THE RT-JaAVA COMPILER

Chapter 5
The RT-Java Compiler

A prototype RT-Java compiler is under development at PELAB,
Linkoping University. Our first milestone is an optimizing Java-to-Assem-
bler compiler with real-time properties. The input is either Java source or
Java byte code, and the output is assembler for the Intel Pentium Il proces-
sor. Backends producing Java byte code, Sparc assembler, SHARC assem-
bler, and MIPS/Trimedia assembler are planned in cooperation with the
University of Karlsruhe, the University of Saarlands, Associated Comput-
er Experts bv. (ACE), Ericsson, and Phillips. The backends for Pentium Il
and Sparc already exist, but they have to be modified as described in sec-
tion 5.3 to provide better garbage collection performance. This work will
be done within the JOSES (Java and CoSy for Embedded Systems) Esprit
project, WITAS (Wallenberg laboratory for research in Information Tech-
nology and Autonomous Systems) at Link6ping University, and the Dy-
namic Control and Configuration of Distributed Real Time Applications
project supported by NUTEK.

The compilers are developed using CoSy, which is a compiler construc-
tion tool from ACE, producing industry-strength optimizing compilers.
The tool has been designed and implemented in cooperation with Euro-
pean universities within the COMPARE and PREPARE Esprit projects.

63

REAL-TIME REFERENCECOUNTING IN RT-JAVA

One of the key benefits of CoSy is that the compiler is built using reus-
able modules such as frontends, backends, and optimizers. All frontend
modules can be combined with all backends and optimizers provided they
use the same intermediate representation (IR).

Frontends C Fortran 90 BAR
Optimizers
Backends Pentium Sparc SHARC

Figure 5.1: CoSy modules

Java frontend

Y

BAR frontend

Y

Optimizer

Y

Backend

Figure 5.2: The RT-Java compiler (see section 5.4)

5.1 CoSy Compilers

A CoSy compiler is built from modules called engines. The engines com-
municate via a shared memory called Common Data Pool (CDP). Engines
must define the structure of the data they will access in the CDP. These def-

64

THE RT-JaAVA COMPILER

initions are used to generate the Data Manipulation and Control Package
(DMCP) library, which engines use to access data in the CDP. The struc-
ture of the data in the CDP is defined using the full Structure Definition
Language (fSDL). A compiler is constructed by combining engines. This
is done using the Engine Description Language (EDL).

Figure 5.3: CoSy

5.1.1 @Sy ENGINES

An engine modifies the data in the CDP. Engines can be programmed in
any language that can interface with C, i.e. most modern languages. En-
gines in a compiler usually include frontends, optimizers, lowerers, and
backends. A lowerer is an engine which transforms the internal represen-
tation (IR) to a simpler IR-form. This is done to make backends simpler.
Lowerers can, for example, transform switch statements into if statements.
Engines can also be used to analyze the program and annotate the IR to
simplify the work for other engines. An example is the loop analyzer,
which finds loop constructs and extracts initialization, condition, advance-
ment, and body information.

The interface of an engine is defined in EDL. Since different engines
have different requirements on the IR, engines can specify their own view
of the IR. The DMCP library only allows access to the IR which is speci-
fied in the fSDL file of the engine.

65

REAL-TIME REFERENCECOUNTING IN RT-JAVA

The backend engines can be produced using a tool called BEG (Back-
end Generator). A BEG engine scans the IR graph for patterns which it can
translate into assembler. Every possible translation has an associated cost
(in time.) The BEG engines select the translation that is cheapest.

5.1.2 THE ENGINE DESCRIPTIONLANGUAGE

The engines of a CoSy compiler are glued together using EDL. EDL sup-
ports six different ways of combining engines.

pipeline The output of one engine is passed as input to the next.

data-parallel Sometimes data can be divided into sub-graphs. In these
cases it is possible to create one engine instance per sub-graph. These
instances can be made to work in parallel.

fork Several independent engines can work in parallel.

loop As in a pipeline the data is passed from one engine to the next. In a
loop a status engine determines whether the loop should end or continue.
If the loop continues, the data is passed from the last engine to the first,
otherwise data is passed to the engine following the loop.

speculative Several engines modify the IR graph. The result is passed to
a selector engine which determines which result should be used. The
results of the other engines is discarded. The output is that of the selected
engine.

optimistic This combination is very complex. First one engine is used to
generate several potential solutions (graphs) for a specific problem. A
status engine determines when enough graphs have been produced and
stops the first engine. A third engine selects which graphs are to be
considered for further processing. The graphs which pass the third engine
are passed on to an instance each of the fourth engine. The instances of the
fourth engine work in parallel. Graphs which are rejected by the third
engine are discarded. Each instance of the fourth engine processes the
graphs. Finally a fifth engine chooses which graph is to be used and
discards the rest. The chosen graph is passed on to the next engine.

66

5.1.3 CCMIR

CoSy does not force engines to use a particular IR, but since supplied en-
gines use the Common COMPARE Medium Intermediate Representation
(CCMIR), the use of this IR is recommended. Engines can easily extend
the IR without interfering with existing engines. The extension is hidden
from engines which do not use them. If another IR is to be used, none of
the supplied engines can be used. CCMIR is defined in fSDL as is all data
that is communicated between engines.

CCMIR is a graph representation. All CCMIR graphs contain a unit
node. Starting from the unit node, all nodes in the graph can be reached
using primary edges. The primary edges form a spanning tree of the graph.
The fSDL specification specifies which edges are primary.

CCMIR is defined to be language-independent. Currently most impera-
tive constructs are supported. To improve support for object oriented lan-
guages, a working group within the JOSES project is designing an OO
extension to CCMIR. Other extensions, e.g. a DSP (Digital Signal Proces-
sor) extension, already exist.

Bodies of sub-programs are represented by control flow graphs of basic
blocks. The code is linear. There are no loop or selection constructs. Loops
and selections are represented using conditional and unconditional jumps.

5.1.4 ACCESSINGTHE COMMON DATA PooL

To access data in the CDP, several methods are supplied. At the lowest lev-
el, a set of access functions is generated from the fSDL description. The
generated library is called Data Manipulation and Control Package (DM-
CP). DMCP routines can be used to create and destroy nodes, and to set
and get attributes. The functions are named according to a simple schema
as described in table 5.1.

Action Function name

Create node of type T T _creategp)
Get field F in node of type T T_set F(nodevalug

67

REAL-TIME REFERENCE COUNTING IN RT-JAVA

Action Function name
Set field F in node of type T T_get F(node

Table 5.1: DMCP naming canventions

To make CDP acess more C-likea Cextensioncalled CoSy-C, is deliv-
ered wth CoSy. CoSy-C cotains congtucts for congruction and intial-
ization of nodes and attribute accessAttribute acessis similar o field
access in C-struct&\n exampeis given in figure 5.4.

MIirEXPR incr(".mirEXPR expr, Univint ui) {
'mirPlus plus;
'mirIntConst one;

[* Create and initial i ze a plus node */
'‘plus = mirPlus {

Group =>TRUE,

Checked => TRUE,

Variance => Variant,

Strict =>TRUE,

Modulo =>FALSE

}
[* Create and initial i ze a mirIntConst node */
‘one = mirIntConst {

Value => ui
}
/* Elements can also be accessed like this */
'‘plus->Type = 'expr-> Type;

'‘plus->Left = expr;
'plus->Right = one;

return plus;

Figure 5.4: CoSy-C example

68

THE RT-JaAVA COMPILER

The EMIT library contains functions to help to create and initialize
nodes and sub-graphs. EMIT also raises the level of abstractions of the IR
by adding labels. By using this library the code is automatically divided
into basic blocks. Simplified type creation is another feature of EMIT.

The highest level of abstraction is the stk, which is a stack-based inter-
preter with an interface similar to the printf function in C. An example is
given in figure 5.5.

/I The statement v =w + 1 could be emitted as
stk(state, "V& V&@ T1i+ =",
v, w, mirLocal_get_Type(V));

Figure 5.5: Example of stk code

5.2 BAR - an Interface to CoSy

To simplify frontend development we have designed an ASCII representa-
tion of CCMIR called BAR (as in foobar.) A BAR frontend for CoSy has
also been developed. The frontend engine is called barre, which is short for
BAR reader. Barre parses BAR source and builds the corresponding CC-
MIR graph. Barre can be combined with any CCMIR engine to create a
BAR compiler. Prototype compilers for Pentium Il and Sparc have been
developed. Both are called barc, short for BAR compiler.

BAR makes it possible to use nearly all front-end construction tools
available, e.g. parser generators like yacc. The only requirement is that
ASCII files can be produced. Another advantage is that debugging is sim-
plified.

BAR is a prefix notation form of CCMIR. A BAR file contains a
sequence of terms. A term can be an operator, a constant, or a list of terms.
Operators is the equivalent of nodes in CCMIR. Operators may have
attributes, which can be set to values represented by terms. If a value for
an attribute is not given, default values can be calculated, e.g. alignment of
types. The complete syntax is shown in figure 5.6.

69

REAL-TIME REFERENCECOUNTING IN RT-JAVA

term = icon| rcon| scon| const

| op{ fields}

| [list]
fields = field;= termy, ... field, = term, n=0
list = termy, ..., termy, n=0

Figure 5.6: BAR syntax

A complete list of BAR operators can be found in appendix A An example
is presented in figure 5.8 where the “Hello world”-program presented in
figure 5.7 has been translated into BAR

int printf(char *, ...);

int main() {
printf("Hello World\n");

return O;

}

Figure 5.7: Hello World program in C

5.3 Integrating the Garbage Collector

Implementation of a prototype garbage collector can be made using BAR
only. The disadvantages of this solution is the lack of control of the pro-
duced assembler. If reference count updates can not be done atomically,
expensive locks have to be used to prevent erroneous execution. However,
if the processor allows atomic increments and decrements, the locks are
superfluous. Since the target platform is unknown in the frontend, locks
are always needed.

An advantage of reference counting is short locking time. Only refer-
ence count updates and list operations (modifying the free list) need lock-
ing. Since the locks are very fine-grained, a cheap solution is to disable
interrupts during atomic operations. This can not be done in the frontend;
other engines have to be garbage- collection-aware.

70

THE RT-JaAVA COMPILER

Integer {Name = "int", Size = 32}
Integer {
Name ="char", Size = 8, Signed = FALSE
}
Pointer {Name = "char*", RefType ="char"}
ProcType {
Name = "printf", ReturnType = "int",
Params = [Parameter{Type = "char*"}],
MoreArgs = TRUE

}

ProcGlobal {
Linkage = ImportLinkage, Type = "printf",
Name = "printf"

}

ProcType {
Name ="main", ReturnType = "int", Params =[]

}

ProcGlobal{
Linkage = ExportLinkage,
Name ="main",
Body =
Call{
Proc = "printf",
Params =
CStringConst {Value = "Hello World'\n"}
]
h
Return {Value = IntConst {Value = 0}}
]
}

Figure 5.8: Hello World program in BAR

An engine which inserts garbage collection code would provide better
performance and flexibility. The garbage collection code should call read-
and write-barrier functions where needed. The function calls can later be
inlined if appropriate. A major advantage of having an engine inserting

71

REAL-TIME REFERENCECOUNTING IN RT-JAVA

garbage collection code is that the engine can be reused by other fron-
tends. Another advantage is that you do not have to specify any garbage
collector algorithm in the frontend. Different algorithms can be imple-
mented in separate engines. To change algorithm, only the engine and the
run-time system have to be exchanged.

If efficient code is to be produced, it must be possible to specify that
certain instructions should be performed atomically. Thus synchronization
has to be added to CCMIR. Backends can then produce processor-specific
synchronization if possible. This is the only extension needed to support
efficient garbage collection.

5.4 Implementation of the RT-Java Compiler

The RT-Java compiler consists of several modules. The frontend is written
in lex, yacc, and RML (Pettersson, 1995). Since it produces Java byte
code, any Java-to-byte-code compiler can be used as a replacement. The
byte code is then analyzed as described in section 4.4. The memory ana-
lyzer adds attributes to the class file. The attributes say which allocation
instructions are to allocate objects on the stack. Since the input to this mod-
ule is Java byte code, pre-compiled code can also be input to the RT-Java
compiler. The memory analyzer is currently written in C++. The output is
fed into the BAR generator, which translates Java byte code into BAR. The
BAR generator, which is implemented in RML, examines the attributes
and emits the corresponding allocation instructions. The BAR code is then
input to a BAR compiler. Different BAR compilers are used to produce as-
sembler for different platforms There is no working prototype yet, but
work is progressing.

72

THE RT-JaAVA COMPILER

l ___________ Java source code

_______ -~ - Java byte code

----------- Annotated Java byte code

____________ BAR code
v
BAR frontend BARC
l ___________ CCMIR
GC Engine
,,,,,,,,,,, Annotated CCMIR
A
Optimizer
....... ---- Optimized CCMIR
v
Lowerer
___________ Low Level CCMIR
v
Backend

........... Assembler

Figure 5.9: The RT-Java compiler

73

74

REAL-TIME REFERENCECOUNTING IN RT-JAVA

	The RT-Java Compiler
	5.1 CoSy Compilers
	5.2 BAR - an Interface to CoSy
	5.3 Integrating the Garbage Collector
	5.4 Implementation of the RT-Java Compiler

