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Abstract. SkePU is a skeleton programming framework for multicore CPU and
multi-GPU systems. StarPU is a runtime system that provides dynamic scheduling
and memory management support for heterogeneous, accelerator-based systems.

We have implemented support for StarPU as a possible backend for SkePU while
keeping the generic SkePU interface intact. The mapping of a SkePU skeleton call
to one or more StarPU tasks allows StarPU to exploit independence between dif-
ferent skeleton calls as well as within a single skeleton call. Support for different
StarPU features, such as data partitioning and different scheduling policies (e.g.
history based performance models) is implemented and discussed in this paper.

The integration proved beneficial for both StarPU and SkePU. StarPU got a high
level interface to run data-parallel computations on it while SkePU has achieved
dynamic scheduling and heterogeneous parallelism support. Several benchmarks
including ODE solver, separable Gaussian blur filter, Successive Over-Relaxation
(SOR) and Coulombic potential are implemented. Initial experiments show that we
can even achieve super-linear speedups for realistic applications and can observe
clear improvements in performance with the simultaneous use of both CPUs and
GPU (heterogeneous execution).

Keywords. SkePU, StarPU, skeleton programming, dynamic scheduling, heterogeneous
multicore architectures.

Introduction

Multi- and many-core architectures are increasingly becoming part of mainstream com-
puting. There is a clear evidence that future architectures will be heterogeneous, contain-
ing specialized hardware, such as accelerator devices (e.g. GPGPUs) or integrated co-
processors (e.g. Cell’s SPUs) besides general purpose CPUs. These heterogeneous archi-
tectures provide desired power efficiency at the expense of increased programming com-
plexity as they expose the programmer to different (and possibly low-level) programming
models for different devices in the system. Besides the programming problem, the lack

1This is the author’s version. The final publication is available at IOS press: Advances in Parallel Computing,
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of a universal parallel programming model for these different architectures immediately
leads to a portability problem.

Skeleton programming [5] is an approach that could solve the portability problem to
a large degree. It requires the programmer to rewrite a program using so-called skeletons,
pre-defined generic components derived from higher-order functions that can be param-
eterized in sequential problem-specific code, and for which efficient implementations
for a given target platform may exist. A program gets parallelism and leverages other
architectural features almost for free for skeleton-expressed computations as skeleton
instances can easily be expanded or bound to equivalent expert-written efficient target
code that can encapsulate low-level details such as managing parallelism, load balanc-
ing, communication, utilization of SIMD instructions etc. SkePU [1,2] is such a skeleton
programming framework for modern heterogeneous systems that contain multiple CPU
cores as well as some specialized accelerators (GPUs).

Besides the programming and portability problem with these heterogeneous archi-
tectures, there is a problem with performance. These heterogeneous architectures are
composed of multicore general-purpose processors and one or more accelerators with
separate memory address spaces. One common way to program these architectures is to
offload computation-intensive parts of the application to the accelerators. However, to
fully tap into the potential of these machines, simple offloading techniques are not suffi-
cient. Rather, the challenge is to build systems which can spread an application across the
entire machine by scheduling tasks dynamically over multiple different devices consid-
ering the current resource usage and suitability of a task to a specific device. StarPU is a
runtime system for modern heterogeneous architectures that provides dynamic schedul-
ing capabilities and can use runtime feedback and data locality information to guide the
scheduling decisions at runtime.

Need for runtime support: SkePU provides several implementations for each
skeleton type including an OpenMP implementation for multi-core CPUs and CUDA
and OpenCL2 implementations for single as well as multiple GPUs. In a platform con-
taining both CPUs and GPUs, several implementation variants for a given skeleton call
are applicable and an optimal variant should be selected for skeleton call. Selecting an
offline optimal variant for an independent SkePU skeleton call is already implemented
in SkePU itself using offline measurements and machine learning [2]. However, an ap-
plication composed of multiple skeleton calls will most likely have data flow based con-
straints between different skeleton calls. Tuning such a composed application requires
runtime information about resource consumption and data locality. Furthermore, the
current SkePU implementation has no efficient means to use multiple kinds of resources
(CPUs and GPUs) simultaneously for a skeleton execution.

In this paper, we present our work on integrating the SkePU skeleton library with
the StarPU runtime system to leverage the capabilities of the runtime system that are
missing in SkePU. We will briefly introduce SkePU and StarPU, followed by the transla-
tion details. Section 4 will discuss several important aspects of performance with several
real applications and show how SkePU actually benefits from the integration in terms of
performance. Finally, we will conclude and present future work possibilities.

Related work: Besides related work to SkePU (see [5]) and StarPU (see [3]), some
work is done on static scheduling of OpenCL code on heterogeneous platforms in [6]. In

2The OpenCL implementation can be used with CPUs as well but it is optimized for GPUs in our case.



[7], load balancing and work distribution strategies for multi-GPUs systems are consid-
ered, however it ignores usage of CPUs altogether. To the best of our knowledge, no prior
work is reported on dynamic scheduling support for a generic skeleton programming
framework on modern heterogeneous multicore systems.

1. SkePU

SkePU [1,2] is a C++ based skeleton programming library for single- and multi-GPU
systems supporting multiple back-ends (CUDA, OpenCL, OpenMP and sequential C).
It currently implements several data-parallel skeletons including map, reduce, mapre-
duce, map-with-overlap, map-array, and scan. All skeleton calls accept SkePU generic
containers (Vector, Matrix) as arguments.

The SkePU containers implicitly manage the data transfers between host and GPU
memory and keep track of multiple copies of the data residing on different memory units.
The containers use lazy memory copying to optimize memory transfers for skeleton
operand data at GPU execution. Lazy memory copying delays data transfer back to main
memory for results of computations done on the GPU until it is actually accessed in the
main memory (for example through the [] operator). Lazy memory copying is of great
use if several skeleton calls are made with the same container, one after the other, with no
modifications of the container data by the host in between. A more detailed description
of the SkePU library can be found in [1].

2. StarPU

StarPU [3,4] is a C based unified runtime system for heterogeneous multicore platforms
with generic scheduling facilities. Three main components of StarPU are task and codelet
abstraction, data management, and dynamic scheduling framework.

StarPU task-model: StarPU uses the concept of codelet, a C structure containing
different implementations of the same functionality for different computation units (e.g.
CPU and GPU). A StarPU task is then an instance of a codelet applied to some data. The
programmer has to explicitly submit all tasks and register all the input and output data for
all tasks. The submission of tasks is asynchronous and termination is signaled through a
callback3. This lets the application submit several tasks, including tasks which depend on
others. Dependencies between different tasks can be found either by StarPU implicitly,
by considering data dependencies (RAW/WAR/WAW) between submitted tasks, and/or
can be explicitly specified by the programmer using integers called tags.

Data management: StarPU provides a virtual shared memory subsystem and keeps
track of data across different memory units in the machine by implementing a weak con-
sistency model using the MSI coherency protocol. This allows StarPU to avoid unnec-
essary data movement when possible. Moreover, the runtime can estimate data transfer
cost and can do prefetching to optimize the data transfers. The runtime can also use this
information to make better scheduling decisions (e.g. data aware scheduling policies).

StarPU defines the concept of filter to partition data logically into smaller chunks
(block- or tile-wise) to suit the application needs. For example, the filter for 1D vector

3Task execution can be made synchronous as well, by setting the synchronous flag for a StarPU task.
This makes the task submission call blocking and returns control after the submitted task finishes its execution.
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Figure 1. (a) shows how a SkePU skeleton call is mapped to one or more StarPU tasks and (b) shows how
different backend implementation choices are mapped between SkePU and StarPU.

data is block filter which divides the vector into equal-size chunks, while for a dense 2D
matrix, the filters include partitioning the matrix into horizontal and/or vertical blocks.
Multiple filters could be applied in a recursive manner to partition data in any nested
order (e.g. dividing a matrix into 3 × 3 blocks by applying both horizontal and vertical
filters).

Dynamic Scheduling: Mapping of tasks to different execution units is provided us-
ing dynamic scheduling. There are several built-in scheduling strategies including greedy
(priority, no-priority), work-stealing, and several performance-model aware policies (e.g.
based on historical execution records).

3. Integration

StarPU is implemented as another possible backend to the SkePU skeleton calls. The
main objective of the integration was to keep the generic, high-level interface of SkePU
intact while leveraging the full capabilities of StarPU underneath that interface. Some
minimal changes in the skeleton interfaces were required to allow for the desired flexi-
bility at the programmer level, but these interface extensions are kept minimal (and op-
tional e.g. by using default parameter values) to most extent, allowing previously writ-
ten SkePU programs to smoothly run with this new backend in many situations while
requiring very small syntactic changes in other cases.

Containers: The data management feature (including lazy memory copying) in the
SkePU containers was overlapping with StarPU data management capabilities. To en-
able the integration, that data management part of the SkePU containers is disabled.
In essence, the containers are modified to automatically register/unregister data as data
handlers to StarPU for skeleton calls. This means, that while using StarPU, containers
act as smart wrappers and delegate actual memory management to the StarPU runtime
system. The interface of the containers is not modified in the process. Furthermore, a
custom memory allocator is written and configured with the SkePU containers to allow
page-locked memory allocation/deallocation for data used with the CUDA calls4.

4In CUDA with GT200 or newer GPUs, memory allocated through cudaHostAlloc becomes directly
accessible asynchronously from the GPU via DMA and is referred to as page locked memory.



Abstraction gap: SkePU heavily relies on features of C++ (e.g. templates, functors,
classes and inheritance) while StarPU is a pure C based runtime system (e.g. using func-
tion and raw pointers). The integration is achieved by wrapping the skeleton code in static
member functions which can be passed to StarPU as a normal C function pointer. Fur-
thermore, the possibility of asynchronous SkePU skeleton executions resulted in severe
concurrency issues (e.g. race conditions, data consistency problems). Certain program-
ming techniques such as data-replication are used to resolve these issues while avoiding
mutual exclusion.

Mapping SkePU skeletons to StarPU tasks: In StarPU, the unit of execution is
a task. An application needs to explicitly create and submit tasks to the runtime sys-
tem. However, in our case, the creation and submission of tasks is transparently pro-
vided behind the skeleton interface. The mapping technique is illustrated in Figure 1 and
explained below.

A SkePU skeleton call S with k operands vi, where 1 ≤ i ≤ k, each of size N ,
can be translated into one or more StarPU tasks. In direct (1:1) mapping, it translates
to 1 StarPU task t with k operands di, each of size N and di = vi ∀i. In 1:m map-
ping, m StarPU tasks tj where 1 ≤ j ≤ m are generated, each taking k operands
dij where 1 ≤ i ≤ k and 1 ≤ j ≤ m, each of size N

′
. In our case, N

′ ≤ N/m as we
divide a skeleton call into equally partitioned tasks based on operand data, considering
the fact that computational complexity of data-parallel skeletons is usually the same for
individual elements. For the MapArray skeleton, partitioning works as described above
except for the first argument which is not partitioned5.

Data Partitioning: Partitioning support is implemented using StarPU filters in
many existing skeletons by adding an optional last argument to the skeleton call, specify-
ing the number of desired partitions for that skeleton call (defaults to 1, no-partition). The
layout of partitioning depends upon the skeleton type (e.g. partition a Matrix horizontally
and vertically for 2D MapOverlap row-wise and column-wise respectively).

Scheduling support: StarPU pre-defines multiple scheduling policies, including
some based on performance models. The performance models could be either execution
history based or some application specific parametric models (e.g. an3 + bn2 + cn+ d).
With the history based performance model, StarPU keeps track of the execution time
of a task from its actual executions to guide the scheduling decisions in future [4]. We
have configured all skeletons to use the history based performance model. This could be
enabled, just by defining the USE_HISTORY_PERFORMANCE_MODEL flag in the
application. The actual scheduling policy can later be altered at the execution time using
the STARPU_SCHED environment variable.

4. Evaluation

All experiments are carried out on a GPU server with dual-quadcore Intel(R) Xeon (R)
E5520 server clocked at 2.27 GHz with 2 NVIDIA Tesla M2050 GPUs.

Data Partitioning and locality on CPUs: The efficiency of the data partitioning
(task-parallelism) approach in comparison to OpenMP is shown in Figure 2 for apply-
ing Gaussian blur column wise, using a MapOverlap skeleton with 2D SkePU Matrix.

5This is due to the semantics of the MapArray skeleton where for each element of the second operand, all
elements of the first operand should be available.
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Figure 2. Applying Gaussian blur column-wise using MapOverlap column-wise skeleton on one or more
CPUs. Results represent OpenMP as well as both fine partitioning (FP, 20 columns per task) and coarse parti-
tioning (CP, 100 columns per task) version.

The column-wise Gaussian blur is chosen as it accesses matrices (both input and output)
column-wise, which is cache inefficient for regular C matrices that are stored row-wise.
The OpenMP implementation is optimized to distribute work column-wise, using static
scheduling policy, as the dynamic policy performs poorly in this regular work load case.
The partitioning using filters is also done vertically for column-wise MapOverlap op-
eration and multiple independent sub-tasks are created. The baseline version is the se-
quential version, without any partitioning, executed on a single CPU. As shown in the
figure, we are able to achieve super-linear speedups while using multiple CPUs and also
with a single CPU by partitioning a data-parallel task into sub-tasks, thanks to improved
cache usage. The OpenMP versions are rewritten from a sequential version to divide
work column-wise and achieve linear speedups even for smaller matrix sizes. However,
the partitioning based approach was using the same sequential code (baseline), written
for a single CPU and achieved better speedups than OpenMP without any significant
tuning effort (no tuning of partitioning granularity).

Heterogeneous execution: A Coulombic potential grid calculation micro-benchmark
is implemented using Map and MapArray skeletons. Figure 3(a) shows the improve-
ments from using multiple resources present in the system. The usage of CPUs along
the GPU yield better performance (less execution time) even for an application that is
known for its suitability to GPU execution [6].

Data-locality aware scheduling: Figure 3(b) shows how a data-aware scheduling
policy improves by learning at runtime. The data-aware scheduling policy considers the
current data location and expected data transfer costs between different memory loca-
tions while scheduling a task for execution [4]. The estimate of a task execution time
based on earlier executions is also used for scheduling. This is shown in Figure 3(b),
while using 1 CPU and 1 GPU for three consecutive Coulombic calculations using data-
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Figure 3. Coulombic potential grid execution a) on a heterogeneous platform (CPUs and GPU) for different
matrix sizes and b) with a data aware scheduling policy for 24K × 24K matrix, with 3 successive executions.
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Figure 4. Performance implications of StarPU dynamic scheduling policies.

aware scheduling policy. In the first execution, the data was not available on the GPU
and estimates from earlier executions were also not available yet, hence work is divided
across CPU and GPU in some greedy fashion. However, as time passes, more input data
becomes available on the GPU and execution time estimates become available, result-
ing in more performance-aware decisions in the later part of the execution. The schedul-
ing decisions improved significantly over successive executions as the execution time
reduced by almost 7 times in the third execution in comparison to the first execution.

Performance-model based scheduling policies: There are several performance-
aware scheduling policies available in StarPU that try to minimize the make-span of
a program execution on a heterogeneous platform (known as Heterogeneous Earliest
Finish Time (HEFT) scheduling policies). Figure 4(b) shows execution of Iterative SOR
with such performance-aware scheduling policies available in StarPU. Average speedups
are calculated over different matrix sizes with respect to static scheduling (CUDA exe-
cution) policy. The result shows that usage of scheduling policies with data prefetching
support yield significant performance gains.

Static scheduling: The performance gains by using dynamic scheduling capabilities
of StarPU in a heterogeneous execution platform are shown earlier for different applica-
tions. These performance gains come from the task-level parallelism which depends on
inter(or intra)-skeleton independence (cf. 1:1 and 1:m mapping in Figure 1). Now, we



consider an extreme example where static scheduling on a powerful CUDA GPU super-
sedes any known dynamic scheduling configuration using CPUs in conjunction. An ap-
plication with strong data dependency across different skeleton calls and small computa-
tional complexity of each skeleton call can limit performance opportunities for the run-
time system to exploit. The ODE solver is such an application, containing lots of repet-
itive, simple mathematical operations represented as skeleton calls. The tight data de-
pendency between these skeleton calls allows almost no inter-skeleton parallelism. Fur-
thermore, as tasks are computationally small, the overhead of creation of subtasks (in-
cluding data partitioning) to exploit intra-task parallelism limits its performance gains.
Although static scheduling proved better for this application as shown in Figure 4(a), a
performance-aware dynamic scheduling comes quite close to it. This shows that even for
such an extreme scenario, using dynamic scheduling comes quite close to static schedul-
ing including all the overhead.

5. Conclusion and Future work

The SkePU translation to StarPU gives multifold benefits. Dynamic scheduling support
combined with performance models can generate more informed scheduling decisions.
Furthermore, it allows usage of multiple backends in parallel for a single skeleton call.
It can also achieve better cache behavior for otherwise non-cache friendly skeleton oper-
ations. The performance benefits depend upon parallelism which can be exploited both
inside a single skeleton call as well as between independent skeleton calls. This allows
to exploit it for many diverse applications. We have shown that a performance-aware
dynamic scheduling policy can perform well even for extreme scenarios where static
scheduling on a single backend proves better than exploitation of multiple resources
available in the system.

This work can be extended in many ways. New skeleton types can be implemented
(e.g. farm, divide and conquer, pipelining). New dynamic scheduling policies can be im-
plemented that can consider other factors while making the scheduling decision (e.g. lim-
ited lookahead information about repetitive execution). Finally, we plan a public release
of this work like original SkePU library (http://www.ida.liu.se/~chrke/
skepu).
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