
The COMET Database Management System

Dag Nyström, Aleksandra Tešanović,
Christer Norström, and Jörgen Hansson

1 Introduction

The COMET DBMS (component-basedembedded real-timedatabasemanage-
ment system) is an experimental database platform. COMET is intended for resource-
constrained embedded vehicle control-systems.

The complexity of modern vehicle control systems is rapidly increasing [1], and so is
also the amount of data that needs to be handled and maintained. Thus, a need has emerged
for a structured way of handling this data. A real-time database management system would
fulfill this need by providing a higher level of abstraction of the data management.

Different vehicular control-systems have different requirements, i.e., some might be
static and non-preemptive while other might be much more flexible, allowing preemption.
Many vehicular systems are distributed, but some are not. This puts different requirements
on the database. The natural approach would then be to develop an in-house DBMS that
fulfills the requirements of the application. However, implementing a real-time database
management system, and getting it certified as a component in a vehicular system is not
a small task. A different approach would be to develop a tailorable database management
system that can be configured to meet different kind of requirements.

COMET is, too a high degree, tailorable to meet different kinds of requirements, such
as different task-models, architectures, temporal constraints, and resource constraints. To
achieve this, COMET is designed using both a component-based and aspect-oriented ap-
proach.

Component-based software development enables systems to be built by previously built
components. Each component is responsible for a well-defined task. By selecting a set of
components that meet the requirements of the application, a specialized database can be
made. In COMET we have identified the following components, user-interface component,
transaction management component, index management component, memory management
component, lock management component, check pointing and recovery management. The
tasks of each of these components are described in section 5.

Aspect-oriented software development allows some concerns of the system to be sep-
arated into an aspect. We have identified a number of aspects in COMET. Some aspects,
such as the concurrency control-aspect change the behavior of the system, while other,
such as the temporal aspect, are used to describe non-functional properties of the system.
Aspect-oriented software development is further described in section 2.

The COMET concept currently consists of a set of components, a set of aspects, a
DBMS architecture and a tool to calculate worst-case execution times. Future versions of
COMET will contain, configuration tools, more components and aspects, as well as further
analysis tools.

In this report we describe the underlying concepts of COMET. The architecture of
COMET, the individual components and aspects identified in COMET, as well as our
component-model, RTCOM, and our design model ACCORD is furthermore described.
Finally we describe the COMET BaseLine implementation, which is the first instance of
COMET intended for a vehicle control-system described in [2].

1



2 Aspect-Oriented Software Development 2

2 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) has emerged as a new principle for soft-
ware development, and is based on the notion of separation of concerns [3]. Typically,
AOSD implementation of a software system has the following constituents [3]:

� components, written in a language, which has support for aspect-oriented program-
ming, e.g., C, C++, Java,

� aspects, written in the corresponding aspect language1, e.g., AspectC [4], AspectC++
[5], AspectJ [6], and

� an aspect weaver, which is a special compiler that combines the components and
aspects.

Components used for system composition in AOSD are not black box components (as
they are in CBSE), rather they arewhite box components as we can modify their internal
behavior by weaving different aspects in the code of a component.

Aspects are commonly considered to be a property of a system that affects its perfor-
mance or semantics, and that crosscuts the system’s functionality [3]. Aspects of software
such as persistence and debugging can be described separately and exchanged indepen-
dently of each other without disturbing the modular structure of the system. Each aspect
declaration consists of advices and pointcuts.

A pointcut in an aspect language consists of one or more join points, and is described
by a pointcut expression. Pointcuts define points in the static structure or a dynamic control
flow of the program. Ajoin point refers to a point in the component code where aspects
should be weaved, e.g., a method, a type (struct or union).

Figure 1 shows the definition of a named pointcutgetLockCall, which refers to all
calls to the functiongetLock() and exposes a single integer argument of that call2.

pointcut getLockCall(int lockId) =
call(‘‘void getLock(int)’’) && args(lockId);

Fig. 1: An example of the pointcut definition

advice getLockCall(lockId):
void after (int lockId)

{
cout << ‘‘Lock requested is’’ << lockId << endl;

}

Fig. 2: An example of the advice definition

An advice is a declaration used to specify the code that should run when the join points,
specified by a pointcut expression, are reached. Different kinds of advices can be declared,
such as: (i)before advice, which is executed before the join point, (ii)after advice, which
is executed immediately after the join point, and (iii)around advice, which is executed in
place of the join point. Figure 2 shows an example of an after advice. With this advice
each call togetLock() is followed by the execution of the advice code, i.e., printing of
the lock id.

1 All existing aspect languages are conceptually very similar to AspectJ, developed for Java.
2 The examples presented are written in AspectC++.



3 ACCORD 3

3 ACCORD: Aspectual Component-Based Real-Time System
Development

The COMET database is developed using ACCORD (aspectualcomponent-basedreal-time
systemdevelopment)[7], which is a method to design aspectual component-based real-time
systems.

In ACCORD the system is first decomposed in a set of components, and then further
decomposed into a set of aspects. A component performs a specific task and is accessed
using one or more well-define interfaces. Aspects on the other hand are semantic functions
or properties that crosscuts the system, influencing several components.

ACCORD consider three different categories of aspects, namely, (i) Application aspects
which changes the functional behavior of the application, (ii) run-time aspects which de-
scribe extra-functional properties of the compiled application, and (iii) composition aspects
which describe which components and aspects that can be combined. For further reading
on these categories of aspects, we refer to [7].

Application aspects are aspects that change the functional behavior of one or more
components. This is done by writing aspect-code that is weaved into components using
an aspect weaver. An example of a functional aspect is, an earliest deadline first policy
that is weaved into a scheduling component, and debug information that is weaved into a
component during systems testing.

In this report, the application aspects are within the scope, we will not discuss run-time
and composition aspects further. In sections 5,7.1, and 7.2 we will further elaborate on
aspects derived during the development of the COMET DBMS.

4 RTCOM: Real-Time Component-Model

To support the different kinds of aspects used in ACCORD, the component-model RTCOM
[8] (real-timecomponenentmodel) is used in COMET.

The component consists of three parts, each corresponding to one type of aspect in
ACCORD, the different parts can be seen in figure 3. The functional part, which is the
actual code, corresponds to application aspects, the run-time part corresponds to run-time
aspects and the compositional part corresponds to compositional aspects.

The functional part consists of two sub parts, the policy part and the mechanism part.
The mechanisms part consists of mechanisms that are fixed, while the policy part consists of
operations that can be modified by application aspects. A component is accessed through
a number of required and provided interfaces. Each interface consists of a subset of the
component’s operations.

For example, consider a component that implements a fifo-list. Internally the list is
implemented using a linked list. In the mechanism part a number of mechanisms exist that
are used to modify the linked list, i.e.,linkIn, linkOut, getFirst andgetNext.
However the policy part consists of two operations, namelyenqueue anddequeue.

The operations can call all the mechanisms in the component, as well as operations of
other components, but not other operations of the same component. It is important to write
the operations as structured and modular as possible.

Further, consider the aspectpriority is weaved into the component. The aspect
contains aspects code that is weaved into the operations in such a way that the list is sorted,
based on a priority, i.e., theenqueue operation is modified to link the new element in its
appropriate place in the list.

The run-time part contains information about different run-time aspects of the compo-
nent, such as memory requirements, platform compatibility and worst-case execution time
etc. Several of these aspects are dependant of the application aspects, such as the memory
requirements and the worst-case execution time aspects. If an application aspect is weaved



4 RTCOM: Real-Time Component-Model 4

Portability

Resource demand

Temporal constr.
WCET-O1

WCET-O2

Memory - O1

OS type

Memory - O2

Hardware type

Run-time
part

Compositio
n

part

Aspect/

component

fu
nctio

nal

compatib
ilit

y

Temporal

compatib
ility

Platfo
rm

compatib
ility

Resource

compatib
iltiy

Policy

Mechanism

Functional
part

Method1() Method2()

Mechanism()

Fig. 3: The real-time component-model

into the operations of the components, it will affect the worst-case execution time and mem-
ory requirements of the component. To handle this, a component description language that
supports adding application aspects to components is used [9].

The formal description of the RTCOM component-model presentented below is some-
what relaxed compared to the description in [8] in which mechanisms are not allowed to
call operations in other components. This extension to the model has been made in order
to implement the COMET BaseLine described in section 8.

Definition 1: A component-type t consists of the following:

1. A set of operationsO = fo1; o2; : : : ; ong

2. A set of state variablesS = fs1; s2; : : : ; smg

3. A set of mechanismsM = fm1;m2; : : : ;mpg

4. A set of provided interfacesP = fp1; p2; : : : ; pqg

5. A set of required interfacesR = fr1; r2; : : : ; rrg

Definition 2: A component c is an instance of a component-typet.

c = inst(t)

Definition 3: An operation o in a component-typet is constructed from the following:

1. A set of mechanismsMo �M 2 t.

2. A set of operationsOo � O 2 t, such that no operation onOo callso.

3. A set of operations provided by other component-types that does not call any opera-
tions int.3

4. A set of state variablesSo � S 2 t, that can be manipulated byo.

5. Glue code

Definition 4: A mechanism m in a component-typet is constructed from the following:

1. A set of mechanismsMm �M 2 t.

3 Recursive calls among operations in RTCOM is not allowed in order to enable calculation of properties such
as WCET.



5 The Architecture of COMET 5

2. A set of operations provided by other component-types that does not call any opera-
tions int.

3. A set of state variablesSm � S 2 t, that can be manipulated bym.

4. Glue code.

Definition 5: A provided interface p in a component-typet is constructed from a subset
of the operations int.

Definition 6: A required interface r in a component-type t as a provided interface of
a component-type tprov 6= t

Definition 7: An application aspect a is constructed of the following:

1. A number of component-typesTasp = ft1; t2; : : : ; tsg whicha crosscuts.

2. A set of join pointsJ = fj1; j2; : : : ; jtg, where eachjx is a location in a specific
operationo in a component-typet 2 Tasp.

3. A set of advicesD = fd1; d2; : : : ; dug, where eachdx is a piece of code that can be
inserted before, after or instead of the location pointed out by a join pointj.

4. A set of code weavingsW = f(j1; d1); : : : ; (j1; dx); : : : ; (jn; dm)g

Definition 8: A set of component-typesT weaved with a set of aspectsA will result in a
new set of component-typesT 0.

T �A! T 0

5 The Architecture of COMET

When we designed COMET, we used the ACCORD approach, and thus we started by
identifying the different activities in a database management system. We came up with the
following activities:

1. User interface management

2. Transaction management

3. Scheduling management

4. Index management

5. Memory management

6. Lock management

7. Concurrency controlling

8. Checkpoint and recovery management

9. Logging management

One could argue that a database management system might consist of more activities,
e.g., authorization management, query-optimizing management, and distribution manage-
ment. We drew the conclusion, however, that the above-mentioned activities where the
most central for vehicular control-systems, based on the case study presented in [2]. How-
ever COMET could, without too much effort, be extended to include these additional ac-
tivities too.



5 The Architecture of COMET 6

User
Interface

Component

Transaction
Management
Component

User
Interface

Component

Index
Management
Component

Concurency-
Control Aspect

Logging and
Recovery

Aspect

Transaction
Management
Component

Scheduler
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Lock
Management
Component

Checkpointing
and Recovery
Component

Concurrency-Control

Logging and Recovery

Fig. 4: The Architecture of COMET

The second step was to extract components from these activities, and we found that ac-
tivity 1 to 5 was candidate components, since these activities are well defined and isolated.
Furthermore, the use of these components, assembled together, would result in a functional
database management system. The limitations on such a database would be that it could
not handle concurrent transactions, as well as recovery.

In the third step, concurrency controlling and logging/recovery management were iden-
tified as aspects, because both influences, i.e., crosscuts, several components.

However, in both the case of concurrency control and in the case of logging/recovery,
there are parts of these activities that can be viewed as isolated activities. In the concur-
rency control management, a lock-manager is an isolated activity that was considered best
implemented as a component. In the logging and recovery management, making periodic
checkpoints, and recover a restarted system also is considered isolated activities, and was
therefore implemented into the checkpointing and recovery component. These two com-
ponents however, are optional, since they are not needed if the system does not use the
corresponding aspect.

The resulting architecture of COMET, which is shown in figure 4, show all components
and their interrelations in the architecture. Furthermore, the concurrency control, and log-
ging/recovery aspects, as well as which components each aspect affects is shown. Since it
is possible to have multiple transaction-types in a DBMS simultaneously it is possible to
have multiple types of user interface components and transaction management components
in the architecture.

By using this architecture, COMET will have a high degree of flexibility, and tailorabil-
ity. All components in the system are exchangeable, so that a particular algorithm can be
used in a particular activity, e.g., data indexing, transaction management, user interface
management, memory management, etc. Furthermore, it is possible to extend the func-
tionality of the DBMS by applying an aspect, such as concurrency control, or logging and
recovery. This implies that COMET can consist only of the functionality needed by the
application, and thereby minimizing the DBMS footprint.



6 The Components in COMET 7

6 The Components in COMET

6.1 User Interface Component

The User Interface Component (UIC) provides an interface towards the user, or application.
All operations to the DBMS are received by the UIC. Examples of requests are; (i)Begin of
transaction, which indicates that a new transaction is initiated, (ii) Commit/Rollback, which
ends a transaction, either by completing it or aborting it, (iii) A DML/DDL statement,
which can be written in the supported language, e.g., structured query language, SQL.

The main activities of the UIC are to:

� receive and parse incoming requests from users and applications.

� maintain the list of all active transactions, i.e., all initiated transactions that is not yet
committed or roll backed, and

� parse incoming DML/DDL statements, and convert these into execution plans.

The user interface component will perform syntactical checking (parsing) of the in-
coming DML/DDL statements. The UIC does not know anything about the structure of
the database, and therefore it cannot perform any semantical checks. This approach has
both advantages and disadvantages. One disadvantage is that the execution plans cannot
be optimized. Unoptimized execution of queries might take significantly longer time than
optimized. An advantage is that the UIC might be executed on an external computer, thus
performing the parsing on the external CPU. Consider the following example:

The COMET DBMS is installed in an electronic control unit (ECU) that resides in a
vehicle. A real-time control application is continuously updating data elements within the
database. Consider a service computer is connected to the vehicle during run-time. If the
UIC, and thus the parser, is located on the service computer, the ECU will not have to
handle the parsing.

The interfaces of the user interface component are presented in table 1

Interface Type Description
IDbOperation Provided Provides all operations reachable for the user
IParse Provided Provides the Parse Operations.
ISchedule Required Interface for scheduling new transactions.
IExecute Required Interface to execute transactions.

Tab. 1: The interfaces of the user interface component

6.2 Scheduling Management Component

The scheduling management Component (SMC) is responsible for scheduling the active
transactions for execution, as well as maintaining a ready-queue containing all active un-
scheduled transactions. The SMC will schedule transactions based on the scheduling policy
chosen. A scheduled transaction will be assigned to one instance of the transaction man-
agement component, e.g., one transaction manager from the transaction process pool, see
section 6.3.

The interface of the scheduling management component is presented in table 2

Interface Type Description
ISchedule Required Interface for scheduling new transactions.

Tab. 2: The interfaces of the scheduling management component



6 The Components in COMET 8

6.3 Transaction Management Component

The transaction management component (TMC) executes execution-plans received from
the UIC. It ensures transaction serialization by using the lock management component;
see section 6.5. Which concurrency and lock policy to use is defined by the applied
concurrency-control aspect, described more in detail in section 7.1. The tuples needed
for the transaction are then located and fetched, using the index management component
and the memory management component, see sections 6.4 and 6.6.

The flow of events in the TMC is easiest described using an example. Consider a TMC
that executes relational transactions using a pessimistic concurrency control algorithm. For
such a configuration, the flow of events could be as follows:

1. The execution-plan is received from the user interface component.

2. The execution of the transaction is started.

3. At some point of the execution, a relation must be fetched from the database. This is
done by:

� Issuing a request that the appropriate locks should be obtained. This request is
sent to the lock management component.

� Requiring the address of the tuples by calling the index management compo-
nent.

� Fetching the tuples from the database by calling the memory management com-
ponent.

4. When all tuples needed by the transaction have been fetched, the data elements in
the tuples can be manipulated according to the specification in the execution-plan.

5. After the execution of the transaction, the user interface component is notified.

6. The TMC will now wait until a command to commit (or abort) the transaction is
received from the user interface.

7. If a commit-request is received, any updated tuples are permanently written to the
database.

8. The locks obtained for the transaction are released.

9. The user interface component is notified that the transaction is completed.

In order to process multiple transactions concurrently, several instances of the transac-
tion manager can exist in the database. Each instance of the TMC is then assigned to a
dedicated task, i.e., a transaction process. These processes make up the transaction process
pool.

The interfaces of the transaction management component are presented in table 3

Interface Type Description
IExecute Provided Interface to execute transactions.
IIndex Required Interface to access the tuple index.
ILock Required4 Interface to access database locks.
IMemory Required Interface to access the tuples and dynamic memory.
ICheckpoint Required5 Interface to perform a checkpoint or recovery opera-

tion.

Tab. 3: The interfaces of the transaction management component

4 This interface is required only if concurrency control is used.
5 This interface is required only if logging/recovery is used.



7 The Aspects in COMET 9

6.4 Index Management Component

The index management component (IMC) is responsible for the indexing of tuples. It
matches an alphanumerical key, i.e., a database key, to its corresponding tuple identifier
(TID). A TID contains information about where a tuple is located in memory.

The interfaces of the index management component are presented in table 4

Interface Type Description
IIndex Provided Interface to access the tuple index.
IMemory Required Interface to access the database.

Tab. 4: The interfaces of the index management component

6.5 Lock Management Component

The lock management component (LMC) administers the database locks. Database locks
are used to prevent data access conflicts, such as read write conflicts in which a transaction
has read a data element and a second immediately after assigns a new value to it. At this
point in time the two, still active, transactions has different views of the current value of
the data element.

How database locks are used is determined of the concurrency control algorithm applied
to the system by the concurrency control aspect, described in section 7.1.

The interface of the lock management component is presented in table 5

Interface Type Description
ILock Provided Interface to access database locks

Tab. 5: The interface of the lock management component

6.6 Memory Management Component

The memory management component (MMC) administers the database, as well as the
meta-data, such as database indexes and lock information.

The interface of the memory management component is presented in table 6.

Interface Type Description
IMemory Provided Interface to access the tuples and dynamic memory.

Tab. 6: The interface of the memory management component

6.7 Checkpointing and Recovery Component

The checkpointing and recovery component (CRC) is responsible for making checkpoints
of the database and its meta-data. This component can be invoked periodically, or on
request. Furthermore it is responsible for restoring the system after a system failure.

The interface of the checkpointing and recovery component is presented in table 7.

7 The Aspects in COMET

7.1 Concurrency-Control Aspect

The concurrency control aspect (CCA) ensures that concurrent transactions are serialized.
This is enforced using (i) a serialization policy, such as optimistic or pessimistic concur-



8 COMET BaseLine 10

Interface Type Description
ICheckpoint Provided Interface to perform a checkpoint or recovery opera-

tion..

Tab. 7: The interface of the memory management component

rency control, (ii) the lock management component, (iii) the scheduling management com-
ponent, and (iv) the transaction management component.

The CCA consists of the following:

� Aspect-code that is weaved into the transaction management component. This code
is responsible for obtaining and releasing the appropriate locks, in accordance with
the concurrency control policy used.

� Aspect-code that is weaved into the lock management component. This code in-
structs the component what to do if a lock conflict occurs.

� Aspect-code that is weaved into the scheduling management component. This code
decides what scheduling policy to use.

7.2 Logging and Recovery Aspect

The logging and recovery aspect (LRA) is responsible for ensuring that volatile data can be
safely stored and recovered in case of a system breakdown. The LRA uses (i) a logging and
recovery policy, such as roll-forward recovery, (ii) the transaction management component,
and (iii) the memory management component.

The LRA consists of the following:

� Aspect-code that is weaved into the memory management component. This code
instructs the component to issue a log entry in a log, when a tuple is created, erased
or modified.

� Aspect-code that is weaved into the transaction management component. This code
will issue log entries whenever a transaction is started, committed, or aborted.

� Aspect-code that is weaved into the checkpointing and recovery component to per-
form the correct type of checkpointing and recovery.

8 COMET BaseLine

The COMET BaseLine is the first implementation instance of COMET DBMS. It imple-
ments a database management system suited for the control system described in [2].

The COMET BaseLine provides two types of database transactions:

� Soft real-time transactions. Non-critical tasks can use this transaction type, which
provide a flexible and generic way to manipulate the database. The interface supports
a subset of the SQL commands, such asSELECT, INSERT andUPDATE. A set of
SQL statements can be grouped together into a transaction.

� Hard real-time transactions. Time-critical tasks can use this transaction type,
which provide a deterministic and efficient way of manipulating individual data ele-
ments. The interface implements the concept of Database Pointers discussed in [10].

Since the Volvo control-system is non-preemptive, there is no need for concurrency
control in COMET BaseLine. Therefore the concurrency control aspect is not imple-
mented in COMET BaseLine. However, the transaction manager component is prepared



9 Relational Processing 11

SQL command Description
SELECT ... FROM Selects a subset of the tuples and attributes from a number

of relations.
CREATE TABLE Creates a new relation.
DROP TABLE Removes a relation.
INSERT ... INTO Inserts a new tuple into a relation.
UPDATE ... WHERE Updates tuples in a relation.
DELETE ... WHERE Deletes tuples from a relation

Tab. 8: The SQL-commands supported in COMET BaseLine

Relational API functions Description
BeginTransaction() Initializes a new transaction returns a transaction ID.
Query() Takes a SQL query, parses it and prepares it for exe-

cution.
CommitTransaction() Executes the SQL queries in the transaction, updates

the database and closes the transaction.
RollbackTransaction() Aborts the transaction.

Tab. 9: The relational API functions supported by COMET BaseLine

for the implementation of future aspects, e.g., the concurrency-control aspect, and the log-
ging/recover aspect.

Furthermore, the logging/recovery management aspect has not yet been implemented
in COMET BaseLine.

The current version of COMET BaseLine compiles down to an executable with the size
of under 20kb.

9 Relational Processing

The relational transaction processing provides a generic and flexible way of accessing the
database. It supports a subset of the commands in SQL; see table 8. These commands
allow the user to retrieve any view of the data in the database, as well as add, delete and
modify data elements. Finally the structure of the data can be changed, i.e., relations can
be added and removed.

A set of queries can be bundled together to form a transaction. A transaction is consid-
ered an indivisible, e.g., atomic, operation, with a well-defined beginning and end. Table 9
shows the four API functions required to use a relational transaction in COMET BaseLine.

9.1 Database Pointer Processing

The database pointer processing provides a way to manipulate individual data elements
within the database, in an efficient and predictable way. The database pointer processing
engine is implemented in accordance with the concept presented in [10].

The database pointer processor supports the four interface operations presented in the
paper, see table 10.

10 COMET BaseLine Architecture

10.1 Relational User Interface Component

The relational user interface component (RUIC) is responsible for administering the trans-
actions as well as converting the SQL queries into execution-plans. The RUIC creates a



10 COMET BaseLine Architecture 12

DB pointer API functions Description
bind() Binds the database pointer to the query specified.
remove() Deletes the database pointer from the database pointer

table.
write() Writes a value to the data element pointed out by the

database pointer.
read() Reads the value from the data element pointed out by the

database pointer.

Tab. 10: The database pointer API functions supported by COMET BaseLine

DB Pointer
User Interface

Component

DB Pointer
Trans. Mgmnt.

Component

Relational
User Interface

Component

Index
Management
Component

Relational
Trans. Mgmnt.

Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Fig. 5: The architecture of COMET BaseLine



10 COMET BaseLine Architecture 13

RESTRICT

UPDATE

engine ==

subsystem oil

=

tempe-
rature

78.5

UPDATE engine SET
temperature=78.5 WHERE
engine.subsystem=oil;

Fig. 6: Example of execution-plan

tree that represents the execution-plan, see example of an execution-plan in figure 6.
The execution-tree is stored until thecommitTransaction operation is issued. At

this stage, all execution-plans belonging to the committing transaction is sent to the rela-
tional transaction management component (RTMC) to be executed.

The nodes in the execution-tree can be of 5 different classes, namely:

1. Relational Operations. Originally C.F. Codd formulated 8 different rela-
tional operations,select, project, join, product, union, intersect,
difference, anddivide. In the subset of SQL supported in COMET Base-
Line, only theselect, project, join, andproduct operations are necessary.
The relational operations create new relations by modifying existing, and are used to
create new views of the data.

2. Data Manipulating Operations. These operations, namelydelete,insert, and
update, modify tuples in a relation.

3. Data Definition Operations. These operations are used to modify the structure of
the database, i.e.,create table anddrop table, in which the former creates
a new relation, while the latter deletes one.

4. Operators. Typical operators are, conditions and assignments.

5. Operands. Operand can be values, tuples, or relations.

10.2 Relational Transaction Management Component

The relational transaction management component (RTMC) executes the execution-plans
created by the RUIC.

A central part of the RTMC is the buffer manager. The buffer manager is used to
store intermediate, i.e., non-materialized, relations used during the execution of a query.
The buffer manager, which handles the relational structure, the relational meta-data and
the actual data, is of such a substantial complexity that it is implemented as an internal
component inside the RTMC.

To illustrate how the execution of a query is performed in COMET BaseLine, an exam-
ple, using the query and execution plan in figure 6, is given.

1. The execution begins using a bottom-up approach.

2. The actual relationengine is loaded. This is performed in the following steps:



10 COMET BaseLine Architecture 14

a) The meta-data for the relation is fetched from the index management component
(IMC).

b) From the meta-data, the size of the relation, i.e., the length of the tuples and the
number of tuples, is determined.

c) Using this information, a buffer is allocated.

d) The location of the first tuple is fetched using thesearch() operation in the
IMC.

e) The tuple is loaded from the database using the memory management component
(MMC), and is stored in the buffer.

f) The location of the next tuple is fetched using thesearchGT() operation in the
IMC

g) The steps e) and f) is repeated until the whole relation is loaded.

3. The relation is now restricted, i.e., all tuples not fulfilling theWHERE
subsystem=oil is removed from the buffer.

4. The remaining tuples in the buffer is now updated according to the assignmentSET
temperature=78.5.

5. The last step is to write the updated tuples back to the database.

10.3 Database Pointer User Interface Component

The database pointer user interface component (DPUIC) provides the database pointer in-
terface. The DPUIC uses the RUIC to create the execution-plan needed for thebind
operation.

10.4 Database Pointer Transaction Management Component

The database pointer transaction management component (DPTMC) executes the incoming
database pointer operations. It administers the database pointer table, in which information
of all database pointers are stored.

The DPTMC uses the RTMC to execute the execution-plans received from the DPUIC.
The difference, compared to relational query processing, is that the query does not return
the value of the data element, but the address to the tuple that the data element resides in,
and an offset.

Since the COMET BaseLine is a non-preemptive DBMS, the database pointer table
does not include locking information. However it is implemented in such a way that this
can easily be extended, or aspectualized.

The DPTMC can also receive requests from the RTMC to update the database pointer
table. This is typically done, when tuples are moved or deleted from the relational query
processor.

10.5 Index Management Component

The index management component (IMC) in COMET BaseLine implements the t-tree in-
dexing algorithm. The information in the nodes in the tree has been extended to contain the
database pointer flag, described [10]

The architecture of the IMC is shown in figure 7. The IMC consists of two layers
of indexes, an upper layer, that indexes the different database files, and the lower layer
that indexes the tuples in each database file. This approach was suggested in [11]. The
architecture allows the index manager to be configurable to a high degree.



11 Conclusions and Future Work 15

File 1 File 2 File 3 File n...

Metadata

Fig. 7: The architecture of the interface management component

For systems where the number of relations is fixed, or bounded, the upper layer index
can be implemented as a array of files, while for more flexible system a dynamic tree index
might be suited. The lower layer index can implement any index structure, e.g., tree or hash
index. Different index structures can be used simultaneously for different relations.

For the upper layer index, COMET BaseLine uses a static array with a pre-defined
length. For the lower layer, the t-tree algorithm is used.

COMET BaseLine uses one file for each relation. Therefore a search for a tuple in
a relation starts with locating the relation in the upper layer index. When the relation is
located, the lower layer index is used to locate the tuple.

10.6 Memory Management Component

The memory manager component (MMC) manages the stored tuples, and acts as a dynamic
memory manager. It delivers a hardware independent memory management interface to the
database, even for systems that does not support dynamic memory allocations.

The MMC provides two different types of dynamic memory:

� Tuple ID’s, that is a data structure that contains address information to one tuple in
the database. The MMC provides four operations on tuple ID´s, namelyallocate,
delete, write, andread.

� Dynamic memory used for buffering and temporary data structures used during the
execution of a transaction. The MMC provides two operations for dynamic memory,
malloc andfree.

11 Conclusions and Future Work

In this report, we have described the architecture of the COMET database management
system, which is configurable to suit different kinds of embedded control-systems. Further-
more, we have described the first instance of COMET, called COMET BaseLine, which is
a version of COMET suited for a vehicle control system developed at Volvo Construction
Equipment Components in Eskilstuna, Sweden.

COMET has been developed using a design method called ACCORD [7], which com-
bines component-based software development and aspect-oriented software development.
COMET BaseLine is implemented using a component-model called RTCOM [8], which
also is a part of ACCORD.

Since the application for which COMET BaseLine is developed is non-preemptive,
there is no need for transaction synchronization and conflict resolution. This implies that
there is no need for the transaction scheduling component, the locking management, and
the concurrency control aspect.



11 Conclusions and Future Work 16

The next step is to evaluate the performance of COMET BaseLine, by integrating it
into the Volvo Construction Equipment Component control-system. Implementation of the
scheduling management component, the locking management component, the concurrency
control aspect and backup/recovery aspect is also planned.

References

[1] Lennart Casparsson, Antal Rajnak, Ken Tindell, and Peter Malmberg. Volcano - a
revolution in on-board communications. Technical report, Volvo Technology Report,
1998.

[2] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hansson, and Nils-
Erik Bånkestad. Data Management Issues in Vehicle Control Systems: a Case Study.
In Proceedings of the 14th Euromicro Conference on Real-Time Systems, 2002.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M Loingtier, and
J. Irwin. Aspect-oriented programming. InProceedings of the ECOOP, volume 1241
of Lecture Notes in Computer Science, pages 220–242. Springer-Verlag, 1997.

[4] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating system code. InProceedings of
the Joint European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE-9), 2002.

[5] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An aspect-oriented
extension to C++. InProceedings of the 40th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
February 2002. Australian Computer Society. AspectC++ can be downloaded from:
http://www.aspectc.org.

[6] The AspectJ programming guide. Xerox Corporation, September 2002. Available at:
http://aspectj.org/doc/dist/progguide/index.html.

[7] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer Norström. To-
wards Aspectual Component-Based Development of Real-Time Systems. InPro-
ceedings of the 9th International Conference on Real-Time and Embedded Computing
Systems and Applications, 2003.

[8] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer Norström.
COMET: a COMponent-based Embedded real-Time database. Technical report, Dept.
of Computer Science, Linköping University, and Dept. of Computer Engineering,
Mälardalen University, 2002.

[9] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer Norström. Inte-
grating Symbolic Worst-Caase Execution Time Analysis with Aspect-Oriented Sys-
tem Development. InProceedings of OOPSLA 2002 Workshop on Tools for Aspect-
Oriented Software Development, November 2002.

[10] Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen Hansson.
Database Pointers: a Predictable Way of Manipulating Hot Data in Hard Real-Time
Systems. InProceedings of the 9th International Conference on Real-Time and Em-
bedded Computing Systems and Applications, 2003.

[11] Tony Bertilsson. Implementation Analysis for Databases in Embedded Systems. Mas-
ter’s thesis, Mälardalen University, 2002.


