
THE RT-JAVA COMPILER

r

B,
m-
e or
ces-

ssem-
 the
ut-

m II
 sec-

will
sprit
h-
y-

ns

ruc-
s.
uro-
.

Chapter 5
The RT-Java Compile

A prototype RT-Java compiler is under development at PELA
Linköping University. Our first milestone is an optimizing Java-to-Asse
bler compiler with real-time properties. The input is either Java sourc
Java byte code, and the output is assembler for the Intel Pentium II pro
sor. Backends producing Java byte code, Sparc assembler, SHARC a
bler, and MIPS/Trimedia assembler are planned in cooperation with
University of Karlsruhe, the University of Saarlands, Associated Comp
er Experts bv. (ACE), Ericsson, and Phillips. The backends for Pentiu
and Sparc already exist, but they have to be modified as described in
tion 5.3 to provide better garbage collection performance. This work
be done within the JOSES (Java and CoSy for Embedded Systems) E
project, WITAS (Wallenberg laboratory for research in Information Tec
nology and Autonomous Systems) at Linköping University, and the D
namic Control and Configuration of Distributed Real Time Applicatio
project supported by NUTEK.
The compilers are developed using CoSy, which is a compiler const
tion tool from ACE, producing industry-strength optimizing compiler
The tool has been designed and implemented in cooperation with E
pean universities within the COMPARE and PREPARE Esprit projects
63

REAL-TIME REFERENCE COUNTING IN RT-JAVA

us-
tend
they

om-
ines
 def-
One of the key benefits of CoSy is that the compiler is built using re
able modules such as frontends, backends, and optimizers. All fron
modules can be combined with all backends and optimizers provided
use the same intermediate representation (IR).

5.1 CoSy Compilers

A CoSy compiler is built from modules called engines. The engines c
municate via a shared memory called Common Data Pool (CDP). Eng
must define the structure of the data they will access in the CDP. These

Figure 5.1: CoSy modules

Figure 5.2: The RT-Java compiler (see section 5.4)

Frontends C Fortran 90 BAR

Optimizers

Backends Pentium Sparc SHARC

Java frontend

BAR frontend

Optimizer

Backend
64

THE RT-JAVA COMPILER

kage
truc-
ion
his

d in
. En-
and
sen-
ler.

ents.
 IR to
er,
ce-

nes
iew
ci-
initions are used to generate the Data Manipulation and Control Pac
(DMCP) library, which engines use to access data in the CDP. The s
ture of the data in the CDP is defined using the full Structure Definit
Language (fSDL). A compiler is constructed by combining engines. T
is done using the Engine Description Language (EDL).

5.1.1 COSY ENGINES

An engine modifies the data in the CDP. Engines can be programme
any language that can interface with C, i.e. most modern languages
gines in a compiler usually include frontends, optimizers, lowerers,
backends. A lowerer is an engine which transforms the internal repre
tation (IR) to a simpler IR-form. This is done to make backends simp
Lowerers can, for example, transform switch statements into if statem
Engines can also be used to analyze the program and annotate the
simplify the work for other engines. An example is the loop analyz
which finds loop constructs and extracts initialization, condition, advan
ment, and body information.

The interface of an engine is defined in EDL. Since different engi
have different requirements on the IR, engines can specify their own v
of the IR. The DMCP library only allows access to the IR which is spe
fied in the fSDL file of the engine.

Figure 5.3: CoSy
65

REAL-TIME REFERENCE COUNTING IN RT-JAVA

ack-
t can
d cost

up-

ese
These

 In a
tinue.
first,

d to
 The
ected

 to
. A
d and
 be
gine
 of the
ird
s the
and
The backend engines can be produced using a tool called BEG (B
end Generator). A BEG engine scans the IR graph for patterns which i
translate into assembler. Every possible translation has an associate
(in time.) The BEG engines select the translation that is cheapest.

5.1.2 THE ENGINE DESCRIPTION LANGUAGE

The engines of a CoSy compiler are glued together using EDL. EDL s
ports six different ways of combining engines.

pipeline The output of one engine is passed as input to the next.

data-parallel Sometimes data can be divided into sub-graphs. In th
cases it is possible to create one engine instance per sub-graph.
instances can be made to work in parallel.

fork Several independent engines can work in parallel.

loop As in a pipeline the data is passed from one engine to the next.
loop a status engine determines whether the loop should end or con
If the loop continues, the data is passed from the last engine to the
otherwise data is passed to the engine following the loop.

speculative Several engines modify the IR graph. The result is passe
a selector engine which determines which result should be used.
results of the other engines is discarded. The output is that of the sel
engine.

optimistic This combination is very complex. First one engine is used
generate several potential solutions (graphs) for a specific problem
status engine determines when enough graphs have been produce
stops the first engine. A third engine selects which graphs are to
considered for further processing. The graphs which pass the third en
are passed on to an instance each of the fourth engine. The instances
fourth engine work in parallel. Graphs which are rejected by the th
engine are discarded. Each instance of the fourth engine processe
graphs. Finally a fifth engine chooses which graph is to be used
discards the rest. The chosen graph is passed on to the next engine.
66

d en-
tion
tend
en
e of
data

nit
ched
raph.

era-
 lan-
 OO
ces-

asic
oops
mps.

t lev-
 The
M-
to set
hema
5.1.3 CCMIR

CoSy does not force engines to use a particular IR, but since supplie
gines use the Common COMPARE Medium Intermediate Representa
(CCMIR), the use of this IR is recommended. Engines can easily ex
the IR without interfering with existing engines. The extension is hidd
from engines which do not use them. If another IR is to be used, non
the supplied engines can be used. CCMIR is defined in fSDL as is all
that is communicated between engines.

CCMIR is a graph representation. All CCMIR graphs contain a u
node. Starting from the unit node, all nodes in the graph can be rea
using primary edges. The primary edges form a spanning tree of the g
The fSDL specification specifies which edges are primary.

CCMIR is defined to be language-independent. Currently most imp
tive constructs are supported. To improve support for object oriented
guages, a working group within the JOSES project is designing an
extension to CCMIR. Other extensions, e.g. a DSP (Digital Signal Pro
sor) extension, already exist.
Bodies of sub-programs are represented by control flow graphs of b
blocks. The code is linear. There are no loop or selection constructs. L
and selections are represented using conditional and unconditional ju

5.1.4 ACCESSING THE COMMON DATA POOL

To access data in the CDP, several methods are supplied. At the lowes
el, a set of access functions is generated from the fSDL description.
generated library is called Data Manipulation and Control Package (D
CP). DMCP routines can be used to create and destroy nodes, and
and get attributes. The functions are named according to a simple sc
as described in table 5.1.

Action Function name

Create node of type T T_create(op)

Get field F in node of type T T_set_F(node,value)
67

REAL-TIME REFERENCE COUNTING IN RT-JAVA
To make CDP access more C-like, a C extension, called CoSy-C, is deliv-
ered with CoSy. CoSy-C contains constructs for construction and initial-
ization of nodes and attribute access. Attribute access is similar to field
access in C-structs. An example is given in figure 5.4.

Set field F in node of type T T_get_F(node)

mirEXPR incr('.mirEXPR expr, UnivInt ui) {
 'mirPlus plus;
 'mirIntConst one;

 /* Create and initial i ze a plus node */
 'plus = mirPlus {
 Group => TRUE,
 Checked => TRUE,
 Variance => Variant,
 Strict => TRUE,
 Modulo => FALSE
 }

 /* Create and initial i ze a mirIntConst node */
 'one = mirIntConst {
 Value => ui
 }

 /* Elements can also be accessed like this */
 'plus->Type = 'expr-> Type;
 'plus->Left = expr;
 'plus->Right = one;

 return plus;
}

Figure 5.4: CoSy-C example

Action Function name

Table 5.1: DMCP naming conventions
68

THE RT-JAVA COMPILER

ze
e IR
ed

ter-
 is

nta-
s
rt for
 CC-
te a
een

ols
 that
sim-

erms.
ave
e for
nt of
The EMIT library contains functions to help to create and initiali
nodes and sub-graphs. EMIT also raises the level of abstractions of th
by adding labels. By using this library the code is automatically divid
into basic blocks. Simplified type creation is another feature of EMIT.

The highest level of abstraction is the stk, which is a stack-based in
preter with an interface similar to the printf function in C. An example
given in figure 5.5.

5.2 BAR - an Interface to CoSy

To simplify frontend development we have designed an ASCII represe
tion of CCMIR called BAR (as in foobar.) A BAR frontend for CoSy ha
also been developed. The frontend engine is called barre, which is sho
BAR reader. Barre parses BAR source and builds the corresponding
MIR graph. Barre can be combined with any CCMIR engine to crea
BAR compiler. Prototype compilers for Pentium II and Sparc have b
developed. Both are called barc, short for BAR compiler.

BAR makes it possible to use nearly all front-end construction to
available, e.g. parser generators like yacc. The only requirement is
ASCII files can be produced. Another advantage is that debugging is
plified.

BAR is a prefix notation form of CCMIR. A BAR file contains a
sequence of terms. A term can be an operator, a constant, or a list of t
Operators is the equivalent of nodes in CCMIR. Operators may h
attributes, which can be set to values represented by terms. If a valu
an attribute is not given, default values can be calculated, e.g. alignme
types. The complete syntax is shown in figure 5.6.

// The statement v = w + 1 could be emitted as
stk(state, "V& V&@ T1i + =",
 v, w, mirLocal_get_Type(v));

Figure 5.5: Example of stk code
69

REAL-TIME REFERENCE COUNTING IN RT-JAVA

ple
d in

AR
ro-

ically,
ever,

s are
cks

fer-
ock-
able
end;
A complete list of BAR operators can be found in appendix A An exam
is presented in figure 5.8 where the “Hello world”-program presente
figure 5.7 has been translated into BAR

5.3 Integrating the Garbage Collector

Implementation of a prototype garbage collector can be made using B
only. The disadvantages of this solution is the lack of control of the p
duced assembler. If reference count updates can not be done atom
expensive locks have to be used to prevent erroneous execution. How
if the processor allows atomic increments and decrements, the lock
superfluous. Since the target platform is unknown in the frontend, lo
are always needed.

An advantage of reference counting is short locking time. Only re
ence count updates and list operations (modifying the free list) need l
ing. Since the locks are very fine-grained, a cheap solution is to dis
interrupts during atomic operations. This can not be done in the front
other engines have to be garbage- collection-aware.

term ::= icon | rcon | scon | const
| op { fields }
| [list]

fields ::= field1 = term1, ..., fieldn = termn
list ::= term1, ..., termn

Figure 5.6: BAR syntax

int printf(char *, ...);

int main() {
printf("Hello World!\n");

return 0;
}

Figure 5.7: Hello World program in C

n 0≥
n 0≥
70

THE RT-JAVA COMPILER

tter
ad-
r be
ting
An engine which inserts garbage collection code would provide be
performance and flexibility. The garbage collection code should call re
and write-barrier functions where needed. The function calls can late
inlined if appropriate. A major advantage of having an engine inser

Integer {Name = "int", Size = 32}
Integer {

Name = "char", Size = 8, Signed = FALSE
}
Pointer {Name = "char*", RefType = "char"}
ProcType {

Name = "printf", ReturnType = "int",
Params = [Parameter{Type = "char*"}],
MoreArgs = TRUE

}

ProcGlobal {
Linkage = ImportLinkage, Type = "printf",
Name = "printf"

}

ProcType {
Name = "main", ReturnType = "int", Params = []

}

ProcGlobal{
 Linkage = ExportLinkage,
 Name = "main",
 Body = [

Call {
Proc = "printf",
Params = [

CStringConst {Value = "Hello World!\n"}
]

},
 Return {Value = IntConst {Value = 0}}

]
}

Figure 5.8: Hello World program in BAR
71

REAL-TIME REFERENCE COUNTING IN RT-JAVA

fron-
bage
le-
d the

that
tion
ecific
port

itten
byte
t. The
 ana-
tion

mod-
-Java
t is
 The
tes
then
 as-
but
garbage collection code is that the engine can be reused by other
tends. Another advantage is that you do not have to specify any gar
collector algorithm in the frontend. Different algorithms can be imp
mented in separate engines. To change algorithm, only the engine an
run-time system have to be exchanged.

If efficient code is to be produced, it must be possible to specify
certain instructions should be performed atomically. Thus synchroniza
has to be added to CCMIR. Backends can then produce processor-sp
synchronization if possible. This is the only extension needed to sup
efficient garbage collection.

5.4 Implementation of the RT-Java Compiler

The RT-Java compiler consists of several modules. The frontend is wr
in lex, yacc, and RML (Pettersson, 1995). Since it produces Java
code, any Java-to-byte-code compiler can be used as a replacemen
byte code is then analyzed as described in section 4.4. The memory
lyzer adds attributes to the class file. The attributes say which alloca
instructions are to allocate objects on the stack. Since the input to this
ule is Java byte code, pre-compiled code can also be input to the RT
compiler. The memory analyzer is currently written in C++. The outpu
fed into the BAR generator, which translates Java byte code into BAR.
BAR generator, which is implemented in RML, examines the attribu
and emits the corresponding allocation instructions. The BAR code is
input to a BAR compiler. Different BAR compilers are used to produce
sembler for different platforms There is no working prototype yet,
work is progressing.
72

THE RT-JAVA COMPILER
Figure 5.9: The RT-Java compiler

GC Engine

Java frontend

BAR frontend

Java source code

Java byte code

CCMIR

Annotated CCMIR

Optimized CCMIR

Low Level CCMIR

Optimizer

Lowerer

BARC

Assembler

Backend

Memory analysis

Annotated Java byte code

BAR generator

BAR code
73

REAL-TIME REFERENCE COUNTING IN RT-JAVA
74

	The RT-Java Compiler
	5.1 CoSy Compilers
	5.2 BAR - an Interface to CoSy
	5.3 Integrating the Garbage Collector
	5.4 Implementation of the RT-Java Compiler

