
Daniele Puccinelli 1

Intro to TinyOS

Daniele Puccinelli

daniele.puccinelli@supsi.ch

http://web.dti.supsi.ch/~puccinelli

Wireless Sensor Networks

mailto:silvia.giordano@supsi.ch
mailto:silvia.giordano@supsi.ch
mailto:silvia.giordano@supsi.ch

Daniele Puccinelli 2

What is TinyOS?

• TinyOS: an operating system for resource-constrained

devices

• It offers you the tools to use the available features of

your hardware

• Not exclusive to sensor networks, though widely used

for them

• No clear separation between user and programmer

• Written in nesC, a C dialect

Daniele Puccinelli 3

Why do we need it?

Having to program all the components of the sensor nodes

from scratch would be a daunting task

• Parallel distributed programming...

• ...on resource-constrained devices

• There are things you need to use but don’t care about

Reuse other people’s code

• There are things you do care about

Focus on those, do them well, and let people use them

Daniele Puccinelli 4

Basics of nesC

nesC = network embedded system C

component-based C dialect

nesC components have a local namespace

• component A calling function f: A.f is introduced

into the global namespace

• component Z calling function f: Z.f is introduced

into the global namespace

• A.f and Z.f may be entirely different

Daniele Puccinelli 5

Provide/Use: Example

module Sense {

provides command measure;

uses command filter;}

• Sense provides a measure tool to its fellow

modules

• Sense must define how that works

• Sense uses a filter to smooth out its

measurements

• Sense gets that for free and need not define it

Daniele Puccinelli 6

Provide/Use: More in General

module A{

provides command use_A_to_do_f;

uses command use_B_to_do_g;}

• A knows how to do f (Sense knows how to measure)

• B knows how to do g (Filter knows how to smooth

out a signal)

• A provides a command for others to do f

• Others will use A to do f A’s way

• A uses B to do g B’s way

Daniele Puccinelli 7

Events

Events are the generalization of interrupts

Command: drive something

Event: get driven by something

• Your radio module signals that a packet was received...

• ...or that a packet just got sent

• Your timer signals that a certain amount of time has elapsed

• Your sensing module signals that the sample is ready

• Your low-pass filter signals that the sample mean is zero

Daniele Puccinelli 8

Interfaces

Interfaces are sets of related functions in the form of header files

An interface is a list of all you can do on a given theme

Interface StdControl{

command start();

command stop();}

Interface Radio{

command sendPacket(packet);

command measureSignalStrength();

command dutyCycle(); // start/stop at a higher level

event packetReceived();

}

Daniele Puccinelli 9

Modules and Interfaces

module TemperatureSensor

{provides command measure(sampling_time);

uses command filter();}

module LightSensor

{provides command measure(sampling_time);

uses command filter();}

interface Sense

{command measure(sampling_time);

command filter();}

Daniele Puccinelli 10

Reusing Modules through Interfaces

module DoubleSenseC

{uses Sense as senseTemp;

uses Sense as senseLight;}

DoubleSenseC leverages modules xSensor to sense x

The interface is the same across different sensors

module A{

provides interface do_f;

uses interface do_g;}

Many modules can do_f and/or do_g in different ways

Daniele Puccinelli 11

Wiring

The process of connecting users and providers

Done in Configuration files

configuration DoubleSenseAppC

{}

implementation

{

components TemperatureSensor as T;

components LightSensor as L;

components SenseC as S;

S.senseTemp -> T;

S.senseLight -> L;

}

Daniele Puccinelli 12

Summary

Code is broken up into components

(discrete units of functionality)

Components can use functions defined by others...

...and provide functions to others

Compile-time composition: no dynamic loading of new stuff

o Bad idea for user-driven systems (like your computer)

o Great for embedded systems

• untethered operation (if you are not there...)

• faults are deadly (...who reboots your mote?)

