock(dbp->lockInfo);

13 return value;

}

Fig. 3. The pseudo codes for the write and read operations

3.4 The Database Pointer Flag

The database pointer ag solves the problem of inconsistencies between the index
structure and the database pointer table, thus enabling tuples to be restructured
and moved during run time.

For example, if an additional attribute is inserted into a relation, e.g., a
column is added to a table, it would imply that all tuples belonging to the relation
need to be restructured to contain the new data element (the new column).
Hence, the size of the tuples changes, relocation of the tuples to new memory
locations is most probable. Since a schema change is performed via the SQL
interface, it will use and update the index in the index manager. If one of the
a�ected tuples is also referenced from a database pointer entry, inconsistencies
will occur, i.e., the database pointer entry will point to the old physical location
of the tuple.

Each database pointer ag that is set in the index structure indicates that
the tuple agged is also referenced by a database pointer. This informs the
index manager that if this tuple is altered, e.g., moved, deleted, or changed, the
corresponding database table entry must be updated accordingly.

3.5 Application Example

To demonstrate how a real-time control system could use a RTDBMS with a
database pointer interface, we provide an application example. Consider the
system shown in �gure 2 which is divided into two parts:

1. A hard real-time part that is performing time-critical controlling of the pro-
cess. The tasks in this part use the database pointer interface.



2. A soft real-time part that handles user interaction and non-critical control-
ling. It uses the exible SQL interface.

A hard real-time controlling task that reads a sensor connected to an I/O
port is shown in �gure 4. The task reads the current sensor value and updates
the corresponding data element in the database. The task consists of two parts,
an initialization part (line 2-4), which is run one time, and an in�nite loop that
is periodically polling the sensor and writing the value to the database (line 5-8).

The initialization of the database pointer is done by �rst declaring the database
pointer (line 3) and then binding it to the data element containing the oil tem-
perature in the engine (line 4). The actual binding is performed in the following
four steps:

1. A new database pointer table entry is created.
2. The SQL query is executed and the address of the data element in the tuple

is stored in the database pointer table entry.
3. The data type information is set to the appropriate type, e.g., unsigned

int.
4. The locking information is set, e.g., if locking is done at relation granules,

the locking information would be set to engine.

1 TASK OilTempReader(void){

2 int s;

3 DBPointer *ptr;

4 bind(&ptr, "SELECT temperature

FROM engine WHERE

subsystem=oil;");

5 while(1){

6 s=read_sensor();

7 write(ptr,s);

8 waitForNextPeriod();

}

}

engine

subsystem temperature pressure

hydraulics 42 27

oil 103 10

cooling water 82 3

Fig. 4. An I/O task that uses a database pointer and its corresponding relation.

After performing these four steps, the database pointer is initialized and
ready to be used. The control loop is entered after the initialization (line 5). In
the control loop a new sensor value is collected (line 6), the value is then written
to the RTDBMS using the database pointer operation write (line 7). Finally,
the task sleeps until the next period arrives (line 8).

4 Concept Evaluation

In table 1 we compare the di�erent access methods: tuple identi�ers (TiD's),
database pointers (DbP's), and relational processing (Rel). Both tuple identi�ers



Criteria TiD's DbP's Rel

Interface Pointer based x x
Relational x

Data access Physical x x
Logical x x

Characteristics Can handle tuple movements x x
Can handle attribute changes x x

Table 1. A comparison between tuple identi�ers, database pointers, and relational
processing.

and database pointers use a pointer based interface, which provides fast and
predictable accesses to data inside a DBMS. However, it is not as exible as
most relational interfaces, e.g., SQL.

Furthermore, database pointer and tuple identi�ers both access data based
on direct physical references, in contrast to relational accesses that use logical
indexing to locate data. However, database pointers bind the pointer to the data
element using logical indexing, but access the data element using physical access.

Tuple identi�ers have two drawbacks, �rstly they are sensitive to schema
changes, and secondly the physical structure of the database is propagated to the
users. The former results in a system that can only add tuples instead of moving
or deleting them, while the latter requires that the application programmer
knows of the physical implementation of the database. Database pointers remove
both of these drawbacks. Due to the ag in the index system, the database
pointer table can be updated whenever the schema and/or index structure is
changed, allowing attribute changes, tuple movements and deletions. Moreover,
since the database pointer is bound directly to a data element inside the tuple
instead of to the tuple itself, no internal structures are exposed.

The major advantage with accessing the data via pointers instead of going
through the index system is the reduction of complexity. The complexity for the
T-tree algorithm is O(log2n + 1

2
log2

n

k
), where n is the number of tuples in the

system and k is the number of tuples per index node [14]. The complexity for
database pointers and tuple identi�er is O(1). As can be seen, there is a constant
execution time for accessing a data element using a database pointer or a tuple
identi�er, while a logarithmic relationship exists for the tree-based approach.
There is however one additional cost for using the relational approach which we
will illustrate with the following example.

We already showed how the oil temperature of an engine can be accessed
using database pointers. Figure 5 shows the pseudo code for the same task,
which now uses an SQL interface instead of the database pointer interface. In
line 5, the Begin of transaction is issued and the actual update is performed
in line 6, using a C-like syntax that resembles of the function printf. The actual
commit is performed in line 7. In �gure 5 all tuples in the relation engine have to
be accessed to �nd all that ful�ll the condition subsystem = oil. This requires
accessing all three tuples.



1 TASK OilTempReader(void){

2 int s;

3 while(1){

4 s=read_sensor();

5 DB_BOT();

6 DB_Op("UPDATE engineSET temperature=%d

WHERE subsystem = oil;",s);

7 DB_COMMIT();

8 waitForNextPeriod();

}

}

Fig. 5. An example of a I/O task that uses a Relational approach.

It can, of course, be argued that precompiled transactions would be used
in a case like this. Precompiled transactions are transactions that have been
evaluated and optimized pre-run time. Such transactions can be directly called
upon during run-time, and is normally executed much more eÆcient than an
ad-hoc query. However, this does not inuence the number of tuples accessed,
since no information of the values inside the tuples are stored there. Therefore,
all three tuples have to be fetched anyway.

5 Conclusions and Future Work

In this paper we have introduced the concept of database pointers to bypass the
indexing system in a real-time database. The functionality of a database pointer
can be compared to the functionality of an ordinary pointer. Database pointers
can dynamically be set to point at a speci�c data element in a tuple, which
can then be read and written without violating the database consistency. For
concurrent, pre-emptive applications, the database pointer mechanisms ensure
proper locking on the data element.

We have also showed an example of a real-time control application using
a database that supports both database pointers and a SQL interface. In this
example the hard real-time control system uses database pointers, while the soft
real-time management system utilizes the more exible SQL interface.

The complexity of a database operation using a database pointer compared
to a SQL query is signi�cantly reduced. Furthermore, the response time of a
database pointer operation is more predictable.

Currently we are implementing database pointers as a part of the COMET
DBMS, our experimental database management system [15]. This implementa-
tion will be used to measure the performance improvement of database pointers
for hard real-time controlling systems. Furthermore, di�erent approaches for han-
dling the interference between the hard real-time database pointer transactions
and the soft real-time management transactions are investigated.



References

1. Casparsson, L., Rajnak, A., Tindell, K., Malmberg, P.: Volcano - a revolution in
on-board communications. Technical report, Volvo Technology Report (1998)

2. Ramamritham, K.: Real-time databases. International Journal of distributed and
Parallel Databases (1993) 199{226

3. Kuo, T.W., Wei, C.H., Lam, K.Y.: Real-Time Data Access Control on B-Tree
Index Structures. In: Proceedings of the 15th International Conference on Data
Engineering. (1999)

4. Lu, H., Ng, Y., Tian, Z.: T-tree or b-tree: Main memory database index structure
revisited. 11th Australasian Database Conference (2000)

5. Litwin, W.: Linear hashing: A new tool for �le and table addressing. In: Proceed-
ings of the 6th International Conference on Very Large Databases. (1980)

6. Astrahan, M.M., et al.: System R: Relational Approach to Database Management.
ACM Transactions on Database Systems 1 (1976) 97{137

7. Nystr�om, D., Te�sanovi�c, A., Norstr�om, C., Hansson, J., B�ankestad, N.E.: Data
Management Issues in Vehicle Control Systems: a Case Study. In: Proceedings of
the 14th Euromicro Conference on Real-Time Systems. (2002)

8. de Riet, R.P.V., et al.: High-Level Programming Features for Improving the EÆ-
ciency of a Relational Database System. ACM Transactions on Database Systems
6 (1981) 464{485

9. Software AG / SAG Systemhaus GmbH: Adabas Database .
(http://www.softwareag.com)

10. Birdstep Technology ASA. (http://www.birdstep.com)
11. Sleepycat Software Inc. (http://www.sleepycat.com)
12. Pervasive Software Inc. (http://www.pervasive.com)
13. Date, C.J.: An Introduction to Database Systems. Addison-Wesley (2000)
14. Lehman, T.J., Carey, M.J.: A Study of Index Structures for Main Memory

Database Management Systems. In: Proceedings of the 12th Conference on Very
Large Databases, Morgan Kaufmann pubs. (Los Altos CA), Kyoto. (1986)

15. Te�sanovi�c, A., Nystr�om, D., Hansson, J., Norstr�om, C.: Towards Aspectual
Component-Based Development of Real-Time Systems. In: Proceedings of the
9th International Conference on Real-Time and Embedded Computing Systems
and Applications. (2003)


