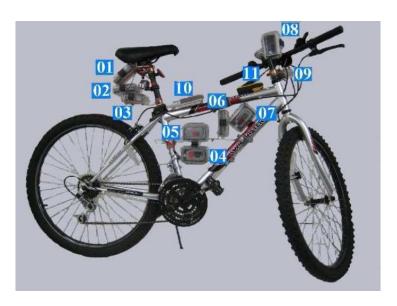
Wireless Sensor Networks

Mobile Phone Sensing

Daniele Puccinelli

daniele.puccinelli@supsi.ch

http://web.dti.supsi.ch/~puccinelli


- Motes are not ubiquitous
- There's only so much a mote can do
- Motes are still costly (no economies of scale)
- Unterhered operation comes with lots of cons
- Motes and humans don't relate to each other

WSNs with Mobile Phones

- Mobile Phones as high-end gateways
- Motes report their data to the sink...
- ...and the sink passes it on to a phone

01 = mike 02 = magnetometer 03 = pedal speed 04 = inclinometer (tilt) 05 = sink with 802.15.4-to-Bluetooth interface 06 = lateral tilt 07 = Galvanic Skin Resistance Stress Monitor 08 = Mobile Phone 09 = Speedometer and odometer 10 = CO2 meter 11 = GPS

S. Eisenman et al., **BikeNet: A mobile sensing system for cyclist experience mapping**, ACM Transactions on Sensor Networks, 2009

The Mobile Phone as a Gateway

- The phone is not as resource- and energyconstrained
- Computationally intensive tasks may be performed on the phone
- If only the phone could also sense...

Today's Phones Can Sense

- Proximity sensor (is the phone close to your face?)
- Accelerometer
- Gyroscope (measures orientation)
- Digital compass
- GPS
- Camera
- Microphone
- Ambient light sensor (regulates brightness)
- Back-illuminated sensor (low-light camera performance booster)
- Moisture sensors (warranty-related legal quagmire)

Mobile Phone Sensing (MPS)

- Today's smartphones can indeed sense!
- Lots of sensors on board
- Smartphones are becoming ubiquitous
- There's a lot a smartphone can do
- Cost is no issue people buy them anyhow
- No need to worry about untethered operation
- Smartphones and humans do relate to each other

N. Lane et al., **A Survey of Mobile Phone Sensing**, IEEE Communications Magazine, 2010

What's special about MPS?

- Energy no longer drives every aspect of the design
- Communication is infrastructure-based
- The scale is potentially huge
- The focus is on the application
- Only partial overlap with WSN app spectrum
- Humans can be leveraged
- Deployment comes for free

- WSN: every Joule matters
- MPS: people recharge their phones

Energy is still a constraint

- The footprint of your application should be negligible with respect to the footprint of communication
- Your end users will be very upset if that is not the case

- WSN: many stationary nodes covering a limited area
- MPS: many mobile nodes covering (potentially) the whole world
- WSN: many means hundreds or thousands
- MPS: *many* means *millions* or *billions*

Relatively little overlap between the app spectra of WSN and MPS

• WSN: anything that is best done without humans Non-invasive monitoring in remote or unsafe locations

• MPS: anything that is best done with humans Leverage people to gather people-centric data

Relatively little overlap between the app spectra of WSN and MPS

• WSN: anything that is best done without humans Non-invasive monitoring in remote or unsafe locations

• MPS: anything that is best done with humans Leverage people to gather people-centric data

Participatory Sensing The user actively inputs information

Opportunistic Sensing

Get the data in the background, don't get the user involved

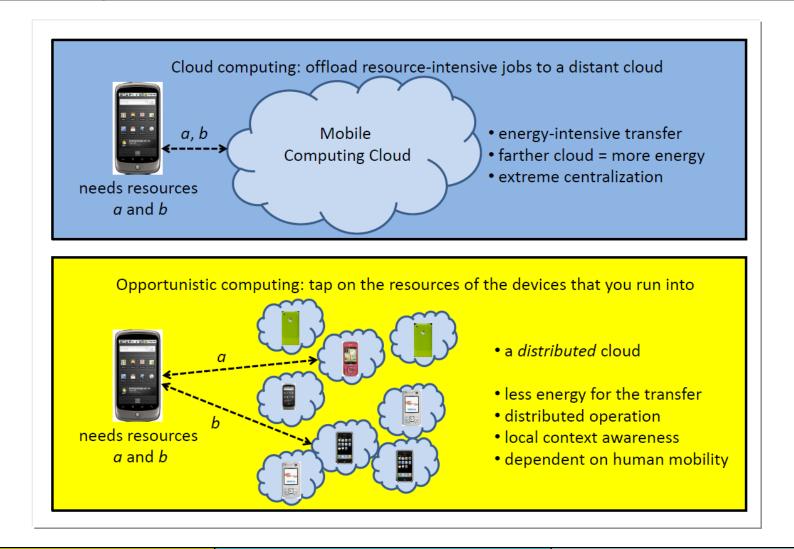
Application Examples

Transportation Monitoring

Collect data from mobile phones to map the traffic in real time (http://traffic.berkeley.edu)

Social Networking

CenceMe: use MPS to classify what you're doing and share it with your friends (<u>www.cenceme.org</u>)


Health and Fitness

Classify your daily activities to self-monitor how much exercise you get (<u>http://ils.intel-research.net/projects/ubifit</u>)

People-centric environmental monitoring

Monitor exposure to and generation of pollution (http://urban.cens.ucla.edu/projects/peir)

Your Smartphone May Not Be Enough

