Modeling Concurrent Activities and
Resource Sharing in Modelica

Hakan Lundvall, Peter Fritzson
Dept. of Computer and Information Science,
Linkdping University, SE-581 83 Linkoping, Sweden
(haklu,petfr)@ida.liu.se

Abstract

Moddica[1,2,4,6,10] is an equation-based, object
oriented modeling language for modding of
complex multi-domain systems. Moddicais an
inherently concurrent language in the sense that

obj ects with behavior specified by equations evolve
in parald, concurrently in time. Equations specify
how abjects evolve and interact, aswell as giving
constraints for the parallel behavior. We can view
each object as akind of pard el process. As always
in parald activities, concurrent access of shared
common resources can lead to problems

In this paper we will, as an example of a wel-known
concurrence problem, present a M odelica

impl ementation of the Dining Phil osophers problem
[7]. The presented sol ution guaranties freeness from
both deadlock and starvation. To accomplish thisa
genera mutex classis introduced.

Keywords. Modélica, Resource Sharing,
Concurrency

Introduction

Modeicais an object oriented modeling language
capable of describing heterogeneous physica
systems through the use of hybrid differentia
agebraic equations. One of the great advantages of
the Moddli calanguage is the possibility to modd
systems from different physical disciplinesin the
same modd. It is, for example, possible to modd
the control software in the same model as the
system it controls. Often, in this kind of systems,
thereisaneed to model severa concurrent
processes that share alimited amount of mutual
resources.

Related work in the discrete systems area includes
aModdicalibrary for modeing Petri Nets[5,9].
Another commonly used language for describing
concurrence and resource sharing is Esterel[8].

The Dining Philosophers

The dining philosophers problem [7] is considered
aclassic synchronization problem. Thisis not
because of its practical importance — philasophers
arenot very common inred life. The reason this
problemisinteresting is that it represents alarge
class of concurrency problems. It isasmple
example of allocation of resources among severa
concurrent processes. This needs to be donein a
deadlock and starvation free manner.

Let us now describe our dining philosophers; there

are five dining phil osophers who are sitting around

atable thinking and eating during their wholelife

Five plates and five forks are available on the

table. A philosopher is ether thinking or eating,

and can only est if he has two forksin his hands.

Now and then a phil osopher becomes hungry and

tries to pick up the two forks daosest to him. If one

of the forks is aready in the hand of a neighbor, he
cannot take it. When a hungry philosopher has
both forks in his hands he eats without releasing
the forks. When he has finished eating, he puts
down both forks and starts thinking again. The
crucial observation is that the phil osopher can only
eat if he has access to two neighboring forks out of
the common resource of five forks.

There aretwo potential problems associated with

the dining philosophers:

- Deadlock — philosophers wait indefinitedy on
each other without ever been ableto grab two
forks.

Starvation — certain philosophers are never able
to eat because their neighbors always grab the
forks ahead of them.

Solution

If al philosophers acted entird y autonomously, it
is easy to see how deadlock could occur. Let us
assume that when a philosopher gets hungry, he
always picks up the fork totheright if it is
available and subsequently the other one. If all

phil osophers becomes hungry simultaneously they
all pick up the fork to theright, but no one can eat
since they all wait for their left fork. In order to

avoid this situation a mutual exclusion (mutex)
mechanism is introduced so that no one can pick
up afork without first getting hold of the mutex.

First attempt:

When a philosopher gets hungry, he waits until
both forks are available and then he requests the
mutex. |f, when he receives the mutex, the forks
are still available he grabs both forks and start
egting. If some other philosopher got the mutex
first one of the forks may not be available any
longer, in which case the hungry philosopher starts
over and waits for both forks to be free again.
When heis done egting he puts both forks back on
thetable.

It is easy to convince onesef that deadlock can no
longer occur, sinceif someoneis hungry but
cannot egt his nel ghbor must be eating (no one has
only onefork, and if he hastwo heis eating) and
hewill eventually stop egting. But nothingis
stopping four of the philosophersto starve the fifth
to death. To make sure that cannot happen the
agorithm must be changed alittle.

Second attempt:

We give the philosophers the opportunity to tip
their ne ghbors off when they but down the forks.
When a philosopher is done eating, he first puts
down his left fork and gives his left neighbor a
chanceto pick it up if he wantsit. Not until the left
neighbor has acknowl edged thetip, does he put
down theright fork. In case heimmediatdy gets
hungry again he also waits for an

acknowl edgement from his right neighbor, which
he has tipped off in the same way, before hetriesto
pick the forks up himse f again.

The second alteration to our first algorithm is that a
philosopher no longer must pick up both forks
simultaneously. Instead, when a philosopher is
hungry he always picks up hisright fork if it is
available.

Proof of freeness from deadlock and starvation:
If thereis deadlock all philosophers must be
hungry and holding on to their right fork, since no
one ever holds just the left fork, and if some fork is
still on the table or if someone has two forks there
would not be deadl ock, since the fork on the table
could be picked up and the one having two forks
would eventually be done esting.

Let us assume that deadlock has occurred. The last
thing that happened before deadl ock occurred must
have been that one philosopher picked up hisright
fork, so the state of the dining table just before the
dead ock must have been one fork on the table and

the others in a philosophers right hand. There are
only three ways in which this state can occur:

1) The philosopher to theright of the fork just put
it down, in which case heis no longer hungry
and he will soon put his other fork down as
well, hence there will not be deadl ock.

2) The philosopher to the left of the fork just put it
down, but became hungry again immediately.
However, according to the a gorithm he must
first offer the fork to his neighbor, who in this
casewould grab it and eat, since heis hungry.
Thus, there would be no deadlock in this case
ether.

3) Some other fork was just picked up. In this case
the phil osopher who picks up the fork must just
have become hungry and so must everyone
becauseif thereis at least one phil osopher who
isnot hungry and at least onewho is, then at
least one can eat. When they al get hungry
simultaneously, one of them gets the mutex first
and grabs both forks, which does not lead to the
sought state.

Now let uslook at starvation. Assume that a
philosopher is hungry, either hisright ne ghbor is
eating in which case the neighbor will soon offer
the hungry philosopher his fork or thefork is
already available. Now the hungry philosopher has
hisright fork. If the left fork is busy then his left
neighbor is elther eating or waiting for his left fork.
If heis eating then our hungry phil osopher will be
offered the fork when the neighbor is done. If the
neighbor in turnis waiting, then somewhere
around the table there must be an esting
philosopher who will loose up the chain, otherwise
all philosophers would be waiting for their | eft fork
in a deadlock, which we just proved could not

happen.

Implementation

In this section the representation of the dining
philosophers problem and the mutex as a Moddica
model is presented. Figure 1 shows the connection
structure of aModdica modd with five
philosophers, five forks, and a Mutex instance
providing mutually exclusive access to two forks
needed for a philosopher to eat.

Each philosopher in the DiningTable mode is
connected to the two forks on his left and right
sides. He can only pick up those forksif his left
and right neighbor philosophers do not occupy
them. In the center thereis a shared mutex that all
the phil osophers are connected to.

Figure 1. Connection structure of the dining
philosophers model, aternating philosophers and forks,
together with a central mutex.

This connection is used to signd if a philosopher
wants to get access to the forks in order to eat, so
that no other philosopher can pick up the fork
between the check for availability and the actual
picking up.

nodel Fork
For kPhi | osopher Connection |eft
"Connection to the phil osopher to the " +
"left of the fork";
For kPhi | osopher Connecti on ri ght
"Connection to the phil osopher to the "+
"right of the fork";
equat i on
/1 1f one philosopher picks up the fork then
/1 tell the other it is busy
ri ght. busy | eft. pickedUp;
| eft. busy right. pi ckedUp;
left.flagQut = right.flagln;
left.flagln = right.flagQut;
| eft.acknow edgeQut = right.acknow edgel n;
| eft.acknow edgel n = right.acknow edgeQut ;
end Fork;

nodel Di ni ngTabl e
paraneter Integer n =5
"Nurber of phil osophers and forks";
paranmeter Real sigma =5
"Standard devi ation of delay times";

/1 Gve each a different random start seed
Phi | osopher phil[n](startSeed=[1:n,1:n,1:n],
sigma=fill (sigm,n));

Mt ex mut ex(n=n) ;
For k fork[n];
equation
for i in 1:n loop
connect(phil[i].nmtexPort, nmutex.port[i]);
connect(phil[i].right, fork[i].left);
connect (fork[i].right,

phil[mod(i, n) + 1].left);
end for;
end Di ni ngTabl e;

A philosopher is connected to its left and right

nei ghboring forks via For kPhi | osopher -
Connect i on ports. This connector transfers
information about the state of the fork. This
includes if the fork is held by the connected
philosopher, if it isbusy or if it isavailable It dso
contains flags that the phil osophers useto signal
their na ghbors when they put down the forks.

connect or For kPhi | osopher Connecti on
Bool ean pi ckedUp(start=fal se);
Bool ean busy;
Bool ean fl agl n(start=fal se);
Bool ean acknow edgel n(start=fal se);
Bool ean fl agQut;
Bool ean acknow edgeCQut ;

end For kPhi | osopher Connecti on;

TheFor k class transfers the informati on between
the left and right ports.

ThePhi | osopher modd implements the
algorithm described earlier. Thetime intervals used
to determine for how long each philosopher is
thinking and eating comes from the

Random nor mal var i at e function, which gives a
normally distributed pseudo random number.

The first equations define some bool ean variables
that triggers events that occur within each
philosopher. Theti meToChangeSt at e variableis
Set to true each time the simulated time exceed the
randomly sd ected time of the next state change,
causing the state to change from thinking to hungry
or from eating to thinking. The variables

ti meToGet Hungry and doneEat i ng specidizes
the previously mentioned variabl e to the cases
where the philosophers are in the tinking and
eating stetes, respectively.

In the algorithm section all the events are handl ed.
First, thebuilt-ini ni ti al () event isused the set
all theinitial states and set thetime for the first

ti meToGet Hungr y-event. The e sewhen part
handlestheti neToGet Hungr y-event. Note that
pre() operator must be used around the
timeToGetHungry-variable, otherwise there would
be an algebraic loop since the code inside the
when-clause affects the value of the variable that
triggers the event.

If either neighbor signals the philosopher about a
fork being laid down or thereis an opportunity to
eat or even just grab theright fork, then the
philosopher asks for the mutex by setting the
request flag on the mutex port.

When the philosopher receives the mutex the

mut exPort . ok event fires the philosopher can
carry out its intentions whether it was just to grab a
freeright fork or check if both forks are free and
start eating or simply just acknowledge atip from a
neighbor.

When a philosopher is done eating the

doneEat i ng-event fires the state is changed to

thinking, theleft fork is put down and the neighbor
istold of the fact that it is. Not until the neighbor
acknowl edges thetip istheright fork put down and
that neighbor gets the tip. Note that the

ti meToGet Hungry event does not fire until both
nei ghbors have acknowl edged.

nodel Phil osopher "A Phil osopher, connected "+
"to forks and a nutex"
i mport Random
Mut exPor t Qut mut exPort "Connection to the "+
"gl obal mutex";
par amet er Random Seed start Seed = {1, 2, 3};
paranmeter Real mu = 20.0 "nean val ue";
paranmeter Real sigma = 5 "standard dev";
di screte I nteger state "1==thinking, "+
"2==hungry, 3==eating";
For kPhi | osopher Connection |eft;
For kPhi | osopher Connection ri ght;
pr ot ect ed

const ant | nteger t hi nki ng=0;
constant | nteger hungry=1;
constant | nteger eating=2;

di screte Real T:
di screte Real t i meOf Next Change;
di screte Random Seed r andonfeed;

Bool ean canEat ;

Bool ean ti meToChangeSt at e;

Bool ean ti meToGet Hungry;

Bool ean doneEat i ng;
equation

ti meToChangeState = ti meOf Next Change <= ti ne;
canEat = (state == hungry) and
not (left.busy or right.busy);
ti meToGet Hungry = (state == thinking) and
ti meToChangeSt at eand not
(left.flagQut or right.flagQut);
doneEat i ng = (state == eating) and
ti meToChangeSt at e;
al gorithm
when initial () then
state := thinking;
| eft. pickedUp
right. pickedUp :
(T, randonteed)
Random nor nal vari ate(mu, signa,
start Seed) ;
ti meOf Next Change : = abs(T);
el sewhen pre(timeToGet Hungry) then
state := hungry;
end when;
/1l Request mutex to be able to grab the forks
when pre(right.flagln) then

fal se;
fal se;

mut exPort.rel ease : = fal se;
mut exPort . r equest true;
end when;
when pre(left.flagln) then

mut exPort.rel ease : = fal se;
mut exPort . request := true;
end when;
when pre(canEat) then
mut exPort.rel ease : = fal se;
mut exPort . request := true;

end when;
when state == hungry and
not pre(right.busy) then

mut exPort.rel ease : = fal se;
mut exPort. request := true;
end when;

/1 1f the neighbors no longer has the flags

/1 set then cancel the acknow edgenents.

when not pre(right.flagln) then
right.acknow edgeCut := false;

end when;

when not pre(left.flagln) then
| eft.acknow edgeQut := false;
end when;

/1 CGot the nutex
when pre(nutexPort.ok) then
if not pre(right.busy) then
ri ght.pickedUp := true;
end if;

/1 1f the forks are still available
/1 then grab them and decide for how
/1 long to eat
if pre(canEat) then
left.pi ckedUp
ri ght. pickedUp :
(T, randonteed) :=
Random nor mal vari at e(mu,
sigma, pre(randonBeed));
ti meOf Next Change : = tinme + abs(T);

true;
true;

state := eating;
end if;
/'l Rel ease the nutex
mut exPort.rel ease : = true;

mut exPort.request := false;
/'l Acknow edge flags from nei ghbors
if pre(right.flagln) then

ri ght.acknow edgeQut := true;

end if;
if pre(left.flagln) then
left.acknow edgeQut := true;
end if;
end when;

/1 When done eating |ay down the forks and
/] set a newtime to get hungry
when pre(doneEating) then

state ;= thinking;
left.flagQut = true;
left.pickedUp := false;

(T, randonteed) Random nor mal vari at e(mu,
si gma, pre(randonSeed));
ti meOf Next Change := tine + abs(T);
end when;
when pre(left.acknow edgel n) then
left.flagQut := false;
right.flagQut := true;
right.pickedUp := false;
end when;
when pre(right.acknow edgel n) then
right.flagQut := fal se;
end when;
end Phil osopher;

The Mt ex class operates in the foll owing way.
Three of thelocal variables are always equal to the
corresponding port variabl es through the equations
in the Mut ex modd. The first when-statement is
activated when one of the philosophers signal s that
he wants the mutex.

If the mutex is not occupied then it is reserved and
the phil osopher receives the ok signdl, i.e

occupi ed=true, andtheport[i]. ok issetto
true. If it is occupied the phil osopher is set waiting.
When the mutex is re eased and there are waiting
philosophers then one of the waiting phil osophers
recei ves the ok signal and is removed from the
waiting list. Finaly, when the philosopher sets

rel ease[i] tofase the mutex isfreed.

connector MitexPortln "Mitex port connector " +
"for receiveing requests”
input Bool ean request "Set by application "+
“to request access";
input Bool ean rel ease "Set by application "+
“to rel ease access";
out put Bool ean ok "Signal that ownership " +
"was granted";
end Mut exPortln;

connect or Miut exPort Qut "Application mutex " +
“port connector for access"”
out put Bool ean request "Set this to " +
"request ownership of the nutex";
out put Bool ean rel ease "Set this to " +
"rel ease ownership of the nutex";
input Boolean ok "This signals that " +
"ownershi p was granted";
end Mut exPort Qut;

nodel Mutex "Mitual exclusion of shared " +
"resource"
paranmeter Integer n =5 "The nunber of " +
"connected ports";
Mut exPortln[n] port;
pr ot ect ed
Bool ean request[n];
Bool ean rel ease[n];
Bool ean ok[n];
Bool ean wai ting[n];
Bool ean occupi ed "Mutex is locked if " +
"occupied is true";

equation
ok = port. ok;
request = port.request;
rel ease = port.rel ease;
al gorithm
for i in 1:n loop
when request[i] then
if not occupied then
ok[i] 1= true;
waiting[i] := false;
el se
ok[i] = fal se;
waiting[i] := true;
end if;
occupi ed : = true;
end when;
when pre(waiting[i]) and not occupied then
occupi ed = true;
ok[i] = true;
waiting[i] := fal se;
end when;
when pre(release[i]) then
ok[i] .= fal se;
occupi ed : = false;
end when;
end for;
end Mt ex;

In Figure 2 the result of simulating the dining table
with random eating and thinking times are shown.

Conclusion & Future work

In this paper we have presented a sol ution to the
dining phil asophers problem with the use of a
mutex class. We have shown that Moddicais
powerful enough to mode resource allocationin
concurrent processes and that it can be done using
familiar constructs such as the mutex. In the future

one might continue to create Modelica
implementations of other familiar constructs such
as semaphores and monitors.

AT 2
Eating
Thi nki ng

AU T UL g
AL AT e
AV LA UL LAA Y e

Figure 2. The result of simulating the dining table.
Each philosopher alters between Thinking and
eating with the hungry state in the middle.

References

[1] H.EImgvigt,S.E.Mattsson,and M.Otter. A language
for physical system modeling, visualization and
interaction. In Proceedings of the 1999 IEEE
Symposium on Computer Aided Control System
Design, Hawaii, Aug. 1999.

[2] H.EImgvist and S.E.Mattsson.Moddica— the next
generation modeling language —an international
design effort. In Proceedings of the First World
Congress on System Simulation, Singapore,
Sept.1 -3 1997.

[3] Elmgvist H., Mattsson S. E., Otter M. (2000)
Object-Oriented and Hybrid Modeling in
Modelica. ADPM 2000, Dortmund, Germany

[4] P.Fritzson and V.Engelson. Modelica —A unified
object-oriented language for system modding and
simulation. In Eric Jul, editor, ECOOP '98 —
Object-Oriented Programming, volume 1445 of
Lecture Notesin Computer Science, pages 67 —
90.Springer, 1998.

[5] Mosterman P.J., Otter M., ElImgvist H. (1998).
Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems Using Moddlica.
The Proceedings of the Summer Computer
Simulation Conference, July 19-22, S. 314-319,
1998 Reno, Nevada, U.SA.

[6] Modelica Association
ht t p: / / www. Model i ca. org

[7] Silberschantz A., Galvin P. B. Operating System
Concepts, Fourth Edition. Addison-Wesey
Publishing Company. ISBN 0-201-59292-4

[8] Habwachs, Nicalas. Synchronous Programming
of Reactive Systems. Kluwer Academic, 174 pages,
ISBN 0-7923-9311-2, 1993.

[9] Peterson, James L. Petri Net Theory and the
Modeling of Systems. Prentice Hall, 1981.

[10] P. Fritzson, Principles of Object-Oriented
Modeling and Smulation with Moddlica, Wiley-
|EEE Press, Nov. 2003

