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22.4.6 Generation of Efficient Compilers and Interpreters from
Natural Semantics Specifications

Peter Fitzson, Mikael Bttersson

Compiler generation from Denotational Semantias wnentioned in the pneus
section. Hwvever, there are still some problems associated with Denotational
Semantics, e.g. concerning modularity and when specifying concurrent languages.
For these and other reasons, weehaav focused on the more recent Natural Seman-
tics formalism, and desloped a first @rsion of a system called RML (Relational Meta
Language and system) for generatinficefnt implementations from Natural Seman-

tics specifications. The folldng sections gie more details of this avk.

Background

Since the early eighties, a formalism tWmo as Natural Semantics has become
increaggly popular among programming language researchers. Natural Semantics is
often used to specify type systems for the static semantics of programming languages,
or the dynamic semantics, or both, and it haasdeen used to specify translations
from abstract syntax to intermediate code. Latéhere has been a trend to use
augmented type systems and translations, all specified in Natural Semantics, to do
static analysis and code-impiog transformations.
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Figure 22-6. The semantics analysis part of compilers is generated by the RML system
from natural semantics specifications.

Natural Semantics is based on Plot&iBtructural Operational Semantics (SOS) and
further deeloped at INRIA by Kahn. Specifications consist of data type declarations
(abstract syntax, @wronments, run-time alues, types, etc.) and sets of inference
rules. The inference rules specify relations between objects, in a style akin to
Gentzers Sequent Calculus for Natural Deduction. (Hence the name ‘Natural’
Semantics.) In a rule l&k
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the H are lypotheses (typically eironments containing bindings of sourcede
names to semantic objects), theafle terms (typically pieces of abstract syntax), and
the R are results (typically types, run-timalues, or augmentederonments). An
instance H = T; ! R is called a sequent. The sequentsvelibe line are the premises,
and the sequent belothe line is the conclusion. The rule may be interpreted as
follows: in order to pree a sequent H- T : R, one must first puve the sequents

Hi F T1:Ry.. H, F Ty Ry The side condition, if present, must also be satisfied.

Natural Semantics tdrs s@eral adantages wer classical Denotational Semantics:

if <cond>

» All objects are finite terms, which means that the complicated domain theory of
Denotational Semantics is not needed.

* More than one inference rule may be applicable wgaren time, which means
that some non-deterministic features are easy to model.inStance, the
evaluation order of binaryxpressions in an imperaéi language can be left
unspecified.

* Modern type systems\nolving polymorphic type inference are much easier to
specify in Natural Semantics. A specification in Denotational Semantickl w
tend to resemble a type inference algoritipressed as a functional program.

The Centaur programmingdronment, deeloped within the Esprit GIPE and GIPE-

Il projects, contains a meta-language for Natural Semantics called TYPOL. Until
recenly, this was the onlyaailable implementation of a language intended specifical-
ly for Natural Semantics. The deflt implementation uses a simple translation from
TYPOL to the Centaur mu-Prolog sub-language ecation. It has also been sto

that a restricted class of Natural Semantics specifications igaénii to a certain
kind of attritute grammars that can beeeuted by a functionalvaluator

We see seeral problems with the current state dbak:

 The TYPOL implementation isevy ineficient. We also feel that the Centaur
system does not lend itself to the use of Natural Semantics in stand-alone
applications.

» Coding Natural Semantics specifications in Prolog is not atteaaue to the
lack of a decent type system in Prologe \AIso beliee that a compiler for a
special-purpose Natural Semantics language can generate much better code than
a Prolog compiler can for Natural Semantics specifications translated to Prolog.

» Some prefer to use the highenderAProlog language. ¥feel that this language
Is too complicated, both for users and implementor alik
Objectives
In the long run, we ant to see Natural Semantics being as useful in programming

language research and implementation, as are Qdftee Grammars and parser
generators today
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Results

In the short run, we a defined a meta-language for Natural Semantics, and studied
its implementability and practical usefulness Wae identified statically determina-

ble properties of Natural Semantics specifications thawgto disallav) interesting
optimizations to be applied to the implementation of Natural Semantics specifica-
tions. In particularthe folloving results hee recently been obtained:

* The Relational Meta-Language (RML) has been defined. It is strongly typed with
a type systemary much lile that in Standard ML, has type-safe separate
compilaion and modules, and supports Natural Semantics-style inference rules.
It has fever non-declarate constructs than Prolog. The SMLdiklata types
directly support structural-induction style specifications, which are central to
Natural Semantics.

» The operational properties of RML werevésticated and used to dee the
initial implementation. A By component is the use of a Continuatias$tng
Style (CPS) intermediate representation. CPS is easy to optimize, due to its
declardive nature, bt is also easily translated tanldevel code, due to its simple
operational semantics.

» Further obsemtions lead to a refinement, whereby RML specifications are first
translated to a First-Order Logic. High## equvalences are used towmete this
representation in order to reduce the amount of unnecessary non-determinism.
This phase has pren to be essential for the practicality of the generated code.

» A compiler generating portable ANSI-C code has been implemented. The code
runs unchanged on\s&al diferent 32 and 64-bit architectures. Performance
measurements indicate that this code rumsraétimes éster than that generated
by commercial Prolog compilers, andveral orders of magnitudedter than
TYPOL.

* Recent wrk has concentrated on the mapping of the contral fspects of
high-level languages to C. Results indicate that significant performanceveapro
ments can be made.

Performance Figures

We have a standard benchmark consisting of a NS for the dynamic semantics of a call-
by-name functional language ‘Mini-Freja’. From this, we generate a compiled inter-
preter for the same language. Finallye irvoke the interpreter on a Mini-Freja pro-
gram computing prime numbers.

Comparing the performance of TYPOL (T) and RML2C (R) for this specification on
a Sun 10/41, ges the folleving results:
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#primes T R T/R
3 13s 0.0026s 5000
4 72s 0.0037s 19459
5 1130s 0.0063s 179365

The Mini-Freja specification as revritten in Prolog to allv comparisons to be made
with commercial natie-code Prolog compilers: SICStus Prolog (S) and Quintus
Prolog (Q). On a Sun 4/470, weveahe follaving results:

#primes S Q R S/IR Q/R

10.0

18 5.0s 4.5s 0.45s 111

Further work

The pragmatic aspects of the generated code need to beathpespecially for inter-
operability with ‘foreign’ code. This is mostly a matter of design and engineering.
There is much room for impvement in the compileStatic analysis should be used

to reduce the in&tiencies introduced by the language itself (e.g. unnecessary deref-
erencing), and those pertinent to certain classes of Natural Semantics specifications.
For instance, dynamic semanticsaiving states are |y to benefit from an Natural
Semantics analogy of the single-threadedness analysis of denotational semantics and
lazy purely functional programming languages.



