

Modelica Text Template Language Susan

Users Guide

Draft

2010-04-21 version 0.2

Summary

This is a preliminary draft of a Modelica text template language Susan Users guide.

Revisions

 .

v0.2 April 21 v5 Peter Fritzson. Fixed some errors found by Martin and Anton

v0.2 April 19 v4 Peter Fritzson. Restructured the document and made the first full draft.

v0.1 April 1 v1 Peter Fritzson. Started the work.

Table of Contents
Table of Contents ... 2

Chapter 1 Background... 4
1.1 Intended Use .. 4
1.2 User Profile .. 4
1.3 Background and Motivation .. 4
1.4 Definition of Text Template Language.. 5
1.5 Design Principles for the Modelica Template Language Susan .. 5

Chapter 2 Template Language Features.. 7
2.1 Preliminaries .. 7

2.1.1 Predefined Text Data Type ... 7
2.2 Template Text-with-hole Constructors and Template Holes ... 7
2.3 Template Expressions .. 8

2.3.1 Automatic Conversion to String Data ... 8
2.3.2 Bound Variable Reference, name or $'name' ... 8
2.3.3 Verbatim String Constants .. 9
2.3.4 Parentheses.. 9
2.3.5 Reduction Expressions .. 9
2.3.6 Conditional Expressions.. 9
2.3.7 Vector/list Constructor {} .. 10

2.4 Template Function Declaration and Call ... 10
2.4.1 Template Function Declaration ... 10
2.4.2 Declaring External Imported MetaModelica Functions .. 11
2.4.3 Template Function Call ... 11
2.4.4 Call of Imported External MetaModelica or C Functions ... 11

2.4.4.1 Using return value natively with its original type.. 12
2.4.4.2 Call with return value converted to string.. 12
2.4.4.3 Call with empty return value ... 12

2.4.5 Declaring Reference (buffer) Formal Parameters in a Template Function.................................... 13
2.4.6 Using Reference (buffer) Formal Parameters in a Template Function.. 13
2.4.7 Allowed Side-Effects in Template Functions.. 13

2.5 Match Expressions and the Idea of Pattern Matching.. 13
2.5.1 The MetaModelica uniontype Construct ... 13
2.5.2 Match Expressions and Pattern Matching ... 14

2.5.2.1 Simple Pattern Matching ... 15
2.5.2.2 Using Pattern Matching in Template Functions .. 16

2.5.3 Pattern Expressions in General.. 16
2.5.4 Record Constructor Pattern Expressions ... 17
2.5.5 Pattern Expression Variable Binding Using as ... 17
2.5.6 Implicit Opening of Record Constructor Scopes in Patterns... 17

2.6 Iterator Expressions ... 18
2.6.1 Iterator Expressions with Iteration Index Values .. 20

2.7 Let Expressions with Name Bindings and Text Buffers .. 20
2.7.1 let Binding of Local Named Text Values.. 20
2.7.2 let Binding of Buffer Variables and their Use... 21
2.7.3 Appending a String to a buffer Variable ... 21
2.7.4 Reference (buffer) Formal Parameters in Template Functions ... 21

2.8 Formatting, Separator, and Indentation Options .. 21
2.8.1 Indentation controlling options ... 22
2.8.2 Multi-Value Formatting Options... 22

2.8.3 Options .. 22
2.9 Interface Packages ... 23

Chapter 3 References ... 26

Chapter 1

Background

1.1 Intended Use
The Modelica template language Susan is intended to simplify and decrease costs of implementation and
maintenance of code generators, unparsers, XML emitters, etc. from OpenModelica intermediate code (AST,
lower level tree IR, all in MetaModelica) to text. The generated code can for example be in C, C#, Java, XML, or
some other language.

1.2 User Profile
The intended user knows Modelica and MetaModelica, C/Java (as most people), and usually is contributing to the
OpenModelica compiler. The user will typically not have any knowledge of other text template languages.

1.3 Background and Motivation
Traditionally, models in a modeling language such as Modelica are primarily used for simulation. However, the
modeling community needs not only tools for simulation but also languages and tools to create, query,
manipulate, and compose equation-based models. Examples are parallelization of models, optimization of models,
checking and configuration of models, generation of program code, documentation and web pages from models.

If all this functionality is added to the model compiler, it tends to become large and complex.
An alternative idea that already to some extent has been explored in MetaModelica [9][22] is to add

extensibility features to the modeling language. For example, a model package could contain model analysis and
translation features that therefore are not needed in the model compiler. An example is a PDEs discretization
scheme that could be expressed in the modeling language itself as part of a PDE package instead of being added
internally to the model compiler.

Such transformation and analysis operations typically operate on abstract syntax tree (AST) representations of
the model. Therefore the model needs to be converted to tree form by parsing before transformation, and later be
converted back into text by the process of unparsing, also called pretty printing.

The MetaModelica work is primarily focused on mechanisms for mapping/transforming models as structured
data (AST) into structured data (AST), which is needed in advanced symbolic transformations and compilers.

However, there is an important subclass of problems mapping structured data (AST) representations of models
into text. Unparsing is one example. Generation of simulation code in C or some other language from a flattened
model representation is another example. Yet another use case is model or document generation based on text
templates where only (small) parts of the target text needs to be replaced.

We believe that providing a template language for Modelica may fulfill a need for an easier-to-use approach to
a class of applications in model transformation based on conversion of structure into text. Particularly, we want an
operational template language that enables to retarge thet OpenModelica compiler simply by specifying a package
of templates for the new target language.

1.4 Definition of Text Template Language
In this section we try to be more precise regarding what is meant by the notion of text template language, template
and template function.

Definition 1. Template Language. A template language is a language for specifying the transformation of
structured data into a textual target data representation, by the use of a parameterized object “the template“ and
constructs for specifying the template and the passing of actual parameters into the template.

One could generalize the notion of template language to cover target language representations that are not
textual. However, in the following we only concern ourselves with textual template languages.

Definition 2. Template and Template Function. A template function is a function from a set of
attributes/parameters to a textual data structure.

A template is a text string with holes in it. The holes are filled by evaluating expressions that are converted to
text when evaluating the template body. More formally, we can use the definition from [18] (slightly adapted):

A template function is a function that maps a set of attributes to a textual data structure. It can be specified via
an alternating list of text strings, ti, and expressions, ei, that are functions of attributes ai:

F(a1, a2, ..., am) ::= t0 e0...ti ei ti+1...tn en tn+1

where ti may be the empty string and ei is restricted computationally and syntactically to enforce strict model-view
separation, see Section 1.5 and [19]. The ei are distinguished from the surrounding text strings by bracket
symbols. Some design alternatives are angle brackets <...>, dollar sign $...$, or combined <%...%> as in
Susan. Evaluating a template involves traversing and concatenating all ti and ei expression results.

Definition 3. Textual Data Structure. A textual data structure has text data such as strings of characters as leaf
elements. Examples of textual data are: a string, a list (or nested list structure) of strings, an array of strings, or a
text file containing a single (large) string. A textual data structure should efficiently be able to convert (flattened)
into a string or text file. In the Modelica template language Susan, the textual data structure is the predefined
Text type.

1.5 Design Principles for the Modelica Template Language Susan
As mentioned, a text template is essentially a text with holes. The holes are filled by implicit conversion of an data
structure to text. In the template language, a template is a function from arguments to a textual data structure.

The template language design could either be a domain specific extension of an existing language
(MetaModelica), an extended subset of an existing language, or a new domain specific language, DSL. The
current design is the latter.

The current design and syntax is influenced by other template languages, especially the Stringtemplate
language, as well as by languages such as Modelica, MetaModelica and C.

The template language has been designed to be strongly typed and efficient. It is compiled into MetaModelica
and not interpreted as many other text template languages. This makes it very efficient.

Similar to Stringtemplate, Susan is designed to follow the model-view-controller concept, and to be a simple
functional-style language.

• model – the intermediate tree (AST), to be converted to text according to the view.
• view – the mapping to text provided by the template functions.
• controller – the (sometimes conditional) traversal of the tree to create a view from the model.

The value of this principle is strongly argued in [17], according to experience with the ST functional template
language [18] in the StringTemplate system. Such separation gives more flexibility (multiple views), easier
maintainability, better reuse, more ease-of-use, etc.

It is argued that the template language should be kept simple, program computation logic should not be too
much intertwined with emitting text. If complex computation needs to be done, it should instead be done on the
model (in our case the AST).

Therefore, the Susan language has been designed be simple, only provide a mapping to text, and simple
conditional tests and pattern matching. If more complicated computations should be done, it should be done on the
model data structure (the tree), before transferring it to the template text output phase.

There are many template languages intended for C and Java users, but Susan is currently the only text template
language adapted for Modelica and MetaModelica users.

The Susan template language is strongly typed and compiled into MetaModelica. The current prototype C code
generator written in the template language is only approximately 10% slower than the current handwritten code
generator, and this figure can probably be improved with some tuning.

Chapter 2

Template Language Features

2.1 Preliminaries

2.1.1 Predefined Text Data Type

The template language supports a predefined Text data type. The implicit result type of all template functions is
type Text. Values of type Text can be very efficiently converted to String, or may sometimes be String.
Buffers passed as reference parameters are always of type Text.

2.2 Template Text-with-hole Constructors and Template Holes
A text template is a text with holes. Inside a hole there can be any valid template expression. For example, the
following text has three holes. Inside a hole is is possible to have a general template expression, of which the most
simple form is just a name. Such a template expression is evaluated and converted to text during the evaluation of
the template.
This is text in the template. This is text in the template. This is text in the
template. <%Hole-templ-expr1%> This is text in the template. This is text in the
template. This is text in the template. This <%Hole-templ-expr2%>is text in the <%Hole-
templ-expr3%>template. This is text in the template. This is text in the template. This
is text in the template. This is text in the template...

Template holes are started by <% and ended by %>, i.e., as in <%name%>. When <% is needed as text, its first
character need to be ecaped by \, i.e., \<%. There are currently two forms of template text-with hole constructors:

• Single-quote ' ' text-with-hole constructor. All characters are included verbatim as-is, except holes
starting with <% and ' which ends the text. Those can be included by prefixing with the escape code
backslash as in \<% and \'.

• Multi-Line << >> text-with-hole constructor. The template text starts on the line after << and ends
including the line before >>. All characters are included verbatim as-is, except holes starting with <% and >>
which ends the text. Those can be included by prefixing with the escape code backslash as in \<% and \<<.

It is actually possible to have multiple lines also in the single-quote variant, but then line-counting, alignment and
indentation options do not work. Such options are only supported by the Multi-line variant.

Example of the single-quote ' ' text-with-hole constructor:
'Output text <%templ-expr%>.'

Example of the Multi-Line << >> text-with-hole constructor:
<<
Output text <%templ-expr%>.
>>

Example within a template function

template functionInput(ModelInfo modelInfo) ::=
match modelInfo
case MODELINFO(vars=SIMVARS) then
<<
int input_function()
{
 <% (vars.inputVars indexby index0 |> SIMVAR(__) =>
 '<%cref(name)%> = localData->inputVars[<%index0%>];') ;separator="\n"%>
 return 0;
}
>>
end match
end functionInput;

2.3 Template Expressions
Template expressions can consist of the following:

• Simple names, see Section 2.3.2.
• Quoted names, see Section 2.3.2.
• Double-quoted string constants, see Section 2.3.3.
• Single-quote text-with-hole constructors, see Section 2.2.
• Multi-line text-with-hole constructors, see Section 2.2.
• Conditional expressions, see Section 2.3.6.
• Match-expressions, see Section 2.5.
• Let-expressions, see Section 2.7.
• Function calls, see Section 2.4.3.
• Iterator expressions, see Section 2.6.
• Parenthesized expressions, see Section 2.3.4.
• Vector/list-constructors, see Section 2.3.7.
• Option expressions, see Section 2.8.

The full grammar of template expressions is as follows:

• ?? fill in

2.3.1 Automatic Conversion to String Data

Data retrieved from bound variables or returned from called MetaModelica functions in template expressions is
automatically converted to string values according to the following.

Any auto-to-string-convertible bound value can be used.

• Automatic to-string conversion applies to the elementary types: String, Integer, Real, Boolean.
• Values of Option type are output for SOME values when the option type is auto-to-string-convertible

(recursively).
• values of type list and Array are concatenated when element type is auto-to-string-convertible.

2.3.2 Bound Variable Reference, name or $'name'

A variable bound to a value is referenced by using its name, e.g. valueName, within a template expression (but
not in the actual verbatim template text). Syntax:
valueName

An alternative dollar-quoted variant is similar to but different from Modelica's single-quoted identifiers:

$'valueName'

The $'valueName' means the same identifier as valueName, whereas the Modelica 'valueName' includes the
single-quotes in the identifier.

The value of a referenced bound variable name is retrieved and automatically converted to text according to
Section 2.3.2. Any auto-to-string-convertible bound value can be used..

Examples where dollar sign or space or + is in the identifier, or just an ordinary name:
$'quoted id+23121'

$'$'

ordinaryName

Examples when the keyword let needs to be an identifier, e.g. as in these examples:
field.$'let'

case RECORD($'let'=FOO) then ...

2.3.3 Verbatim String Constants

Double-quoted string constants, e.g. "string constant", are available and exactly respect Modelica stirng
semantics, which is defined as follows:

STRING = """ { S-CHAR | S-ESCAPE } """

S-CHAR = any member of the Unicode character set (http://www.unicode.org; but use UTF-8
 for storing on files) except double-quote """, and backslash "\"

Escape codes for certain control characters can be given in strings as follows and are defined in the same way as
the C99 standard:

S-ESCAPE = "\’" | "\"" | "\?" | "\\" |
 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

2.3.4 Parentheses

Parentheses are allowed, and has the normal interpretation used in almost all programming langaugs, i.e. giving
priority in the order of evaluation. Expressions in innermost parenthesis will be evaluated first.

2.3.5 Reduction Expressions

If reduction to text is desired, you should use: '<< expression-to-reduce >>', which will reduce it to a
single text item. This is usually not needed, since eventually the whole template expression including its parts will
be reduced to text before being output.

2.3.6 Conditional Expressions

The conditional expression evaluates templ-exp1 as the result of the expression when the condition is satisfied,
otherwise value of templ-exp2 is the result. When the else branch is not specified, an empty string is implied.

Syntax:
if [not]opt condition then templ-exp1
[else templ-exp2]opt

The condition is intended to test values for their non-zero/zero-like values. Values of these types are allowed
with the following semantics. Zero-like values are treated as false in the Boolean sense:
Boolean true / false

Integer or Real non-0 / 0
String non-empty / ""
list or Array non-empty / { } empty list/array
Option SOME / NONE

However, testing for the result of a template function (returning result of type Text) is not allowed:
if templ() then ... // Error, cannot test conditionally on template function!

Example:

template globalDataVarNamesArray(String name, list<SimVar> items) ::=
if items then
<<
char* <%name%>[<%listLength(items)%>] = {<% (items |> SIMVAR(__) =>
 '"<%crefSubscript(origName)%>"') ;separator=", "%>};
>>
else
<<
char* <%name%>[1] = {""};
>>;
end globalDataVarNamesArray;

2.3.7 Vector/list Constructor {}

A vector/list constructor {} is useful in conjunction with conditional insertion of separators.

The separator is only inserted if there are two or more non-empty expressions (i.e., expressions not resulting in
empty strings).
{ expr1, expr2 } ;separator = ","

This can be used for construction of a general list with many elements, as in the following:
{ expr1, expr2, expr3, ... exprN } ;separator = ","

Example using {}:
<<
char var_attr[NX+NY+NP] = {
 <% { (vars.stateVars |> SIMVAR(__) =>
 '<%globalDataAttrInt(type_)%>+<%globalDataDiscAttrInt(isDiscrete)%> /*
<%cref(origName)%> */'
 ",\n"),
 (vars.algVars of SIMVAR(__) =>
 '<globalDataAttrInt(type_)%>+<%globalDataDiscAttrInt(isDiscrete)%> /*
<%cref(origName)%> */'
 ",\n"),
 (vars.paramVars of SIMVAR(__)=>
 '<%globalDataAttrInt(type_)%>+<%globalDataDiscAttrInt(isDiscrete)%> /*
<%cref(origName)%> */'
 ",\n") }
 ;separator=",\n"%>

2.4 Template Function Declaration and Call

2.4.1 Template Function Declaration

A template function is declared as follows:
template funcname(Argtype1 arg1, Argtype2, arg2, ...) "Optcomment" ::== templatebody
end funcname;

The implicit result type of the template function is Text, which always holds and need not be specified.

Example:
template functionInput(ModelInfo modelInfo) ::=
 match modelInfo
 case MODELINFO(vars=SIMVARS) then
<<
int input_function()
{
 <% (vars.inputVars indexby index0 |> SIMVAR(__) =>
 '<%cref(name)%> = localData->inputVars[<%index0%>];') ;separator="\n"%>
 return 0;
}
>>
 end match
end functionInput;

2.4.2 Declaring External Imported MetaModelica Functions

A MetaModelica function that is to be called from within a template expression may have at most one output
result and needs to be declared in an interface package, see Section 2.9.

The signature of the function is specified in MetaModelica syntax for the package it belongs to.
For example, the MetaModelica function crefSubIsScalar below is specified as an external function that

can be imported from package SimCode.

interface package MyInterface

package SimCode

 function crefSubIsScalar
 input DAE.ComponentRef cref;
 output Boolean isScalar;
 end crefSubIsScalar;

end SimCode;

end MyInterface;

2.4.3 Template Function Call

Template functions are called in the same way as functions in general, e.g.:
fname(arg1, arg2, ... argN);

Buffer arguments passed to reference formal parameters need to be prefixed by & in the call. The Text result of
the template evaluated with the actual parameters is the output of the template function call. Formal parameters
are strongly typed. Automatic to-string conversion of actual parameters applies when appropriate.

2.4.4 Call of Imported External MetaModelica or C Functions

It is possible to call external MetaModelica functions from template functions. Such external functions need to be
declared (Section 2.4.2) in an interface package (Section 2.9) which must be imported through an import
statement into the package where the external functions are called.

You can use the return value of an external function natively with its original type, have the return value
automatically converted to string, or call functions that return no value. Only external functions which return zero
or one arguments can be used. Examples of these three cases follows.

2.4.4.1 Using return value natively with its original type

The return value from a called function can be used as is without being converted to text. For example:
template crefSubIsScalarHuman(DAE.ComponentRef cref) ::=
 if crefSubIsScalar(cref) then
 "this cref has scalar subscript"
 else
 "this cref does not have scalar subscript"
end crefSubIsScalarHuman;

Here the return value from the external imported function crefSubIsScalar is a boolean which is used as a
boolean in the if-expression. The return value could also have been stored in a variable resBool as follows:
template crefSubIsScalarHuman(DAE.ComponentRef cref) ::=
 let resBool = crefSubIsScalar(cref)
 if resBool then
 "this cref has scalar subscript"
 else
 "this cref does not have scalar subscript"
end crefSubIsScalarHuman;

Alternatively the return value from crefSubIsScalar could be passed immediately to another template function
crefSubIsScalarHumanFromBool like this:
template crefSubIsScalarHuman(DAE.ComponentRef cref) ::=
 crefSubIsScalarHumanFromBool(crefSubIsScalar(cref))
end crefSubIsScalarHuman;

template crefSubIsScalarHumanFromBool(Boolean resBool) ::=
 if resBool then
 "this cref has scalar subscript"
 else
 "this cref does not have scalar subscript"
end crefSubIsScalarHumanFromBool;

The return value could be used natively in other contexts as well where it makes sense.

2.4.4.2 Call with return value converted to string

The tmpTick external function called below returns an integer that is automatically converted to a string when
used in a template expression.
template uniqueName() ::=
 let uniqName = 'tmp<%System.tmpTick()&>'
 uniqName
end uniqueName;

Or just like the following:
template uniqueName() ::=
 'tmp<%System.tmpTick()%>'
end uniqueName;

2.4.4.3 Call with empty return value

It is possible to call an external function which has no return value within the following variant of let-expression:
let () = noFuncRet() body-expr

For example,
template writeSomeTextToFile() ::=
 let content = "some text"

 let () = textFile(content, "file_name.txt") // Call with empty result, e.g. to create file.
 () // This template function returns an empty result, e.g. as void in C, only its side effect is used.
end writeSomeTextToFile;

2.4.5 Declaring Reference (buffer) Formal Parameters in a Template Function

In a template function header, & is used before the reference parameter name, and the type in such cases is always
Text.

Example:
template funcname(Argtype1 arg1, Text &arg2Reference) ::= ...

2.4.6 Using Reference (buffer) Formal Parameters in a Template Function

A reference parameter formal parameter always must be prefixed by & when it is used, e.g. when when passing it
to another function or updating it in a let ... += text append statement (Section 2.7.3).
& buffername

In the template function functionBody we declare a buffer varDecls that can be updated. This buffer is
passed to the template function tempDecl, prefixed with & in the call.

Further down, within the template function tempDecl, a side effect is performed on the reference parameter
varDecls, it is updated, i.e., appended to by the &varDecls += operation.

template functionBody(Function fn) ::=
 match fn
 case FUNCTION(__) then
 ...
 let &varDecls = buffer ""
 let retVar = tempDecl("modelica_real", &varDecls) // inserted & here
 ...
 <<
 ..
 {
 ...
 <%varDecls%>
 }
 >>
 end match
end functionBody;

template tempDecl(String ty, Text &varDecls) ::=
 let newVar = 'tmp<%System.tmpTick()%>'
 let &varDecls += '<%ty%> <%newVar%>; <%\n%>' // varDecls is updated, appended
 newVar // return newVar
end tempDecl;

2.4.7 Allowed Side-Effects in Template Functions

The only direct side-effects allowed in template functions are append (+=)operations on buffer variables. Side
effects can also occur through calls to external functions.

2.5 Match Expressions and the Idea of Pattern Matching
The match expression in the template language. is mostly used for discrimination of tree structure nodes (abstract
syntax) of some MetaModelica uniontype. First we give a brief introduction to union types and the idea of pattern
matching.

2.5.1 The MetaModelica uniontype Construct

To be able to declare the type of abstract syntax trees we introduce the uniontype construct.

• A union type specifies a union of one or more record types.
• Union types can be recursive – they can reference themselves.

A common usage is to specify the types of abstract syntax trees. In this particular case the following holds for the
Exp union type:

• The Exp type is a union type of six record types
• Its record constructors are INTConst, ADDop, SUBop, MULop, DIVop, and NEGop.

The Exp union type is declared below. Its constructors are used to build nodes of the abstract syntax trees for the
Exp language.
uniontype Exp
 record INTconst Integer int; end INTconst;
 record ADDop Exp exp1; Exp exp2; end ADDop;
 record SUBop Exp exp1; Exp exp2; end SUBop;
 record MULop Exp exp1; Exp exp2; end MULop;
 record DIVop Exp exp1; Exp exp2; end DIVop;
 record NEGop Exp exp; end NEGop;
end Exp;

Using the Exp abstract syntax definition, the abstract syntax tree representation of the simple expression 12+5*13
will be as shown in Figure 2-1. The Integer data type is predefined. Other predefined data types are Real,
Boolean, and String as well as the parametric type constructors array, list, tuple, and Option.

 ADDop

MULop INTconst

12

INTconst

5

INTconst

13

Figure 2-1. Abstract syntax tree of 12+5*13 in the language Exp.

The uniontype declaration defines a union type Exp and constructors (in the figure: ADDop, MULop, INTconst)
for each node type in the abstract syntax tree, as well as the types of the child nodes.

All union type referenced in the template functions need to be declared in an interface package, see Section
2.9.

2.5.2 Match Expressions and Pattern Matching

The match expression is mostly used for discriminating of tree structure nodes of union types. The syntax is as
follows, where an optional else can appear last in the list of cases.
match value-exp
 case pattern-exp1 then templ-exp1
 case pattern-exp2 then templ-exp2
 ...
 [else pattern-expn then templ-expn]opt

[end match]opt

The templ-expi template expression of the first case that matches the value-exp against its pattern-expi is
evaluated as the result of the whole expression.

• The value computed by the expression after the match keyword is matched against each of the patterns
after the case keywords in order; if one match fails the next is tried until there are no more case-branches
in which case (if present) the else-branch is executed.

• When no pattern matches, the result is empty string.
• When a pattern matches, all pattern variables in the pattern become bound to corresponding parts in the

structured value value-exp. Also, the scope of the top-most record constructor, if present in the pattern, is
opened to make all its fields available as read-only variables, see Section 2.5.6.

2.5.2.1 Simple Pattern Matching

A very simple example of a match-expression is the following code fragment, which returns a number
corresponding to a given input string. The pattern matching is very simple – just compare the string value of s
with one of the constant pattern strings "one", "two" or "three", and if none of these matches return 0 since
the wildcard pattern _ (underscore) matches anything.
match s
 case "one" then 1
 case "two" then 2
 case "three" then 3
 case _ then 0
end match

Using an else-branch we could instead have written:
match s
 case "one" then 1
 case "two" then 2
 case "three" then 3
 else 0
end match

The following is an example of pattern matching against a tree structure as in Figure 2-1, e.g.
match inExp
 case INTconst(int=v1) then ...
 case ADDop(exp1=e1,exp2=e2) then ...
 case SUBop(__) then ...
 case MULop(__) then ...
 case DIVop(__) then ...
 case NEGop(__) then ...
end match

The first case uses named pattern pattern matching (Section 2.5.4 where the single named field of the INTconst
record is int, and the pattern variable is v1:
 case INTconst(int=v1) then ...

The interpretation is to match the inExp value against the special case pattern INTconst(int=v1) If there is a
match, the pattern variable v1 will be bound to the corresponding part of the tree. For the left subtree in Figure
2-1, INTCONST(12), v1 will be bound to 12.

We now turn to the second rule, which has a named pattern for the ADDop node:
 case ADDop(exp1=e1,exp2=e2) then ...

For this case to apply, the pattern ADDop(exp1=e1,exp2=e2) must match the actual inExp value, which is an
abstract syntax tree. If there is a match, the variables e1 and e2 will be bound the two child nodes of the ADDop
node, respectively, visible in Figure 2-1.

A more convenient way of matching is to use the implicit scope opening (Section 2.5.6) of patterns that match.
Instead of specifying a named pattern with a number of field names and pattern variables, one can use the
following form that matches any ADDop node:
 case ADDop(__) then ...

The scope of the ADDop node is automatically opened (Section 2.5.6), to make the fields exp1 and exp2
available in the current scope bound to the corresponding subtrees of the inExp value. Thus, it is unnecessary to

introduce the pattern variables e1 and e2. Instead we can use exp1 and exp2 directly to refer to the subtrees of
the ADDop node.

2.5.2.2 Using Pattern Matching in Template Functions

In the following example the template function exp is calling itself recursively. The scope of the ICONST
constructor is automatically opened to make its field called value available, and the PLUS constructor is opened
automatically by using the PLUS(__) pattern, see Section 2.5.4 2.5.6.
template exp(Exp ep) ::=
 match ep
 case ICONST(__) then value

 case PLUS(__) then '(<%exp(lhs)%> + <%exp(rhs)%>)' // Open scope, see Section 2.5.6
end exp;

where the type Exp is:
uniontype Exp
 record ICONST
 Integer value;
 end ICONST;
 record PLUS
 Exp lhs; Exp rhs;
 end PLUS;
end Exp;

The end match is usually optional, but mandatory in case of nested match expressions as below:
match a
 case RECORD1(__) then
 match b
 case RECORD2(__) then expr
 end match
 case ...

The above template function exp with an optional end match added:
template exp(Exp ep) ::=
 match ep
 case ICONST(__) then value

 case PLUS(__) then '(<%exp(lhs)%> + <%exp(rhs)%>)' // Open scope, see Section 2.5.6
 end match
end exp;

2.5.3 Pattern Expressions in General

Forms of patterns allowed:

• Constant value, e.g. 1, "foo", 3.14, etc.
• Constructor with parenthesis and double underscore, e.g. RELATION(__)in the example below, with

implicit opened record scope, see Section ??.
• Constructor with parenthesis and named pattern variables, CONSTRUCTOR(name1=pat1, name2=pat2,

...) e.g. the CALL(....) pattern in the example below.
• A tuple constructor (arg1, arg2, arg3, ...) using parentheses.
• A list constructor {arg1, arg2, arg3, ...} using curly braces.
• An underscore _ which matches anything.
• A single identifier, name, acts as a pattern that can be bound to anything.
• An as-expression, e.g. name as pattern-expr, Section 2.5.5?.

Example:
template zeroCrossingTpl(Integer index, Exp relation, Text &varDecls) ::=
match relation

case RELATION(__) then
 let preExp = ""
 let e1 = daeExp(exp1, contextOther, preExp, &varDecls)
 let op = zeroCrossingOpFunc(operator)
 let e2 = daeExp(exp2, contextOther, preExp, &varDecls)
 <<
 <%preExp%>
 ZEROCROSSING(<%index%>, <%op%>(<%e1%>, <%e2%>));
 >>;
case CALL(path=IDENT(name="sample"), expLst={start, interval}) then
 let preExp = ""
 let e1 = daeExp(start, contextOther, preExp, &varDecls)
 let e2 = daeExp(interval, contextOther, preExp, &varDecls)
 <<
 <%preExp%>
 ZEROCROSSING(<%index%>, Sample(*t, <%e1%>, <%e2%>));
 >>;
case _ then
 <<
 ZERO CROSSING ERROR
 >>
end zeroCrossingTpl;

2.5.4 Record Constructor Pattern Expressions

The following two forms are possible:

• Constructor with parenthesis and double underscore, e.g. RELATION(__)in the example below, with
implicit opened record scope, see Section 2.5.6.

• Constructor with parenthesis and named pattern variables, CONSTRUCTOR(name1=pat1, name2=pat2,
...). (??Question: does implicit scope opening also apply for this kind of pattern?)

Some forms of patterns:
REC(field = ASUB()) // constructor with no fields
REC(field = ASUB(field1=_)) // constructor with one field named field1
REC(field = ASUB(__)) // constructor with any number of fields
REC(field = ASUBB) (mis-spelling of ASUB, then becomes a pattern variable ASUBB

2.5.5 Pattern Expression Variable Binding Using as

The following pattern matches pattern-expression and binds the variable var to the matched value if the
match is successful
var as pattern-expression

This construct is the same in MetaModelica and Susan, and essentially the same as what is found in several
functional language.:

2.5.6 Implicit Opening of Record Constructor Scopes in Patterns

A record constructor pattern in a match-expression case-rule opens the scope of the record and make all the record
fields available (read-only). (This is similar to instanceof in Java)

For example in the ASSIGN(__) pattern below, the record fields lhs and rhs becomes available. In the
WHILE(__) pattern below, the condition and statements fields become available.

Only the scope of the outermost constructor in a nested constructor pattern is opened

Example:
template statement(Statement stmt) ::=
 match stmt

 case ASSIGN(__) then <<
<%exp(lhs)%> = <%exp(rhs)%>;
 >>
 case WHILE(__) then <<

while(<%exp(condition)%>) { // call to template function exp
 <%statements |> st => statement(st) ;separator="\n"%>
}
 >>;
end statement;

for
uniontype Statement
 record ASSIGN
 Exp lhs; Exp rhs;
 end ASSIGN;
 record WHILE
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

Only the scope for the outermost constructor REC1, is opened in a nested pattern expression. Ese as-notation for
the nested ones.

Example, with both REC1 and REC2 containing field1:
REC1(... x as REC2(...) ...)

Use of field1 will denote field1 within REC1, and x.field1 will denote field1 within REC2.

2.6 Iterator Expressions
Iterator expressions behave similarly to array or list comprehensions in functional languages, but has the
arguments in a different order. The following simple variant is a trinary operator that iterates elem over the
elements in the element-list and constructs a new list from the template-expressions.
element-list |> elem => template-expression

This is equivalent to a Modelica iterator expression (also called array- or list-comprehension):
{template-expression for elem in element-list}

For example, the following iterator expression:
{"a", "b", "c"} |> x => 'U<%x%>!')

would produce the following list of items:
{"Ua!", "Ub!", "Uc!"}

that is eventually reduced and concatenated to a single text string:
"Ua!Ub!Uc!"

The general form of the operator allows a general pattern to iterate over and match the elements in element-
list. Only the elements that match elem-pattrn will be forwarded and used to construct instances of
template-expression. This is typically used for filtering applications.
element-list |> elem-pattrn => template-expression

The operator has the following properties:

• It is a trinary operator with three operands. It also has an optional form as a quad operator with four
operands when the indexby keyword is present, see Section 2.6.1.

• It has an expression as its third argument, not a function as with the related map function.

• Being a non-associative operator forces the sues parentheses for more clear readability since the evaluation
order is always visible from the syntax.

• The left-most argument elements must be a list or an array.
• The left-to-right property of the operator can be used to write a series of such operations in a left-to-right

fashion – the results of an iterator expression to the left can immediately be fed into an iterator expression to
the right – sometimes known as piping.

The iterator expression is often used together with a separator and other options applicable for multi-result values
like lists.

Example 1.
template gentlemen(list<String> names) ::= <<
Hello <%(names |> name => 'Mr. <%name%>') ;separator=", "%>!
>>
end gentlemen;

The output of the template function call gentlemen({Adam, Eric, Carl}) will be:
Hello Mr Adam, Mr Eric, Mr Carl!

template pairList(list<tuple<String,Integer>> pairs) ::=
<<
Pairs: <%pairs |> (s,i) => '(<%i%>,<%s%>)' \n ;anchor%>.
>>
end pairList;

This filters out only values of the record type ICONST, see also the match expression Section 2.5.
template intConstantsList(list<Exp> expLst) ::=
 (expLst |> ICONST(__) => value ;separator=", ")
end intConstantsList;

An example where a list of variable declarations is generated:
<%variables |> var as VARIABLE(__) => '<%varType(var)%> <%cref(var.name)%>;'
 ;separator="\n"%>

Example:
let removedPart = (removedEquations |> eq =>
 '<%equation_(eq, contextSimulationNonDiscrete, varDecls)%>' ;separator="\n")

Example:
(list1 |> x
 => 'I love <%x%> do') |> y => 'Dumb <%y%>;'

More examples:

Ex 1:
<%zeroCrossingsNeedSave |> vars => (
 <<
 case <%vars.index0%>:
 <%vars |> SIMVAR(__)=>'save(<%cref(name)%>);' ;separator="\n"%>
 break;
 >>)
;separator ="\n"%>

Ex 2: The includes binding is from opening the EXTERNAL_FUNCTION constructor scope.

 <%functions |> EXTERNAL_FUNCTION(__)=>
 (includes ;separator= "\n") ;separator="\n"%>

2.6.1 Iterator Expressions with Iteration Index Values

There is a quad operand version of the iterator expression operator with the optional indexby keyword followed
by an identifier, i.e., a total of four operands:
elements [indexby myindex0] |> elem-pattrn => template-expression

The following examples use the indexby keyword. One example is using the option indexOffset=...
to specify non-zero start indexes such as having 1 as the lowest index (as in Modelica):
<multi-val-expr indexby myindex0 |> el => templ(el, myindex0) ;options>
<multi-val-expr indexby myindex1 |> el => templ(el, myindex1) ;indexOffset = 1>

2.7 Let Expressions with Name Bindings and Text Buffers

2.7.1 let Binding of Local Named Text Values

The language allows local definitions that can be referred to in the template body. A local definition name is
bound to a text value expr and accessible within the scope of bodyexpr:
let name = expr bodyexpr

Several let binding can be nested:
let name1 = expr1
let name2 = expr2
let name3 = expr3
bodyexpr

This is equivalent to:
let name1 = expr1
(let name2 = expr2
(let name3 = expr3
bodyexpr))

since the let-operator is left associative.

Example with several uses of let:
template functionDaeOutput2(list<SimEqSystem> nonStateDiscEquations,
 list<SimEqSystem> removedEquations) ::=
 let &varDecls = buffer ""
 let nonSateDiscPart = (nonStateDiscEquations |> eq =>
 '<%equation_(eq, contextSimulationDescrete, varDecls)%>' ;separator="\n")
 let removedPart = (removedEquations |> eq =>
 '<%equation_(eq, contextSimulationDescrete, varDecls)%>' ;separator="\n")
<<
/* for discrete time variables */
int functionDAE_output2()
{
 state mem_state;
 <%varDecls%>

 mem_state = get_memory_state();
 <%nonSateDiscPart%>
 <%removedPart%>
 restore_memory_state(mem_state);

 return 0;
}
>>
end functionDaeOutput2;

2.7.2 let Binding of Buffer Variables and their Use

A buffer variable can be introduced in the following way through a let-binding:
let &name = buffer text-expression body-expression

The reference, name, is immutable, but the contents is mutable since it is a buffer. The value of the buffer is
initialized to the text-expression. As usual, the let-binding of name can be accessed within the scope of the
body-expression.

The following language rules apply regarding text buffers

• A text buffer can only be appended to by the += operator in a let expression (Section 2.7.3).
• A text buffer can be passed as an argument to a template function by marking it with & at the call. This is a

reference parameter that can be modified by the called function, i.e., an in-out parameter (Section 2.4.6)
• A text buffer can only be referenced inside text template expressions in the template function it is declared

in. (text buffers can only be appended to in template functions they are passed to)

2.7.3 Appending a String to a buffer Variable

It is possible to perform a side effect of appending a string expr at the end of a buffer variable var1:
let &var1 =+ expr

This is equivalent to the following Modelica code:
var1 := var1 + expr;

Example 1:
let &preExp += 'create_index_spec(&<%tmp%>, <%nridx_str%>, <%idx_str%>);<%\n%>'

Example 2:
template tempDecl(String ty, Text &varDecls) ::=
 let newVar = 'tmp<%System.tmpTick()%>'
 let &varDecls += '<%ty%> <%newVar%>; <%\n%>' // varDecls is updated, appended
 newVar // return newVar
end tempDecl;

2.7.4 Reference (buffer) Formal Parameters in Template Functions

In a template function header, & is used before the reference parameter name, and the type in such cases is always
Text.

Example:
template funcname(Argtype1 arg1, Text &arg2Reference) ::= ...

2.8 Formatting, Separator, and Indentation Options
A number of options can be specified with the option operator to control formatting and indentation of a template
expression templ-exp.
templ-exp ;opt1=val1 ;opt2 ;opt3=val3 ... ;optn=valn

It is usually used inside a hole, and can optionally be enclosed in parentheses as any other expression, e.g.:.
(templ-exp ;opt1=val1 ;opt2; ... ;optn=valn)

This is a semi-colon 2n+1-ary left associative operator. All options and option-values are collected, and
simultaneously applied to the leftmost operand, the templ-exp.

2.8.1 Indentation controlling options

• anchor – relative to start of the expression
• absIndent – absolutely from the line beginning
• relIndent – relative to the actual indent
• indent – immediate indent and then relative to the actual indent

2.8.2 Multi-Value Formatting Options

It is important to note that these options are only valid for values that contain multiple values, e.g. lists/arrays.

• separator – separator text inserted between the results in the multiple-value list/array.
• align – the number of results to be aligned by alignSeparator – separator for aligning alignOffset

– start align counting offset
• wrap – number of characters to be wraped by wrapSeparator – separator for wrapping
• empty – value substituted for empty results
• skipEmpty – skip empty results when set (??not yet implemented?)
• indexOffset – starting index for indexby bound index variable in interator expressions, default value is

0.

2.8.3 Options

Expression options can be specified only in the direct lexical context of < … > or (…).

Indentation controlling options control indentation that occurs before outputting the first non-space character
after a new line inside of the option affected output text.

All indentation options are of type integer where usage without ‘=’ defaults to 0.

The indent option outputs the specified number of spaces immediately and then behaves like relIndent.

Multi-values formatting options can be applied for all expressions that (possibly) results in concatenation of
multiple results, i.e., list or array values, map expressions and (pseudo)list construction expressions.

The separator option is used for inserting a separator string between elements of multiple-value expressions t.
Default separator value is empty string.

The align and wrap options are of type integer where a positive value means a number of results or characters,
respectively, after which a value of the alignSeparator or wrapSeparator will be output. Default values of
alignSeparator and wrapSeparator is new-line character. Default value of align option is 10 and the
default of wrap option is 100 (these values are used when the option is specified without a value – i.e., not using
‘=’).

The alignOffset option can be used to set the start counting offset from whichthe align option counts its
effect. Default is 0.

The empty option is of string type, and when specified, its value is used whenever the concatenated result is an
empty string.

The skipEmpty option is of Boolean type, and when set to true, it means that i0 and i1 variables are not
advanced for empty results (also considering application of the empty option, so when the empty option is non-
empty text, this option has no effect).

The indexOffset option can specify the starting index for an indexby bound variable in an iterator expression.

 See also indexby indexvalue variables below for more about skipEmpty and indexOffset options.

Examples:
//note the automatic indentation by 2 spaces
template lines2(list<String> lines) ::= <<
 <%lines ;separator=\n%>
>>
end lines2;

//align by 15 values and anchor the output 1 space after {
template intArr(list<Integer> values) ::= <<
int[] myArr = { <%values ;separator=", " ;align=8 ;anchor%> };
>>
end intArr;

/* example output:
int[] myArr = { 1, 2, 3, 4, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 15, 16,
 17, 18, 19, 20 };
*/

2.9 Interface Packages
Template functions in the Susan language are grouped in packages, currently with file extension .tpl. Each
template package can import one or more interface packages, i.e., that defines sets of AST type definitions and/or
function signatrues. Each interface packages uses MetaModelica syntax and resides in a separate .mo file.

An interface packages has the same properties as an ordinary package, but with the following differences:

• Imported items are re-exported the naming they are given depending on the import.
• Imported packages are re-exported with a restricted view – only the items explicitly declared are re-expred.
• Functions in the interface package can only be function headers for giving the function signatures.
• Union types which are re-exported only make the explicitly declared constructors and fields visible in the

exported view, i.e., a so-called type view for that union type.
• How should an interface package be referred to in other packages (and in the .tpl file?) Answer: with an

import statement, e.g. import SimCodeInterface. Multiple interfaces packages can be imported.

Here we will show an example interface package that models the while loop example from the Modelica'2009 text
template paper, and defines type views for the Statement, Exp, and Operator union types.
interface package InterfacePackageName
...

package OriginalPackageName

uniontype Statement "Algorithmic stmts"
 record ASSIGN "An assignment stmt"
 Exp lhs; Exp rhs;
 end ASSIGN;

 record WHILE "A while statement"
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

uniontype Exp "Expression nodes"
 record ICONST "Integer constant value"
 Integer value;
 end ICONST;

 record VARIABLE "Variable reference"
 String name;

 end VARIABLE;

 record BINARY "Binary ops"
 Exp lhs; Operator op; Exp rhs;
 end BINARY;
end Exp;

uniontype Operator
 record PLUS end PLUS;
 record TIMES end TIMES;
 record LESS end LESS;

 end Operator;

end OriginalPackageName;

...
end InterfacePackageName;

The OriginalPackageName is the name of the original MetaModelica package where types corresponding to
the type views in the interface package are fully defined. An interface package can use types from several
packages. It usually specifies a subset of the original types defined in several packages and from these types
suitable parts can be selected. For example, there can be additional union tags in the Statement type, but only
those specified in the type view in the interface package can be used by templates that use this view. Similarly,
more record fields can be originally defined in the ASSIGN record but only lhs and rhs can be read inside the
template package with the view imported.

Interface package files with AST type views can be shared across different target languages as a kind of type
interface to the compiler generated output ASTs (e.g., simulation code ASTs). It is also an essential feature to
support scenarios where users are not allowed to see all original types (e.g., a commercial Modelica compiler) but
still can see and use the intended subset to extend the code generator.

In addition to type views in interface packages, templates automatically understand all MetaModelica built-in
types: String, Boolean, Integer, Real, list, Option, tuple, and Array types.

You can import multiple interface packages.

Example:
interface package SimCodeInterface

...

package builtin

 function listLength "Return the length of the list"
 replaceable type TypeVar subtypeof Any;
 input list<TypeVar> lst;
 output Integer result;
 end listLength;

end builtin;

package SimCode

 function crefSubIsScalar
 input DAE.ComponentRef cref;
 output Boolean isScalar;
 end crefSubIsScalar;

 ...

 uniontype Context
 record SIMULATION
 Boolean genDiscrete;
 end SIMULATION;

 record OTHER
 end OTHER;
 end Context;

 constant Context contextSimulationNonDescrete;

 ...
 type Variables = list<Variable>;
 type Statements = list<Statement>;
 type VariableDeclarations = Variables;

 uniontype Variable
 record VARIABLE
 DAE.ComponentRef name;
 Type ty;
 Option<DAE.Exp> value;
 list<DAE.Exp> instDims;
 end VARIABLE;
 end Variable;

 uniontype Statement
 record ALGORITHM
 list<DAE.Statement> statementLst;
 end ALGORITHM;
 end Statement;
...

end SimCode;

package DAELow

 uniontype ZeroCrossing
 record ZERO_CROSSING
 DAE.Exp relation_;
 end ZERO_CROSSING;
 end ZeroCrossing;

...

end DAELow;

...

end SimCodeInterface;

Chapter 3

References

[1] ANTLR. http://www.antlr.org. Access Nov 2007.

[2] Apache Software Foundation. Velocity Users Guide, 2008.: http://velocity.apache.org/engine/
releases/velocity-1.6.1/user-guide.html. Jan 2009.

[3] Uwe Assmann. Invasive Software Composition. ISBN 3540443851, 9783540443858, 334 pages. Springer
Verlag, 2003.

[4] Martin Fowler: Domain Specific Language http://www.martinfowler.com/bliki/DomainSpecificLanguage.html.

[5] Martin Fowler. Domain Specific Languages http://martinfowler.com/dslwip/

[6] Peter Fritzson. Towards a Distributed Programming Environment based on Incremental Compilation. PhD
thesis no 109, Linköping University, April 13, 1984.

[7] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation, and Software Development Environment. Simulation News
Europe, 44/45, Dec 2005. http://www.openmodelica.org

[8] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pages, Wiley-
IEEE Press, 2004.

[9] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehensive Meta-Modeling and Meta-
Programming Capabilities in Modelica. In Proc. of the 4th International Modelica Conference, Hamburg,
Germany, March 7-8, 2005.

[10] Peter Fritzson, Adrian Pop, Kristoffer Norling, and Mikael Blom. Comment- and Indentation Preserving
Refactoring and Unparsing for Modelica. In Proc. 6th Int. Modelica Conf. (Modelica'2008), Bielefeld,
Germany, March.3-4, 2008.

[11] Peter Fritzson, Pavol Privitzer, Martin Sjölund, and Adrian Pop. Towards a Text Generation Template
Language for Modelica. In Proceedings of the 7th International Modelica Conference (Modelica'2009), Como,
Italy, September.20-22, 2009.

[12] Google. ctemplate, 2008. http://code.google.com /p/google-ctemplate/. Accessed 2009.

[13] Kenneth C. Louden. Programming Languages, Principles and Practice. ISBN 0-534-95341-7, Thomson
Brooks/Cole, 2003.

[14] Modelica Association. The Modelica Language Specification Version 3.0, September 2007.
http://www.modelica.org.

[15] Martin Mikelsons. Prettyprinting in an interactive programming environment. In Proc. of ACM SIGPLAN
SIGOA symposium on Text manipulation. Portland, Oregon, 1981.

[16] Eclipse website. http://www.eclipse.org. Referenced Nov 2007.

[17] Terence Parr. Enforcing Strict Model-View Separation in Template Engines. http://www. stringtemplate .org,.
May 2004. Accessed May 2009.

[18] Terence Parr. [DRAFT] A Functional Language For Generating Structured Text.
http://www.stringtemplate.org. May 2006. Accessed May 2009.

[19] Terence Parr. StringTemplate documentation. http://www.stringtemplate.org. Access May 2009.

[20] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehensive Meta-Modeling and Meta-
Programming Capabilities in Modelica. In Proceedings of the 4th International Modelica Conference,
Hamburg, , March 7-8, 2005.

[21] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin, and David Akhvlediani. OpenModelica
Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging. In Proc 5th
International Modelica Conf. (Modelica'2006), Vienna, Austria, Sept. 4-5, 2006.

[22] Adrian Pop. Integrated Model-Driven Development Environments for Equation-Based Object-Oriented
Languages. www.ep.liu.se. PhD Thesis No. 1183, June 5, 2008.

[23] Martin Sjölund. Bidirectional External Function Interface Between Modelica/MetaModelica and Java. Master
Thesis. Linköping Univ, Aug. 2009.

