
This is the author’s version. The final publication is available at Springer:
Usman Dastgeer, Lu Li, Christoph Kessler. Adaptive implementation selection in a skele-
ton programming library. Proc. 2013 Biennial Conference on Advanced Parallel Process-
ing Technology (APPT-2013), Stockholm, Sweden, Aug. 2013.

Adaptive implementation selection
in the SkePU skeleton programming library

Usman Dastgeer, Lu Li, and Christoph Kessler

IDA, Linköping University, 58183 Linköping, Sweden
{usman.dastgeer,lu.li,christoph.kessler}@liu.se

Abstract. In earlier work, we have developed the SkePU skeleton programming
library for modern multicore systems equipped with one or more programmable
GPUs. The library internally provides four types of implementations (implemen-
tation variants) for each skeleton: serial C++, OpenMP, CUDA and OpenCL tar-
geting either CPU or GPU execution respectively. Deciding which implementa-
tion would run faster for a given skeleton call depends upon the computation,
problem size(s), system architecture and data locality.
In this paper, we present our work on automatic selection between these im-
plementation variants by an offline machine learning method which generates a
compact decision tree with low training overhead. The proposed selection mecha-
nism is flexible yet high-level allowing a skeleton programmer to control different
training choices at a higher abstraction level. We have evaluated our optimization
strategy with 9 applications/kernels ported to our skeleton library and achieve on
average more than 94% (90%) accuracy with just 0.53% (0.58%) training space
exploration on two systems. Moreover, we discuss one application scenario where
local optimization considering a single skeleton call can prove sub-optimal, and
propose a heuristic for bulk implementation selection considering more than one
skeleton call to address such application scenarios.

Keywords: Skeleton programming, GPU programming, implementation selec-
tion, adaptive offline learning, automated performance tuning

1 Introduction

The need for power efficient computing has lead to heterogeneity and parallelism in
today’s computing systems. Heterogeneous systems such as GPU-based systems with
disjoint memory address space already became part of mainstream computing. There
exist various programming models (CUDA, OpenCL, OpenMP etc.) to program differ-
ent devices present in these systems and, with GPUs becoming more general purpose
every day, more and more computations can be performed on either of the CPU or GPU
devices present in these systems.

Known for their performance potential, these systems expose programming diffi-
culty as the programmer often needs to program in different programming models to
do the same computation on different devices present in the system which limits code-
portability. Furthermore, sustaining performance when porting an application between

2 Adaptive implementation selection in the SkePU skeleton programming library

different GPU devices (performance portability) is a non-trivial task. The skeleton pro-
gramming approach can provide a viable solution for computations that can be ex-
pressed in the form of skeletons, where skeletons [1, 2] are pre-defined generic com-
ponents derived from higher-order functions that can be parameterized with sequential
problem-specific code. A skeleton program looks like a sequential program where a
skeleton computation can internally exploit parallelism and leverage other architectural
features transparently by e.g. keeping different implementations for a single skeleton
targeting different architectural features of the system. Map/Zip and Farm are examples
of data and task-parallel skeletons respectively.

We have developed the SkePU skeleton programming library for GPU-based sys-
tems in our earlier work [3]. The library targets single-node GPU-based systems and
provide code portability for skeleton programs by providing sequential C++, OpenMP,
CUDA and OpenCL implementations for each of its skeleton. In this paper, we present
an adaptive offline machine learning method to tune implementation selection in the
SkePU library automatically. The proposed technique is implemented inside the SkePU
library allowing automatic implementation selection on a given GPU-based system, for
any skeleton program written using the library. To the best of our knowledge, this makes
SkePU the first skeleton library for GPU-based systems that provides general-purpose,
automatic implementation selection mechanism for calls to its skeleton.

input1:

inputk:

output:

...

Map

input:

output:

MapOverlap

+ +
+

Reduce

+
+

Scan

input1:

input2:

output:

MapArray

input1:

inputk:

...

MapReduce

++
+

input1:

inputk:

...

MapReduce

++
+

Fig. 1. Six data-parallel skeletons, here shown for vector operands: Map applies a user-defined
function element-wise to input vectors. Reduce accumulates an associative binary user function
over all input vector elements to produce a scalar output. MapReduce combines Map and Reduce
in one step. MapArray is similar to map but all elements from the 1st operand are accessible.
MapOverlap is similar to Map where elements within a (user-defined) neighbourhood are also
accessible in the user function. Scan is a generic prefix-sums operation.

Adaptive implementation selection in the SkePU skeleton programming library 3

The paper is structured as follows: In Session 2 we briefly describe our SkePU
skeleton library. The proposed adaptive tuning framework is explained in Section 3 fol-
lowed by evaluation in Section 4. Related work is discussed in Section 5 while Section
6 concludes the work.

2 The SkePU skeleton library

The SkePU skeleton library [3] is designed in C++ and offers several data parallel skele-
tons including map, reduce, mapreduce, maparray, mapoverlap and scan. The operand
data to skeleton calls is passed using 1D Vector and 2D Dense matrix containers. These
containers internally keep track of data residing on different memory units (main mem-
ory, GPU device memory etc.) and can transparently optimize data transfers by copying
data only when it is necessary. The memory management for skeleton calls’ operand
data is implicitly handled by the library. This can for example allow multiple skele-
ton operations (reads, writes) on the same data on a GPU and copies data back to main
memory only when the program accesses the actual data (detected using the [] operator
for vector elements).

Figure 1 shows a graphical description of different skeletons when used with the 1D
vector container. The MapReduce skeleton is just a combination of Map and Reduce
skeletons applied in a single step which is different from Google MapReduce. For a 2D
matrix container operand, semantics are extended to, e.g., apply MapOverlap across all
row vectors and/or across all column vectors.

1 // #include directives
2

3 // generates a user function ‘mult_f ’ to be used in skeleton instantiation
4 BINARY_FUNC(mult_f , double , a, b,
5 return a*b;
6)
7

8 int main()
9 {

10 skepu::Map <mult_f > vecMultiply(new mult_f);/* creates a map skel. object */
11

12 skepu::Vector <double > v0(50); /* 1st input vector , 50 elements */
13

14 skepu::Vector <double > v1(50); /* 2nd input vector , 50 elements */
15

16 skepu::Vector <double > res (50); /* output vector , 50 elements */
17

18 ...
19

20 vecMultiply(v0, v1, res); /* skeleton call on vectors */
21

22 std::cout <<"Result: " << res <<"\n"; /* output result vector */
23

24 ...
25 }

Listing 1. Multiplying two vectors element-wise using the Map skeleton

Listing 1 shows a simple operation of multiplying two vectors element-wise and
writing the result into an output vector. As each skeleton in the library has multiple
implementations (C++, OpenMP, CUDA, OpenCL) available, the skeleton call on Line

4 Adaptive implementation selection in the SkePU skeleton programming library

12 will internally be mapped to one of those implementations. Up to now, this decision
was controlled by the user or was statically determined (e.g., to always use the CUDA
implementation when a CUDA GPU is available). In the next section, we will explain
the mechanism for tuning this implementation selection in a more intelligent manner
automatically.

3 Adaptive tuning framework

Any skeleton call in our library enables implementation selection choice which can
have performance implications. In the ideal case, we would like to select an implemen-
tation which would result in the shortest execution time. For this purpose, we devise an
empirical prediction technique based on offline sample executions. In the following, we
describe the technique and how it is implemented.

3.1 Idea

A simple way to do empirical offline tuning could be to exhaustively try out all variants
for different call context instances to find out the best variant and use that for actual
skeleton calls. In our case, variants are mainly the different skeleton implementations
(CPU, OpenMP etc.), call context instances are characterized by the sizes of operand
data and the best variant is one which results in shortest execution time. Trying out all
possible context instances using exhaustive search is practically infeasible. Our offline
tuning technique is rather an adaptive hierarchical search based upon a heuristic con-
vexity assumption which basically means that if a certain implementation is performing
best on all vertices of a D-dimensional context parameter subspace then we assume it
is also the best choice for all points within the subspace. For example, considering a
1-dimensional space (i.e. only 1 input size parameter), if we find out that a certain im-
plementation performs best on two distinct input sizes i and j we consider it best for all
points between these points (i.e. for the whole range [i, j]). This concept is extended to
D-dimensional space as described below.

3.2 Algorithm

The space C = I1×...ID of context instances for a skeleton with D possibly performance-
relevant properties in the context instances is spanned by the D context property axes
with considered (user-specified or default) finite intervals Ii of discrete values, for i =
1, ...,D. A continuous subinterval of an Ii is called a (context property value) range, and
any cross product of such subintervals on the D axes is called a subspace of C. Hence,
subspaces are ”rectangular”, i.e., subspace borders are orthogonal to the axes of C.

Our idea is to find sufficiently precise approximations by adaptively recursive split-
ting of subspaces by splitting the intervals Ii, i = 1, ...,D. Hence, subspaces are orga-
nized in a hierarchical way (following the subspace inclusion relation) and represented
by a 2D-ary tree TC (cf. quadtrees/octrees etc.).

Our algorithm for off-line measurement starts from a trivial tree TC that has just one
node, the root (corresponding to the whole C), which is linked to its 2D corner points

Adaptive implementation selection in the SkePU skeleton programming library 5

(here, the 2D outer corners of C) that are stored in a separate table of recorded perfor-
mance measurements. The implementation variants of the skeleton under examination
are run with each of the corresponding 2D context instances, possibly multiple times
for averaging; a variant whose execution exceeds a timeout for a context instance is
aborted and not considered further for that context instance. Now we know the winning
implementation variant for each corner point and store it in the performance table, too,
and TC is properly initialized.

Consider any leaf node v in the current tree TC representing a subspace Sv = Rv
1 ×

...×Rv
D where Rv

i ⊂ Ii, i = 1, ...,D. If the same specific implementation variant runs
fastest on all context instances corresponding to the 2D corners of Sv, we stop further
exploration of that subspace and will always select that implementation whenever a
context instance at run-time falls within that subspace. Otherwise, the subspace Sv may
be refined further. Accordingly, the tree is extended by creating new children below
v which correspond to the newly created subspaces of Sv. By iteratively refining the
subspaces in breadth-first order, we generate an adaptive tree structure to represent the
performance data and selection choices, which we call dispatch tree.

The user can specify a maximum depth (training depth) for this iterative refinement
of the dispatch tree, which implies an upper limit on the runtime lookup time, and also
a maximum tree size (number of nodes) beyond which any further refinement is cut off.
Third, the user may specify a timeout for overall training time, after which the dispatch
tree is considered final.

At every skeleton invocation, a run-time lookup searches through the dispatch tree
starting from the root and descending into subspace nodes according to the current run-
time context instance. If the search ends at a closed leaf, i.e., a leaf node with equal win-
ners on all corners of its subspace, the winning implementation variant can be looked
up in the node. If the search ends in an open leaf with different winners on its borders
(e.g., due to reaching the specified cut-off depth), we perform an approximation within
that range by choosing the implementation that runs fastest on the subspace corner with
the shortest Euclidean distance from the current run-time context instance.

The deeper the algorithm explores the tree, the better precision the dynamic com-
poser can offer for the composition choice; however, it requires more off-line training
time and more runtime lookup overhead as well. We give the option to let the user
decide the trade-off between training time and precision by setting the cut-off depth,
size and time in the component interface descriptor. Figure 2 shows an example for 1-
dimensional space exploration. The algorithm can recursively split and refine subspaces
until it finds common winners for all points for a subspace (i.e. the subspace becomes
closed) or the user-specified maximum depth is reached.

Fig. 2. Depiction of how a
1-dimensional space is re-
cursively cut into subspaces
(right) and the resulting dis-
patch tree (left).

root space
1 - 100

sub space
1 - 50

sub space
51 - 100

sub space
1 - 25

sub space
26 - 50

Level 0

Level 1

Level 2

1 100

1 10050 51

1 10050 5125 26

6 Adaptive implementation selection in the SkePU skeleton programming library

3.3 Implementation details

In order to transparently integrate the tuning mechanism in our existing skeleton library,
we have designed it using C++ templates as an include header. As shown in Listing 2,
a Tuner class is introduced which is parameterized by the skeleton type and user func-
tion(s). The user needs to supply a unique ID (string) for the skeletonlet1 being tuned
as well as lower and upper bounds for the size of each operand. The ID decouples the
skeletonlet and tuner, and allows e.g. multiple tuning scenarios even for the same skele-
tonlet to co-exist. Internally the tuner applies certain optimizations (e.g. dimensionality
reduction) and returns an execution plan which is later assigned to the skeleton object.
An execution plan is a simple data structure that internally tracks the best implemen-
tation for each subspace and provides lookup facilities. After the execution plan is set,
the expected best implementation for any skeleton in a given call context will be auto-
matically selected.

The Tuner supports automatic persistence and loading of execution plans. If the
execution plan with same configuration already exists, it loads and returns it from a
repository without any tuning overhead; otherwise it invokes the tuning algorithm and
constructs an execution plan. The generated tuning plan is stored for future usages to
avoid re-tuning every time the skeleton program is executed. Furthermore, the tuning
and actual execution can happen during the same program execution, as shown in List-
ing 2. When porting the same skeleton program to a new architecture, the tuner would
automatically construct an exection plan for the new architecture without requiring any
changes in the user program.

1 ...
2

3 int main()
4 {
5 skepu::Map <mult_f > vecMultiply(new mult_f);
6

7 /* specify where input and output operand data (need to) resides */
8

9 int opInLoc [] = {0, -1}; /* 1st/2nd input operand in GPU/main memory */
10 int opOutFlag [] = {1}; /* copy result back to main memory or not */
11

12 /* specify lower and upper bounds for training range */
13

14 int lowerBounds [] = {10, 10, 10};
15 int upperBounds [] = {50000000 , 50000000 , 50000000};
16

17 /* invoke the tuner whichs returns the execution plan */
18

19 skepu:: ExecPlan plan = skepu ::Tuner <mult_f , MAP >(" vMult", 3, lowerBounds ,
20 upperBounds , opInLoc , opOutFlag)();
21

22 /* assign the execution plan to the skeleton object */
23

24 vecMultiply.setExecPlan(execPlan);
25

26 ...
27 }

Listing 2. Tuning the vector multiply skeleton call

1 A pair of user-function(s), skeleton type.

Adaptive implementation selection in the SkePU skeleton programming library 7

Dimensionality reduction We apply several optimizations based on domain specific
knowledge that each skeleton implementation exposes. For example, considering the
fact that all operands (inputs, output) in a map skeleton should be of exactly the same
size, we have considered it as 1-dimensional space instead of 3-dimensional space (with
2 input and 1 output operands). This significantly reduces the training cost and is trans-
parently done by considering semantics of the skeleton being used. Similar optimiza-
tions are applied for MapOverlap, MapReduce and Scan skeletons.

Data locality Current GPU based systems internally have disjoint physical memory
and both the Vector and Matrix containers in our skeleton library can track their payload
data on different memory units. The operand data locality matters when measuring the
execution time for both CPU and GPU execution for a skeleton implementation, as
operand data may or may not exist in the right memory unit; in case it is not available
in the right place, extra overhead for data copy needs to be encountered. Selection of
the expected best implementation for a given problem size cannot be made without
considering where the input data resides and where the output data needs to be copied
back as the data copying overhead between different memory units could affect the
selection of the best performing variant. One solution could be to assume that operand
data is always located in a specific memory unit (e.g., main memory) and, depending
upon where the skeleton implementation executes, a copy may or may not be required.
This solution is simple but unflexible as even different operands of a single skeleton call
may reside at different memory spaces depending upon their previous usage with other
skeleton calls. On the other hand, delaying the decision about operand data locality to
runtime is infeasible as we need to know the data transfer cost to determine, offline, the
best variant for a given problem size.

We have devised a simple mechanism for the programmer to specify knowledge
about operands’ data locality. By default, we assume that operand data resides in main
memory and cost for transferring output data back to main memory is not included in
the skeleton execution. However, the programmer can easily override this behavior by
specifying:

– An integer flag for each input operand specifying the memory unit where it is re-
siding (default main memory = -1). In the example in Listing 2 (line 6), the tuner
will determine the best implementation considering that the first operand resides in
the GPU device memory while the second input operand resides in main memory.

– A binary flag for each output operand specifying whether it should be transferred
back to main memory or not. In the example in Listing 2 (line 7), the best imple-
mentation is determined considering that the output operand needs to be copied
back to main memory after skeleton execution.

4 Evaluation

For evaluation, we have implemented five applications (NBody simulation, Smooth
Particle Hydrodynamics, LU factorization, Mandelbrot, Taylor series) and four kernels
(Mean Squared Error, Peak Signal-to-Noise Ratio, Pearson Product-Moment Correlation

8 Adaptive implementation selection in the SkePU skeleton programming library

Coefficient, dot product) with skeletons available in our skeleton library. We use two
different systems to demonstrate effectivness of our tuning mechanism in doing im-
plementation selection while adjusting to platform differences: System A with Xeon R©

E5520 CPUs running at 2.27GHz with 1 NVIDIA R© C2050 GPU with L1/L2 cache
support and System B with Xeon R© X5550 CPUs running at 2.67GHz with a lower-end
GPU (NVIDIA R© C1060 GPU).

For each application/kernel, we call the tuner on a given training range (i.e., prob-
lem size ranges for each operand) and it internally explores some points in the training
space and construct an execution plan using the algorithm described in Section 3.2. Af-
terwards, we do the actual execution by selecting a set of sample points (different from
the training points) within that range and do the actual execution using the tuned version
as well as using each implementation variant (CPU, OpenMP, CUDA) on those selected
points2. The same problem size ranges are used for experiments on both systems and
no modifications in the program source code are made when porting the applications
between both systems. Furthermore, for all experiments, we set the maximum training
depth to 10 and Euclidian distance is used to estimate the best variant if no best variant
is found for a subspace until depth 10.

4.1 Tuning Efficiency

Figure 3 shows execution of eight applications/kernels on System A. On the horizontal
axis, we list the problem sizes whereas the vertical axis represents the execution time.
For each application/kernel, we list the percentage of training space that is explored
by the tuner to construct the execution plan as well as average accuracy of execution
with the tuned version3. As it is practically infeasible to try out all points in the training
range, accuracy is measured by averaging over the ratio of execution time with the tuned
configuration with execution time of the best from direct execution (CPU, OpenMP,
CUDA) over all sample points. Due to small variations in execution times during actual
measurements, accuracy could become more than 100% in some cases (e.g. an OpenMP
implementation can take slightly different time even between successive executions
[18]). Averaging over all eight applications/kernels, 94% accuracy has been achieved
with just 0.2% training space exploration.

When porting the applications to System B, no changes in the applications’ source
code are required and the execution plan is automatically tuned before first execution
on the new platform. As shown in Figure 4, the tuner is able to effectively adjust to plat-
form differences without requiring any user intervention and we achieved on average
91% accuracy with just 0.3% training space exploration. For execution with the tuned
version, the overhead of looking up the best implementation in the execution plan for a
given call context is included in the measurement, which proved to be negligible.

2 We did not consider the OpenCL implementations for experiments as they are similar to CUDA
in performance on NVIDIA GPUs and are primarily written for execution on accelerator de-
vices not supporting CUDA.

3 In the tuned version, implementation selection is made based upon the execution plan returned
by the tuner.

Adaptive implementation selection in the SkePU skeleton programming library 9

DotProduct

(0.000084%, 94.72%)

DotProduct

(0.000084%, 94.72%) LU factorization

(1.63%, 105.12%)

Mandelbrot

(0.004387%, 68.28%)

MSE (Mean Squared Error)

(0.000092%, 94.78%)

PSNR

(0.0001%, 98.62%)
Taylor Series

(0.000084%, 99.04%)

NBody Simulation

(0.545113%, 100.35%)
PPMCC

(0.000056%, 90.16%)

Fig. 3. Execution time of eight applications/kernels for different problem sizes on System A with
respective training space, accuracy figures. On average, 94% accuracy has been achieved with
just 0.2% training space exploration. [Legend: Black(CPU, +), Green(OpenMP �), Blue(CUDA
∗), Red(Tuned �)]

10 Adaptive implementation selection in the SkePU skeleton programming library

DotProduct

(0.000092%, 93.09%)

LU factorization

(2.38%, 99.70%)

Mandelbrot
(00.004387%, 74.47%)

MSE (Mean Squared Error)
(0.000092%, 93.23%)

PSNR

(0.000092%, 97.29%) Taylor Series
(0.000084%, 102.45%)

NBody Simulation

(0.432331%, 71.07%)
PPMCC

(0.000056%, 94.25%)

Fig. 4. Execution time of eight applications/kernels for different problem sizes on System B with
respective training space, accuracy figures. On average, 91% accuracy has been achieved with
just 0.3% training space exploration. [Legend: Black(CPU, +), Green(OpenMP �), Blue(CUDA
∗), Red(Tuned �)]

Adaptive implementation selection in the SkePU skeleton programming library 11

4.2 Bulk execution

The Tuner predicts the best implementation for each skeleton call individually based on
operand data locality and execution time of each skeleton implementation available. As
we have seen in the previous section, this works fine for both simple and complex appli-
cations/kernels with skeleton calls of one or more types. However, in some applications
with multiple skeleton calls having different computational complexity and constrained
in a data dependency chain, locally optimal decisions for each skeleton call may result
in a globally sub-optimal decision. Listing 3 shows such an application scenario in the
SPH (Smooth Particle Hydrodynamics) application. This application has three different
types of skeleton calls with different computational complexity, operating on the same
data inside a loop. For a given problem size, the tuner might determine OpenMP, CUDA
and OpenMP execution as best for skeleton_1, skeleton_2 and skeleton_3 calls
respectively. Although making the best decision for each skeleton call individually, this
would result in lot of expensive data transfers (over PCIe bus between main and GPU
device memory) as output produced by the skeleton_1 call becomes an input to the
skeleton_2 call and so forth. Doing it inside a loop makes it even worse as these data
transfers would need to be done in each loop iteration.

1 ...
2 for (....)
3 {
4 skeleton_1(v0 , v1, v1);
5 skeleton_2(v1 , v0, v0);
6 skeleton_3(v0 , v0);
7 }
8 ...

Listing 3. SPH pseudo-code.

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(M

ic
ro

-S
ec

)

Problem size

(2.6316%, 98.80%)

CPU
OpenMP

CUDA
TUNE

Tune Local

(a) System A

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(M

ic
ro

-S
ec

)

Problem size

(2.4645%, 85.69%)

CPU
OpenMP

CUDA
TUNE

Tune Local

(b) System B

Fig. 5. Execution of SPH on both systems with respective training space, accuracy figures.

For such skeleton calls with different computational complexity and tight data de-
pendency, we implement a simple bulk selection heuristic in our tuner. For a sequence

12 Adaptive implementation selection in the SkePU skeleton programming library

of skeleton calls constrained in a data dependency chain, the skeleton programmer can
specify a group id as a last (optional) argument to each skeleton call. All skeleton
calls with same group id are scheduled on compute units with the same memory ad-
dress space which is determined as the expected best one for the first skeleton call in
the group.

Figure 5 shows execution of SPH on both evaluation systems. As shown in the
figure, predicting the best implementation for each skeleton call individually (the Tune
Local version) yields poor performance in this case. The tuner version with the bulk
heuristic performs better in this case by considering the interconnection between the
skeleton calls and mapping them to the same backend.

5 Related Work

Besides SkePU, SkelCL [4] and Muesli [8] are currently the two main skeleton pro-
gramming libraries for GPU-based systems. They all provide some common data paral-
lel skeletons such as Map/Zip and also provide memory management for GPU-execution.
Hybrid execution and automatic implementation selection are some important capabil-
ities of SkePU that distinguish it from the other two libraries (see [3] for details).

MultiSkel [9] provides a CUDA code generation facility for skeleton programs writ-
ten in C++. Bones [11] targets automatic transformation of C programs to CUDA for
GPU execution by identifying occurences of pre-defined patterns/skeletons in the se-
quential code. Buono et al. [10] describe a set of low-level algorithmic constructs that
can be composed in a hierarchical manner to match application-level patterns.

In our earlier work [6], we used a genetic algorithm to do offline implementation
selection as well as selection of some tuning parameters for each implementation type
(number of threads for OpenMP and thread block size for CUDA and OpenCL back-
end). However, the current approach using the convexity assumption requires much less
traning space exploration while achieving better accuracy for a variety of applications.

Empirical exploration is employed by Collins et al. [12] in their FastFlow parallel
skeleton framework. They use Monte Carlo search of a random subset of the space
and use knowledge about variable dependencies to further reduce the search space.
However, their tuning is about finding the suitable values for the tuning parameters
rather than implementation selection; also the FastFlow library currently targets multi-
core homogeneous systems and does not support GPU-based systems.

There exist a large body of work in empirical tuning (e.g. [17, 13]) as well as usage
of decision trees [15, 14] and C4.5 algorithm [16]. Our work differs from other empiri-
cal auto-tuning approaches in two ways: First, our focus is on implementation selection
rather than tuning (machine- or algorithm- specific) parameters for an implementation.
This enables us to use the convexity assumption to significantly reduce the training
cost compared to random sampling employed by other parametric tuning frameworks.
A similar approach using the convexity assumption is used in our earlier work [7] for
PEPPHER components composition [5]. Secondly, we use an adaptive method to ex-
plore the sampling space selectively in an attempt to minimize the sampling and train-
ing cost while building the dispatch tree simultaneously. This is in contrast to classical

Adaptive implementation selection in the SkePU skeleton programming library 13

approaches that do the sampling and learning separately; thereby considering many un-
interesting but expensive sample points.

6 Conclusion

Having different implementations for a computation, possibly in different programming
models, can give both performance and portability if some intelligent selection mech-
anism is in place. We proposed and implemented an efficient empirical auto-tuning
method for doing implementation selection in a skeleton library for GPU-based sys-
tems. It uses an adaptive algorithm based on a heuristic convexity assumption to build
up a decision tree by exploring parameter subspaces in a recursive manner. Evalua-
tion with nine applications/kernels have demonstrated effectiveness of our approach in
predicting the best implementation, with great accuracy (more than 90%), for a given
execution context with just 0.5% training space exploration on two different systems.
The selection and tuning mechanism is implemented inside the SkePU skeleton library,
requiring no modifications in the user-code when porting the application to a new sys-
tem.

Bibliography

[1] Cole, M.: Algorithmic Skeletons: Structured management of parallel computation.
MIT Press, Cambdridge, MA, USA (1989)

[2] Kessler, C., Gorlatch, S., Enmyren, J., Dastgeer, U., Steuwer, M., Kegel, P.: Skele-
ton Programming for Portable Many-Core Computing. Book chapter, 20 pages, in:
S. Pllana and F. Xhafa, eds., Programming Multi-Core and Many-Core Computing
Systems, Wiley Interscience, New York (2013)

[3] Dastgeer, U.: Skeleton Programming for Heterogeneous GPU-based Systems. Li-
centiate thesis. Thesis No 1504. Dept. of Comp. and Inf. Sci., Linköping University,
October (2011)

[4] Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL - A Portable Skeleton Library for
High-Level GPU Programming. In IEEE Int. Sym. on Par. and Dist. Proc. Work-
shop and Phd Forum (IPDPSW), Anchorage, USA (2011)

[5] Dastgeer, U., Li, L., Kessler, C.: The PEPPHER Composition Tool: Performance-
Aware Dynamic Composition of Applications for GPU-based Systems. In: Proc.
2012 Int. Workshop on Multi-Core Computing Systems (MuCoCoS 2012), in con-
junction with Supercomputing Conference (SC12), Salt Lake City, Utah, USA
(2012)

[6] Dastgeer, U., Enmyren, J., Kessler, C.W.: Auto-tuning SkePU: A multi-backend
skeleton programming framework for multi-GPU systems. In Proc. of the 4th Int.
Workshop on Multicore Soft. Eng. (IWMSE ’11). ACM, NY, USA (2011)

[7] Li, L., Dastgeer, U., Kessler, C.,: Adaptive off-line tuning for optimized compo-
sition of components for heterogeneous many-core systems. Seventh International
Workshop on Automatic Performance Tuning (iWAPT-2012), 17 July 2012, Kobe,
Japan. In: Proc. VECPAR-2012 Conference, Kobe, Japan, Springer LNCS 7851,
pp. 329-345 (2012)

[8] Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems
and clusters. Int. J. of High Perf. Comp. and Netw., 7(2), 129-138 (2012)

[9] Tung, L.D., Duc, N. H., Anh, P.T., Hoang, N.H., Thap, N.M.: An Intermediate Li-
brary for Multi-GPUs Computing Skeletons. IEEE RIVF International Conference
on Computing and Communication Technologies, Research, Innovation, and Vision
for the Future (RIVF) (2012)

[10] Buono, D., Danelutto, M., Lametti, S., Torquati, M.: Parallel Patterns for General
Purpose Many-Core. Euromicro International Conference on Parallel, Distributed
and Network-based Processing PDP-2013, IEEE Computer society press (2013)

[11] Nugteren, C., Corporaal, H.: Introducing ’Bones’: A parallelizing source-to-
source compiler based on algorithmic skeletons. In Proc. 5th Annual Workshop
on General Purpose Proc. with Graph. Proc. Units (GPGPU-5), ACM, NY, USA
(2012)

[12] Collins, A., Fensch, C., Leather, H.: Auto-tuning parallel skeletons. Parallel Pro-
cessing Letters, 22(02) (2012)

[13] Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,
L.: A framework for adaptive algorithm selection in STAPL. In Proc. 10th Sympo-

Adaptive implementation selection in the SkePU skeleton programming library 15

sium on Principles and practice of parallel programming (PPoPP ’05). ACM, New
York, NY, USA (2005)

[14] Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree
Hybrid, In Proc 2nd Int. Conf. on Knowledge Discovery and Data Mining. AAAI
Press (1996)

[15] Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code Generation for DSP Transforms. In Proceedings of the IEEE, spe-
cial issue on Program Generation, Optimization, and Adaptation, Vol. 93, No. 2,
pp. 232- 275 (2005)

[16] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1993)

[17] Vuduc, R., Demmel, J.W., Bilmes, J.A.: Statistical Models for Empirical Search-
Based Performance Tuning. Int. J. High Perform. Comput. Appl. 18, 1 (2004)

[18] Mazouz, A., Touati, S., Barthou, D.: Performance evaluation and analysis of
thread pinning strategies on multi-core platforms: Case study of SPEC OMP ap-
plications on Intel architectures. International Conference on High Performance
Computing and Simulation (HPCS) (2011)

