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Abstract 
Modelica [1,2,4,6,10] is an equation-based, object 
oriented modeling language for modeling of 
complex multi-domain systems. Modelica is an 
inherently concurrent language in the sense that 
objects with behavior speci fied by equations evolve 
in parallel, concurrently in time. Equations specify 
how objects evolve and interact, as well as giving 
constraints for the parallel behavior. We can view 
each object as a kind of parallel process. As always 
in parallel activities, concurrent access of shared 
common resources can lead to problems 
In this paper we will, as an example of a well-known 
concurrence problem, present a Modelica 
implementation of the Dining Philosophers problem 
[7]. The presented solution guaranties freeness from 
both deadlock and starvation. To accomplish this a 
general mutex class is introduced. 
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Introduction 
Modelica is an object oriented modeling language 
capable of describing heterogeneous physical 
systems through the use of hybrid di fferential 
algebraic equations. One of the great advantages of 
the Modelica language is the possibility to model 
systems from different physical disciplines in the 
same model. It is, for example, possible to model 
the control software in the same model as the 
system it controls. Often, in this kind of systems, 
there is a need to model several concurrent 
processes that share a limited amount of mutual 
resources.  
Related work in the discrete systems area includes 
a Modelica library for modeling Petri Nets [5,9].  
Another commonly used language for describing 
concurrence and resource sharing is Esterel[8]. 

The Dining Philosophers 
The dining philosophers problem [7] is considered 
a classic synchronization problem. This is not 
because of its practical importance – philosophers 
are not very common in real life. The reason this 
problem is interesting is that it represents a large 
class of concurrency problems. It is a simple 
example of allocation of resources among several 
concurrent processes. This needs to be done in a 
deadlock and starvation free manner. 
Let us now describe our dining philosophers; there 
are five dining philosophers who are sitting around 
a table thinking and eating during their whole life. 
Five plates and five forks are available on the 
table. A philosopher is either thinking or eating, 
and can only eat if he has two forks in his hands.  
Now and then a philosopher becomes hungry and 
tries to pick up the two forks closest to him. If one 
of the forks is already in the hand of a neighbor, he 
cannot take it. When a hungry philosopher has 
both forks in his hands he eats without releasing 
the forks. When he has finished eating, he puts 
down both forks and starts thinking again. The 
crucial observation is that the philosopher can only 
eat if he has access to two neighboring forks out of 
the common resource of five forks. 
There are two potential problems associated with 
the dining philosophers: 
· Deadlock – philosophers wait indefinitel y on 

each other without ever been able to grab two 
forks. 

· Starvation – certain philosophers are never able 
to eat because their neighbors always grab the 
forks ahead of them. 

Solution 
If all philosophers acted entirel y autonomously, it 
is easy to see how deadlock could occur. Let us 
assume that when a philosopher gets hungry, he 
always picks up the fork to the right if it is 
available and subsequentl y the other one. If all 
philosophers becomes hungry simultaneously they 
all pick up the fork to the right, but no one can eat 
since they all wait for their left fork. In order to 



avoid this situation a mutual exclusion (mutex) 
mechanism is introduced so that no one can pick 
up a fork without first getting hold of the mutex. 
 
First attempt: 
When a philosopher gets hungry, he waits until 
both forks are available and then he requests the 
mutex. If, when he receives the mutex, the forks 
are still available he grabs both forks and start 
eating. If some other philosopher got the mutex 
first one of the forks may not be available any 
longer, in which case the hungry philosopher starts 
over and waits for both forks to be free again.  
When he is done eating he puts both forks back on 
the table. 
It is easy to convince oneself that deadlock can no 
longer occur, since if someone is hungry but 
cannot eat his neighbor must be eating (no one has 
only one fork, and if he has two he is eating) and 
he will eventually stop eating. But nothing is 
stopping four of the philosophers to starve the fi fth 
to death. To make sure that cannot happen the 
algorithm must be changed a little. 
 
Second attempt:    
We give the philosophers the opportunity to tip 
their neighbors off when they but down the forks. 
When a philosopher is done eating, he first puts 
down his left fork and gives his left neighbor a 
chance to pick it up if he wants it. Not until the left 
neighbor has acknowledged the tip, does he put 
down the right fork. In case he immediately gets 
hungry again he also waits for an 
acknowledgement from his right neighbor, which 
he has tipped off in the same way, before he tries to 
pick the forks up himself again. 
The second alteration to our first algorithm is that a 
philosopher no longer must pick up both forks 
simultaneously. Instead, when a philosopher is 
hungry he always picks up his right fork if it is 
available. 
 
Proof of freeness from deadlock and starvation: 
If there is deadlock all philosophers must be 
hungry and holding on to their right fork, since no 
one ever holds just the left fork, and if some fork is 
still on the table or if someone has two forks there 
would not be deadlock, since the fork on the table 
could be picked up and the one having two forks 
would eventually be done eating.  
Let us assume that deadlock has occurred. The last 
thing that happened before deadlock occurred must 
have been that one philosopher picked up his right 
fork, so the state of the dining table just before the 
deadlock must have been one fork on the table and 

the others in a philosophers right hand. There are 
only three ways in which this state can occur: 

1) The philosopher to the right of the fork just put 
it down, in which case he is no longer hungry 
and he will soon put his other fork down as 
well, hence there will not be deadlock. 

2) The philosopher to the left of the fork just put it 
down, but became hungry again immediately. 
However, according to the algorithm he must 
first offer the fork to his neighbor, who in this 
case would grab it and eat, since he is hungry. 
Thus, there would be no deadlock in this case 
either. 

3) Some other fork was just picked up. In this case 
the philosopher who picks up the fork must just 
have become hungry and so must everyone 
because if there is at least one philosopher who 
is not hungry and at least one who is, then at 
least one can eat. When they all get hungry 
simultaneously, one of them gets the mutex first 
and grabs both forks, which does not lead to the 
sought state. 

 
Now let us look at starvation. Assume that a 
philosopher is hungry, either his right neighbor is 
eating in which case the neighbor will soon offer 
the hungry philosopher his fork or the fork is 
already available. Now the hungry philosopher has 
his right fork. If the left fork is busy then his left 
neighbor is either eating or waiting for his left fork. 
If he is eating then our hungry philosopher will be 
offered the fork when the neighbor is done. If the 
neighbor in turn is waiting, then somewhere 
around the table there must be an eating 
philosopher who will loose up the chain, otherwise 
all philosophers would be waiting for their left fork 
in a deadlock, which we just proved could not 
happen.    

Implementation 
In this section the representation of the dining 
philosophers problem and the mutex as a Modelica 
model is presented. Figure 1 shows the connection 
structure of a Modelica model with five 
philosophers, five forks, and a Mutex instance 
providing mutually exclusive access to two forks 
needed for a philosopher to eat. 
Each philosopher in the DiningTable model is 
connected to the two forks on his left and right 
sides. He can only pick up those forks if his left 
and right neighbor philosophers do not occupy 
them. In the center there is a shared mutex that all 
the philosophers are connected to.  



 

 

mutex 

 

Figure 1. Connection structure of the dining 
philosophers model, alternating philosophers and forks, 

together with a central mutex. 
 
This connection is used to signal if a philosopher 
wants to get access to the forks in order to eat, so 
that no other philosopher can pick up the fork 
between the check for availability and the actual 
picking up. 
 
model DiningTable  
  parameter Integer n = 5   
   "Number of philosophers and forks"; 
  parameter Real sigma = 5  
   "Standard deviation of delay times"; 
 
  // Give each a different random start seed 
  Philosopher phil[n](startSeed=[1:n,1:n,1:n], 
                      sigma=fill(sigma,n));  
  Mutex       mutex(n=n); 
  Fork        fork[n]; 
equation  
  for i in 1:n loop 
    connect(phil[i].mutexPort, mutex.port[i]); 
    connect(phil[i].right, fork[i].left); 
    connect(fork[i].right,  
            phil[mod(i, n) + 1].left); 
  end for; 
end DiningTable; 

 
A philosopher is connected to its left and right 
neighboring forks via ForkPhilosopher-
Connection ports. This connector transfers 
information about the state of the fork. This 
includes if the fork is held by the connected 
philosopher, if it is busy or if it is available. It also 
contains flags that the philosophers use to signal 
their neighbors when they put down the forks.  
 
connector ForkPhilosopherConnection  
  Boolean pickedUp(start=false); 
  Boolean busy; 
  Boolean flagIn(start=false); 
  Boolean acknowledgeIn(start=false); 
  Boolean flagOut; 
  Boolean acknowledgeOut; 
end ForkPhilosopherConnection; 

 
The Fork class transfers the information between 
the left and right ports. 

 
model Fork  
  ForkPhilosopherConnection left  
     "Connection to the philosopher to the " + 
     "left of the fork"; 
  ForkPhilosopherConnection right  
     "Connection to the philosopher to the "+   
     "right of the fork"; 
equation  
  // If one philosopher picks up the fork then 
  // tell the other it is busy 
  right.busy = left.pickedUp; 
  left.busy  = right.pickedUp; 
  left.flagOut = right.flagIn; 
  left.flagIn = right.flagOut; 
  left.acknowledgeOut = right.acknowledgeIn; 
  left.acknowledgeIn = right.acknowledgeOut; 
end Fork; 

 
The Philosopher model implements the 
algorithm described earlier. The time intervals used 
to determine for how long each philosopher is 
thinking and eating comes from the 
Random.normalvariate function, which gives a 
normally distributed pseudo random number.  
The first equations define some boolean variables 
that triggers events that occur within each 
philosopher. The timeToChangeState variable is 
set to true each time the simulated time exceed the 
randomly selected time of the next state change, 
causing the state to change from thinking to hungry 
or from eating to thinking. The variables 
timeToGetHungry and doneEating specializes 
the previously mentioned variable to the cases 
where the philosophers are in the tinking and 
eating states, respectively.  
In the algorithm section all the events are handled. 
First, the built-in initial() event is used the set 
all the initial states and set the time for the first 
timeToGetHungry-event. The elsewhen part 
handles the timeToGetHungry-event. Note that 
pre() operator must be used around the 
timeToGetHungry-variable, otherwise there would 
be an algebraic loop since the code inside the 
when-clause affects the value of the variable that 
triggers the event. 
If either neighbor signals the philosopher about a 
fork being laid down or there is an opportunity to 
eat or even just grab the right fork, then the 
philosopher asks for the mutex by setting the 
request flag on the mutex port.  
When the philosopher receives the mutex the 
mutexPort.ok event fires the philosopher can 
carry out its intentions whether it was just to grab a 
free right fork or check if both forks are free and 
start eating or simply just acknowledge a tip from a 
neighbor. 
When a philosopher is done eating the 
doneEating-event fires the state is changed to 



thinking, the left fork is put down and the neighbor 
is told of the fact that it is. Not until the neighbor 
acknowledges the tip is the right fork put down and 
that neighbor gets the tip. Note that the 
timeToGetHungry event does not fire until both 
neighbors have acknowledged. 
 
model Philosopher  "A Philosopher, connected "+ 
                   "to forks and a mutex" 
  import Random; 
  MutexPortOut mutexPort "Connection to the "+ 
                         "global mutex"; 
  parameter Random.Seed startSeed = {1,2,3}; 
  parameter Real mu = 20.0 "mean value"; 
  parameter Real sigma = 5 "standard dev";     
  discrete Integer state "1==thinking, "+ 
                       "2==hungry, 3==eating"; 
  ForkPhilosopherConnection left; 
  ForkPhilosopherConnection right; 
protected     
  constant Integer     thinking=0; 
  constant Integer     hungry=1; 
  constant Integer     eating=2; 
  discrete Real        T; 
  discrete Real        timeOfNextChange; 
  discrete Random.Seed randomSeed; 
  Boolean              canEat; 
  Boolean              timeToChangeState; 
  Boolean              timeToGetHungry; 
  Boolean              doneEating; 
equation 
  timeToChangeState = timeOfNextChange <= time; 
  canEat = (state == hungry) and   
           not (left.busy or right.busy); 
  timeToGetHungry   = (state == thinking) and 
                      timeToChangeStateand not 
               (left.flagOut or right.flagOut); 
  doneEating        = (state == eating)   and 
                      timeToChangeState; 
algorithm  
  when initial() then   
    state := thinking; 
    left.pickedUp  := false; 
    right.pickedUp := false; 
    (T,randomSeed) :=  
       Random.normalvariate(mu, sigma, 
                            startSeed); 
    timeOfNextChange := abs(T); 
  elsewhen pre(timeToGetHungry) then 
    state := hungry; 
  end when; 
  // Request mutex to be able to grab the forks  
  when pre(right.flagIn) then 
    mutexPort.release := false; 
    mutexPort.request := true; 
  end when; 
  when pre(left.flagIn) then 
    mutexPort.release := false; 
    mutexPort.request := true; 
  end when; 
  when pre(canEat) then 
    mutexPort.release := false; 
    mutexPort.request := true; 
  end when; 
  when state == hungry and  
       not pre(right.busy) then 
    mutexPort.release := false; 
    mutexPort.request := true; 
  end when;   
  // If the neighbors no longer has the flags 
  // set then cancel the acknowledgements. 
  when not pre(right.flagIn) then  
    right.acknowledgeOut := false; 
  end when; 

  when not pre(left.flagIn) then  
    left.acknowledgeOut := false; 
  end when; 
     
  // Got the mutex 
  when pre(mutexPort.ok) then    
    if not pre(right.busy) then 
      right.pickedUp := true; 
    end if; 
         
    // If the forks are still available  
    // then grab them and decide for how  
    // long to eat 
    if pre(canEat) then 
      left.pickedUp  := true; 
      right.pickedUp := true; 
      (T,randomSeed) := 
               Random.normalvariate(mu, 
               sigma, pre(randomSeed)); 
      timeOfNextChange := time + abs(T);         
      state := eating; 
    end if; 
    // Release the mutex 
    mutexPort.release := true; 
    mutexPort.request  := false;  
    // Acknowledge flags from neighbors 
    if pre(right.flagIn) then  
      right.acknowledgeOut := true; 
    end if; 
    if pre(left.flagIn) then  
      left.acknowledgeOut := true; 
    end if; 
  end when;   
  // When done eating lay down the forks and 
  // set a new time to get hungry     
  when pre(doneEating) then   
    state          := thinking; 
    left.flagOut   := true; 
    left.pickedUp  := false; 
    (T,randomSeed) := Random.normalvariate(mu, 
                      sigma, pre(randomSeed)); 
    timeOfNextChange := time + abs(T); 
  end when; 
  when pre(left.acknowledgeIn) then 
    left.flagOut := false; 
    right.flagOut := true; 
    right.pickedUp := false; 
  end when; 
  when pre(right.acknowledgeIn) then 
    right.flagOut := false; 
  end when; 
end Philosopher; 

 
The Mutex class operates in the following way. 
Three of the local variables are always equal to the 
corresponding port variables through the equations 
in the Mutex model. The first when-statement is 
activated when one of the philosophers signals that 
he wants the mutex.  
If the mutex is not occupied then it is reserved and 
the philosopher receives the ok signal, i.e. 
occupied=true, and the port[i].ok is set to 
true. If it is occupied the philosopher is set waiting. 
When the mutex is released and there are waiting 
philosophers then one of the waiting philosophers 
receives the ok signal and is removed from the 
waiting list. Finally, when the philosopher sets 
release[i] to false, the mutex is freed. 
 



connector MutexPortIn "Mutex port connector " + 
                      "for receiveing requests" 
  input  Boolean request "Set by application "+ 
                         "to request access"; 
  input  Boolean release "Set by application "+  
                         "to release access"; 
  output Boolean ok  "Signal that ownership " + 
                     "was granted"; 
end MutexPortIn; 

 
connector MutexPortOut   "Application mutex " + 
                  "port connector for access" 
  output Boolean request "Set this to " + 
              "request ownership of the mutex"; 
  output Boolean release "Set this to " + 
              "release ownership of the mutex"; 
  input  Boolean ok "This signals that " + 
                    "ownership was granted"; 
end MutexPortOut; 

 
model Mutex "Mutual exclusion of shared " + 
            "resource" 
  parameter Integer n = 5  "The number of " + 
                           "connected ports";   
  MutexPortIn[n] port; 
protected 
  Boolean request[n]; 
  Boolean release[n]; 
  Boolean ok[n]; 
  Boolean waiting[n]; 
  Boolean occupied    "Mutex is locked if " + 
                      "occupied is true"; 
equation 
    ok      = port.ok; 
    request = port.request; 
    release = port.release; 
algorithm 
  for i in 1:n loop 
    when request[i] then  
      if not occupied then 
        ok[i]      := true; 
        waiting[i] := false; 
      else 
        ok[i]      := false;     
        waiting[i] := true; 
      end if; 
      occupied := true; 
    end when; 
    when pre(waiting[i]) and not occupied then  
      occupied   := true; 
      ok[i]      := true; 
      waiting[i] := false; 
    end when;   
    when pre(release[i]) then 
      ok[i]    := false; 
      occupied := false; 
    end when; 
  end for;   
end Mutex; 

 
In Figure 2 the result of simulating the dining table 
with random eating and thinking times are shown.  

Conclusion & Future work 
In this paper we have presented a solution to the 
dining philosophers problem with the use of a 
mutex class. We have shown that Modelica is 
powerful enough to model resource allocation in 
concurrent processes and that it can be done using 
familiar constructs such as the mutex. In the future 

one might continue to create Modelica 
implementations of other familiar constructs such 
as semaphores and monitors. 
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Figure 2. The result of simulating the dining table. 

Each philosopher alters between Thinking and 
eating with the hungry state in the middle. 
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