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Abstract 
The paper gives an introduction to the problem simulating hybrid DAEs with event-handling using the Mod-
elica language. An implementation in the OpenModelica compiler is presented, and some preliminary results 
are reported. 

1 Introduction 
The OpenModelica[1,4,5] compiler is an open source Modelica[2,3] compiler developed at PELAB, 
Linköping University. So far it has not been possible to simulate hybrid models using the compiler, only pure 
continuous systems. In order to provide a more complete simulation environment and to support the research 
carried out at PELAB we have started to add hybrid simulation capabilities to the OpenModelica compiler. 
One of the research topics that is in need of these capabilities is model checking of hybrid systems in Mode-
lica[6].    

2 Conversion of a Modelica Model to a Hybrid DAE 
A Modelica model is typically translated to a basic mathematical representation in terms of a flat system of 
differential and algebraic equations (DAEs) before being able to simulate the model. This translation proc-
ess elaborates on the internal model representation by performing analysis and type checking, inheritance 
and expansion of base classes, modifications and redeclarations, conversion of connect equations to basic 
equations, etc. The result of this analysis and translation process is a flat set of equations, including condi-
tional equations, as well as constants, variables, and function definitions. By the term flat is meant that the 
object-oriented structure has been broken down to a flat representation where no trace of the object hierarchy 
remains apart from dot notation within names 

3 Simulation of Hybrid Models Based on Solving Hybr id DAEs  
A Modelica simulation problem in the general case is a Modelica model that can be reduced to a hybrid DAE 
in the form of equations (1), (2), and (3), together with additional constraints on variables and their deriva-
tives called initial conditions. 

The initial conditions prescribe initial start values of variables and/or their derivatives at simulation 
time=0 (e.g. expressed by the Modelica start  attribute value of variables, with the attribute fixed  = 
true ), or default estimates of start values (the start  attribute value with fixed  = false ). 

The simulation problem is well defined provided that the following conditions hold: 

• The total model system of equations is consistent and neither underdetermined nor overdetermined. 
• The initial conditions are consistent and determine initial values for all variables. 
• The model is specific enough to define a unique solution from the start simulation time t0 to some end 

simulation time t1. 



The initial conditions of the simulation problem are often specified interactively by the user in the simulation 
tool, e.g. through menus and forms, or alternatively as default start  attribute values in the simulation code. 
More complex initial conditions can be specified through initial  equation  sections in Modelica. 

4 The Form of the Hybrid DAE System 
The hybrid DAE needs to represent both continuous-time behavior and discrete-time behavior. We start by 
formulating the continous-time part, followed by the discrete-time part. 

4.1 Continuous-Time Behavior 

Now we want to formulate the continuous part of the hybrid DAE system of equations including discrete 
variables. This is done by adding a vector q(te) of discrete-time variables and the corresponding predecessor 
variable vector qpre(te) denoted by pre(q)  in Modelica. For discrete variables we use te instead of t to indi-
cate that such variables may only change value at event time points denoted te, i.e., the variables q(te) and 
qpre(te) behave as constants between events. 

We also make the constant vector p of parameters and constants explicit in the equations, and make the 
time t explicit. The vector c(te) of condition expressions, e.g. from the conditions of if  constructs and when 
constructs, evaluated at the most recent event at time te is also included since such conditions are referenced 
in conditional equations. We obtain the following continuous DAE system of equations that describe the sys-
tem behavior between events: 
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4.2   Discrete-Time Behavior 

Discrete time behavior is closely related to the notion of an event. Events can occur asynchronously, and af-
fect the system one at time, causing a sequence of state transitions. An event occurs when any of conditions 
c(te) (defined below) of conditional equations changes value from false  to true . We say that an event 
becomes enabled at the time te, if and only if, for any sufficiently small value of ε, c(te-ε) is false  and 
c(te+ε) is true . An enabled event is fired, i.e., some behavior associated with the event is executed, often 
causing a discontinuous state transition. Firing of an event may cause other conditions to switch from false  
to true . In fact, events are fired until a stable situation is reached when all the condition expressions are 
false . 

Discontinuous changes of continuous dynamic variables x(t) can be caused by so-called reinit  equa-
tions in Modelica, which for the sake of simplicity are excluded from the equation representations discussed 
in this paper. 

However, there are also state changes caused by equations defining the values of the discrete variables 
q(te), which may change value only at events, with event times denoted te. Such discrete variables obtain their 
value at events, e.g. by solving equations in when-equations or evaluating assignments in when-statements. 
The instantaneous equations defining discrete variables in when-equations are restricted to particularly sim-
ple syntactic forms, e.g. var = expr; . These restrictions are imposed by the Modelica language in order to 
easily determine which discrete variables are defined by solving the equations in a when-equation.  

Such equations can be directly converted to equations in assignment form, i.e., assignment statements, 
with fixed causality from the right-hand side to the left-hand side. Regarding algorithmic when-statements 
that define discrete variables, such definitions are always done through assignments. Therefore we can in 
both cases express the equations defining discrete variables as assignments in the vector equation (1a), where 
the vector-valued function fq specifies the right-hand side expressions of those assignments to discrete vari-
ables.  
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The last argument c(te) is made explicit for convenience. It is strictly speaking not necessary since the ex-
pressions in c(te) could have been incorporated directly into fq. The vector c(te) contains all Boolean  condi-



tion expressions evaluated at the most recent event at time te. It is defined by the following vector assignment 
equation with the right-hand side given by the vector-valued function fe. This function has as arguments the 
subset of the discrete variables having Boolean  type, i.e., )( e

B tq and )( e
B
pre tq , the subset of Boolean  pa-

rameters or constants,Bp , and a vector rel(v(t)) evaluated at time te, containing the elementary relational ex-
pressions from the model. The vector of condition expressions c(te) is defined by the following equation in 
assignment form: 
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Here ))),(),(,),(),(),(),(,1(())(( ptqtqttytutxtxreltvrel epree&cat= , a Boolean -typed vector-valued func-
tion containing the relevant elementary relational expressions from the model, excluding relations enclosed 
by noEvent (). The argument v(t) = {v1,v2,...} is a vector containing all scalar elements of the argument vec-
tors. This can be expressed using the Modelica concatenation function cat  applied to the vectors, e.g. 

)),(),(},{,,,,,1()( ptqtqtyuxxcattv epree&= . For example, if rel(v(t)) = {v1 > v2, v3 >= 0, v4<5, v6<=v7, 
v12=133} where v(t) = {v1, v2, v3, v4, v6, v7, v12}, then it might be the case that c(t) = {v1 > v2 and  v3 >= 0, v10, 
not v11, v4<5 or  v6<=v7, v12=133}, where v10, v11 are Boolean  variables and v1, v2, v3, v4, v6, v7 might be 
Real  variables, whereas v12 might be an Integer  variable. 

4.3   The Complete Hybrid DAE 

The total equation system consisting of the combination of (1), (2), and (3) is the desired hybrid DAE equa-
tion representation for Modelica models, consisting of differential, algebraic, and discrete equations. 

This framework describes a system where the state evolves in two ways: continuously in time by chang-
ing the values of x(t), and by instantaneous changes in the total state represented by the variables x(t), y(t), 
and q(t). Instantaneous state changes occur at events triggered when some of the conditions c(te) change 
value from false  to true . The set of state varibles from which other variables are computed is selected 
from the set of dynamic variables x(t), algebraic varibles y(t), and discrete-time variables q(t). 

Below we summarize the notation used in the above equations, with time dependencies stated explicitly 
for all time-dependent variables by the arguments t or te: 

• ,...},,{ 21 ppp = a vector containing the Modelica variables declared as parameter  or constant  
i.e., variables without any time dependency. 

• ,t  the Modelica variable time , the independent variable of type Real  implicitly occurring in all 
Modelica models. 

• )(tx , the vector of dynamic variables of the model, i.e., variables of type Real  that also appear dif-
ferentiated, meaning that der()  is applied to them somewhere in the model. 

• )(tx& , the differentiated vector of dynamic variables of the model. 
• )(tu , a vector of input variables, i.e., not dependent on other variables, of type Real . These also be-

long to the set of algebraic variables since they do not appear differentiated. 
• )(ty , a vector of Modelica variables of type Real  which do not fall into any other category. Output 

variables are included among these, which together with )(tu  are algebraic variables since they do 
not appear differentiated. 

• )( etq , a vector of discrete-time Modelica variables of type discrete  Real , Boolean , Integer  
or String . These variables change their value only at event instants, i.e., at points te in time.  

• )( epre tq , the values of q immediately before the current event occurred, i.e., at time te. 
• )( etc , a vector containing all Boolean  condition expressions evaluated at the most recent event at 

time te. This includes conditions from all if-equations/statements and if-expressions from the original 
model as well as those generated during the conversion of when-equations and when-statements. 

• ))),(),(},{,,,,,1(())(( ptqtqtyuxxcatreltvrel epree&= , a Boolean  vector valued function containing 
the relevant elementary relational expressions from the model, excluding relations enclosed by no-
Event (). The argument v(t) = {v1,v2,...} is a vector containing all elements in the vectors 

ptqtqtyuxx epree ),(),(},{,,,, & . This can be expressed using the Modelica concatenation function cat  
applied to these vectors; rel(v(t)) = {v1 > v2, v3 >= 0, v4<5, v6<=v7, v12=133} is one possible example. 

• (...)f , the function that defines the differential equations 0(...) =f in (1a) of the system of equations. 
• (...)g , the function that defines the algebraic equations 0(...)=g in (1b) of the system of equations. 



• (...)qf , the function that defines the difference equations for the discrete variables (...): qfq =  , i.e., 
(2) in the system of equations. 

• (...)ef , the function that defines the event conditions (...): efc = , i.e., (3) in the system of equations. 

For simplicity, the special cases involving the noEvent() operator and the reinit()  operator are not 
contained in the above equations and are not discussed below. 

5 Hybrid DAE Solution Algorithm 
The general structure of the hybrid DAE solution algorithm is presented in Figure 1, emphasizing the main 
structure rather than details. First, a consistent set of initial values needs to be found based on the given con-
straints, which often requires the solution of an equation system consisting of the initial constraints. Then the 
hybrid DAE solver checks whether any event conditions in when-equations, when-statements, if-expressions, 
etc. have become true  and therefore should trigger events. If there is no event, the continuous DAE solver 
is used to numerically solve the DAE until an event occurs or we have reached the end of the prescribed 
simulation time.  

If the conditions for an event are fulfilled, the event is fired, that is, the conditional equations associated 
with the event are activated and solved together with all other active equations. This means that the variables 
affected by the event are determined, and new values are computed for these variables. Then a new initial 
value problem has to be solved to find a consistent set of initial values for restarting the continuous DAE 
solver, since there might have been discontinuous changes to both discrete-time and continuous-time vari-
ables at the event. This is called the restart problem. Of course, firing an event and solving the restart prob-
lem may change the values of variables, which in turn causes other event conditions to become true  and 
fire the associated events. This iterative process of firing events and solving restart problems is called event 
iteration, which must terminate before restarting the continuous DAE solver. 
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Figure 1.  General structure of hybrid DAE solution algorithm. 

The overall structure of the hybrid DAE solution algorithm is displayed in Figure 1 and summarized below: 
1. Solve an initialization value problem of finding a consistent set of initial values before starting solu-

tion of the continuous part, equation (1), of the hybrid DAE. 
2. Solve the continuous DAE part (1) of the hybrid DAE using a numerical DAE solver. During this 

phase the values of the discrete variables q as well as the values of the conditions c from the when-
equations, -statements, if-expressions, etc. of the model are kept constant. Therefore the functions 



f(...) and g(...) in (1) are continuous functions of continuous variables, which fulfills the basic re-
quirements of continuous DAE solvers. 

3. During solution of the continuous DAE, all relations rel(...) occurring in the conditions c are con-
stantly monitored. If one of the relations changes value causing a condition to change value from 
false  to true , the exact time instant of the change is determined, the continuous DAE solution 
process is halted, and an event is triggered. 

4. At an event instant, when an event has been fired, the total system of active equations is a mixed set 
of algebraic equations, which is solved for unknowns of type Real , Boolean , and Integer . 

5. After the processing of an event, the algorithm continues with step (1) of solving the restart problem 
of finding a consistent set of initial values. After this step solving the continuous part of the hybrid 
DAE is restarted if the check in (3) does not indicate new events to be processed in (4). 

6 Varying Structure of the Active Part of the Hybri d DAE 
Even though the total hybrid DAE system of equations is structurally time invariant, i.e., the set of variables 
and the set of equations is fixed over time, it is the case that conditional equations in hybrid DAEs can be 
activated and deactivated. This means that some variables in the state vectors x and q as well as certain equa-
tions can be disabled or deactivated at run-time during simulation, as well as enabled or activated. Such acti-
vation or deactivation is caused by events. A disabled variable is kept constant whereas a disabled equation 
is removed from the total system of active equations that is currently solved. Thus the active part of the hy-
brid DAE can be structurally dynamic, i.e., at run-time change the number of active variables and equations 
in the DAE. 

7 Finding Consistent Initial Values at Start or Res tart 
As we have stated briefly above, at the start of the simulation, or at restart after handling an event, it is re-
quired to find a consistent set of initial values or restart values of the variables of the hybrid DAE equation 
system before starting continuous DAE solution process.  

At the start of the simulation these conditions are given by the initial conditions of the problems (includ-
ing start  attribute equations, equations in initial equation  sections, etc., together with the system 
of equations defined by (1), (2), and (3). The user specifies the initial time of the simulation, t0, and initial 
values or guesses of initial values of some of the continuous variables, derivatives, and discrete-time vari-
ables so that the algebraic part of the equation system can be solved at the initial time t=t0 for all the remain-
ing unknown initial values. 

At restart after an event, the conditions are given by the new values of variables that have changed at the 
event, together with the current values of the remaining variables, and the system of equations (1), (2), and 
(3). The goal is the same as in the initial case, to solve for the new values of the remaining variables. 

In both of the above cases, i.e., at events, including the initial event representing the start of simulation, 
the process of finding a consistent set of initial values at start or restart is performed by the following itera-
tive procedure, called event iteration: 

Known variables: x, u, t, p 

Unknown variables: cqqyx pre ,,,,&  

loop 
    Solve the equation system (1) for the unknowns,  with qpre fixed; 

if  q = qpre then exit loop; 
qpre := q; 

end loop 

In the above pseudocode we use the notation qpre corresponding to pre (q) in Modelica. 



8 Detecting Events during Continuous-time Simulatio n 
Event conditions c are Boolean  expressions depending on discrete-time or continuous-time model vari-
ables. As soon as an event condition changes from false  to true , the event occurs. It is useful to divide 
the set of event conditions into two groups: conditions which depend only on discrete-time variables and 
therefore may change only when an event is fired, and conditions which also depend on continuous-time 
variables and may change at any time during the solution of the continuous part of the DAE. We call the first 
group discrete-time conditions, and the second group continuous-time conditions. 

The first group causes no particular problems. The discrete-time conditions are checked after each event 
when the discrete-time variables might have changed. If some of the conditions change from false  to 
true , the corresponding events are simply fired. 

The continuous-time conditions, however, are more complicated to handle. Each Boolean  event condi-
tion needs to be converted into a continuous function that can be evaluated and monitored along with the 
continuous-time DAE solution process. Most numerical software, including DAE solution algorithms, is de-
signed to efficiently detect when the values of specified expressions cross zero.  

9 Crossing Functions 
To be able to detect when Boolean  conditions become true , we convert each continuous-time Boolean  
event condition into a so-called crossing function. Such a function of time crosses zero when the Boolean  
condition changes from false  to true . For example, the simple condition expression y>53  changes from 
false  to true  when y-53  crosses zero from being less than zero to being greater than zero, as depicted in  
Figure 2. The body of the corresponding crossing function is simply y-53 . 
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Figure 2.  A boolean condition expression y>53 , with its corresponding crossing function y-53  that crosses zero at the 
event, thereby determining the time of the event.  

The decision to react on changes of event conditions in Modelica from false  to true  rather than from 
true  to false  is arbitrary; it could also have been the other way around. 

10 Integrating the Numerical Solver with Event-Hand ling 
In the OpenModelica system a version of DASSL with root finding is used (DASRT)[7]. In order to integrate 
event handling in the compiler and run-time system, the front-end must produce crossing functions and han-
dlers for the events; the actual search for zero crossings is left to the solver.  

The following functions must be made available to the solver: 

• functionDAE_res()  Equations for state variables on residual form.  

• function_ZeroCrossing()  Contains the crossing functions indexed from 0 to ng-1, where ng is 
the number of crossing functions. 

The sign of the crossing function is chosen in such a way that the function always goes from negative to 
positive when an event is to be triggered. This is no requirement of the solver, but it is useful when the run-
time system checks whether any new events got triggered as a result of variable changes due to the handled 



event. The runtime system only has to go through the crossing functions and see if any of them has become 
positive. Before each restart of the solver, the signs of the crossing functions are recalculated so that all the 
functions are negative. If a crossing function is equal to zero when the solver is to be started, it is disabled by 
setting it to -1, because the solver cannot handle crossing functions that are zero at startup.  

Pseudo code for the simulation loop is shown below. 

Integration time variable: t  
Time of next simulation output: tout  

Queue of events: eventQueue   
 

call DASRT to integrate from t to tout; 
loop 

  if t >= tout then exit loop; 
  if DASRT stopped at a root then 
    loop 
      emit variable values to the result file; 
      for each root 
        call handleZeroCrossing; 
      end for 
      emit variable values to the result file; 
      call newEventCheck;  
      call startEventIteration; 
      call DASRT to restart the integration and integrate to tout; 
      if DASRT did not find roots then exit loop; 
    end loop; 
  end if; 
  emit variable values to the result file; 
  tout:= tout + step; 

  call DASRT to integrate from t to tout; 
end loop; 
emit variable values to the result file; 
end; 
 
function startEventIteration 
  loop 
    if eventQueue is empty then exit loop; 
    event := pop eventQueue; 
    if event is a boolean variable change then 
      call handleEvent; 
    else 
      call handleZeroCrossing; 
    end if;  
 
    call newEventCheck; 
  end loop; 
end function; 

11 Code Generation 
In the equations sorting algorithm we assume that the equations conform to certain rules which simplifies the 
sorting: 

1) There are no if-equations with non-constant conditions. Such equations are first transformed to 
equations of the form 0 = if cond then <truepart> else <falsepart>; . This way they 
can be treated as regular equations. 

2) The conditional expressions of when-clauses only contain boolean variables. If a condition in-
volves a relation expression a help variable is introduced along with an equation binding it to the 
expression it replaces. This way when the solver stops as a result of a crossing function becom-



ing positive. Handling routines only has to set the appropriate discrete variable and then the 
event iteration mechanism handles the triggering of the when-equations. 

When dealing with hybrid simulations one could make a distinction between time-events and state-events. 
By time-events we mean events triggered by expressions not depending, directly or indirectly, on any state 
variables. The triggering time of such events can be calculated beforehand and the root finder of the solver 
need not be used. This is more efficient, but in this first version we do not make this distinction. 

Apart from the functions listed in section 10 the simulation code generated by OpenModelica contains the 
following functions: 

• functionDAE_output()  Equations for output variables 

• handleZeroCrossing()  Called by the simulation loop when the solver has stopped as a result 
of a crossing function passing zero. 

• handleEvent()  Called by the event iteration loop Whenever a boolean variable has 
become true as a result of a zero crossing or as a result of another 
event. 

• newEventCheck()  Called once for each iteration in the event iteration loop to check if 
any new event was triggered. 

In the first step of the equation sorting part of the compilation, all equations and variables are gathered. In 
this stage all equations appearing inside when clauses are checked to see if they conform to the requirements 
of when-clauses and all variables that appear as left hand sides of these equations are marked as discrete. 
These equations are considered during the rest of the equation sorting, but instead of being output in the 
functions used by the DAE solver (functionDAE_res() and functionDAE_output() ), they are put in the  
handleEvent()- function and are therefore only calculated at events instead of for each iteration of the 
solver. 

Next, every expression in the model, apart from those appearing inside noEvent() , etc, are searched for 
relation expressions, e.g., 5>x . Each such expression, labeled with a list of all equations in which it occurs, 
is added to a list of zero crossings (rel). If rel contains more than one element with identical relation expres-
sions, those elements are merged together by appending the lists of equations in them. Each element in rel 
generates on crossing function in zeroCrossing()  and a section in handleZeroCrossing()  in which the 
equations assigned to the relation is output. All variables depending on variables updated in handleZero-

Crossing() are also updated. 
In the newEventCheck()- function a test of the form “if (y != pre(y)) ” is generated for each dis-

crete variable y. If the variable y is in the condition expression of a when-clause then the index of that when-
clause is placed on a queue holding the events yet to be handled. If there are variables depending on y ac-
cording to the sorting of the equations, then these variables are updated. If this causes a zero crossing to 
change its sign then the index of that zero crossing is placed in the event queue. 

The event iteration starts by checking for any new events that has been fired as result of the crossing func-
tion passing zero. This is done by calling newEventCheck() in the generated simulation code followed by a 
call to function_ZeroCrossing() . For each crossing function reporting a positive result the index of that 
crossing function is placed on the event queue. Then the first event in the queue is handled and the check for 
new events is carried out again. This continues until the event queue is empty. At this time new consistent 
start condition is calculated and the solver is restarted.  

Since each unique relation expression generate its own zero crossing function it is possible to write a 
model that causes the integrator to stop even though the no event actually occur, e.g., the code; “when b or 
x > 3 then …”, would cause an unnecessary interruption of the integrator if the variable b is already 
true . It would be possible detect such situations and disable the zero crossing function for when it would 
not influence the result. We have chosen not to detect this for now to simplify the implementation.   



12 Measurements and Evaluation 

12.1 Bouncing Ball 

As a small test case for the implementation we have used a model of a bouncing ball.   
 
model BouncingBall  
  parameter Real e=0.7 "coefficient of restitution"; 
  parameter Real g=9.81 "gravity acceleration"; 
  Real h(start=1) "height of ball"; 
  Real v "velocity of ball"; 
  Boolean flying(start=true) "true, if ball is flyi ng"; 
  Boolean impact; 
  Real v_new; 
equation  
  impact = h <= 0; 
  der(v) = if flying then -g else 0; 
  der(h) = v; 
 
  when {impact, h <= 0 and v <= 0} then 
    v_new = if edge(impact) then -e*pre(v) else 0; 
    flying = v_new > 0; 
    reinit(v, v_new); 
  end when; 
end BouncingBall; 

Due to numerical effects it is necessary to separately handle the case where the heights of the bounces be-
come smaller than the tolerance of the simulation. Otherwise, the ball could “fall through the floor”. 

Figure 3.  Plot of the height of the ball as a function of time. 

When we compare the times (et ) of the bouncing events to the analytically calculated times denoted et  they 
differ in time from the analytically calculated by more than 8102.5 −⋅ s.  

12.2 Event Iteration 

The following model tests the event iteration. When x reaches two a chain of events starts that end with the setting 
of z to true. The iteration involves both when conditions being set directly as in the case of y, and indirectly by 
setting a to 2.0 causing h2 to becoming true. The whole chain of events takes place in the same iteration without 
the continuous solver ever having to restart in the middle. 
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model EventIteration  
  Real x(start=1.0), dx; 
  discrete Real a(start=1.0); 
  Boolean y(start=false), z(start=false); 
  Boolean h1, h2; 
equation  
  der(x) = dx; 
  dx = a*x; 
  h1 = x >= 2; 
  h2 = dx >= 4; 
   
  when h1 then 
    y = true; 
  end when; 
  when y then 
    a = 2.0; 
  end when; 
  when h2 then 
    z = true; 
  end when; 
end EventIteration; 

13 Conclusions and future work 
In this paper we have presented an overview of our implementation of discrete event handling in the Open-
Modelica compiler. In the test models we show that event iteration work as expected and that the simulation 
results correspond well to analytically calculated results.  

The implementation is however not yet complete. In the future we wish implement separate handling of 
events where the time of the event can be calculated before hand, so that the integrator does not have to 
search for the roots. When time events are handled we plan to use the OpenModelica compiler as a basis for 
research in the field of model checking of hybrid systems. 

14 Acknowledgements 
This work has been supported by Swedish Foundation for Strategic Research (SSF) in the ECSEL graduate 
school. 

 

References  
[1] Peter Fritzson, et al. The Open Source Modelica Project. In Proceedings of The 2nd International  

Modelica Conference, 18-19 March, 2002. Munich, Germany See also:  
http://www.ida.liu.se/projects/OpenModelica. 

[2] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., 
ISBN 0-471-471631, Wiley-IEEE Press, 2004. 

[3] The Modelica Association. The Modelica Language Specification Version 2.2, March 2005. 
http://www.modelica.org. 

[4] The OpenModelica Users Guide, version 0.2, April 2005. www.ida.liu.se/projects/OpenModelica 

[5] The OpenModelica System Documentation, version 0.2, April 2005.   
www.ida.liu.se/projects/OpenModelica 

[6] Håkan Lundvall, Peter Bunus, Peter Fritzson. Towards Automatic Generation of Model Checkable 
Code from Modelica. In Proceedings of the 45th Conference on Simulation and Modelling of the  
Scandinavian Simulation Society (SIMS2004), 23-24 September 2004, Copenhagen, Denmark. 

[7] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differen-
tial-Algebraic Equations, Elsevier, New York, 1989. 


