Event Handling in the OpenModelica Compiler and
Runtime System

Hakan Lundvall, Peter Fritzson
PELAB — Programming Environment Lab, Dept. Computer Science
Linkdping University, S-581 83 Linkdping, Sweden
{haklu,petfr}@ida.liu.se

Abstract

The paper gives an introduction to the problem simulating hybriD#ith event-handling using the Mod-
elica language. An implementation in the OpenModelica compif@esented, and some preliminary results
are reported.

1 Introduction

The OpenModelica[l,4,5] compiler is an open source Modelica[2,3] temgeveloped at PELAB,
Link6ping University. So far it has not been possible to simulate hybrid magletsthe compiler, only pure
continuous systems. In order to provide a more complete simulaticorement and to support the research
carried out at PELAB we have started to add hybrid simulatioabilgfes to the OpenModelica compiler.
One of the research topics that is in need of these capaliditresdel checking of hybrid systems in Mode-
lica[6].

2 Conversion of a Modelica Model to a Hybrid DAE

A Modelica model is typically translated to a basic matharabtepresentation in terms of a flat system of
differential and algebraic equations (DAES) before being able to simulate the model. This translgtioc-
ess elaborates on the internal model representation by rparfpanalysis and type checking, inheritance
and expansion of base classes, modifications and redeclarations;smmneé connect equations to basic
equations, etc. The result of this analysis and translationgzaeea flat set of equations, including condi-
tional equations, as well as constants, variables, and funatfonitions. By the ternflat is meant that the
object-oriented structure has been broken down to a flat repriésenthere no trace of the object hierarchy
remains apart from dot notation within names

3 Simulation of Hybrid Models Based on Solving Hybr id DAEs

A Modelicasimulation problem in the general case is a Modelioadel that can be reduced to a hybrid DAE
in the form of equations (1), (2), and (3), together with additiooastraints on variables and their deriva-
tives callednitial conditions.

The initial conditions prescribe initial start values @frigbles and/or their derivatives at simulation
time=0 (e.g. expressed by the Modelgtart attribute value of variables, with the attribdbeed =
true), or default estimates of start values @$het attribute value witliixed =false).

The simulation problem isell defined provided that the following conditions hold:

» The total model system of equations is consistent and neither underdetérmar overdetermined.

* The initial conditions are consistent and determine initial values|fea@bles.

» The model is specific enough to define a unique solution from thesgtardation timet, to some end
simulation timet;.

The initial conditions of the simulation problem are often gpetinteractively by the user in the simulation
tool, e.g. through menus and forms, or alternatively as desftawtt attribute values in the simulation code.
More complex initial conditions can be specified throirgtial equation sections in Modelica.

4 The Form of the Hybrid DAE System

The hybrid DAE needs to represent both continuous-time behavior ametelisme behavior. We start by
formulating the continous-time part, followed by the discrete-time part

4.1 Continuous-Time Behavior

Now we want to formulate the continuous part of bigbrid DAE system of equations including discrete
variables. This is done by adding a vedai(ir) of discrete-time variables and the corresponding predecessor
variable vecton,¢(ts) denoted byre(q) in Modelica. For discrete variables we tisgstead ot to indi-
cate that such variables may only change value at eveatpiints denoted, i.e., the variableg(ty) and
Owe(te) bEhave as constants between events.

We also make the constant vegboof parameters and constants explicit in the equations, and make the
timet explicit. The vectoc(te) of condition expressions, e.g. from the conditiond oftonstructs and/hen
constructs, evaluated at the most recent event atdiimelso included since such conditions are referenced
in conditional equations. We obtain the followicantinuous DAE system of equations that describe the sys-
tem behaviobetween events:

F(x(0), x(t),u(t), y(1).t,a(te), Ape (L), P.C(L)) = 0 (a)
g(x(0),u(t), y(1),t,q(te), Apre(te), P, C(te)) =0 (b)

(1)

4.2 Discrete-Time Behavior

Discrete time behavior is closely related to the notion ahamt. Events can occur asynchronously, and af-
fect the system one at time, causing a sequence of stasgitms. An event occurs when any of conditions
c(ty) (defined below) of conditional equations changes value fedse to true . We say that an event
becomesenabled at the timet,, if and only if, for any sufficiently small value @&f c(t.-¢) is false and
c(te+&) istrue . An enabled event ired, i.e., some behavior associated with the event is executed, often
causing a discontinuous state transition. Firing of an event may cause othgor®tal switch fronfalse

to true . In fact, events are fired until a stable situation islredovhen all the condition expressions are
false

Discontinuous changes of continuous dynamic variaki<an be caused by so-calleinit equa-
tions in Modelica, which for the sake of simplicity are excludethfthe equation representations discussed
in this paper.

However, there are also state changes caused by equationsgdéfimivalues of thdiscrete variables
g(te), which may change valumly at events, with event times denotedSuch discrete variables obtain their
value at events, e.g. by solving equations in when-equations or @wglassignments in when-statements.
The instantaneous equations defining discrete variables in wheteaguare restricted to particularly sim-
ple syntactic forms, e.gar = expr; . These restrictions are imposed by the Modelica languagelén to
easily determine which discrete variables are defined by solving theéosguia a when-equation.

Such equations can be directly converted to equations in assigformant.e., assignment statements,
with fixed causality from the right-hand side to the left-hand. drEgarding algorithmic when-statements
that define discrete variables, such definitions are alday® through assignments. Therefore we can in
both cases express the equations defining discrete varialslesgasents in the vector equation (1a), where
the vector-valuedunction f, specifies the right-hand side expressions of tlassgnments to discrete vari-
ables.

q(te) = fq(X(te), X(te), U(te), Y(te) tes Qpre(te)s P C(te)) (2)

The last argument(ty) is made explicit for convenience. It is strictly speakitg necessary since the ex-
pressions irc(tey) could have been incorporated directly ifitor he vectorc(te) contains alBoolean condi-

tion expressions evaluated at the most reeasnt at timet.. It is defined by the following vector assignment
equation with the right-hand side given by the vector-valued famtti This function has as arguments the
subset of the discrete variables havBaplean type, i.e.,q®(t,) and qu,e(te), the subset dBoolean pa-
rameters or constants?, and a vectore (v(t)) evaluated at timg, containing the elementary relational ex-
pressions from the model. The vector of condition expressit)ss defined by the following equation in
assignment form:

c(te) = fo(a° (te), ape(te), B, rel (V(te))) 3)

Here rel(v(t)) =rel(cat (L x(t), x(t),u(t), y(t),t,q(te),dpe(te), P)), @ Boolean -typed vector-valued func-
tion containing the relevant elementagyational expressions from the model, excluding relations enclosed
by noEvent (). The argument(t) = {vi,v»,...} iS a vector containing all scalar elements of the argument vec
tors. This can be expressed using the Modelica concatenatiotiofucat applied to the vectors, e.g.
v(t) =cat(L x, x,u, Y, {t}, d(te),dpe(te), p) . For example, ifrel(v(t)) = {vi > Vv, vz >= 0, u<5, %<=v;,
v15=133} wherev(t) = {vy, Vo, Vs, V4, Vs, V7, Vi2}, then it might be the case thet) = {v; > v, and v; >= 0, vy,

not vy, Va<5 or ve<=v, v;,=133}, wherevy, vi; areBoolean variables and iy Vv,, Vs, Va4, Vs, V7 might be
Real variables, whereas, might be arinteger variable.

4.3 The Complete Hybrid DAE

The total equation system consisting of the combination of (1)a(2 (3) is the desirdd/brid DAE equa-
tion representation for Modelica models, consistindifiérential, algebraic, anddiscrete equations.

This framework describes a system where the state eviolve® ways: continuously in time by chang-
ing the values ok(t), and by instantaneous changes in the total state represerttes \@riable(t), y(t),
and q(t). Instantaneous state changes occur at events triggered wherotone conditiong(ty) change
value fromfalse totrue . The set oftate varibles from which other variables are computed is selected
from the set of dynamic variablgg), algebraic varibleg(t), and discrete-time variablg).

Below we summarize the notation used in the above equatiahstime dependencies stated explicitly
for all time-dependent variables by the arguméoid,.:

* p={py,p,...},a vector containing the Modelica variables declaregaaameter or constant
i.e., variables without any time dependency.

* t, the Modelica variabléime , the independent variable of typeeal implicitly occurring in all
Modelica models.

* x(t), the vector of dynamic variables of the model, i.e., variatiégpe Real that also appear dif-
ferentiated, meaning thder() is applied to them somewhere in the model.

e Xx(t), the differentiated vector of dynamic variables of the model.

* u(t), a vector of input variables, i.e., not dependent on other vesiatll typeReal . These also be-
long to the set of algebraic variables since they do not appear diid¢eenti

* y(t), a vector of Modelica variables of typeal which do not fall into any other category. Output
variables are included among these, which together wiith are algebraic variables since they do
not appear differentiated.

* ((t,), a vector of discrete-time Modelica variables of tggerete Real , Boolean , Integer
or String . These variables change their value only at event instants, i.e., attpoinise.

* dpe(te), the values oflimmediately before the current event occurred, i.e., atttime

* c(t,), a vector containing aBoolean condition expressions evaluated at the most rement at
time te. This includes conditions from all if-equations/statements aagpfessions from the original
model as well as those generated during the conversion of when-equations arstatdraents.

o rel(v(t)) =rel(cat(® x, x,u, ¥ {t}, a(te), e (te), P)), @ Boolean vector valued function containing
the relevant elementary relational expressions from the mexididing relations enclosed Iop-
Event (). The argumentv(t) = {vi,v,,...} is a vector containing all elements in the vectors
X, %, U, Y, {t}, d(te), dpre(te), P- This can be expressed using the Modelica concatenation funation
applied to these vectonsl (v(t)) = {v1 > v, V3 >= 0, u<5, w<=Vv; v1,=133} is one possible example.

« f(...), the function that defines the differential equatib(is)=0in (1a) of the system of equations.

* g(...), the function that defines the algebraic equatigng=0in (1b) of the system of equations.

« f,(...), the function that defines the difference equatitor the discrete variableg:= f.(...) , i.e.,
(2) in the system of equations.
« f.(...), the function that defines the event conditiens f(...), i.e., (3) in the system of equations.

For simplicity, the special cases involving theEvent() operator and theeinit() operator are not
contained in the above equations and are not disduselow.

5 Hybrid DAE Solution Algorithm

The general structure of tingbrid DAE solution algorithm is presented in Figure 1, emphasizing the main
structure rather than details. First, a consisgenhbfinitial values needs to be found based on the given con-
straints, which often requires the solution of gnaion system consisting of the initial constraifithen the
hybrid DAE solver checks whether aeyent conditions in when-equations, when-statements, if-expressions
etc. have becomeue and therefore should trigger events. If theredewment, thecontinuous DAE solver

is used to numerically solve the DAE until an eveoturs or we have reached the end of the prescribe
simulation time.

If the conditions for an event are fulfilled, theent is fired, that is, the conditional equations associated
with the event are activated and solved togeth#r all other active equations. This means thavtr@bles
affected by the event are determined, and new saue computed for these variables. Then a neialinit
value problem has to be solved to find a consisteniof initial values forestarting the continuous DAE
solver, since there might have been discontinubasges to both discrete-time and continuous-timie va
ables at the event. This is called tlegtart problem. Of course, firing an event and solving the regteob-
lem may change the values of variables, which in tauses other event conditions to bectrme and
fire the associated events. This iterative procédsing events and solving restart problems idechevent
iteration, which must terminate before restarting the camtirs DAE solver.

Find consisten
initial values

Sl
>
Check
Event Conditions

v § \ 4

Solve continuous DAH Fire event and
and advance time untjl solve for consistent
event or end tim initial/restart value

I

Figure 1. General structure of hybrid DAE solution algorithm.

The overall structure of the hybrid DAE solutioga@lithm is displayed in Figure 1 and summarizedwel

1. Solve arinitialization value problem of finding a consistent set of initial values hefstarting solu-
tion of the continuous part, equation (1), of tigbrid DAE.

2. Solve thecontinuous DAE part (1) of the hybrid DAE using a numerical DAE salv®uring this
phase the values of the discrete variables well as the values of the conditianom the when-
equations, -statements, if-expressions, etc. ofmbdel are kept constant. Therefore the functions

f(...) andg(...) in (1) are continuous functions of continuowsiables, which fulfills the basic re-
quirements of continuous DAE solvers.

3. During solution of the continuous DAE, all rébats rel(...) occurring in the conditions are con-
stantly monitored. If one of the relations changes value causingradition to change value from
false totrue , the exact time instant of the change is deterthitiee continuous DAE solution
process is halted, and an event is triggered.

4. At an event instant, when an event has beed, fine total system daictive equations is a mixed set
of algebraic equations, which is solved for unknowns of tgesal , Boolean , andinteger

5. After the processing of an event, the algorittontinues with step (1) of solving the restart beab
of finding a consistent set of initial values. Aftais step solving the continuous part of the kd/br
DAE is restarted if the check in (3) does not iatikcnew events to be processed in (4).

6 Varying Structure of the Active Part of the Hybri d DAE

Even though the total hybrid DAE system of equatimnstructurally time invariant, i.e., the setvafiables
and the set of equations is fixed over time, ithis case that conditional equations in hybrid DARs be
activated and deactivated. This means that son&bles in the state vectaxsandq as well as certain equa-
tions can be disabled or deactivated at run-timagdwsimulation, as well as enabled or activatecthSacti-
vation or deactivation is caused by events. A déshlariable is kept constant whereas a disabledtamn
is removed from the total system of active equatitbriat is currently solved. Thus thetive part of the hy-
brid DAE can bestructurally dynamic, i.e., at run-time change the numbeiadiive variables and equations
in the DAE.

7 Finding Consistent Initial Values at Start or Res tart

As we have stated briefly above, at the start efdimulation, or at restart after handling an evitns re-
quired to find a consistent set of initial valuesrestart values of the variables of the hybrid Dédtiation
system before starting continuous DAE solution pssc

At the start of the simulation these conditions are given lyyitiitial conditions of the problems (includ-
ing start attribute equations, equationsimitial equation sections, etc., together with the system
of equations defined by (1), (2), and (3). The wsEcifies the initial time of the simulatiol, and initial
values or guesses of initial values of some ofdirtinuous variables, derivatives, and discretetirari-
ables so that the algebraic part of the equatistesy can be solved at the initial titag, for all the remain-
ing unknown initial values.

At restart after an event, the conditions are given byrthe values of variables that have changed at the
event, together with the current values of the ieimg variables, and the system of equations @), gnd
(3). The goal is the same as in the initial cassptve for the new values of the remaining vagabl

In both of the above cases, i.e., at events, inmuduthe initial event representing the start of idation,
the process of finding a consistent set of ini@ues at start or restart is performed by theofailhg itera-
tive procedure, calleevent iteration:

Known variablesx, u, t, p

Unknown variablesx, y,q, QpresC

| oop
Solve the equation system (1) for the unknowns, with gy fixed;
if 9= gpe then exit | oop;
Qpre := 0,
end | oop

In the above pseudocode we use the notagjeiworresponding tpre (q) in Modelica.

8 Detecting Events during Continuous-time Simulatio n

Event conditionsc are Boolean expressions depending on discrete-time or contissiocne model vari-
ables. As soon as an event condition changes fatsa to true , the event occurs. It is useful to divide
the set of event conditions into two groups: caadg which depend only on discrete-time variabled a
therefore may change only when an event is fired, @nditions which also depend on continuous-time
variables and may change at any time during thetieal of the continuous part of the DAE. We ca# first
groupdiscrete-time conditions, and the second growapntinuous-time conditions.

The first group causes no particular problems. dikerete-time conditions are checked after eachteve
when the discrete-time variables might have chanesome of the conditions change frdaise to
true , the corresponding events are simply fired.

The continuous-time conditions, however, are mamagicated to handle. Ea@polean event condi-
tion needs to be converted into a continuous foncthat can be evaluated and monitored along Wigh t
continuous-time DAE solution process. Most numérscdtware, including DAE solution algorithms, is-d
signed to efficiently detect when the values ofcHpd expressions cross zero.

9 Crossing Functions

To be able to detect wh&voolean conditions becomt&ue , we convert each continuous-tiBeolean
event condition into a so-calletdossing function. Such a function of time crosses zero wherBibalean
condition changes frorfalse totrue . For example, the simple condition expressioh3 changes from
false totrue wheny-53 crosseszero from being less than zero to being greasar #ero, as depicted in
Figure 2. The body of the corresponding crossimgtion is simplyy-53 .

A true
false V\/ y—-53 (acrossing function)
0 >
‘: time
event

Figure 2. A boolean condition expressign53, with its corresponding crossing functipfb3 that crosses zero at the
event, thereby determining the time of the event.

The decision to react on changes of event conditioriModelica fromfalse to true rather than from
true tofalse is arbitrary; it could also have been the othey aund.

10 Integrating the Numerical Solver with Event-Hand ling

In the OpenModelica system a version of DASSL waitht finding is used (DASRT)[7]. In order to intede
event handling in the compiler and run-time systta,front-end must produce crossing functions tzart
dlers for the events; the actual search for zewesings is left to the solver.

The following functions must be made availableh® $olver:
e functionDAE_res() Equations for state variables on residual form.

* function_ZeroCrossing() Contains the crossing functions indexed froro ng-1, whereng is
the number of crossing functions.

The sign of the crossing function is chosen in saickay that the function always goes from negatiive
positive when an event is to be triggered. Thisdgequirement of the solver, but it is useful wiles run-
time system checks whether any new events gotetréghas a result of variable changes due to thélddhn

event. The runtime system only has to go throughctbssing functions and see if any of them hasrbec
positive. Before each restart of the solver, tigasiof the crossing functions are recalculatechavall the
functions are negative. If a crossing functiondaa to zero when the solver is to be started, disabled by
setting it to -1, because the solver cannot harrdigsing functions that are zero at startup.

Pseudo code for the simulation loop is shown below.

Integration time variabld:
Time of next simulation outputy
Queue of eventgventQueue

cal | DASRT to integrate from tto tou;
| oop
if t>= t, then exit |oop;
i f DASRT stopped at a root t hen
| oop

emit variable values to the result file;
for each root
cal | handlezZeroCrossing;
end for
emit variable values to the result file;
cal | newEventCheck;
cal | startEventlteration;

cal | DASRT to restart the integration and integrate to tout;
i f DASRT did not find roots then exit |oop;
end | oop;
end if;

emit variable values to the result file;

tor= Tow+ StEP;

cal | DASRT to integrate from tto to
end | oop;

emit variable values to the result file;
end;

f unct i on startEventlteration

| oop

i f eventQueueis empty then exit |oop;

event := pop eventQueue;

i f eventis a boolean variable change t hen
cal | handleEvent;

el se
cal | handleZeroCrossing;

end if;

cal | newEventCheck;
end | oop;
end function;

11 Code Generation

In the equations sorting algorithm we assume ti@efuations conform to certain rules which sirgdithe
sorting:

1) There are no if-equations with non-constant cood#ti Such equations are first transformed to
equations of the formm= if cond then <truepart> el se <falsepart>; . This way they
can be treated as regular equations.

2) The conditional expressions of when-clauses oniytaio boolean variables. If a condition in-
volves a relation expression a help variable ioticed along with an equation binding it to the
expression it replaces. This way when the soh@pssas a result of a crossing function becom-

ing positive. Handling routines only has to set #ppropriate discrete variable and then the
event iteration mechanism handles the triggerinfp@fwvhen-equations.

When dealing with hybrid simulations one could makdistinction between time-events and state-events
By time-events we mean events triggered by expressiot depending, directly or indirectly, on atgtes
variables. The triggering time of such events carc&lculated beforehand and the root finder ofstiieer
need not be used. This is more efficient, but i finst version we do not make this distinction.

Apart from the functions listed in section 10 tiawation code generated by OpenModelica contdias t
following functions:

e functionDAE_output() Equations for output variables

e handleZeroCrossing() Called by the simulation loop when the solver siapped as a result
of a crossing function passing zero.

e handleEvent() Called by the event iteration loop Whenever a &aolvariable has
become true as a result of a zero crossing or r@sudt of another
event.

* newEventCheck() Called once for each iteration in the event iteratoop to check if

any new event was triggered.

In the first step of the equation sorting parttué tompilation, all equations and variables arbegad. In
this stage all equations appearing inside whersekare checked to see if they conform to the repeints
of when-clauses and all variables that appearfasidad sides of these equations are marked asetsc
These equations are considered during the resteoéquation sorting, but instead of being outputhi
functions used by the DAE solveur{ctionDAE_res() andfunctionDAE_output()), they are put in the
handleEvent()- function and are therefore only calculated at evémstead of for each iteration of the
solver.

Next, every expression in the model, apart fronséhappearing insid@Event() , etc, are searched for
relation expressions, e.gx,>5. Each such expression, labeled with a list oégllations in which it occurs,
is added to a list of zero crossingd). If rel contains more than one element with identicati@ieexpres-
sions, those elements are merged together by ajpetine lists of equations in them. Each elemenein
generates on crossing functionzi#roCrossing() and a section ihandleZeroCrossing() in which the
equations assigned to the relation is output. Afiables depending on variables updatedaimlezero-
Crossing() are also updated.

In the newEventCheck()- function a test of the formit (y != pre(y)) " is generated for each dis-
crete variablg. If the variabley is in the condition expression of a when-clausa tthe index of that when-
clause is placed on a queue holding the eventtoye¢ handled. If there are variables depending ac-
cording to the sorting of the equations, then them@ables are updated. If this causes a zeroiogss
change its sign then the index of that zero crgssiplaced in the event queue.

The event iteration starts by checking for any e&ents that has been fired as result of the crp$simc-
tion passing zero. This is done by calling newE@&eick() in the generated simulation code followgdb
call to function_zZeroCrossing() . For each crossing function reporting a positiesuit the index of that
crossing function is placed on the event queuenThe first event in the queue is handled and tigek for
new events is carried out again. This continued ti event queue is empty. At this time new cstesit
start condition is calculated and the solver isartsd.

Since each unigue relation expression generatewits zero crossing function it is possible to widte
model that causes the integrator to stop even ththgno event actually occag., the code; #hen b or
x >3 then ...”, would cause an unnecessary interruption of tiiegrator if the variableé is already
true . It would be possible detect such situations ardhde the zero crossing function for when it would
not influence the result. We have chosen not tealeiis for now to simplify the implementation.

12 Measurements and Evaluation

12.1 Bouncing Ball

As a small test case for the implementation we heeel a model of a bouncing ball.

nodel BouncingBall
par anet er Real e=0.7 "coefficient of restitution";
par anmet er Real g=9.81 "gravity acceleration”;
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flyi ng";
Boolean impact;
Real v_new;
equati on
impact = h <= 0;
der(v) = i f flying then-g else0;
der(h) = v;

when {impact, h<=0 and v <= 0} t hen
V_hew = i f edge(impact) t hen -e*pre(v) el se 0;
flying = v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

Due to numerical effects it is hecessary to sepbrétandle the case where the heights of the beubee
come smaller than the tolerance of the simulat@therwise, the ball could “fall through the floor”.

h

1,20

1,00

e
IR PN
ol L\ A

Wl VA

0,00 0,50 1,00 1,50 2,00 2,50 3,00

Figure 3. Plot of the height of the ball as a function ofii.

When we compare the times,{ of the bouncing events to the analytically cadtedl times denotet], they
differ in time from the analytically calculated byore than520107s.

12.2 Event Iteration

The following model tests the event iteration. Wkeraches two a chain of events starts that end with thegsetti
of z to true. The iteration involves both when conditions being set dirastly the case of and indirectly by
settinga to 2.0 causingn2 to becoming true. The whole chain of events takes place in theiteaati®on without
the continuous solver ever having to restart in the middle.

nodel Eventlteration
Real x(start=1.0), dx;

di scret e Real a(start=1.0);
Boolean y(start=false), z(start=false);
Boolean h1, h2;

equati on
der(x) = dx;
dx = a*x;
hl=x>=2;
h2 = dx >=4;

when hl then
y = true;
end when;
wheny then
a=2.0;
end when;
when h2 then
Z = true;
end when;

end Eventlteration;

13 Conclusions and future work

In this paper we have presented an overview ofiraptementation of discrete event handling in thee®p
Modelica compiler. In the test models we show thagnt iteration work as expected and that the sitiour
results correspond well to analytically calculatesults.

The implementation is however not yet completethi@a future we wish implement separate handling of
events where the time of the event can be calaulbédore hand, so that the integrator does not bhave
search for the roots. When time events are handéedlan to use the OpenModelica compiler as a hasis
research in the field of model checking of hybrdtems.

14 Acknowledgements

This work has been supported by Swedish Found&ioStrategic Research (SSF) in the ECSEL graduate
school.

References

[1] Peter Fritzsongt al. The Open Source Modelica Project. In Proceedifg$he 2nd International
Modelica Conference, 18-19 March, 2002. Munich,reery See also:
http://www.ida.liu.se/projects/OpenModelica.

[2] Peter FritzsonPrinciples of Object-Oriented Modeling and Smulation with Modelica 2.1, 940 pp.,
ISBN 0-471-471631, Wiley-IEEE Press, 2004.

[3] The Modelica Association. The Modelica Language cBipation Version 2.2, March 2005.
http://www.modelica.org.

[4] The OpenModelica Users Guide, version 0.2, Aprd20vww.ida.liu.se/projects/OpenModelica

[5] The OpenModelica System Documentation, versionApgi| 2005.
www.ida.liu.se/projects/OpenModelica

[6] Hakan Lundvall, Peter Bunus, Peter Fritzson. Towahdtomatic Generation of Model Checkable
Code from Modelica. IrProceedings of the 45th Conference on Simulation and Modelling of the
Scandinavian Smulation Society (SMS2004), 23-24 September 2004, Copenhagen, Denmark.

[7] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solutidnitail-Value Problems in Differen-
tial-Algebraic Equations, Elsevier, New York, 1989.

