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Abstract. In this paper, we describe our work on providing a generic yet
optimized GPU (CUDA/OpenCL) implementation for the 2D MapOver-
lap skeleton. We explain our implementation with the help of a 2D convo-
lution application, implemented using the newly developed skeleton. The
memory (constant and shared memory) and adaptive tiling optimizations
are applied and their performance implications are evaluated on differ-
ent classes of GPUs. We present two different metrics to calculate the
optimal tiling factor dynamically in an automated way which helps in
retaining best performance without manual tuning while moving to new
GPU architectures. With our approach, we can achieve average speedups
by a factor of 3.6, 2.3, and 2.4 over an otherwise optimized (without
tiling) implementation on NVIDIA C2050, GTX280 and 8800 GT GPUs
respectively. Above all, the performance portability is achieved without
requiring any manual changes in the skeleton program or the skeleton
implementation.

1 Introduction

Multi- and many-core architectures are increasingly becoming part of main-
stream computing. There is a clear evidence that future architectures will be
heterogeneous, containing specialized hardware, such as accelerator devices (e.g.
GPUs) or integrated coprocessors (e.g. Cell’s SPUs) besides general purpose
CPUs. These heterogeneous architectures provide desired power efficiency at
the expense of increased programming complexity as they expose the program-
mer to different and possibly low-level programming models for different devices
in the system. Besides the programming problem, the lack of a universal paral-
lel programming model for these different architectures immediately leads to a
portability problem.

Skeleton programming [9] is an approach that could solve the portability
problem to a large degree. It requires the programmer to rewrite a program
using so-called skeletons, pre-defined generic components derived from higher--
order functions that can be parameterized in sequential problem-specific code,
and for which efficient implementations for a given target platform may exist.
A program gets parallelism and leverages other architectural features almost
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for free for skeleton-expressed computations as skeleton instances can easily be
expanded or bound to equivalent expert-written efficient target code that can
encapsulate low-level details. This could include details about managing par-
allelism,load balancing, communication, utilization of SIMD instructions etc.
SkePU [1] is such a skeleton programming framework for modern heterogeneous
systems that contain multiple CPU cores as well as some specialized accelerators
(GPUs).

In earlier work [1], we described the design and implementation of SkePU, a
new C++ based skeleton programming framework for single- and multi-GPU sys-
tems that also has support for multi-core CPUs. The SkePU framework provides
several data parallel skeletons including Map, Reduce, MapReduce, MapArray,
Scan (Prefix) and MapOverlap, with CUDA and OpenCL implementations for
single and multiple GPUs and OpenMP implementations for multi-core CPUs.
Besides skeleton implementations, it also provides 1D vector and 2D matrix
container types that can be used to pass operand data for a skeleton call.

The MapOverlap skeleton is an important data-parallel skeleton as many
applications such as image processing applications [2] and iterative equation
solvers [3] can be implemented using that skeleton. It is basically a variation
of the Map skeleton and could be defined in the following way for 2D matrix
operands (aka. 2D MapOverlap): each element r[i, j] of the result matrix is a
function of several adjacent elements of one input matrix that reside at a certain
constant maximum logical distance from i, j in the input matrix1. The maximum
logical distance of these elements is controlled by the parameter overlap.

In this paper, we discuss our recent work on implementing a generic 2D
MapOverlap skeleton and evaluating its performance with the help of a 2D con-
volution application implemented using that skeleton. This paper provides the
following contributions: (1) We develop a generic but optimized 2D MapOverlap
implementation for both CUDA and OpenCL backends. (2) We evaluate the ef-
fect of applying memory optimizations (usage of constant and shared memory)
on cache2 and non-cache based GPUs. (3) We present two metrics to maximize
GPU resource utilization and evaluate their impact on achieved performance.
(4) We show how we can achieve performance portability while moving from one
GPU (CUDA/OpenCL) architecture to another one by an automatic calculation
of an optimal configuration for the new architecture.

In the next section, we provide a brief description of the 2D convolution
application, followed by a discussion of different GPU optimizations including
adaptive tiling in Section 3. In Section 4, we describe two metrics for selection
of the tiling factor and their implementation followed by an initial evaluation in
Section 5. Related work is presented in Section 6 while Section 7 concludes and
proposes future work.
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int f i l t e r s i z e = f i l t e r w i d t h ∗ f i l t e r h e i g h t ;
for ( int i =0; i<out he i gh t ; i++){

for ( int j =0; j<out width ; j++){
f loat sum = 0 ;
for ( int k=0; k< f i l t e r h e i g h t ; k++){

for ( int l =0; l<f i l t e r w i d t h ; l++){
sum += in [ i+k ] [ j+l ] ∗ f i l t e r w e i g h t [ k ] [ l ] ;

}
}
out [ i ] [ j ] = sum / f i l t e r s i z e ;

}
}

Listing 1.1: An excerpt from a simple 2D convolution implementation
in C++.

2 2D convolution

2D convolution is a kernel widely used in image and signal processing appli-
cations. It is a kind of MapOverlap operation where a value for every output
pixel is computed based on a weighted average of the corresponding input pixel
alongside neighboring input pixels. Listing 1.1 shows an excerpt from a C++
implementation of 2D convolution. In the implementation, the outer two loops
iterate over all pixels in the image while the inner two loops are used to compute
a new value for a pixel by iterating over its neighboring elements and calculating
their weighted average.

3 GPU Optimizations

As a data parallel operation, the MapOverlap computation is well-suited for
GPU execution especially for large problem sizes. The naive CUDA implemen-
tation can be defined by assigning one thread for computing one output element.
Starting from the naive implementation, the CUDA implementation is further
optimized in the following ways.

Usage of constant memory

The constant memory is a limited (normally 64KB) cache-buffer that can be
used for data stored in GPU device memory. It is hardware optimized for the
case when all threads read the same location. The access latency for constant
memory ranges from one cycle for in cache data to hundreds of cycles depending
on cache locality.

In our framework, the 2D non-separable convolution can be done with or
without usage of a filter weight matrix. In case the filter weight matrix is used,
as in the 2D convolution application, the filter weights are multiplied with the

1 The actual access distance between Matrix elements could be different.
2 GPUs with L1 cache support such as NVIDIA C2050.
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corresponding neighboring elements for each output element. As an element in
the filter weight matrix is accessed in read-only mode by all threads in parallel,
it is an ideal candidate for placement in fast constant memory. The performance
gains from this optimization depend upon the architecture as it could yield up
to 100% performance improvement on non-cache GPUs (e.g. NVIDIA GPUs
before the Fermi architecture). However, for NVIDIA Fermi GPUs with explicit
L1 cache, the performance improvement with usage of constant memory can be
much less due to implicit caching and reuse capabilities of these architectures. For
instance, for NVIDIA C2050, performance improvement up to 30% is observed
over different filter sizes.

Usage of shared memory

In the naive implementation, every thread in a thread-block loads all the neigh-
boring elements from the GPU device memory, which could be very inefficient
especially on non-cache GPUs. Instead, threads in a thread block can use shared
memory to store their neighborhood and can subsequently access it from there.
This optimization can significantly reduce the global memory bandwidth con-
sumption, especially for large filter weight matrices. For example, for a thread
block of 16 × 32 and filter size of 29 × 29, each thread block loads 430592 val-
ues without usage of shared memory. With the usage of shared memory, the
loads are reduced to (16 + 29 − 1) × (32 + 29 − 1) = 2640 values per thread
block, a reduction by a factor of 163. Again, the optimization may not yield that
much difference in performance while executing on GPUs with L1 cache such as
NVIDIA Fermi GPUs.

Adaptive Tiling

Besides memory optimizations mentioned above, another optimization that can
be applied to this class of applications on modern GPUs is known as 1 × N
tiling [10]. A tile refers to a block of input data simultaneously processed by
multiple threads in a thread block. 1 × N tiling refers to a technique of in-
creasing workload for a thread block by assigning N tiles to a thread block to
process instead of 1 tile. This approach reduces the number of thread blocks by
a factor of N . Besides reducing the overhead associated with thread blocks (e.g.
array index calculations, loading constant values), this technique also decreases
the amount of overall neighborhood loads as the number of thread blocks is de-
creased. Despite of its potential advantages, tiling can also result in increased
shared memory usage by a thread block as now each thread block processes N
elements instead of 1. Similarly, register usage can also increase as extra registers
are normally used to save intermediate results.

As shown by van Werkhoven et al. [11], using any fixed tiling factor for an im-
age convolution application can result in sub-optimal performance over different
filter sizes. Furthermore, with a fixed tiling factor (e.g. 4), the program may sim-
ply not work on certain GPUs due to resource limitations (e.g. shared memory
size, number of registers). Rather, the adaptive tiling introduced in [11] where
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the tiling factor is chosen based on different filter sizes and resource limitations
can be used.

The dynamic selection of the tiling factor is interesting for several reasons.
First, there could be several different mechanisms to determine the tiling factor
based on different performance characteristics. Furthermore, an automatic way of
determining the tiling factor over different machine and problem configurations
can help in attaining performance portability.

4 Maximizing resource utilization

Modern GPUs have many types of resources that can affect the performance of
an executing kernel. These resources can be broadly categorized into computa-
tional resources such as ALU and storage resources such as registers and shared
memory. Effective usage of both kind of resources is important for performance
but sometimes a tradeoff exists as both cannot be optimized at the same time.

The adaptive tiling is focused on maximizing utilization of storage resources
of a multiprocessor such as shared memory and registers. On the other hand,
warp occupancy (aka. occupancy) strives for maximizing the computational re-
source utilization of a multiprocessor3. In our work, we consider the tradeoff
between these two related but different maximization functions, i.e., maximizing
computational resource utilization (i.e. maximizing occupancy) or maximizing
storage resource utilization (i.e. maximizing the tiling factor).

Tiling metrics

We define the following two metrics to calculate tiling factors dynamically:

– In the first metric (Φoccupancy), maximizing occupancy is defined as the pri-
mary objective while tiling is maximized as a secondary objective. The ob-
jective function first strives to achieve maximum occupancy (possibly 100%)
while keeping tiling to 1 and later choose to increase the tiling factor to the
maximum level possible without decreasing the already determined occu-
pancy level.

– In the second metric (Φtiling), we do the other way around by maximizing
tiling as the primary objective while keeping occupancy to the minimum
(i.e. assuming only one thread-block per multiprocessor). The occupancy is
considered in case tiling cannot be increased any further (i.e. in our case, we
use at most 1× 16 tiling)4.

The metrics differ in their aggressiveness for tiling. As later shown in section
5, Φoccupancy often results in small tiling factors but greater occupancy while
Φtiling often results in relatively large tiling factors with very low occupancy.

3 The warp occupancy, as defined by NVIDIA [4], is the ratio of active warps per mul-
tiprocessor to the maximum number of active warps supported for a multiprocessor
on a GPU.

4 The limit on the tiling factor is set to allow the secondary objective (i.e. maximizing
occupancy) to be considered besides maximizing tiling only.
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Performance portability support

Both tiling metrics are implemented in the 2D MapOverlap implementation and
the GPU implementation of 2D non-separable convolution can be configured to
use either one of them. The input for these objective functions is input (including
filter) dimensions and CUDA architecture parameters. The former are automat-
ically inferred by the program execution while the latter are determined based
on the compute capabilities of the CUDA architecture. By defining such met-
rics which can be calculated with very low overhead, we can calculate the tiling
filters for different problem sizes on different architectures. In the next section,
we demonstrate how performance portability can be achieved with automatic
calculation of tiling factors when moving to a new architecture.

C2050 GTX280 8800 GT
Compute capability 2.0 1.3 1.1
Number of multiprocessors (MP) 14 30 14
Number of cores in a MP 32 8 8
Processor Clock (GHz) 1.15 1.2 1.5
Local memory (KB) 48 16 16
Cache support yes (16KB) no no
Memory bandwidth (GB/sec) 144 141.7 57.6
Memory interface 384-bit 512-bit 256-bit

Table 1: Evaluation setup.

5 Evaluation

The experiments are conducted on three different NVIDIA GPUs with different
compute capabilities, as shown in Table 1. For experiments on C2050, an input
image of 4096× 4096 is used with filter dimensions ranging from 3 up to 27. For
GTX 280 and 8800 GT experiments, an input image of 2048× 2048 is used with
filter dimensions ranging from 3 up to 25.

The C2050 was the development platform while the GTX280 and 8800 GT
are used to show performance portability and effect of L1 cache. To be realistic,
the overhead of calculating the tiling factors for a given objective function is also
considered as part of the execution time, which proves to be very negligible. The
following implementations are referred to in the evaluation:

– naive implementation: The very simple CUDA implementation without any
explicit optimization.

– optimized implementation: The naive implementation with constant memory
and shared memory usage.

– tiling-optimized implementation: The optimized implementation with tiling.
The tiling factor could be based upon either Φoccupancy or Φtiling.

2D map projection is used to present 3D results in Figure 1, 2 and 3. Besides
scales on x- and y-axis, please consider the differences in the color-scale in each
(sub-)figure for the correct interpretation of results.
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2D convolution using naive implementation (GFLOP/s)
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(a) C2050 (50 GFLOP/s)

2D convolution without tiling (GFLOP/s)
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(b) C2050 (76 GFLOP/s)

2D convolution using naive implementation (GFLOP/s)
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(c) GTX280 (12 GFLOP/s)

2D convolution without tiling (GFLOP/s)
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(d) GTX280 (41 GFLOP/s)

2D convolution using naive implementation (GFLOP/s)
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(e) 8800 GT (1 GFLOP/s)

2D convolution without tiling (GFLOP/s)
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(f) 8800 GT (25 GFLOP/s)

Fig. 1: 2D convolution with naive (a,c,e) and optimized (b,d,f) im-
plementations over different NVIDIA GPUs. Average GFLOP/s are
mentioned in the caption of each sub-figure.
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Usage of shared and constant memory

As mentioned earlier, the effect of applying shared memory and constant mem-
ory optimizations is largely influenced by the caching capabilities of a GPU.
Figure 1 shows performance improvements over different GPU architectures for
the optimized implementation over the naive implementation. On a cache based
C2050, performance improvements are, on average, a factor of almost 1.5. How-
ever, on a GTX280 GPU which has no cache, the performance is different by a
factor of 3.4. On 8800 GT, the performance difference is by a factor of 25 which
is much higher than for the GTX280. This is because of substantial difference
in memory bandwidth of 8800 GT and GTX280 (see Table 1) which has a big
performance impact for global memory accesses done frequently in the naive
implementation.

Φoccupancy Φtiling

Tiling factorOccupancyTiling factorOccupancy

C2050 3.83 100% 14.33 33.34%

GTX280 1.63 75% 3.83 25%

8800 GT 7.35 33.34% 7.35 33.34%

Table 2: Average tiling factor and occupancy achieved with 2 metrics
on different GPUs.

Tradeoff between Φoccupancy and Φtiling

Table 2 highlights the tradeoff between the two metrics on different GPUs. For
C2050, when maximizing occupancy (Φoccupancy), the tiling factor is reduced
by a factor of 3.74 to gain the last 67% in occupancy. Similarly, for GTX280,
the occupancy was much less when optimizing for tiling (Φtiling) in comparison
to when optimizing for occupancy. However, for 8800 GT, the two metrics do
not yield any difference. This is because of constraints in maximizing occupancy
(Φoccupancy) any further than what is assumed initially in Φtiling (i.e. 1 thread
block per multi-processor).

Performance implications (Φoccupancy and Φtiling)

The maximization goal may have a profound impact on the tiling factors chosen
and consequently on the achieved performance as shown in Figure 2. Further-
more, on all GPUs, Φtiling yields better or equal performance than Φoccupancy

for this particular application.

Performance portability

Table 3 shows the CUDA architecture specific parameters that are used to cal-
culate the tiling factors. The table also shows the parameter values for C2050,
GTX280 and 8800 GT GPUs which can be obtained easily e.g., by querying
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2D convolution when maximizing for occupancy (GFLOP/s)
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(a) C2050 (180 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)
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(b) C2050 (274 GFLOP/s)

2D convolution when maximizing for occupancy (GFLOP/s)
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(c) GTX280 (50 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)
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(d) GTX280 (95 GFLOP/s)

2D convolution when maximizing for occupancy (GFLOP/s)
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(e) 8800 GT (59 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)

 0  4  8  12  16  20  24  28

Filter Width

 0

 4

 8

 12

 16

 20

 24

 28

F
ilt

er
 H

ei
gh

t

 35

 40

 45

 50

 55

 60

 65

 70

 75

(f) 8800 GT (59 GFLOP/s)

Fig. 2: 2D convolution when tiling factors are chosen for maximizing
either occupancy (Φoccupancy, a,c,e) or tiling (Φtiling, b,d,f) over different
NVIDIA GPUs. Average GFLOP/s are mentioned in the caption of
each sub-figure.
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C2050 GTX280 8800 GT

BLOCK SIZE X 16 16 16

BLOCK SIZE Y 32 16 16

THREADS PER MP 1536 1024 768

NUM REGISTERS PER MP 32768 16384 8192

SHARED MEM SIZE BYTES 48800 16384 16384

THREADS PER WARP 32 32 32

WARPS PER MP 48 32 24

THREAD BLOCK PER MP 8 8 8

Table 3: CUDA architecture specific parameters.

the device capabilities. Based on these parameters alongside the problem size
and filter dimensions, the two metrics generate the tiling factors for their corre-
sponding maximization goal. As the tiling factors are automatically calculated
and considered for execution, this gives us performance portability when moving
from one GPU architecture to another without requiring manual changes in the
implementation.

To illustrate performance portability, we compare performance of our solution
with a baseline implementation for a given GPU architecture. For the solution,
we have used the tiling-optimized implementation with Φtiling as its maximiza-
tion metric. For the baseline implementation, we have considered two alterna-
tives: 1) To use a platform-specific optimized implementation for a given GPU
architecture. 2) To use a generic fairly optimized implementation that can be
executed on different GPU architectures without requiring rewriting the code.

We opted for the second alternative as the first one would require lot of
extra effort for writing optimized implementations for each of the three GPUs
that we have considered. Following the second alternative, we have chosen our
optimized implementation as the baseline implementation for comparison. The
choice is justified as the optimized implementation provides significant speedups
over naive implementation for different class of GPU architectures (see Figure
1) and it is also fairly generic as it can run on any modern GPU with a shared
memory support.

We define relative performance on a platform as ratio between the average
performance of solution and the baseline implementation. By measuring this
ratio, we consider our solution as performance portable if it can retain the relative
performance to a potentially higher level (at least >1, i.e., better than the baseline
implementation for every invocation).

Figure 3 compares the performance of 2D convolution with solution over
baseline implementation. The relative performance is 3.6, 2.3, and 2.4 on
average for C2050, GTX280 and 8800 GT GPUs respectively which is much
higher than our threshold value i.e., 1.
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2D convolution without tiling (GFLOP/s)
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(a) C2050 (76 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)
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(b) C2050 (274 GFLOP/s)

2D convolution without tiling (GFLOP/s)
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(c) GTX280 (41 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)
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(d) GTX280 (95 GFLOP/s)

2D convolution without tiling (GFLOP/s)
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(e) 8800 GT (25 GFLOP/s)

2D convolution when maximizing for tiling (GFLOP/s)
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(f) 8800 GT (59 GFLOP/s)

Fig. 3: Performance (GFLOP/s) for 2D convolution with optimized
implementation (a,c,e) and tiling-optimized implementation (Φtiling,
b,d,f) over different NVIDIA GPUs. Average GFLOP/s are men-
tioned in the caption of each sub-figure.
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6 Related work

The work related most to our work is by van Werkhoven et al. [11]. Our work
is more about designing a generic skeleton implementation which can be used
for different applications other than 2D convolution. Secondly, we present and
evaluate the tradeoffs between different resource utilization criteria with the help
of separate metrics. Another important difference is that in our work, we show
how to achieve performance portability by automatic calculation of these metrics
while moving between different GPU architectures.

There are several other convolution implementations for CUDA. They either
work only for separable filters [6] or are based on FFT convolution with fixed
filter sizes [7, 8].

7 Conclusions and Future work

Based on our findings, we conclude that performance gains achieved from con-
stant and shared memory optimizations are largely influenced by non-/existence
of L1 cache and global memory bandwidth of a GPU architecture. Furthermore,
we have shown how to retain performance while porting the application between
different GPU architectures by automatic calculation of tiling metrics for the
new architecture.

For future work, the approach presented in this paper for achieving perfor-
mance portability can be used with other skeleton implementations.
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