
Modeling Concurrent Activities and
Resource Sharing in Modelica

Håkan Lundvall, Peter Fritzson

Dept. of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden

(haklu,petfr)@ida.liu.se

Abstract
Modelica [1,2,4,6,10] is an equation-based, object
oriented modeling language for modeling of
complex multi-domain systems. Modelica is an
inherently concurrent language in the sense that
objects with behavior speci fied by equations evolve
in parallel, concurrently in time. Equations specify
how objects evolve and interact, as well as giving
constraints for the parallel behavior. We can view
each object as a kind of parallel process. As always
in parallel activities, concurrent access of shared
common resources can lead to problems
In this paper we will, as an example of a well-known
concurrence problem, present a Modelica
implementation of the Dining Philosophers problem
[7]. The presented solution guaranties freeness from
both deadlock and starvation. To accomplish this a
general mutex class is introduced.

Keywords: Modelica, Resource Sharing,
Concurrency

Introduction
Modelica is an object oriented modeling language
capable of describing heterogeneous physical
systems through the use of hybrid di fferential
algebraic equations. One of the great advantages of
the Modelica language is the possibility to model
systems from different physical disciplines in the
same model. It is, for example, possible to model
the control software in the same model as the
system it controls. Often, in this kind of systems,
there is a need to model several concurrent
processes that share a limited amount of mutual
resources.
Related work in the discrete systems area includes
a Modelica library for modeling Petri Nets [5,9].
Another commonly used language for describing
concurrence and resource sharing is Esterel[8].

The Dining Philosophers
The dining philosophers problem [7] is considered
a classic synchronization problem. This is not
because of its practical importance – philosophers
are not very common in real life. The reason this
problem is interesting is that it represents a large
class of concurrency problems. It is a simple
example of allocation of resources among several
concurrent processes. This needs to be done in a
deadlock and starvation free manner.
Let us now describe our dining philosophers; there
are five dining philosophers who are sitting around
a table thinking and eating during their whole life.
Five plates and five forks are available on the
table. A philosopher is either thinking or eating,
and can only eat if he has two forks in his hands.
Now and then a philosopher becomes hungry and
tries to pick up the two forks closest to him. If one
of the forks is already in the hand of a neighbor, he
cannot take it. When a hungry philosopher has
both forks in his hands he eats without releasing
the forks. When he has finished eating, he puts
down both forks and starts thinking again. The
crucial observation is that the philosopher can only
eat if he has access to two neighboring forks out of
the common resource of five forks.
There are two potential problems associated with
the dining philosophers:
· Deadlock – philosophers wait indefinitel y on

each other without ever been able to grab two
forks.

· Starvation – certain philosophers are never able
to eat because their neighbors always grab the
forks ahead of them.

Solution
If all philosophers acted entirel y autonomously, it
is easy to see how deadlock could occur. Let us
assume that when a philosopher gets hungry, he
always picks up the fork to the right if it is
available and subsequentl y the other one. If all
philosophers becomes hungry simultaneously they
all pick up the fork to the right, but no one can eat
since they all wait for their left fork. In order to

avoid this situation a mutual exclusion (mutex)
mechanism is introduced so that no one can pick
up a fork without first getting hold of the mutex.

First attempt:
When a philosopher gets hungry, he waits until
both forks are available and then he requests the
mutex. If, when he receives the mutex, the forks
are still available he grabs both forks and start
eating. If some other philosopher got the mutex
first one of the forks may not be available any
longer, in which case the hungry philosopher starts
over and waits for both forks to be free again.
When he is done eating he puts both forks back on
the table.
It is easy to convince oneself that deadlock can no
longer occur, since if someone is hungry but
cannot eat his neighbor must be eating (no one has
only one fork, and if he has two he is eating) and
he will eventually stop eating. But nothing is
stopping four of the philosophers to starve the fi fth
to death. To make sure that cannot happen the
algorithm must be changed a little.

Second attempt:
We give the philosophers the opportunity to tip
their neighbors off when they but down the forks.
When a philosopher is done eating, he first puts
down his left fork and gives his left neighbor a
chance to pick it up if he wants it. Not until the left
neighbor has acknowledged the tip, does he put
down the right fork. In case he immediately gets
hungry again he also waits for an
acknowledgement from his right neighbor, which
he has tipped off in the same way, before he tries to
pick the forks up himself again.
The second alteration to our first algorithm is that a
philosopher no longer must pick up both forks
simultaneously. Instead, when a philosopher is
hungry he always picks up his right fork if it is
available.

Proof of freeness from deadlock and starvation:
If there is deadlock all philosophers must be
hungry and holding on to their right fork, since no
one ever holds just the left fork, and if some fork is
still on the table or if someone has two forks there
would not be deadlock, since the fork on the table
could be picked up and the one having two forks
would eventually be done eating.
Let us assume that deadlock has occurred. The last
thing that happened before deadlock occurred must
have been that one philosopher picked up his right
fork, so the state of the dining table just before the
deadlock must have been one fork on the table and

the others in a philosophers right hand. There are
only three ways in which this state can occur:

1) The philosopher to the right of the fork just put
it down, in which case he is no longer hungry
and he will soon put his other fork down as
well, hence there will not be deadlock.

2) The philosopher to the left of the fork just put it
down, but became hungry again immediately.
However, according to the algorithm he must
first offer the fork to his neighbor, who in this
case would grab it and eat, since he is hungry.
Thus, there would be no deadlock in this case
either.

3) Some other fork was just picked up. In this case
the philosopher who picks up the fork must just
have become hungry and so must everyone
because if there is at least one philosopher who
is not hungry and at least one who is, then at
least one can eat. When they all get hungry
simultaneously, one of them gets the mutex first
and grabs both forks, which does not lead to the
sought state.

Now let us look at starvation. Assume that a
philosopher is hungry, either his right neighbor is
eating in which case the neighbor will soon offer
the hungry philosopher his fork or the fork is
already available. Now the hungry philosopher has
his right fork. If the left fork is busy then his left
neighbor is either eating or waiting for his left fork.
If he is eating then our hungry philosopher will be
offered the fork when the neighbor is done. If the
neighbor in turn is waiting, then somewhere
around the table there must be an eating
philosopher who will loose up the chain, otherwise
all philosophers would be waiting for their left fork
in a deadlock, which we just proved could not
happen.

Implementation
In this section the representation of the dining
philosophers problem and the mutex as a Modelica
model is presented. Figure 1 shows the connection
structure of a Modelica model with five
philosophers, five forks, and a Mutex instance
providing mutually exclusive access to two forks
needed for a philosopher to eat.
Each philosopher in the DiningTable model is
connected to the two forks on his left and right
sides. He can only pick up those forks if his left
and right neighbor philosophers do not occupy
them. In the center there is a shared mutex that all
the philosophers are connected to.

mutex

Figure 1. Connection structure of the dining
philosophers model, alternating philosophers and forks,

together with a central mutex.

This connection is used to signal if a philosopher
wants to get access to the forks in order to eat, so
that no other philosopher can pick up the fork
between the check for availability and the actual
picking up.

model DiningTable
 parameter Integer n = 5
 "Number of philosophers and forks";
 parameter Real sigma = 5
 "Standard deviation of delay times";

 // Give each a different random start seed
 Philosopher phil[n](startSeed=[1:n,1:n,1:n],
 sigma=fill(sigma,n));
 Mutex mutex(n=n);
 Fork fork[n];
equation
 for i in 1:n loop
 connect(phil[i].mutexPort, mutex.port[i]);
 connect(phil[i].right, fork[i].left);
 connect(fork[i].right,
 phil[mod(i, n) + 1].left);
 end for;
end DiningTable;

A philosopher is connected to its left and right
neighboring forks via ForkPhilosopher-
Connection ports. This connector transfers
information about the state of the fork. This
includes if the fork is held by the connected
philosopher, if it is busy or if it is available. It also
contains flags that the philosophers use to signal
their neighbors when they put down the forks.

connector ForkPhilosopherConnection
 Boolean pickedUp(start=false);
 Boolean busy;
 Boolean flagIn(start=false);
 Boolean acknowledgeIn(start=false);
 Boolean flagOut;
 Boolean acknowledgeOut;
end ForkPhilosopherConnection;

The Fork class transfers the information between
the left and right ports.

model Fork
 ForkPhilosopherConnection left
 "Connection to the philosopher to the " +
 "left of the fork";
 ForkPhilosopherConnection right
 "Connection to the philosopher to the "+
 "right of the fork";
equation
 // If one philosopher picks up the fork then
 // tell the other it is busy
 right.busy = left.pickedUp;
 left.busy = right.pickedUp;
 left.flagOut = right.flagIn;
 left.flagIn = right.flagOut;
 left.acknowledgeOut = right.acknowledgeIn;
 left.acknowledgeIn = right.acknowledgeOut;
end Fork;

The Philosopher model implements the
algorithm described earlier. The time intervals used
to determine for how long each philosopher is
thinking and eating comes from the
Random.normalvariate function, which gives a
normally distributed pseudo random number.
The first equations define some boolean variables
that triggers events that occur within each
philosopher. The timeToChangeState variable is
set to true each time the simulated time exceed the
randomly selected time of the next state change,
causing the state to change from thinking to hungry
or from eating to thinking. The variables
timeToGetHungry and doneEating specializes
the previously mentioned variable to the cases
where the philosophers are in the tinking and
eating states, respectively.
In the algorithm section all the events are handled.
First, the built-in initial() event is used the set
all the initial states and set the time for the first
timeToGetHungry-event. The elsewhen part
handles the timeToGetHungry-event. Note that
pre() operator must be used around the
timeToGetHungry-variable, otherwise there would
be an algebraic loop since the code inside the
when-clause affects the value of the variable that
triggers the event.
If either neighbor signals the philosopher about a
fork being laid down or there is an opportunity to
eat or even just grab the right fork, then the
philosopher asks for the mutex by setting the
request flag on the mutex port.
When the philosopher receives the mutex the
mutexPort.ok event fires the philosopher can
carry out its intentions whether it was just to grab a
free right fork or check if both forks are free and
start eating or simply just acknowledge a tip from a
neighbor.
When a philosopher is done eating the
doneEating-event fires the state is changed to

thinking, the left fork is put down and the neighbor
is told of the fact that it is. Not until the neighbor
acknowledges the tip is the right fork put down and
that neighbor gets the tip. Note that the
timeToGetHungry event does not fire until both
neighbors have acknowledged.

model Philosopher "A Philosopher, connected "+
 "to forks and a mutex"
 import Random;
 MutexPortOut mutexPort "Connection to the "+
 "global mutex";
 parameter Random.Seed startSeed = {1,2,3};
 parameter Real mu = 20.0 "mean value";
 parameter Real sigma = 5 "standard dev";
 discrete Integer state "1==thinking, "+
 "2==hungry, 3==eating";
 ForkPhilosopherConnection left;
 ForkPhilosopherConnection right;
protected
 constant Integer thinking=0;
 constant Integer hungry=1;
 constant Integer eating=2;
 discrete Real T;
 discrete Real timeOfNextChange;
 discrete Random.Seed randomSeed;
 Boolean canEat;
 Boolean timeToChangeState;
 Boolean timeToGetHungry;
 Boolean doneEating;
equation
 timeToChangeState = timeOfNextChange <= time;
 canEat = (state == hungry) and
 not (left.busy or right.busy);
 timeToGetHungry = (state == thinking) and
 timeToChangeStateand not
 (left.flagOut or right.flagOut);
 doneEating = (state == eating) and
 timeToChangeState;
algorithm
 when initial() then
 state := thinking;
 left.pickedUp := false;
 right.pickedUp := false;
 (T,randomSeed) :=
 Random.normalvariate(mu, sigma,
 startSeed);
 timeOfNextChange := abs(T);
 elsewhen pre(timeToGetHungry) then
 state := hungry;
 end when;
 // Request mutex to be able to grab the forks
 when pre(right.flagIn) then
 mutexPort.release := false;
 mutexPort.request := true;
 end when;
 when pre(left.flagIn) then
 mutexPort.release := false;
 mutexPort.request := true;
 end when;
 when pre(canEat) then
 mutexPort.release := false;
 mutexPort.request := true;
 end when;
 when state == hungry and
 not pre(right.busy) then
 mutexPort.release := false;
 mutexPort.request := true;
 end when;
 // If the neighbors no longer has the flags
 // set then cancel the acknowledgements.
 when not pre(right.flagIn) then
 right.acknowledgeOut := false;
 end when;

 when not pre(left.flagIn) then
 left.acknowledgeOut := false;
 end when;

 // Got the mutex
 when pre(mutexPort.ok) then
 if not pre(right.busy) then
 right.pickedUp := true;
 end if;

 // If the forks are still available
 // then grab them and decide for how
 // long to eat
 if pre(canEat) then
 left.pickedUp := true;
 right.pickedUp := true;
 (T,randomSeed) :=
 Random.normalvariate(mu,
 sigma, pre(randomSeed));
 timeOfNextChange := time + abs(T);
 state := eating;
 end if;
 // Release the mutex
 mutexPort.release := true;
 mutexPort.request := false;
 // Acknowledge flags from neighbors
 if pre(right.flagIn) then
 right.acknowledgeOut := true;
 end if;
 if pre(left.flagIn) then
 left.acknowledgeOut := true;
 end if;
 end when;
 // When done eating lay down the forks and
 // set a new time to get hungry
 when pre(doneEating) then
 state := thinking;
 left.flagOut := true;
 left.pickedUp := false;
 (T,randomSeed) := Random.normalvariate(mu,
 sigma, pre(randomSeed));
 timeOfNextChange := time + abs(T);
 end when;
 when pre(left.acknowledgeIn) then
 left.flagOut := false;
 right.flagOut := true;
 right.pickedUp := false;
 end when;
 when pre(right.acknowledgeIn) then
 right.flagOut := false;
 end when;
end Philosopher;

The Mutex class operates in the following way.
Three of the local variables are always equal to the
corresponding port variables through the equations
in the Mutex model. The first when-statement is
activated when one of the philosophers signals that
he wants the mutex.
If the mutex is not occupied then it is reserved and
the philosopher receives the ok signal, i.e.
occupied=true, and the port[i].ok is set to
true. If it is occupied the philosopher is set waiting.
When the mutex is released and there are waiting
philosophers then one of the waiting philosophers
receives the ok signal and is removed from the
waiting list. Finally, when the philosopher sets
release[i] to false, the mutex is freed.

connector MutexPortIn "Mutex port connector " +
 "for receiveing requests"
 input Boolean request "Set by application "+
 "to request access";
 input Boolean release "Set by application "+
 "to release access";
 output Boolean ok "Signal that ownership " +
 "was granted";
end MutexPortIn;

connector MutexPortOut "Application mutex " +
 "port connector for access"
 output Boolean request "Set this to " +
 "request ownership of the mutex";
 output Boolean release "Set this to " +
 "release ownership of the mutex";
 input Boolean ok "This signals that " +
 "ownership was granted";
end MutexPortOut;

model Mutex "Mutual exclusion of shared " +
 "resource"
 parameter Integer n = 5 "The number of " +
 "connected ports";
 MutexPortIn[n] port;
protected
 Boolean request[n];
 Boolean release[n];
 Boolean ok[n];
 Boolean waiting[n];
 Boolean occupied "Mutex is locked if " +
 "occupied is true";
equation
 ok = port.ok;
 request = port.request;
 release = port.release;
algorithm
 for i in 1:n loop
 when request[i] then
 if not occupied then
 ok[i] := true;
 waiting[i] := false;
 else
 ok[i] := false;
 waiting[i] := true;
 end if;
 occupied := true;
 end when;
 when pre(waiting[i]) and not occupied then
 occupied := true;
 ok[i] := true;
 waiting[i] := false;
 end when;
 when pre(release[i]) then
 ok[i] := false;
 occupied := false;
 end when;
 end for;
end Mutex;

In Figure 2 the result of simulating the dining table
with random eating and thinking times are shown.

Conclusion & Future work
In this paper we have presented a solution to the
dining philosophers problem with the use of a
mutex class. We have shown that Modelica is
powerful enough to model resource allocation in
concurrent processes and that it can be done using
familiar constructs such as the mutex. In the future

one might continue to create Modelica
implementations of other familiar constructs such
as semaphores and monitors.

Thinking

Thinking

Thinking

Thinking

Thinking

Eating

Eating

Eating

Eating

Eating

Figure 2. The result of simulating the dining table.

Each philosopher alters between Thinking and
eating with the hungry state in the middle.

References
[1] H.Elmqvist,S.E.Mattsson,and M.Otter. A language

for physical system modeling, visualization and
interaction. In Proceedings of the 1999 IEEE
Symposium on Computer Aided Control System
Design, Hawaii, Aug. 1999.

[2] H.Elmqvist and S.E.Mattsson.Modelica – the next
generation modeling language –an international
design effort. In Proceedings of the First World
Congress on System Simulation, Singapore,
Sept.1 –3 1997.

[3] Elmqvist H., Mattsson S. E., Otter M. (2000)
Object-Oriented and Hybrid Modeling in
Modelica. ADPM 2000, Dortmund, Germany

[4] P.Fritzson and V.Engelson. Modelica —A unified
object-oriented language for system modeling and
simulation. In Eric Jul, editor, ECOOP ’98 —
Object-Oriented Programming, volume 1445 of
Lecture Notes in Computer Science, pages 67 –
90.Springer, 1998.

[5] Mosterman P.J., Otter M., Elmqvist H. (1998).
Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems Using Modelica.
The Proceedings of the Summer Computer
Simulation Conference, July 19-22, S. 314-319,
1998 Reno, Nevada, U.S.A.

[6] Modelica Association
http://www.Modelica.org

[7] Silberschantz A., Galvin P. B. Operating System
Concepts, Fourth Edition. Addison-Wesley
Publishing Company. ISBN 0-201-59292-4

[8] Halbwachs, Nicolas. Synchronous Programming
of Reactive Systems. Kluwer Academic, 174 pages,
ISBN 0-7923-9311-2, 1993.

[9] Peterson, James L. Petri Net Theory and the
Modeling of Systems. Prentice Hall, 1981.

[10] P. Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica, Wiley-
IEEE Press, Nov. 2003

