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Abstract
We present SkePU, a C++ template library which provides a simple
and unified interface for specifying data-parallel computations with
the help of skeletons on GPUs using CUDA and OpenCL. The
interface is also general enough to support other architectures, and
SkePU implements both a sequential CPU and a parallel OpenMP
backend. It also supports multi-GPU systems.

Copying data between the host and the GPU device memory
can be a performance bottleneck. A key technique in SkePU is the
implementation of lazy memory copying in the container type used
to represent skeleton operands, which allows to avoid unnecessary
memory transfers.

We evaluate SkePU with small benchmarks and a larger appli-
cation, a Runge-Kutta ODE solver. The results show that a skeleton
approach to GPU programming is viable, especially when the com-
putation burden is large compared to memory I/O (the lazy memory
copying can help to achieve this). It also shows that utilizing several
GPUs have a potential for performance gains. We see that SkePU
offers good performance with a more complex and realistic task
such as ODE solving, with up to 10 times faster run times when
using SkePU with a GPU backend compared to a sequential solver
running on a fast CPU.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel Architectures; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

General Terms Algorithms, Languages, Performance

Keywords Skeleton Programming, GPU, CUDA, OpenCL, Data
Parallelism

1. Introduction
The general trend towards multi- and many-core based systems
constitutes a disruptive change in the fundamental programming
model in mainstream computing and requires rewriting of sequen-
tial application programs into parallel form to turn the steadily in-
creasing number of cores into performance. Worse yet, there is a
number of very different architectural paradigms such as homo-
geneous SMP-like multicores, heterogeneous multicores like Cell
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Broadband Engine, or hybrid CPU/GPU systems, sometimes with
a very high complexity of programming such systems efficiently.
Moreover, we observe a quick evolution process on the hardware
side, pushing new architecture generations and variations on the
market with short time intervals. The lack of a universal parallel
programming model immediately leads to a portability problem.

Skeleton programming [3, 15, 16] is an approach that could
solve the portability problem to a large degree. It requires the
programmer to rewrite a program using so-called skeletons, pre-
defined generic components derived from higher-order functions
that can be parameterized in sequential problem-specific code, and
for which efficient implementation for a given target platform may
exist. Skeleton programming constrains the programmer to using
only the given set of skeletons for the code that is to be paral-
lelized or ported automatically—computations that do not fit any
predefined skeleton (combination) still have to be rewritten man-
ually. In turn, parallelism and leveraging other architectural fea-
tures comes almost for free for skeleton-expressed computations,
as skeleton instances can easily be expanded or bound to equiva-
lent expert-written efficient target code that encapsulates all low-
level platform-specific details such as managing parallelism, load
balancing, communication, utilization of SIMD instructions etc.

In existing imperative skeleton programming environments, the
parametrization of skeletons in problem-specific code can be based
on one of four different techniques: On passing function variables
(i.e., function pointers), on subclassing skeleton classes and defin-
ing abstract member functions in OO-based skeleton systems, on
macro expansion including (C++) template programming, and on
language constructs requiring a separate compiler. Today, it seems
that the most promising approach is the one based on C++ tem-
plates, as it is very powerful, does not incur run-time overhead, and
requires no additional tools.

In this work, we make the following contributions:

• We describe the design and implementation of SkePU, a new
C++ based skeleton programming library for single- and multi-
GPU systems that supports multiple back-ends, namely CUDA
and OpenCL for GPUs and OpenMP for multi-core CPUs.

• We show how to optimize memory transfers for skeleton
operand data by a lazy copying technique implemented in the
vector data container that is used in SkePU to represent array
operands.

• We show with an experimental evaluation that code ported to
SkePU leads to significant speedup if run on a GPU compared
to a fast CPU core.

The remainder of this paper is organized as follows: We give a
short introduction to the architecture and programming of GPUs in
Section 2. The design and implementation of SkePU is described



in Section 3. In Section 4 we report on the experimental evaluation.
Section 5 reviews related work, and Section 6 concludes. Section 7
gives a short discussion of the current limitations of SkePU and
proposes future work on the library.

2. NVIDIA GPU Architecture
For the past decades, the demand for faster and faster graphic ac-
celeration has lead the way for a quick development in the area
of GPU (Graphics Processing Unit) architecture. At first they were
mainly used for pure graphic calculations, but when programmable
shaders started to arrive, people began experimenting with utiliz-
ing the GPU’s processing power for other purposes. Its potential
in non-graphic related areas was recognized and in 2006 NVIDIA
released the first version of CUDA, a general purpose parallel com-
puting architecture, whose purpose was to simplify the develop-
ment of applications that utilize the power of the GPU [14].

One of the big differences between a CPU and a GPU is how
they are composed, or what the chip-area is used for. Since the
CPU is not specialized on a specific task, it is instead aimed at
being fairly general, with a lot of transistors being used for caching
and flow control. The GPU, on the other hand, devotes much
more space on the chip for pure floating-point calculations since
having a high throughput of massively parallel computations is
what graphics processing is all about. This makes the GPU very
powerful on certain kinds of problems, especially those that have a
data-parallel nature, preferably with much computation compared
to memory transfers [14].

The CUDA architecture consists of several compute units called
SMs (Streaming Multiprocessors). They do all the thread manage-
ment and are able to switch threads with no scheduling overhead.
This zero-overhead allows one to use, for example, one thread per
data element in data parallel problems. The multiprocessor exe-
cutes threads in groups of 32, called warps, but each thread ex-
ecutes with its own instruction address and register state, which
allows for separate branching. It is, however, most efficient if all
threads in one warp take the same execution path, otherwise the
execution in the warp is sequentialized. Another important thing to
think about is to allow simultaneous memory accesses to be coa-
lesced into only one memory transaction; how this is done is de-
scribed in [14].

2.1 Programming with CUDA and OpenCL
Programming for the NVIDIA CUDA architecture can be done via
two platforms: NVIDIAs own CUDA platform, which is divided
into CUDA runtime and CUDA driver APIs, and OpenCL. For
SkePU, both CUDA runtime and OpenCL are available as backends
even though they differ quite a bit in design.

When the CUDA runtime is used, device and host code are
mixed in the same source. To separate them, the source code must
be compiled with NVIDIAs own compiler NVCC. With the help
of a conventional C/C++ compiler like GCC, it generates an exe-
cutable with an embedded binary form of the device code. Upload-
ing of code to the device and its execution is handled automatically.

OpenCL is an open standard by the Khronos group [13]. It does
not specifically target NVIDIA GPUs but instead aims at being a
more general standard for programming heterogeneous processing
platforms. It takes a different approach to device code generation.
Instead of using a separate compiler, device code is stored as strings
in the program which can be used as arguments to API calls that
compile and upload the code to the device at runtime.

SkePU implements both of these as backends, with the same
interface and no need to change the code. The only difference is that
when compiling for CUDA, the source file must have the extension
.cu for the NVCC compiler to recognize it.

skepu : : Vector<double> i n p u t ( 1 0 0 , 1 0 ) ;
.
.
i n p u t . f l u s h ( ) ;

Listing 1. Vector creation.

3. SkePU
SkePU is a C++ template library designed to make parallel pro-
gramming easier with the use of higher-order functions, skeletons.
It is modeled after BlockLib [1], a similar C library for the IBM
Cell BE, and implements the same set of data parallel skeletons.
SkePU was originally constructed with the aim of providing the
same functionality as BlockLib, but instead of using the Cell pro-
cessor, it was geared towards GPUs, using CUDA and/or OpenCL
as backend. A large portion of the library therefore consists of GPU
memory management, kernels and, in the case of OpenCL, code
generation and compilation. The interface is however fairly general
and does not make the library bound to only GPUs. This can also
be seen in SkePU as there is a sequential CPU and an OpenMP
based implementation of all the skeletons. Which variant to use
can be controlled by defining either SKEPU_CUDA, SKEPU_OPENCL
or SKEPU_OPENMP in the source code. With no defines, the single-
thread CPU variant is used. Other modifications of the source code
are not necessary since the interface is the same for all implemen-
tation variants.

In addition to the skeletal functions, SkePU also includes one
container which must be used when doing computations with the
skeletons. It is a vector/array type, designed after the STL container
vector. Actually, its implementation uses the STL vector inter-
nally and therefore also has an interface mostly compatible with it.
The SkePU vector hides GPU memory management and also uses
lazy memory copying to avoid unnecessary memory operations.

3.1 Container
As mentioned earlier, the only container in the current version of
SkePU is an array or vector. It is modeled after the STL vector
and is largely compatible with it. However, since it uses proxy
elements for some operations to be able to distinguish between
reads and writes, some behavior might differ. See [12] for more
information.

The SkePU vector keeps track of which parts of it are cur-
rently allocated and uploaded to the GPU. If a computation is done,
changing the vector in the GPU memory, it is not directly trans-
ferred back to the host memory. Instead, the vector waits until an
element is accessed on the host side before any copying is done (for
example through the [] operator); this lazy memory copying is of
great use if several skeletons are called one after the other, with no
modifications of the vector by the host in between. In that case, the
vectors are kept on the device (GPU) through all the computations,
which greatly improves performance. Most of the memory copying
is done implicitly but the vector also contains a flush operation
which updates the vector from the device and deallocates its mem-
ory. Listing 1 shows how a vector of size 100 is created with all
elements initialized to 10 and also how flush is called.

3.2 User Functions
To provide a simple way of defining functions that can be used with
the skeletons, several preprocessor macros have been implemented
that expand to the right kind of structure that constitutes the func-
tion. In SkePU, user functions are basically a struct with member
functions for CUDA and CPU, and strings for OpenCL. Listing 2
shows one of the macros and its expansion.



BINARY FUNC( p lus , double , a , b ,
re turn a+b ;

)

/ / expands t o :

s t r u c t p l u s
{

skepu : : FuncType funcType ;
s t d : : s t r i n g func CL ;
s t d : : s t r i n g funcName CL ;
s t d : : s t r i n g d a t a t y p e C L ;
p l u s ( )
{

funcType = skepu : : BINARY ;
funcName CL . append ( ” p l u s ” ) ;
d a t a t y p e C L . append ( ” do ub l e ” ) ;
func CL . append (
” d ou b l e p l u s ( dou b l e a , do ub l e b )\n ”
”{\n ”
” r e t u r n a+b ;\ n ”
”}\n ” ) ;

}
double CPU( double a , double b )
{

re turn a+b ;
}

d e v i c e double CU( double a , double b )
{

re turn a+b ;
}

} ;

Listing 2. User function, macro expansion.

UNARY FUNC( name , type1 , param1 , func )
UNARY FUNC CONSTANT( name , type1 , param1 , cons t1 , func )
BINARY FUNC( name , type1 , param1 , param2 , func )
BINARY FUNC CONSTANT( name , type1 , param1 , param2 , \
cons t1 , func )
TERNARY FUNC( name , type1 , param1 , param2 , param3 , func )
TERNARY FUNC CONSTANT( name , type1 , param1 , param2 , \
param3 , cons t1 , func )
OVERLAP FUNC( name , type1 , over , param1 , func )
ARRAY FUNC( name , type1 , param1 , param2 , func )

Listing 3. Available macros.

The macros available in the current version of SkePU are shown
in Listing 3.

3.3 Skeleton Functions
In the object-oriented spirit of C++, the skeleton functions in
SkePU are represented by objects. By overloading operator()
they can be made to behave in a way similar to regular functions.
All of the skeletons contain member functions representing each
of the different implementations, CUDA, OpenCL, OpenMP and
CPU. The member functions are called CU, CL, OMP and CPU
respectively. If the skeleton is called with operator(), the library
decides which one to use depending on what is available. In the
OpenCL case, the skeleton objects also contain the necessary code
generation and compilation procedures. When a skeleton is instan-
tiated, it creates an environment to execute in, containing all avail-
able OpenCL or CUDA devices in the system. This environment is
created as a singleton so that it is shared among all skeletons in the
program.

The skeletons can be called with whole vectors as arguments,
doing the operation on all elements of the vector. Another way to
call them is with iterators. In that case, a start iterator and an end
iterator are instead provided which makes it possible to only apply

BINARY FUNC( p lus , double , a , b ,
re turn a+b ;

)

/ / C r e a t e s a r e d u c t i o n s k e l e t o n from t h e p l u s o p e r a t o r
skepu : : Reduce<p lus> globalSum ( new p l u s ) ;

skepu : : Vector<double> i n p u t ( 1 0 0 , 1 0 ) ;

/ / A p p l i e s t h e s k e l e t o n t o t h e v e c t o r i n p u t .
/ / Backend depends on what # d e f i n e s are made .
double sum = globalSum ( i n p u t ) ;
double ha l f sum = globalSum ( i n p u t . b e g i n ( ) ,

i n p u t . b e g i n ( ) + 5 0 ) ;

/ / C a l l CPU backend e x p l i c i t l y
double sum = globalSum . CPU( i n p u t ) ;

Listing 4. Skeleton creation.

the skeleton on parts of the vector. Listing 4 shows how a skeleton is
created from a user-defined function and how it is used. First a user
function called plus is created as described in Section 3.2. Then
a skeleton object is instantiated with that function as a parameter.
In the current version of SkePU it needs to be provided both as
a template parameter and as a pointer to an instantiated version
of the user function (remember that the user functions are in fact
structs).

As mentioned earlier, SkePU implements the same set of skele-
tons as BlockLib: The two common data parallel patterns Map and
Reduce, a combination of those called MapReduce, and a variant
of Map called MapOverlap. Apart from these, SkePU also imple-
ments another variant of Map called MapArray. Below is a short
description of each of the skeletons.

In the Map skeleton, every element in the result vector r is
a function f of the corresponding elements in one or more input
vectors v0 . . . vk. The vectors have length N . A more formal way
to describe this operation is: r[i] = f(v0[i], . . . , vk[i]) ∀i ∈
{0, . . . , N − 1} In SkePU, the number of input vectors k is limited
to a maximum of three (k ≤ 3). An example of Map, which
calculates the result vector as the sum of two input vectors is shown
in listing 5. The output is shown as a comment at the end. A Map
skeleton with the name sum is instantiated in the same way as
described earlier and is then applied to vector v0 and v1 with result
in r.

Reduction is another common data parallel pattern. The scalar
result is computed by applying a commutative associative binary
operator ⊕ between each element in the vector. With the same
notation as before, reduction can be described like this: r = v[0]⊕
v[1] ⊕ . . . ⊕ v[N − 1]. A reduction using + as operator would,
for example, yield the global sum of the input vector. This is
shown in listing 6. The syntax of skeleton instantiation is the same
as before but note when calling the reduce skeleton in the line
double r = globalSum(v0) the scalar result is returned by the
function rather than returned in a parameter.

MapReduce is basically just a combination of the two above:
It produces the same result as if one would first Map one or
more vectors to a result vector, then do a reduction on that re-
sult. It is provided since it combines the mapping and reduction
in the same computation kernel and therefore avoids some syn-
chronization, which speeds up the calculation. Formally: r =
f(v0[0], . . . , vk[0]) ⊕ . . . ⊕ f(v0[N − 1], . . . , vk[N − 1]). An
example of MapReduce is shown in listing 7 which computes the
dot product. The MapReduce skeleton is instantiated in a simi-
lar way as the Map and Reduce skeletons, but since it needs two
user functions, one for the mapping part and one for reduction,
two parameters are needed at instantiation time. First is the map-



# i n c l u d e <i o s t r e a m>

# i n c l u d e ” skepu / v e c t o r . h ”
# i n c l u d e ” skepu / map . h ”

BINARY FUNC( p lus , double , a , b ,
re turn a+b ;

)

i n t main ( )
{

skepu : : Map<p lus> sum ( new p l u s ) ;

skepu : : Vector<double> v0 ( 1 0 , 1 0 ) ;
skepu : : Vector<double> v1 ( 1 0 , 5 ) ;
skepu : : Vector<double> r ;

sum ( v0 , v1 , r ) ;

s t d : : cou t<<” R e s u l t : ” <<r <<”\n ” ;

re turn 0 ;
}

/ / Ou tpu t
/ / R e s u l t : 15 15 15 15 15 15 15 15 15 15

Listing 5. A Map example.

# i n c l u d e <i o s t r e a m>

# i n c l u d e ” skepu / v e c t o r . h ”
# i n c l u d e ” skepu / r e d u c e . h ”

BINARY FUNC( p lus , double , a , b ,
re turn a+b ;

)

i n t main ( )
{

skepu : : Reduce<p lus> globalSum ( new p l u s ) ;

skepu : : Vector<double> v0 ( 1 0 0 0 , 2 ) ;

double r = globalSum ( v0 ) ;

s t d : : cou t<<” R e s u l t : ” <<r <<”\n ” ;

re turn 0 ;
}

/ / Ou tpu t
/ / R e s u l t : 2000

Listing 6. An example of a reduction with + as operator.

ping function then the reduce function. In listing 7 a MapReduce
skeleton is created which will map two vectors with mult and then
reduce the result with plus producing the dot product between the
two vectors.

The higher order function MapOverlap is similar to a Map, but
each element r[i] of the result vector is a function of several adja-
cent elements of one input vector that reside at a certain constant
maximum distance from i in the input vector. The number of these
elements is controlled by the parameter overlap. With the nota-
tion used above: r[i] = f(v[i−d], v[i−d+1], . . . , v[i+d])∀i ∈
{0, . . . , N−1}. Convolution is an example of a calculation that fits
into this pattern. The edge policy, how MapOverlap behaves when
a read outside the array bounds is performed, can be either cyclic
or constant. When cyclic, the value is taken from the other side of
the array and when constant, a user-defined constant is used. When
nothing is specified, the default behavior in SkePU is constant with

# i n c l u d e <i o s t r e a m>

# i n c l u d e ” skepu / v e c t o r . h ”
# i n c l u d e ” skepu / mapreduce . h ”

BINARY FUNC( p lus , double , a , b ,
re turn a+b ;

)

BINARY FUNC( mult , double , a , b ,
re turn a∗b ;

)

i n t main ( )
{

skepu : : MapReduce<mult , p lu s> d o t P r o d u c t ( new mult ,
new p l u s ) ;

skepu : : Vector<double> v0 ( 1 0 0 0 , 2 ) ;
skepu : : Vector<double> v1 ( 1 0 0 0 , 2 ) ;

double r = d o t P r o d u c t ( v0 , v1 ) ;

s t d : : cou t<<” R e s u l t : ” <<r <<”\n ” ;

re turn 0 ;
}

/ / Ou tpu t
/ / R e s u l t : 4000

Listing 7. A MapReduce example that computes the dot product.

# i n c l u d e <i o s t r e a m>

# i n c l u d e ” skepu / v e c t o r . h ”
# i n c l u d e ” skepu / mapover lap . h ”

OVERLAP FUNC( over , double , 2 , a ,
re turn a [−2]∗0.4 f + a [−1]∗0.2 f + a [ 0 ]∗0 . 1 f +

a [ 1 ]∗0 . 2 f + a [ 2 ]∗0 . 4 f ;
)

i n t main ( )
{

skepu : : MapOverlap<over> conv ( new ove r ) ;

skepu : : Vector<double> v0 ( 1 0 , 1 0 ) ;
skepu : : Vector<double> r ;

conv ( v0 , r , skepu : : CONSTANT, ( double ) 0 ) ;

s t d : : cou t<<” R e s u l t : ” <<r <<”\n ” ;

re turn 0 ;
}

/ / Ou tpu t
/ / R e s u l t : 7 9 13 13 13 13 13 13 9 7

Listing 8. A MapOverlap example.

0 as value. In the current implementation of SkePU, when using any
of the GPU variants of MapOverlap, the maximum overlap that can
be used is limited by the shared memory available to the GPU, and
also the maximum number of threads per block. These two fac-
tors typically limit the overlap to < 256. An example program that
does a convolution with the help of MapOverlap is shown in list-
ing 8. Note that the indexing is relative to the element calculated,
0 ± overlap. A MapOverlap skeleton is instantiated with over as
user function and is then called with vector v0 as input and vector
r as result. It is also using the constant 0 at the edges, decided by
the parameters skepu::CONSTANT and (double)0.



# i n c l u d e <i o s t r e a m>

# i n c l u d e ” skepu / v e c t o r . h ”
# i n c l u d e ” skepu / mapar ray . h ”

ARRAY FUNC( a r r , double , a , b ,
i n t i n d e x = ( i n t ) b ;
re turn a [ i n d e x ] ;

)

i n t main ( )
{

skepu : : MapArray<a r r> r e v e r s e ( new a r r ) ;

skepu : : Vector<double> v0 ( 1 0 ) ;
skepu : : Vector<double> v1 ( 1 0 ) ;
skepu : : Vector<double> r ;

/ / S e t s v0 = 1 2 3 4 . . .
/ / v1 = 9 8 7 6 . . .
f o r ( i n t i = 0 ; i < 1 0 ; ++ i )
{

v0 [ i ] = i +1 ;
v1 [ i ] = 10− i−1;

}

r e v e r s e ( v0 , v1 , r ) ;

s t d : : cou t<<” R e s u l t : ” <<r <<”\n ” ;

re turn 0 ;
}

/ / Ou tpu t
/ / R e s u l t : 10 9 8 7 6 5 4 3 2 1

Listing 9. A MapArray example that reverses a vector

MapArray is yet another variant of Map. It produces a result
vector from two input vectors where each element of the result,
r[i], is a function of the corresponding element of one of the input
vectors, v1[i] and any number of elements from the other input
vector v0. This means that at each call to the user defined function
f , which is done for each element in v1, all elements from v0 can be
accessed. The notation for accessing an element in v0 is the same
as arrays in C. v0[i] where i is a number from 0 to the length of v0.
Formally: r[i] = f(v0, v1[i])∀i ∈ {0, . . . , N−1}. MapArray was
first devised to avoid the overlap constraints of MapOverlap and
to provide a simple yet powerful way of mapping several elements
of an input vector. Listing 9 shows how MapArray can be used to
reverse a vector by using v1[i] as index to v0. A MapArray skeleton
is instantiated and called with v0 and v1 as inputs and r as output.
v0 will be corresponding to parameter a in the user function arr
and v1 to b. Therefore, when the skeleton is applied, each element
in v1 can be mapped to any number of elements in v0. In listing
9, v1 contains indexes to v0 of the form 9, 8, 7..., therefore, as the
user function arr specifies, the first element in r will be v0[9] the
next v0[8] etc, resulting in a reverse of v0.

3.4 Dependencies
SkePU does not use any third party libraries except for CUDA and
OpenCL. It does however make some use of the C++ standard
library, especially STL which must be available for the library to
compile. If either CUDA or OpenCL is to be used, of course they
must also be installed. CUDA programs need to be compiled with
NVCC since CUDA support is provided with the CUDA runtime
API. SkePU is a template library, which means that there is no need
to link against a precompiled library, only include the header files.

3.5 Multi-GPU support
SkePU has support for carrying out computations with the help
of several GPUs on a data-parallel level. It utilizes the different
GPUs by dividing the input vectors equally amongst them and
doing the calculations in parallel on the devices. Here CUDA and
OpenCL differ a lot. In OpenCL, one CPU thread can control
several GPUs, by switching queues. In CUDA, or to be more
precise, in the CUDA runtime system which SkePU is based on,
this is not possible. Instead, each CPU thread is bound to one
device. To make multi-GPU computation possible, several host
threads must then be created. This is done in SkePU, but in the
current version new threads are started for each skeleton call and
bound to devices; this binding can take a lot of time, and hence
the multi-GPU support in SkePU with CUDA is not very efficient.
With OpenCL however, it works much better.

By default, SkePU will utilize as many GPUs as it can find in the
system; however, this can be controlled by defining SKEPU_NUMGPU.
Setting it to 0 makes it use its default behavior. Any other number
represents the number of GPUs it should try to use.

4. Evaluation
All of the following evaluations were performed on a server
equipped with 2 quad-core Intel(R) Xeon(R) CPU E5520 clocked
at 2.27GHz, making a total of 8 cores available on the CPU side.
Further it had two NVIDIA Corporation GT200 [Tesla C1060]
GPUs installed. It ran Linux with kernel version 2.6.33 and GCC
4.5 (for compilation with NVCC, GCC 4.3 was used due to prob-
lems with using STL together with CUDA code with newer ver-
sions of GCC). CUDA version 3.0 was used with NVIDIA drivers
195.36.15 and their included OpenCL implementation.

Since there are problems with running multi-GPU using CUDA
as backend in the current version of SkePU (see Section 3.5 for
an explanation), no evaluation was done with this combination.
Instead, the multi-GPU support was evaluated using OpenCL.

4.1 Time Distribution
To see how the execution time is distributed when calling a skeleton
with a GPU backend, some measurements have been made on small
test cases and the result can be seen in figure 1. Time was measured
with OpenCL as backend. The test functions are shown in Listing
10. The dominating time for all skeletons is the memory transfer
time; this is of course dependent on how computation-heavy the
user-defined functions are, and since the test functions are quite
small, this result is expected. It is however important to note this
difference in time since eliminating unnecessary memory transfers
is a key factor in reaching good performance.

4.2 Gaussian Blur
The MapOverlap skeleton was tested with a common operation in
computer graphics, Gaussian blur. It is performed by convolving
the image with a Gaussian function producing a new smoother och
blurred image. The method basically calculates the new value of
the pixel based on its own and its surrounding pixel values. It can
be done either in two dimensions, for each pixel access a square
around it, or in one dimension by running two passes over the im-
age, one row-wise and one column-wise. Since SkePU at the mo-
ment only works with a one dimensional data structure, the second
approach was used. When calculating a pixel value, the surround-
ing pixels are needed but only in a limited neighbourhood. This
fits well into the calculation pattern of the MapOverlap skeleton.
MapArray was also used to restructure the array from being saved
row-wise, to column-wise. The blurring calculation then becomes:
MapOverlap to blur horizontally, MapArray to restructure image
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Figure 1. Time distribution for the implemented skeletons.
OpenCL backend.

BINARY FUNC( m a p t e s t , double , a , b ,
re turn ( fmax ( a , b )∗ ( a−b ) ) ;

)

BINARY FUNC( r e d u c e t e s t , double , a , b ,
re turn ( a + b ) ;

)

OVERLAP FUNC( m a p o v e r l a p t e s t , double , 5 , a ,
re turn a [−5]∗0.5 f + a [−4]∗0.6 f +

a [−3]∗0.7 f + a [−2]∗0.8 f +
a [−1]∗0.9 f + a [ 0 ] + a [ 1 ]∗0 . 9 f +
a [ 2 ]∗0 . 8 f + a [ 3 ]∗0 . 7 f + a [ 4 ]∗0 . 6 f + a [ 5 ]∗0 . 5 f ;

)

ARRAY FUNC( m a p a r r a y t e s t , double , a , b ,
i n t i n d e x ;
i n d e x = ( i n t ) b ;
re turn ( a [ i n d e x ] ) ;

)

Listing 10. Functions used in time distribution evaluation.

and MapOverlap to blur vertically. The image was first loaded into
a vector with padding between rows.

Timing was only done on the actual blur computation, not in-
cluding the loading of images and creation of vectors. For CUDA
and OpenCL, the time for transferring the image to the GPU and
copying the result back is included. The filtering was done with
two passes of a 19 value filter kernel which can be seen in Listing
11. For simplicity only grayscale images of quadratic sizes were
used in the benchmark. The result can be seen in figure 2 where
2(a) shows time when applying the filter kernel once to the image
and 2(b) when applying it nine times in a row, resulting in heavier
blur. We see that, while faster than the CPU variant, CUDA and
OpenCL versions are slower than the one using OpenMP on 8 CPU
cores for one filtering. This is due to the memory transfer time be-
ing much larger than the actual calculation. In figure 2(b) however
filtering is done nine times which means more computations and
less memory I/O due to the lazy memory copying of the vector.
Then the two single GPU variants outperform even the OpenMP
version. Since there is a data dependency in the MapOverlap skele-
ton when running on multiple-GPUs, we also see that running this
configuration loses a lot of performance when applying MapOver-

OVERLAP FUNC( b l u r k e r n e l , i n t , 19 , a ,
re turn ( a [−9] + 18∗a [−8] + 153∗ a [−7] + 816∗ a [−6] +

3060∗ a [−5] + 8568∗ a [−4] + 18564∗ a [−3] +
31824∗ a [−2] + 43758∗ a [−1] + 48620∗ a [ 0 ] +
43758∗ a [ 1 ] + 31824∗ a [ 2 ] + 18564∗ a [ 3 ] +
8568∗ a [ 4 ] + 3060∗ a [ 5 ] + 816∗ a [ 6 ] + 153∗ a [ 7 ] +
18∗a [ 8 ] + a [9])>>18;

)

Listing 11. User function used by MapOverlap when blurring an
image.

lap several times in a row because it needs to transfer data between
the GPUs, via the host.

4.3 Dot Product
The performance of the MapReduce skeleton was measured by cal-
culating the dot product of two vectors. It was then compared to
the performance of the cublasDdot() function in the CUBLAS li-
brary provided by NVIDIA. SkePU was compiled both with CUDA
and OpenCL backends and all the calculations were done with dou-
ble precision. The time of only the dot product calculation was
measured, excluding the time of copying the vector. The results
can be seen in Figure 3 where the time is a total time of 1000
calls to the dot product routine. We see that the performance of the
SkePU CUDA version is very similar to cublasDdot() although
CUBLAS performs slightly better in the course of 1000 runs. The
SkePU variant with OpenCL as backend using only one GPU is a
bit slower while the multi-GPU variant shows its potential, espe-
cially at larger vector sizes. Using two GPUs it shows a speedup of
just under 2.

4.4 A Runge-Kutta ODE Solver
To see how well SkePU performed in a more realistic setting with
a more complex task, a sequential Runge-Kutta ODE solver was
ported to GPU using the SkePU library. The original code used for
the porting is part of LibSolve, a library of various Runge-Kutta
solvers for ODEs by Korch and Rauber [9]. This is the same library
used by BlockLib in [1] for evaluation.

LibSolve contains several Runge-Kutta implementations, iter-
ated and embedded ones, as well as implementations for parallel
machines using shared or distributed memory. Similarly to Block-
Lib, the simplest default sequential implementation was used for
the port to SkePU, however other solver variants were used un-
modified for comparison.

The LibSolve package contains two ODE test sets, one called
BRUSS2D which is based on the two-dimensional brusselator
equation. The other one is called MEDAKZO, the medical Akzo
Nobel problem [9]. BRUSS2D consists of two variants depending
on the ordering of grid points, BRUSS2D-MIX and BRUSS2D-
ROW. For evaluation of SkePU only BRUSS2D-MIX was consid-
ered. Four different grid sizes (problem size) were evaluated, 250,
500, 750 and 1000.

The porting was fairly straight forward since the default sequen-
tial solver in LibSolve is a conventional Runge-Kutta solver con-
sisting of several loops over arrays sized according to the problem
size. These loops could instead be replaced by calls to the Map,
Reduce and MapReduce skeletons. The right hand side evaluation
function was implemented with the MapArray skeleton.

As mentioned earlier, the benchmarking was done using the
BRUSS2D-MIX problem with four different problem sizes (N=250,
N=500, N=750 and N=1000). In all tests the integration interval
was 0-4 (H=4) and time was measured with LibSolves internal
timer functions, which on UNIX systems uses gettimeofday().
The different solver variants used in the testing were:
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ls-seq-def: The default sequential implementation in LibSolve.

ls-seq-A: A slightly optimized variant of ls-seq-def.

ls-shm-def: The default shared memory implementation in Lib-
Solve. It uses pthreads and were run with 8 threads, one for
each core of the benchmarking computer.

ls-shm-A: A slightly optimized variant of ls-shm-def. It also uses
pthreads and were run with 8 threads.

skepu-CL: SkePU port of ls-seq-def using OpenCL as backend
and running on one Tesla C1060 GPU.

skepu-CL-multi: SkePU port of ls-seq-def using OpenCL as
backend and running on two Tesla C1060 GPU.

skepu-CU: SkePU port of ls-seq-def using CUDA as backend and
running on one Tesla C1060 GPU.

skepu-OMP: SkePU port of ls-seq-def using OpenMP as backend
and utilizing 8 threads.

skepu-CPU: SkePU port of ls-seq-def using the default CPU back-
end.

CU-hand: A ”hand” implemented CUDA variant. It is similar to
the SkePU ports however no SkePU code was utilized. Instead
CUBLAS functions were used where applicable and some hand
made kernels.

The result can be seen in Figure 4 and Table 1. The two slowest
are the sequential variants (ls-seq-def and ls-seq-A), with ls-seq-A
of course performing slightly better due to the optimizations. Lib-
Solves shared memory solvers (ls-shm-def and ls-shm-A) shows
a great performance increase compared to the sequential variants
with almost five times faster running time for the largest problem
size (N=1000).

We also see that the SkePU CPU solver is comparable to the de-
fault LibSolve sequential implementation and the OpenMP variant
is similar to the shared memory solvers. The SkePU OpenCL and
CUDA ported solvers are however almost 10 times faster than the
sequential solvers for the largest problem size. The reason for this
is that all the calculations of the core loop in the ODE solver can
be run on the GPU, without any memory transfers except once in
the beginning and once at the end. This is done implicitly in SkePU
since it is using lazy memory copying. However, the SkePU multi-
GPU solver does not perform as well, the reason here also lies in
the memory copying. Since the evaluation function needs access
to more of one vector than what it has stored in GPU memory
(in multi-GPU mode, SkePU divides the vectors evenly among the
GPUs), some memory transfers are needed: First from one GPU to
host, then from host to the other GPU; this slows down the calcula-
tions considerably.

Comparing the ”hand” implemented CUDA variant, we see
that it is similar in performance to skepu-CU with CU-hand being
slightly faster (approximately 10%). This is both due to the extra
overhead when using SkePU functions and some implementation
differences.

There is also a start-up time for the OpenCL implementations
during which they compile and create the skeleton kernels. This
time (≈5-10 seconds) is not included in the times presented here
since it is considered an initialization which only needs to be done
once when the application starts executing.

5. Related Work
A lot of work and research have been made in the area of skeletal
parallel programming. With the arrival of CUDA and OpenCL,
which has provided an easy way of utilizing the parallel processing
power of graphics hardware, the skeleton approach has also been

tried in this fairly new area of parallel computing. The development
of SkePU, which was presented in this paper, has been inspired by
several other similar projects that exist today.

Thrust [7] is an open source project whose goal is to provide
STL like functionality in parallel using CUDA on NVIDIA graph-
ics cards. It is in the form of a C++ template library and implements
functionality like transform (map), reduction, prefix-sum (scan),
sorting etc. It also uses a vector container that algorithms operate
on. There is also a possibility to define your own functions to be
used in several operations.

CUDPP is a library of data-parallel algorithm primitives such
as parallel prefix-sum (“scan”), parallel sort and parallel reduction
[6]. It does not however provide higher-order functions which can
take any user defined function as an input.

One approach to creating a more generic skeleton framework for
GPGPU programming is made by Sato and Iwasaki [17]. Instead of
making a pure library, they introduce the skeletons as functions to
the C programming language; however, these skeletons are trans-
formed to CUDA code by their own compiler and so, in a way,
constitute a new programming language. The compiler can also
generate equivalent C code using macros and it is therefore entirely
C compatible. One advantage of using a separate compiler is that
optimizations can be built in. This is also done by the framework
proposed in [17] which optimizes the use of the skeleton functions.

So far SkePU implements one container, a vector type which is
built around the STL vector and is largely inspired by CuPP [2].
CuPP is however not a skeleton library but rather an abstraction
from CUDA which integrates better with the C++ programming
language and hides things like memory management.

In [8] an implementation of the Parallel for skeleton is de-
scribed. It is a multi-target implementation designed to work on
both CPU and GPU.

SkelCL [18] is a work in progress at the University of Münster.
It is a skeleton library implemented using OpenCL and is similar to
SkePU in functionality. It can also be used with multiple GPUs.

One of the main differences between SkePU and the libraries
described above is that SkePU can be compiled with several back-
ends. Most other works has all used either NVIDIAs CUDA frame-
work or OpenCL for their implementations. SkelCL and SkePU
are to our knowledge also the only skeleton libraries that exists for
OpenCL today. SkePU also tries to seamlessly integrate multi-GPU
functionality in its implemented skeletons.

6. Conclusions
Parallel programming with skeletons has been successfully applied
to various architectures and with different libraries as backends
[4, 5, 10, 11]. We have shown in this paper that it is also possible to
use this approach for doing calculations in parallel on GPUs with
good results.

We have presented SkePU, a C++ template library which pro-
vides a simple and unified interface for doing data-parallel com-
putations with the help of skeletons on GPUs using CUDA and
OpenCL. The interface is also general enough to support other ar-
chitectures and SkePU implements both a sequential CPU and a
parallel OpenMP backend.

We have seen that copying data between the host and the GPU
can be a bottleneck and therefore a container which uses lazy mem-
ory copying has been implemented to avoid unnecessary memory
transfers.

In the Gaussian Blur benchmark, this lazy memory copying was
utilized and we saw that using the GPU backends offers good per-
formance, especially when the amount of computation is large (fil-
tering the image several times in a row). The dot product bench-
mark compared the SkePU OpenCL and CUDA backends to a spe-
cialized library in the form of CUBLAS. It showed that the over-
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N ls-seq-def ls-seq-A ls-shm-def ls-shm-A skepu-CL skepu-CL-multi skepu-CU skepu-OMP skepu-CPU CU-hand
250 3.42 3.05 0.51 0.71 0.77 3.00 0.60 0.51 3.32 0.53
500 61.81 57.88 9.47 8.71 8.68 31.72 6.70 11.08 60.31 6.10
750 342.54 301.46 66.89 58.44 37.82 138.37 32.32 71.70 311.82 29.60
1000 1050.14 951.60 248.12 221.00 109.50 405.24 96.65 230.54 949.19 88.50

Table 1. Times for running different LibSolve solvers for increasing N with the BRUSS2D-MIX problem. Time in seconds.

head of using SkePU is quite small, and that a multi-GPU backend
have a potential for performance gains.

From the LibSolve benchmark, we can see that SkePU offers
good performance with a more complex and realistic task such
as ODE solving with up to 10 times faster run times when using
SkePU with a GPU backend compared to a sequential solver.

7. Limitations and Future Work
The work on SkePU has only just started and so there are a few
limitations with the library. First it only supports a one-dimensional
data structure (skepu::vector) and the skeletons can only operate
on that kind of data. This makes it harder and less effective to
use SkePU for image applications, matrix operations and other
problems that have a two-dimensional structure.

The updates of a vector, from device to host, is currently limited
to updating the entire vector, not parts of it. This have some perfor-
mance implications, especially when there are data dependencies
in the multi-GPU implementation. One example is if MapOverlap
is applied several times in a row on the same vector. With a single-
GPU this is done without transferring the vector back to the host
between calls. In the multi-GPU case however, since the overlap

creates a data dependecy between the GPUs, the entire vector needs
to be transferred back and forth between the MapOverlap calls.

One skeleton call can not utilize several backends at once, only
one is used at a time. You can however define both SKEPU_OPENCL
and SKEPU_OPENMP for example and manually specify to use either
of them for each skeleton call.

There is no task parallelism supported. Especially with multi-
GPU support, there is an opportunity for this kind of parallelism; it
has however not been implemented yet.

SkePU is currently work in progress and several additions to the
library are planned for. More skeletons will be added, especially
the data-parallel operation Scan, also known as prefix-sum. A two-
dimensional data structure, Matrix, is to be added and some of the
skeletons updated to use this new data-type. Hybrid parallelization
to allow mixing of several backends and some kind of optimization
to utilize them in a good way is also on the list of future function-
ality.
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