
TOWARDS AUTOMATIC GENERATION OF MODEL CHECKABLE
CODE FROM MODELICA

Håkan Lundvall, Peter Bunus and Peter Fritzson

Department of Computer and Information Science,

Linköping University, Sweden

Abstract

Using model components in complex system modeling is sometimes difficult because many
semantic properties that should be obeyed during the design are not formalized in the modeling
language. There exist rules that users of the components should follow in order to create
semantically, mathematically, and physically correct models. Program verification aims at
proving that programs meet certain specifications, i.e. that the actual program behavior fulfils
certain specified properties. Model checking is a specific approach to verification of temporal
properties of reactive and concurrent systems. Verification is usually carried out by using model
checking algorithms to demonstrate the satisfiability of certain properties formalized as logical
formulae over the model of the system. The model checking approach has proven successful for
models based on finite-state automata and is based on state space inspection. To realize the full
potential of the simulated and modeled systems with Modelica it is important to verify important
properties of models in order to ensure that they meet the required criteria. In this paper we
describe an algorithm that translates a non-trivial subset of Modelica to the model checking
language of HyTech.

Keywords: Modelica, Model checking

Nomenclature

In the examples the following variables and
symbols are used:

alpha Time delay parameter in the
railroad example

app,exit Events indicating approach and exit
of the train.

clk1, clk2 Discrete variables storing time-
stamps.

delay Stopwatch variable with time
derivative 0 or 1.

dy Time derivative of y.

lower Boolean value that when becoming
true tells the gate to close.

open Boolean value representing the state
of the valve.

raise Boolean value that when becoming
true tells the gate to open.

t Time variable.

v Velocity of the train.

s1, …, s4 States of the hybrid automata.

x Distance from the train to the gate.

y Water level.

Introduction

Modelica (Fritzson 2003 [1]) is an object oriented
modeling language capable of describing
heterogeneous physical system. To take full
advantage of the modeling and simulation
capabilities of Modelica it is desirable to be able
to formally verify important properties of the
model. In order to do that the discrete algebraic
equations that the Modelica model results in must
be translated into a form that a tool capable of
performing automated program verification can
use. The hybrid automata formalism is such a
form where tools like HyTech (Henzinger et al.
1997 [2]) and CheckMate (Kapinski and Krogh
2002 [3]) can perform program verification.

Model Checking

Model checking (Clarke et al. 1999 [4]) is a
technique to perform program verification over
finite state concurrent systems in a fully
automated way. It is done by exploring the state
space of the system. Validation is carried out
against a formal specification consisting of a set of
formulas over the model of the system. These
formulas usually express safety properties that
should be fulfilled at all times or illegal states that
the system should be proven never to enter.

The two main advantages compared to other
program verification techniques is that it can be
fully automated and that it produces a sequence of
steps in the specification leading to the state that
does not satisfy the specification. This makes
model checking suitable for integration in
automated debugging and verification tools.

The specification consists of a temporal logic
formula expressing the desired properties of the
system. The notion of the Kripke structure is used
to model the behavior of the system. A Kripke
structure consists of a set of states and transitions
between states. Each state also has a valuation for
a set of properties that are either true or false in
the state. A transition from one state to another
represents a step in time that makes a
distinguishable difference of the state of the
system. A path in a kripke structure represents a
computation of the system.

Many systems lead to very large state spaces. In
order to be able to handle this, symbolic
algorithms can be used. This is especially

important in model checking of hybrid systems
since real valued variables are present and the
value ranges of these variables need to be
represented symbolically.

A temporal logic often used in model checking is
called Computational Tree Logic (CTL). CTL
formulas describe properties of computation trees.
A computation tree is formed by selecting one of
the states in the kripke structure to be the initial
state. The rest of the infinite tree is then formed by
unwinding the kripke structure from the initial
state.

CTL formulas are composed of path quantifiers
and temporal operators. Path quantifiers express
properties of the branching structure of the tree.
The two path quantifiers in CTL are A and E,
representing “for all paths” and “for some path”,
respectively. These are used at a state to express
that some property holds for all or some of the
paths starting at that state. The temporal operators
express properties of a path through the tree. The
five basic operators are presented in Table 1.

Symb. Phrase Explanation

X Next time Requires a property to hold
in the second state of the
path.

F Eventually Requires a property to hold at
some state along the path.

G Always Requires a property to hold at
every state of the path.

U Until This operator combines two
properties and requires that
there is a state on the path
where the second property
holds and that at every prior
to that state, the first property
holds.

R Release This operator also combines
two properties and requires
the second property to hold at
every state up to and
including the first state at
which the first property
holds.

Table 1. Basic operators of CTL.

CTL formulas are divided in two categories; state
formulas and path formulas. State formulas hold at
a specific state in the Kripke structure. Path

formulas hold along a specific path in the kripke
structure.

The syntax of a formula in CTL follows the
following rules:
All atomic propositions are state formulas. If f and
g are state formulas then gfgff ∧∨¬ ,, are
state formulas. If f is a path formula then E f and
A f are state formulas. If f is a state formula then f
is also a path formula. If f and g are path formulas
then f¬ , gf ∨ , gf ∧ , X f , F f ,
G f , f U g , f R g are path formulas.

An example of a CTL formula that holds if when a
request occurs then it will eventually be
acknowledged: AG(Req ÿ AF Ack).

Hybrid Automata

Existing model checking tools for hybrid systems
relies on the formalism of hybrid automata, which
is an augmented form of finite automata where a
finite set of continuous variables are allowed.

The hybrid automaton is formally defined as
follows:

Variables: A finite set { }nxxxX ,...,, 21= of real-

valued variables. E.g. y in the Figure 2.

Control modes: A finite set V of control modes.
These correspond to states in a finite automaton.

Flow conditions: A labeling function flow that
assigns a flow condition to each control mode

Vv∈ The flow condition flow(v) is a predicate
over the variables in XX ÿ� . While an automaton
is in a control mode v the variables in X evolve
along a curve such that at all point along the curve
the values of the variables and their first derivative
satisfy the flow condition. In Figure 2 the
equations involving dy represent the flow
conditions.

Invariant condition: A labeling function inv that
assigns an invariant condition to each control
mode v. The invariant condition inv(v) is a
predicate over the variables in X. While a hybrid
automaton is in a control mode v, the variables in
X must satisfy the invariant condition inv(v).
Represented in Figure 2 by the inequalities inside
the ellipses.

Initial conditions: A labeling function init that
assigns initial conditions to each control mode v.
The initial condition init(v) is a predicate over the

variables in X. The control of a hybrid automaton
may start in the control mode v when the initial
condition init(v) is true.

Control switches: A finite multiset E of control
switches. Each control switch is a directed edge
between a source mode Vv∈ and a target mode

Vv ∈′ . Control switches are denoted by arrows in
Figure 2.

Jump conditions: A labeling function jump that
assigns a jump condition to each control switch in
E. The jump condition jump(e) is a predicate over
the variables in XX ′� . The symbols X refer to
the values of the variables before the control
switch and the symbols in X´ refer to the values of
the variables after the control switch. The label
delay’=0 in Figure 2 denote a jump conditions
stating that the value of delay is zero after the
control switch.

Events: A finite set ÿ of events and labeling
function syn that assigns an event in ÿ to each
control switch in E.

This definition was taken from [2].

In order to be able to perform automatic analysis
on hybrid systems certain restrictions have to be
put on them. One such restricted class of the
hybrid automaton is the linear hybrid automaton.
In a linear hybrid automaton the flow conditions
are predicates over the derivatives only, so that the
derivative of a variable cannot be a function of
any variable in X. Further more, the flow
conditions, the invariant conditions and the initial
conditions are convex linear predicates and for
every control switch the jump condition is a
convex linear predicate.

HyTech

HyTech is an automatic tool for the analysis of
embedded systems. We decided to use HyTech as
a target platform for our translator since it allows
the symbolic verification and algorithmic analysis
of hybrid dynamic systems. However, HyTech can
only model linear hybrid automata, which is
limiting for most of the simulation models
expressed in Modelica. In order to overcome this
limitation, we intend to extend our translator to
generate code for HyTech+ (Henzinger et al. 2000
[5]) and CheckMate. HyTech+ and CheckMate
are both capable of verifying hybrid systems with
general continuous expressed with linear and non-

linear differential equations. The input to the
HyTech tool consists of a definition of the
automaton to check and an analysis section where
the specification is represented. It is possible to
enter more then one automaton, in which case the
HyTech tool transforms them into a single
automaton as its initial step. In this step synclabs,
synchronization labels in HyTech, can be used to
synchronize control switches in different
automata. Two control switches marked with the
same synclab always triggers simultaneously.

Translator algorithm

Modelica is based on the mathematical formalism
of DAE (Differential Algebraic Equations) while
HyTech uses the linear hybrid automata
formalism, therefore we must find a way to isolate
the discrete control modes of the model in order to
build an automaton that is equivalent to the
original model. Since HyTech only handles linear
hybrid automata only Modelica models with state
variables of constant derivatives can be translated.
In models where both constant and variable
derivatives exist it is possible to use program
slicing (Hatcliff et al. 2000 [6]) to isolate the
linear part if there are no dependencies from the
linear variables to nonlinear variables.

We start the translation by creating a startup mode
and then create transitions to new modes for each
Modelica when-equation that can be triggered
from that mode. For each new mode the procedure
is then repeated according to the stepwise
description of the algorithm below.

The steps of the algorithm

Step one: Find all state variables (y in the water
tank example below) and add them as continuous
variables to the HyTech model. Also add the clock
variable t . In Modelica there is a built in variable
time present.

Step two: Find all discrete variables that are used
together with continuous variables in when-
equations (open in the water tank example). The
discrete variables that do not appear together with
continuous variables are not added, but they may
appear as synclabs later.

Step three: Find the start value of all state
variables and discrete variables and generate a
starting control mode in the automaton. In the

water tank example we have open=true and y=1
as the initial condition.

Step four: Find all when-equations that can be
triggered from this control mode. When-equations
with conditions that are already true or cannot
become true in the given mode are discarded; all
other when-equations result in corresponding
transitions in the hybrid automaton. In the water
tank example we have delay(y,2) >= 10 and

open . The other clause of the condition can never
be triggered in this mode since dy is positive.

Step five: The new transitions result in new values
for the variables and the derivatives. If there is an
already added control mode that matches all the
values, then make the transition point to that
control mode; otherwise create a new mode in the
automaton. For all added modes start over from
step four.

When-equations that only depend on discrete
variables trigger only as a result of another mode
switch, since discrete variables only change at
events. If the when-equation that changes the
discrete value resides in the same component then
the transitions are merged into a single transition.
If the source event resides in a different
component a synclab is generated so that the mode
switches in the two resulting automata occur
simultaneously. If there is no source event that
can trigger the transition, then it is omitted.

When a transition that has a guard involving
continuous variables is added to the automaton, a
corresponding inequality has to be added to the
invariant condition of the control mode, otherwise
the automaton would have the possibility to stay
in the source control mode and not follow the
transition.

In Modelica there is a delay operator that delays
a signal a specified amount of time. In order to
translate this into the hybrid automaton an extra
control mode is inserted in transitions involving a
delayed variable. This extra control mode is a
copy of the source control mode of the transition
where the delayed transition is replaced by a
transition depending on a clock variable. See the
WaterTank example below for details.

Example 1: WaterTank

This example is taken from the HyTech system
user’s guide. Consider a water tank that is leaking
water at a constant rate. When the water level falls

below five, a sensor signals a valve to open, which
results in the tank being filled at a constant rate.
However, the signal is delayed for two seconds
before the valve reacts on it.

When the water level reaches ten the valve is
signaled to close, again with a two second delay.
The Modelica code for such a system is shown in
Figure 1.

Figure 1. WaterTank in Modelica.

The proposed algorithm would result in the
automaton shown in Figure 2. In the figure each
control mode is denoted by an ellipse and the
arrows between them represent control switches.
The slopes of the variables and the invariant
regions are presented inside the ellipse. Each
control switch is labeled by jump conditions, e.g.,
“y ÿ 10 ” and “delay’=0 ”, which state that in
order for that control switch to take place the
value of y before the switch must be grater than
10 and the value of delay after the switch is 0.

Running HyTech on the resulting automaton
shows us that the water level is kept between 1
and 12 at all times.

y=1
dy=1
y � 10

dy=1
delay � 2

y � 10

delay’=0

delay � 2

dy=-2
y � 5

y � 5

delay’=0

dy=-2
delay � 2

delay � 2

Figure 2. WaterTank automaton.

Example 2: Railroad crossing

This example, also taken from the HyTech user’s
guide demonstrates the ability to use model
checking to calculate safe parameter values

The example consists of a train that passes a
railroad crossing. At a distance of 1000 m a signal
is sent to the controller to lower the gate and 100
m past the crossing a signal is sent to raise the
gate. The parameter alpha in the controller is the
delay from when the signal is sent until it is
reacted upon. Here model checking is used to
calculate safe values for alpha so that it can be
guaranteed that the gate is closed whenever the
train is closer than 10 m from the crossing.

The Modelica model is divided into three
components that are shown in the Figure 3, the
Figure 4 and the Figure 6.

Figure 3. Train model in Modelica.

If we first look at the train model, the only state
variable is x , so x is added to the variables of the
resulting automata. An initial control mode s1 is
also added to the train automata. Since the
derivative of x is negative in the initial state only
the event occurring when x goes below 1000 is
added as a transition from this state. A new
control mode, s2 , is created as a target for the
transition since there are no existing modes that
match the variable values. In this control mode the
only relevant event is when x passes zero. This

model WaterTank
 Boolean open(start=true);
 Real y(start=1);
equation
 when delay(y, 2) >= 10 and open
 or delay(y, 2) <= 5 and not open
 then
 open = if pre (open) then
 false else true;
 end when ;

 der (y) = if open then 1 else -2;
end WaterTank;

import
 Modelica.Blocks.Interfaces.BooleanPort;

package Railroad
 model train
 BooleanPort app;
 BooleanPort exit;
 Real x;
 discrete Real v;
 initial equation
 v = -45;
 x = 2000;
 equation
 der (x) = v;
 when x >= 100 then
 exit = app;
 end when;
 when x <= 1000 then
 v = -40;
 elsewhen x <= 0 then
 v = 35;
 end when;
 end train;

results in a new transition and a new control
mode, and so on. The resulting automaton is
shown in Figure 5.

Figure 4. Gate model in Modelica.

The gate component results in one new continuous
variable y . Since y is constant in the initial state of
the gate automaton, there is no restriction in the
invariant region of this state, but there are two
events in the Modelica model that needs to be
handled. Since the conditions of these events
depend only on discrete variables we must search
for the events that make them change. In this case
there are events in the controller component that
changes the variable. This results in the synclabs
lower and raise that are added to both of the
controller automaton and the gate automaton. The
code for the gate automaton is shown in Figure 7.

Figure 5. Train automaton in HyTech.

In the controller automaton there exist no state
variables but there are two discrete variables that
are used in expressions together with continuous
variables in when-equations; therefore they are
added as discrete variables to the HyTech model.
See Figure 8.

Figure 6. Controller model in Modelica.

Figure 7. Gate automaton in HyTech.

automaton gate
synclabs: lower, raise;

initially s1 & y = 90;

loc s1: while True wait {dy=0}
 when True sync lower goto s2;
 when True sync raise goto s3;

loc s2: while y >= 0 wait {dy=-9}
 when y <= 0 goto s1;

loc s3: while y <= 90 wait {dy=9}
 when y >= 90 goto s1;
end

var
 x, y : analog;
 t : clock;
 clk1, clk2 : discrete;
 alpha : parameter;
automaton train
synclabs: app, exit;
initially s1 & x = 2000;
loc s1: while x >= 1000 wait { dx=-45 }
 when x <= 1000 sync app goto s2;
loc s2: while x >= 0 wait { dx=-40 }
 when x <= 0 goto s3;
loc s3: while x <= 100 wait { dx=35 }
 when x >= 100 sync exit goto s4;
loc s4: while True wait { dx=35 }
end

 model gate
 Real y;
 discrete Real dy;
 BooleanPort lower;
 BooleanPort raise;
 initial equation
 dy = 0;
 y = 90;
 equation
 der (y) = dy;
 when lower then
 dy = -9;
 elsewhen raise then
 dy = 9;
 elsewhen y <= 0 then
 dy = 0;
 elsewhen y >= 90 then
 dy = 0;
 end when;
 end gate;

 model controller
 parameter Real alpha=1.0;
 BooleanPort lower;
 BooleanPort raise;
 BooleanPort app;
 BooleanPort exit;
 discrete Real clk1(start=0);
 discrete Real clk2(start=0);
 equation
 when app then
 clk1 = time;
 end when;
 when exit then
 clk2 = time;
 end when;
 when app and time-clk1 > alpha then
 lower = true;
 end when;
 when exit and time-clk2 > alpha then
 raise = true;
 end when;
 end controller;

 model test
 controller ctrl;
 train tr;
 gate g;
 equation
 connect (tr.app, ctrl.app);
 connect (tr.exit, ctrl.exit);
 connect (g.lower, ctrl.lower);
 connect (g.raise, ctrl.raise);
 end test;
end Railroad ;

Figure 8. Controller automaton in HyTech.

In order to make an analysis of the system we
must add a section containing the analysis
commands. These are shown in Figure 9.

Figure 9. Analysis commands for railroad example

in HyTech.

The region avoid represents the forbidden
condition. By printing the resulting region of the
intersection between the reachable region and the
forbidden region while hiding all non-parameter
values and locations we arrive at an expression for
the values of alpha that leads to unsafe states.

Related Work

Model checking can successfully complement
existing software quality assurance techniques
such as testing and debugging. Therefore it is
important to provide efficient translators from
various programming languages to model
checkable formal languages. In this way, mature
model checking techniques can be reused and
applied to software systems that otherwise would
not provide support for proving safety and
liveness properties. Bridging the gap between high
level languages such as C, C++, Java, Ada and
Modelica and the input required by model
checking tools (finite state automata with
properties formulated in temporal logic) require
the development of complex tool sets. In this
section we present some of the translation
frameworks that are most related to ours.

The SLAM project at Microsoft Research (Ball
and Rajamani. 2002 [7], Ball and Rajamani 2001
[8]) checks temporal safety properties of
sequential C programs. The system requires that
the checked properties are encoded in a language
called SLIC (Specification Language for Interface
Checking).

The Bandera tool set (Corbett et al. 200 [9]) is an
integrated collection of program analysis,
transformation and visualizations components that
enables the extraction of finite state models from
Java source code. Bandera is able to generate a
description of a finite-state transition system in the
Promela and Trans languages that can be
interpreted by the SIPN and SMV (Symbolic
Model Verifier) models checking systems.
Previously to the Bandera project, the same
research group at Kansas State University has
developed a toolset for translating Ada source
code to the input language of the SPIN and SMV
model checkers (Dwyer et al. 1998 [10]).

A related project to Bandera is the Java
PathFinder (Brat et al. 2000 [11]) that translates
Java programs to Promela, the specification
language of the Spin model checker. Java
PathFinder can detect race conditions, deadlocks,
and violations of user specified assertions. The
tool has been incorporated as a back-end checker
for Bandera.

var init_reg, reached, avoid: region;

avoid := y > 0 & x <= 10;

init_reg := loc[train] = s1 & x = 2000 &
 loc[gate] = s1 & y = 90 &
 loc[controller] = s1;

reached :=
 reach forward from init_reg endreach;

print omit all locations
 hide non_parameters in
 reached & avoid
 endhide;

automaton controller
synclabs: lower, raise, app, exit;

initially s1;

loc s1: while True wait {}
 when True sync app
 do {clk1'=t} goto s2;
 when True sync exit
 do {clk2'=t} goto s3;

loc s2: while t-clk1 <= alpha wait {}
 when t-clk1 >= alpha sync lower
 goto s1;
 when True sync exit
 do {clk2'=t} goto s3;

loc s3: while t-clk2 <= alpha wait {}
 when t-clk2 >= alpha sync raise
 goto s1;
 when True sync app
 do {clk1'=t} goto s2;

loc s4: while t-clk1 <= alpha &
 t-clk2 < alpha wait {}
 when t-clk1 >= alpha sync lower
 goto s3;
 when t-clk2 >= alpha sync raise
 goto s2;
end

Conclusion

In this paper we have briefly outlined an algorithm
to translate Modelica models to a representation
that can be automatically verified against a formal
specification using model checking. To be able to
perform verifications on more sophisticated
models it is possible to continue along this path
and generate code for other systems such as
CheckMate and HyTech+, both using hybrid
automata.

The presented work in this paper should be seen as
an important component for a broader attempt to
make static analysis (Bunus and Fritzson 2004
[12]), run-time verification through algorithmic
debugging (Bunus and Fritzson 2003 [13]) and
model checking techniques, more applicable for
the development of new automatic debugging
tools with enhanced user-interaction for the
Modelica language. We intend to implement a
prototype translator using the presented algorithm
in the numeric and symbolic engine developed for
the OpenModelica compiler back-end.

References

[1] Fritzson Peter. (2003). Principles of Object-
Oriented Modeling and Simulation - with
Modelica 2.1. IEEE Press and John Willey,
2003.

[2] Henzinger Thomas, Pei-Hsin Ho, and Howard
Wong-Toi. (1997) "HyTech: A Model
Checker for Hybrid Systems." International
Journal on Software Tools for Technology
Transfer, vol. 1: 1-2, pp. 110-122, 1997.

[3] Kapinski James and Bruce H. Krogh. (2002).
"A new tool for verifying computer controlled
systems." In Proceedings of the IEEE
Conference on Computer-Aided Control
System Design. (Glasgow, Scotland,
September, 2002).

[4] Clark Edmund M., Grumberg Orna, Peled
Doron A (1999). Model Checking. MIT Press.
1999.

[5] Henzinger Thomas A., Ben Horowitz, Rupak
Majumdar, and Howard Wong-Toi, "Beyond
HyTech: Hybrid System Analysis Using
Interval Numerical Methods," in Hybrid
Systems: Computation and Control. Lecture
Notes in Computer Science 1790, B. Krogh
and N. Lynch, Eds.: Springer Verlag, 2000,
pp. 130-144.

[6] John Hatcliff, Matthew B. Dwyer, Hongjun
Zheng "Slicing Software for Model
Construction". Journal of Higher-Order and
Symbolic Computation, Volume 13, Issue 4,
December 2000, Pages 315 - 353

 [7] Ball Thomas and Sriram K. Rajamani. (2002).
"The SLAM Project: Debugging System
Software via Static Analysis." In Proceedings
of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages. (Portland, Oregon USA, January
16-18, 2002).

[8] Ball Thomas and Sriram K. Rajamani. (2001).
"Automatically Validating Temporal Safety
Properties of Interfaces." In Proceedings of
the The 8th International SPIN Workshop on
Model Checking of Software. (Toronto,
Canada, May 19-20, 2001). LNCS 2057,
Springer Verlag.

 [9] Corbett James, Matthew Dwyer, John Hatcliff,
Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. (200). "Bandera:
Extracting Finite-state Models from Java
Source Code." In Proceedings of the 22nd
International Conference on Software
Engineering. (Limerick, Ireland, June 4-11,
200).

[10] Dwyer Matthew B., Corina S. Pasareanu, and
James C. Corbett (1998) "Translating Ada
programs for model checking: A tutorial.,"
Kansas State University, Department of
Computing and Information Sciences,
Technical Report 98-12, 1998.

[11] Brat Guillaume, Klaus Havelund, Seung Joon
Park, and Willem Visser. (2000). "Java
PathFinder Second Generation of a Java
Model Checker." In Proceedings of the In
Proceedings of Post-CAV Workshop on
Advances in Verification. (Chicago, July,
2000).

[12] Bunus Peter and Peter Fritzson. (2004)
"Automated Static Analysis of Equation-Based
Components." Simulation: Transactions of the
Society for Modeling and Simulation
International. Special Issue on Component
Based Modeling and Simulation. To appear,
2004.

[13] Bunus Peter and Peter Fritzson. (2003).
"Semi-automatic Fault Localization and
Behaviour Verification for Physical System
Simulation Models." In Proceedings of the
18th IEEE International Conference on
Automated Software Engineering. (Montreal,
Canada, October 6-10, 2003).

