Wireless Sensor Networks

Low-Power Wireless Links

Daniele Puccinelli

daniele.puccinelli@supsi.ch

http://web.dti.supsi.ch/~puccinelli

Berkeley Motes Timeline

Adapted from Joe Polastre, Designing Low-Power Wireless Systems

Inherent challenges

- Low-power radios are exposed to all sorts of RF phenomena
- Wireless links...an oxymoron?
- Single-hop or multi-hop?
- Even non-RF physical phenomena may impact communication

Disk Model?

• No such thing for WSNs!

• K. Seada et al., "Energy Efficient Forwarding Strategies for Geographic Routing in Wireless Sensor Networks," *ACM Sensys* 2004.

• D. Ganesan et al., Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks, UCLA Tech Rep 2002

- Low-power transceivers are even more vulnerable to the vagaries of RF propagation
- Path loss: power loss due to distance between rx and tx
- Shadowing: power loss due to the presence of an obstacle
- Reflections: wave hits a surface and part of the energy bounces back, part goes through
- Fading: several reflected paths make it to the rx

Dynamic Fading

- Nodes in motion relative to one another
- Fading patterns naturally change
- Comes with changes in the path loss as well

Static Fading

• Fading patterns change only if the area layout changes

Induced Fading

 Fading patterns are temporarily modified by the motion of people or objects

RF propagation

Daniele Puccinelli

7

Multipath fading

Induced Fading

Impact of Induced Fading

Daniele Puccinelli

10

Impact on Higher-End Radios

Daniele Puccinelli

11

Daniele Puccinelli

Sensorless Motion Detection

A Erratic motion detected by accelerometer

В

Accelerometer can't make it, RSS can!

Low-power wireless links

Links are NOT Boolean:

If B can hear A once, it doesn't mean they're connected

Links are NOT bidirectional: if A can hear B, B doesn't necessarily hear A

Links are probabilistic: B can hear A with a given probability

In practice, a link can be characterized in terms of •Received Power (RSS) •Packet Delivery Rate (PDR) •Required Number of Packets (RNP)

Transitional links

Transitional Can Become Disconnected

PDR vs. RSS

RNP: the cost of using a link

Node A sends, B does not receive, no ACK: RNP ≥ 2

Node A resends, B does not receive, no ACK: RNP \geq 3

Node A resends, B receives, ACK is lost: $RNP \ge 4$

Node A resends, B receives, ACK is received: RNP = 4

Connectivity

Single-hop or multihop?

Multihopping

Benefits of a few long hops

- •Less radio activity: less interference
- •Tx power reduction does not yield proportional energy savings
- •Not relaying means you can sleep!
- Less overhead
- Energy balancing

When multihopping:

- if any of the links breaks, the end-to-end route breaks
- if any of the relays moves, the route is endangered

Impact of non-RF phenomena

Temperature has a huge impact on received signal strength

Wireless Sensor Networking for "Hot" Applications: Effects of Temperature on Signal Strength, Data Collection and Localization

K. Bannister, G. Giorgetti and S.K.S. Gupta, HotEmNets'08

- M. Zuniga, B. Krishnamachari, "An analysis of unreliability and asymmetry in low-power wireless links", ACM Transactions on Sensor Networks, Jun. 2007
- K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, "An Empirical Study of Low-Power Wireless", ACM Transactions on Sensor Networks, Feb. 2010