SkePU 2 User Guide

For the preview release
August Ernstsson

October 20, 2016

Contents
(1__Introductionl 3
2_Ticensel 3
3__Authors and Maintainers| 3
3.1 Acknowledgements| 3
[4 Dependencies and Requirements| 3
4
[6 Installation and Usage| 5
[6.1 Installation and Set-up|.o 5
6.1.1 Cloning LLVM and Clang|)
6.1.2 Patch Clang|. 6
[6.1.3 Symlink SkePU sources in Clang| 6
6.1.4 Building SkePU precompilerf. 6
6.1.5 Set up CMake| 6
6.1.6 Buld the SkePU tooll 6
§ Usage]l 6
6.2.1 TInclude directories] 7
6.2.2 Debugging|. 7
7 Definitions 8
[8__Skeletons| 9
8 Map| 10
B2 Reducd. o 11
8.3 MapReduce| 12
BAScanl o oo 12

[9 Tuning of Skeleton Instances

(10 Smart Containers|

(11 Using Custom Types|

Revision history

e 0.1: 2016-10-20
Initial version for the preview release.

14

14

15

1 Introduction

This document gives a high-level introduction to programming with SkePU ﬂ SkePU is
a skeleton programming framework for multicore and multi-GPU systems with a C++11
interface. It includes data-parallel skeletons such as Map and Reduce generalized to a
flexible programming interface. SkePU 2 emphasizes and improves on flexibility, type-
safety and syntactic clarity over its predecessor, while retaining efficient parallel algo-
rithms and smart data movement for hgh-performance and energy-efficient computation.

SkePU 2 is structured around a source-to-source translator (precompiler) built on top
of Clang libraries, and thus requires the LLVM and Clang source when building the
compiler driver.

All user-facing types and functions in the SkePU API are defined in the skepu?2
namespace. Nested namespaces are not part of the API and should be considered
implementation-specific. The skepu2:: qualifier is implicit for all symbols in this doc-
ument.

2 License

SkePU 2 is distributed as open source and licensed under GPL version 3. The copyright
belongs to the individual contributors.

3 Authors and Maintainers

The original SkePU was created by Johan Enmyren and Christoph Kessler [1]. A number
of people has contributed to SkePU, including Usman Dastgeer.

The major revision SkePU 2 was designed by August Ernstsson, Lu Li and Christoph
Kessler [2].

August Ernstsson?]is the current mantainer of SkePU.

3.1 Acknowledgements

This work was partly funded by the EU FP7 projects PEPPHER and EXCESS, and by
SeRC.

4 Dependencies and Requirements

SkePU is fundamentally structured around C++11 features and thus requires a mature
C++11 compiler. It has been tested with relatively recent versions of Clang and GCC,
and NVCC version 7.5.

It also uses the STL, including C++11 additions. It has been tested with 1ibstdc++
and libc++. SkePU does not depend on other libraries.

'Tn this document, all mentions of SkePU implicitly refers only to SkePU 2
2august.ernstsson@liu.se

SkePU requires the LLVM and Clang source when building the source-to-source trans-
lator. The translator produces valid C++11, OpenCL and/or CUDA source code and
can thus be used on a separate system than the target if necessary (” cross-precompilation”).

5 Example

We will introduce the SkePU 2 syntax with an example.

Listing 1: Example SkePU 2 userfunction: A linear congruential generator.

#include <iostream>
#include <cmath>
#include <skepu2.hpp>

// Unary user function
float square(float a)
{

return a * a;

X

// Binary user function
float mult(float a, float b)
{

return a * b;

}

// User function template
template<typename T>
T plus(T a, T b)
{
return a + b;

}

// Function computing PPMCC
float ppmcc(skepu2::Vector<float> &x, skepu2::Vector<float> &y)
{

// Instance of Reduce skeleton

auto sum = skepu2::Reduce(plus<float>);

// Instance of MapReduce skeleton
auto sumSquare = skepu2::MapReduce<1>(square, plus<float>);

// Instance with lambda syntax
auto dotProduct = skepu2::MapReduce <2>(
[] (float a, float b) { return a * b; 1},
[l (float a, float b) { return a + b; }
)

size_t N = x.size();
float sumX = sum(x);
float sumY = sum(y);

return (N * dotProduct(x, y) - sumX * sumY)
/ sqrt ((N * sumSquare(x) - pow(sumX, 2)) * (N * sumSquare(y) - pow
(sumY, 2)));

}

int main ()

{

const size_t size = 100;

// Vector operands
skepu2::Vector<float> x(size), y(size);
x.randomize (1, 3);

y.randomize (2, 4);

std::cout << "X: " << x << "\n";
std::cout << "Y: " << y << "\n";

float res = ppmcc(x, y);
std::cout << "res: " << res << "\n";

return 0;

6 Installation and Usage

The installation and use process for SkePU is still in a prototype state.

6.1 Installation and Set-up
Follwing are the steps required to set up the SkePU source-to-source compiler.
e Clone LLVM and Clang Git repositories and confirm that Clang builds.

e Patch Clang (see below) to add SkePU attributes and diagnostics to Clang. It also
instructs the Clang build system to build the SkePU tool.

e Create a directory symlink in ‘jclang source/tools’ named ‘skepu‘ pointing to
‘clang_precompiler‘. Clang will now find the source files for the SkePU tool.

e Run ‘ninja skepu‘ in your Clang build directory.
e If successful, the SkePU precompiler binary should now be in ‘jclang build;, /bin/skepu.

e Run ‘skepu -help‘ to confirm that everything worked and to see available options.

6.1.1 Cloning LLVM and Clang

mkdir ~/clang-1llvm && cd ~/clang-llvm
git clone http://llvm.org/git/llvm.git
cd 1llvm/tools

git clone http://llvm.org/git/clang.git

It is recommended to check out specific commits (from May 2016) from the repositories
since the patch below is not tested on other states. Run the commands at the root of
the respective repository.

LLVM:

git checkout d3d1bf00 .
Clang:

git checkout 37b415dd .

6.1.2 Patch Clang

cd <clang source>

git apply <skepu source>/clang_patch.patch

6.1.3 Symlink SkePU sources in Clang

1n -s <skepu source>/clang_precompiler <clang source>/tools/skepu-tool
6.1.4 Building SkePU precompiler

Create and/or move to build directory.

cd <clang build>

6.1.5 Set up CMake

cmake -G "Unix Makefiles" <1llvm source> -DCMAKE_BUILD_TYPE=Release

(Release mode is faster and much more space efficient, remove option to build in Debug
mode.)

6.1.6 Build the SkePU tool

make skepu-tool

6.2 Usage

The source-to-source translator tool skepu-tool accepts as arguments:
e input file path: -name <filename>,
e output directory: -dir <directory>,
e output file name: <filename> (without file extension),

e any combination of backends to be generated: -cuda -opencl -openmp.

A complete list of supported flags, and further instructions, can be found by running
skepu-tool -help.

Note that code for the sequential backend is always generated.

SkePU programs (source files) are written as if a sequential implementation—without
source translation—was targeted. In fact, such an implementation exists and is auto-
matically selected if non-transformed source files are compiled directly. Make sure to
#include header skepu2.hpp, which contains all of the SkePU libraryﬂ

Please look at the included example programs and Makefiles to get an idea of how
everything works in practice.

6.2.1 Include directories

skepu-tool is based on Clang libraries and will perform an actual parse to be able to
properly analyze and transform the source code; still, it is not a fully-featured compiler
as you would get with a pre-configured package of, e.g., Clang or GCC. This has con-
sequences when it comes to locating platform and system-specific include directories, as
these have to be specified explicitly.

By adding the -- token to the arguments list, you signal that any remaining arguments
should be passed directly to the underlying Clang engine. These arguments are formatted
as standard Clang arguments. The required arguments are as follows:

e —-std=c++11;

e include path to Clang’s compiler-specific C++ headers,
-1 <path_to_clang>/lib/Headers, where the path is the root of the Clang
sources (typically in the tools directory in the LLVM tree);

e include path to the SkePU source tree: -I <path to skepu>/include;
e include path(s) to the C++ standard library, platform-specific;

e additional flags as necessary for the particular application, as if it was being com-
piled.

6.2.2 Debugging

Standard debuggers can be used with SkePU. Per default, SkePU does not use or require
exceptions, and reports internal fatal errors to stderr and terminates. For facilitating
debugging, defining the SKEPU ENABLE EXCEPTIONS macro will instead cause SkePU to
report these errors by throwing exceptions. This should not be used for error recovery
in release builds, as the internal state of SkePU is not consistent after an error. (The
types of errors reported this way are mostly related to GPU management.)

3 Almost everything in SkePU is templates, so there is no penalty from including skeletons etc., which
are not used.

7 Definitions

Please read through this section once to familiarize yourself with the terms used in this
document. It can then be used as a reference, as the terms defined here are typeset in
italics at first mention in each section.

Skeleton A computation structure on containers, e.g. map or reduce. The skeletons
in SkePU 2 are all data-parallel, i.e., the computation graph is directed by the
structure of container parameters and not dependent on the value of individual
elements in a container.

Container An object of some SkePU container class, i.e., vector or matrix. Homogenous;
contains objects of a single scalar type. In this document, the term container refers
exclusively to SkePU containers (as opposed to, e.g., raw data pointers or STL
vectors).

Scalar The type of elements in a container. May be a fundamental type such as float,
double or int or a compound struct type satisfying certain rules. (Note that the
compound types are still refered to as scalar types when in containers.)

User function An operation performed repeatedly (perhaps in parallel) in a skeleton in-
stance. A user function in SkePU should not contain side effects, with the exeption
of writing to random access arguments.

Skeleton instance An object of some skeleton type instantiated with one or more user
functions. May include state such as

e backend specification,
e czecution plan, and

e skeleton-specific parameters such as the starting value for a reduction.

Skeleton invocation The process of applying a skeleton instace to a set of parameters.
Performs some computation as specified by the instance’s skeleton type and user
function.

Output argument For the skeletons which return a container, this container is passed
as the first argument in a skeleton invocation. If the skeleton instead returns a
scalar, no argument is passed and the value is instead the evaluated value of the
invocation expression (i.e., the return value).

Element-wise parameter/argument A container argument to a skeleton instace, ele-
ments of which, during skeleton invocation, is passed to the corresponding user
function parameter as a scalar value. Iterators into containers can also be used for
these parameters, with

Random access parameter/argument A container argument to a skeleton instace, which,
during skeleton invocation, is passed to the corresponding user function parameter
and av.

Uniform parameter/argument A scalar argument to a skeleton invocation, passed un-
altered to each user function call.

Backend The compute units and/or programming interface to use when executing a
skeleton

Backend specification An object of type BackendSpec. Encodes a backend (e.g., OpenMP)
along with backend-specific parameters for execution (e.g., number of threads) for
use by a skeleton instance. Overrides execution plans when selecting backends.

Tuning The process of training a skeleton instance on differently sized input data to
determine the optimal backend in each case.

Execution plan Generated during tuning and stored in a skeleton instance. Helps select
the proper backend for a certain input size.

Source-to-source translator / precompiler (skepu-tool) Clang-based tool which trans-
forms SkePU programs for parallel execution. Accepts C++11 code as input and
produces C++11/CUDA/OpenCL/OpenMP code as output. Built by user from
Clang sources, patched with SkePU-provided extensions.

Host compiler User-provided C++11/CUDA compiler which performs the final build
of a SkePU program, producing an executable. Can also be used on raw (non-
precompiled) SkePU source for a sequential executable.

8 Skeletons

SkePU encompasses six different skeletons:
e Map,
e Reduce,
e MapReduce,

e Scan,

MapOverlap, and
e Call.

Each skeleton except for Call encodes a computational pattern which is efficiently
parallelized. In general, the skeletons are differentiated enough to make selection obvious
for each use case. However, there is some overlap; for example, MapReduce is an efficient
combination of Map and Reduce in sequence. This makes Reduce a special case of
MapReduce.

Most of the skeletons are very flexible in how they can be used. All but Reduce
and Scan are variadic, and some have different behaviours for one- and two-dimensional
computations.

Skeletons in SkePU are instantated by calling factory functions named after the
skeletons, returning a ready-to-use skeleton instance. The type of this instance is
implementation-defined and can only be declared as auto. This has the consequence
of an instance not being possible to declare before definition, passed as function ar-
guments, etc., which is important to consider when architecting applications based on
SkePUH

SkePU guarantees, however, that a skeleton instance supports a basic set of operations
(a ”concept” in C++ parlance).

instance(args...) Invokes the instance with the arguments. Specific rules for the
argument list applies to each skeleton.

instance.tune() Performs tuning on the instance.

instance.setBackend(backendspec) Sets a backend specification to be used by the
instance and overrides the automatic choice.

instance.resetBackend() Clears a backend specification set by setBackend.

instance.setExecPlan(plan) Sets the execution plan manually. The plan should be
heap-allocated, and ownership of it is immediately transferred to the instance and
cannot be dereferenced by the caller anymore.

8.1 Map

The fundamental property of Map is that it represents a set of computations without
dependencies. The amount of such computations matches the size of the element-wise
container arguments in the application of a Map instance. Each such computation is
a call to (application of) the user function associated with the Map instance, with the
element-wise parameters taken from a certain position in the inputs. The return value
of the user function is directed to the matching position in the output container.

Map can additionally accept any number of random access container arguments and
uniform scalar arguments.

When invoking a Map skeleton, the output container (required) is passed as the first
argument, followed by element-wise containers all of a size and format which matches
the output container. After this comes all random-access container arguments in a
group, and then all uniform scalars. The user function signature matches this grouping,
but without a parameter for the output (this is the return value) and the element-wise
parameters being scalar types instead. The return value is the output container, by
reference.

10

11

Listing 2: Example usage of the Map skeleton.

float sum(float a, float b)
{
return a + b;

}

Vector<float> vector_sum(Vector<float> &vl, Vector<float> &v2)
{

auto vsum = Map<2>(sum) ;

Vector<float> result(vl.size());

return vsum(result, vi, v2);

}

Listing 3: Example usage of the Reduce skeleton.

float min_f(float a, float b)

{
return (a < b) ? a : b;
}
float min_element (Vector<float> &v)
{
auto min_calc = Reduce(min_f);
return min_calc(v);
}
Example
8.2 Reduce

Reduce performs a standard reduction. Two modes are available: 1D reduction on
vectors or matrices and 2D reduction on matrices only. An instance of the former type
accepts a vector or a matrix, producing a scalar respectively a vector, while the latter
only works on matrices. For matrix reductions, the primary direction can be controlled
with a parameter on the instance.

The reduction is allowed to be implemented in a tree pattern, so the user function(s)
should be associative.

instance.setReduceMode(mode) Sets the reduce mode for matrix reductions. The
accepted values are ReduceMode: :RowWise (default) or ReduceMode: : ColWise.

instance.setStartValue(value) Sets the start value for reductions. Defaults to a
default-constructed object, which is 0 for built-in numeric types.

11

10

15

Listing 4: Example usage of the MapReduce skeleton.

float add(float a, float b)
{

return a + b;

}

float mult(float a, float b)
{

return a * b;

}

float dot_product(Vector<float> &vl, Vector<float> &v2)
{

auto dotprod = MapReduce<2>(mult, add);

return dotprod(vl, v2);
}

Example
8.3 MapReduce

MapReduce is a combination of Map and Reduce in sequence and offers the most features
of both, for example, only 1D reductions are supported.

An instance is created from two user functions, one for mapping and one for reducing.
The reduce function should be associative.

instance.setStartValue(value) Sets the start value for reduction. Defaults to a
default-constructed object, which is 0 for built-in numeric types.

Example

8.4 Scan

Scan performs a generalized prefix sum operation, either inclusive or exclusive.

When invoking a Scan skeleton, the output container is passed as the first argument,
followed by a single input container of equal size to the first argument. The return value
is the output container, by reference.

instance.setScanMode (mode) Setsthe scan mode. The accepted values are ScanMode :
(default) or ScanMode: :Exclusive.

instance.setStartValue(value) Sets the start value for exclusive scan. Defaults to
a default-constructed object, which is 0 for built-in numeric types.

12

:Inclusive

10

Listing 5: Example usage of the Scan skeleton.

float max_f (float a, float b)
{
return (a > b) ? a : b;

}

Vector<float> partial_max(Vector<float> &v)
{

auto premax = Scan(max_f);

Vector<float> result(v.size());

return premax (result, v);

}

Example
8.5 MapOverlap

MapOverlap is a stencil operation. It is similar to Map, but instead of a single element,
a region of elements is available in the user function. The region is passed as a pointer,
so manual pointer arithmetic is required to access the data. The pointer points to the
center element.

A MapOverlap can either be one-dimensional, working on vectors or matrices (sepa-
rable computations only) or two-dimensional for matrices. The type is set per-instance
and deduced from the user function.

The parameter list for a user function to MapOverlap is important. It always starts
with an int, which is the overlap radius in the x-direction. 2D MapOverlap also has
another int, which will bind to the y-direction overlap radius. The presence of this
parameter is used to deduce that an instance is for 2D. A size t parameter follows,
this is the stride. The next parameter is a pointer to of the contained type, pointing to
the center of the overlap region. Random-access container and uniform scalar arguments
follow just as in Map and MapReduce.

instance.set0Overlap(radius) Sets the overlap radius for all available dimensions.

instance.setOverlap(z_ radius, y radius) For 2D MapOverlap only. Sets the over-
lap for x and y directions.

instance.getOverlap() Returns the overlap radius: a single value for 1D MapOverlap,
a std::pair (x, y) for 2D MapOverlap.

instance.setEdgeMode (mode) Sets the mode to use for out-of-bounds accesses in the
overlap region. Allowed values are Edge: :Pad for a user-supplied constant value,
Edge: :Cyclic for cyclic access, or Edge: :Duplicate (default) which duplicates
the closest element.

4We are considering different solutions to work around this restriction, please contact the SkePU man-
tainer if this is important for you.

13

instance.set0OverlapMode (mode) For 1D MapOverlap: Sets the mode to use for oper-
ations on matrices. Allowed values are Overlap: :RowWise (default), Overlap: :ColWise,
Overlap: :RowColWise, or Overlap: :ColRowWise. The latter two are for separa-
ble 2D operations, implemented as two passes of 1D MapOverlap.

instance.setPad(pad) Sets the value to use for out-of-bounds accesses in the overlap
region when using Edge: :Pad overlap mode. Defaults to a default-constructed
object, which is 0 for built-in numeric types.

8.6 Call

Call is special in that it does not provide any pre-defined structure for computation. It
is a way to extend SkePU for computations which does not fit into any skeleton, while
still utilizing features such as smart containers and tuning. As such, Call provides a
minimal interface.

More on Call coming soon...

9 Tuning of Skeleton Instances

A skeleton instance can be tuned for backend selection by going though a process of
training on different input sizes of the element-wise arguments. This process is auto-
mated, but since there is significant overhead (during the tuning process, not afterwards)
it has to be started manually. An instance is tuned by calling instance.tune(). Note
that this is an experimental feature with limitations. Only the size of element-wise ar-
guments can be used as the tuner’s problem size, which is not applicable to all types of
computations possible with SkePU.

Tuning creates an internal execution plan which is used as a look-up table during
skeleton invocation. It is also possible to construct such a plan manually, and assign it
to

10 Smart Containers

The smart containers available in SkePU are Vector and Matrix. Using these is mostly
transparent, as they will optimize memory management and data movement dynamically
between CPU and GPUs.

There is also manual interface for data movement: container.updateHost() will
force download of up-to-date data from the GPUs, and container.invalidateDeviceData()
forces a re-upload for the next skeleton invocation on a GPU.

Element access on the CPU can be done either with operator [indez], which includes
overhead for checking remove copies, or operator(indez) which provides direct, no-
overhead access.

When smart containers are used as element-wise parameters to user functions, it is
important to note that separate types are used, Vec and Mat. These proxy types do not

14

provide the full smart container functionality and are used with a C-style interface. Ele-
ments are retrieved using container.datal[4ndez] member, and size, rows, and cols
are members and not member functions. By default, the arguments are read/writeable
and will encur copy operations both up and down from GPUs; by adding const qualifier,
the copy-down is emliminated. Similarily, a [[skepu2::out]] attribute will turn them
into output parameters.

11 Using Custom Types

It is possible to use custom types in SkePU containers or inside user functions. These
types should be C-style structs for compatibility with OpenCL. Note: It is not guaran-
teed that a struct has the same data layout in OpenCL as on the CPU. SkePU does not
perform any translation between layouts, so it is the responsibility of the user to ensure
that the layout matches.

References

[1] Johan Enmyren and Christoph W Kessler. SkePU: A multi-backend skeleton pro-
gramming library for multi-GPU systems. In Proceedings of the fourth international

workshop on High-level parallel programming and applications, pages 5-14. ACM,
2010.

[2] August Ernstsson, Lu Li, and Christoph Kessler. SkePU 2: Flexible and type-safe
skeleton programming for heterogeneous parallel systems. Accepted for HLPP-2016,
Miinster, Germany, 4-5 July 2016.

15

	Introduction
	License
	Authors and Maintainers
	Acknowledgements

	Dependencies and Requirements
	Example
	Installation and Usage
	Installation and Set-up
	Cloning LLVM and Clang
	Patch Clang
	Symlink SkePU sources in Clang
	Building SkePU precompiler
	Set up CMake
	Build the SkePU tool

	Usage
	Include directories
	Debugging

	Definitions
	Skeletons
	Map
	Reduce
	MapReduce
	Scan
	MapOverlap
	Call

	Tuning of Skeleton Instances
	Smart Containers
	Using Custom Types

