
 - 1 - 

MathModelica 
 An Extensible Modeling and Simulation Environment 
with Integrated Graphics and Literate Programming 

 
A short version of this paper in Proceedings of the 2:nd International Modelica Conference,  

Munich, March 18-19, 2002, available at www.Modelica.org; This version at www.ida.liu.se/~pelab/modelica 
 
 

Peter Fritzson1, Johan Gunnarsson2, Mats Jirstrand2 
1) PELAB, Programming Environment Laboratory, Department of Computer and Information 

Science, Linköping University, SE-581 83, Linköping, Sweden 
petfr@ida.liu.se 

2) MathCore AB, Wallenbergs gata 4, SE-583 35 Linköping, Sweden 
{johan,mats}@mathcore.se 

 

Abstract 
MathModelica is an integrated interactive development 
environment for advanced system modeling and 
simulation. The environment integrates Modelica-based 
modeling and simulation with graphic design, advanced 
scripting facilities, integration of program code, test 
cases, graphics, documentation, mathematical type 
setting, and symbolic formula manipulation provided 
via Mathematica. The user interface consists of a 
graphical Model Editor and Notebooks. The Model 
Editor is a graphical user interface in which models can 
be assembled using components from a number of 
standard libraries representing different physical 
domains or disciplines, such as electrical, mechanics, 
block-diagram and multi-body systems. Notebooks are 
interactive documents that combine technical 
computations with text, graphics, tables, code, and 
other elements. The accessible MathModelica internal 
form allows the user to extend the system with new 
functionality, as well as performing queries on the 
model representation and write scripts for automatic 
model generation. Furthermore, extensibility of syntax 
and semantics provides additional flexibility in adapting 
to unforeseen user needs. 
 

1 Background 
 

Traditionally, simulation and accompanying activities 
[Fritzson-92a] have been expressed using heterogeneous 
media and tools, with a mixture of manual and 
computer-supported activities: 
• A simulation model is traditionally designed on 

paper using traditional mathematical notation. 
• Simulation programs are written in a low-level 

programming language and stored on text files. 
• Input and output data, if stored at all, are saved in 

proprietary formats needed for particular 
applications and numerical libraries. 

• Documentation is written on paper or in separate 
files that are not integrated with the program files. 

• The graphical results are printed on paper or saved 
using proprietary formats.  

When the result of the research and experiments, such 
as a scientific paper, is written, the user normally 
gathers together input data, algorithms, output data and 
its visualizations as well as notes and descriptions. One 
of the major problems in simulation development 
environments is that gathering and maintaining correct 
versions of all these components from various files and 
formats is difficult and error-prone.  

Our vision of a solution to this set of problems is to 
provide integrated computer-supported modeling and 
simulation environments that enable the user to work 
effectively and flexibly with simulations. Users would 
then be able to prepare and run simulations as well as 
investigate simulation results. Several auxiliary 
activities accompany simulation experiments: 
requirements are specified, models are designed, 
documentation is associated with appropriate places in 
the models, input and output data as well as possible 
constraints on such data are documented and stored 
together with the simulation model. The user should be 
able to reproduce experimental results. Therefore input 
data and parts of output data as well as the 
experimenter's notes should be stored for future 
analysis. 

1.1 Integrated Interactive 
Programming Environments 

An integrated interactive modeling and simulation 
environment is a special case of programming 
environments with applications in modeling and 
simulation. Thus, it should fulfill the requirements both 
from general integrated environments and from the 
application area of modeling and simulation mentioned 
in the previous section. 

The main idea of an integrated programming 
environment in general is that a number of 



 - 2 - 

programming support functions should be available 
within the same tool in a well-integrated way. This 
means that the functions should operate on the same 
data and program representations, exchange information 
when necessary, resulting in an environment that is both 
powerful and easy to use. An environment is interactive 
and incremental if it gives quick feedback, e.g. without 
recomputing everything from scratch, and maintains a 
dialogue with the user, including preserving the state of 
previous interactions with the user. Interactive 
environments are typically both more productive and 
more fun to use.  

There are many things that one wants a 
programming environment to do for the programmer, 
particularly if it is interactive. What functionality should 
be included? Comprehensive software development 
environments are expected to provide support for the 
major development phases, such as: 
• requirements analysis, 
• design, 
• implementation, 
• maintenance. 

A programming environment can be somewhat more 
restrictive and need not necessarily support early phases 
such as requirements analysis, but it is an advantage if 
such facilities are also included. The main point is to 
provide as much computer support as possible for 
different aspects of software development, to free the 
developer from mundane tasks so that more time and 
effort can be spent on the essential issues. The following 
is a partial list of integrated programming environment 
facilities, some of which are already mentioned in 
[Sandewall-78], that should be provided for the 
programmer: 
• Administration and configuration management of 

program modules and classes, and different 
versions of these. 

• Administration and maintenance of test examples 
and their correct results. 

• Administration and maintenance of formal or 
informal documentation of program parts, and 
automatic generation of documentation from 
programs. 

• Support for a given programming methodology, 
e.g. top-down or bottom-up. For example, if a top-
down approach should be encouraged, it is natural 
for the interactive environment to maintain 
successive composition steps and mutual references 
between those. 

• Support for the interactive session. For example, 
previous interactions should be saved in an 
appropriate way so that the user can refer to 
previous commands or results, go back and edit 
those, and possibly re-execute. 

• Enhanced editing support, performed by an editor 
that knows about the syntactic structure of the 
language. It is an advantage if the system allows 

editing of the program in different views. For 
example, editing of the overall system structure can 
be done in the graphical view, whereas editing of 
detailed properties can be done in the textual view. 

• Cross-referencing and query facilities, to help the 
user understand interdependences between parts of 
large systems. 

• Flexibility and extensibility, e.g. mechanisms to 
extend the syntax and semantics of the 
programming language representation and the 
functionality built into the environment.  

• Accessible internal representation of programs. 
This is often a prerequisite to the extensibility 
requirement. An accessible internal representation 
means that there is a well-defined representation of 
programs that are represented in data structures of 
the programming language itself, so that user-
written programs may inspect the structure and 
generate new programs. This property is also 
known as the principle of program-data 
equivalence. 

1.2 Vision of Integrated Interactive 
Environment for Modeling and 
Simulation. 

Our vision for the MathModelica integrated interactive 
environment is to fulfill essentially all the requirements 
for general integrated interactive environments 
combined with the specific needs for modeling and 
simulation environments, e.g.: 
• Specification of requirements, expressed as 

documentation and/or mathematics; 
• Design of the mathematical model; 
• symbolic transformations of the mathematical 

model; 
• A uniform general language for model design, 

mathematics, and transformations; 
• Automatic generation of efficient simulation code; 
• Execution of simulations; 
• Evaluation and documentation of numerical 

experiments; 
• Graphical presentation. 

The design and vision of MathModelica is to a large 
extent based on our earlier experience in research and 
development of integrated incremental programming 
environments, e.g. the DICE system [Fritzson-83] and 
the ObjectMath environment [Fritzson-92b,Fritzson-
95], and many years of intensive use of advanced 
integrated interactive environments such as the 
InterLisp system [Sandewall-78], [Teitelman-
69,Teitelman-74], and Mathematica [Wolfram-
88,Wolfram-97]. The InterLisp system was actually one 
of the first really powerful integrated environments, and 
still beats most current programming environments in 
terms of powerful facilities available to the programmer. 



 - 3 - 

It was also the first environment that used graphical 
window systems in an effective way [Teitelman77], e.g. 
before the Smalltalk environment [Goldberg 89] and the 
Macintosh window system appeared.  

Mathematica is a more recently developed 
integrated interactive programming environment with 
many similarities to InterLisp, containing 
comprehensive programming and documentation 
facilities, accessible intermediate representation with 
program-data equivalence, graphics, and support for 
mathematics and computer algebra. Mathematica is 
more developed than InterLisp in several areas, e.g. 
syntax, documentation, and pattern-matching, but less 
developed in programming support facilities. 

1.3 Mathematica and Modelica 
It turns out that the Mathematica is an integrated 
programming environment that fulfils many of our 
requirements. However, it lacks object-oriented 
modeling and structuring facilities as well as generation 
of efficient simulation code needed for effective 
modeling and simulation of large systems. These 
modeling and simulation facilities are provided by the 
object-oriented modeling language Modelica [MA-97a, 
MA-97b, MA-02a, MA-02b], [Tiller-01], [Elmqvist-
99], [Fritzson-98]. 

Our solution to the problem of a comprehensive 
modeling and simulation environment is to combine 
Mathematica and Modelica into an integrated interactive 
environment called MathModelica. This environment 
provides an internal representation of Modelica that 
builds on and extends the standard Mathematica 
representation, which makes it well integrated with the 
rest of the Mathematica system. 

The realization of the general goal of a uniform 
general language for model design, mathematics, and 
symbolic transformations is based on an integration of 
the two languages Mathematica and Modelica into an 
even more powerful language called the MathModelica 
language. This language is Modelica in Mathematica 
syntax, extended with a subset of Mathematica. Only 
the Modelica subset of MathModelica can be used for 
object-oriented modeling and simulation, whereas the 
Mathematica part of the language can be used for 
interactive scripting. 

Mathematica provides representation of 
mathematics and facilities for programming symbolic 
transformations, whereas Modelica provides language 
elements and structuring facilities for object-oriented 
component based modeling, including a strong type 
system for efficient code and engineering safety. 
However, this language integration is not yet realized to 
its full potential in the current release of MathModelica, 
even though the current level of integration provides 
many impressive capabilities. Future improvements of 
the MathModelica language integration might include 
making the object-oriented facilities of Modelica 
available also for ordinary Mathematica programming, 
as well as making some of the Mathematica language 

constructs available also within code for simulation 
models. 

The current MathModelica system builds on 
experience from the design of the ObjectMath [Fritzson-
92b,Fritzson-95] modeling language and environment, 
early prototypes [Fritzson-98b], [Jirstrand-99], as well 
as on results from object-oriented modeling languages 
and systems such as Dymola [Elmqvist-78,Elmqvist-96] 
and Omola [Mattsson-93], [Andersson-94], which 
together with ObjectMath and a few other object-
oriented modeling languages, e.g. [Sahlin-96], 
[Breunese-97], [Ernst-97], [Piela-91], [Oh-96], have 
provided the basis for  the design of Modelica. 

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with 
efficient code generation and a graphic class browser. 
The ObjectMath effort was initiated 1989 and 
concluded in the fall of 1996 when the Modelica Design 
Group was started, later renamed to Modelica 
Association. At that time, instead of developing a fifth 
version of ObjectMath, we decided to join forces with 
the originators of a number of other object-oriented 
mathematical modeling languages in creating the 
Modelica language, with the ambition of eventually 
making it an international standard. In many ways the 
MathModelica product can be seen as a logical 
successor to the ObjectMath research prototype. 

2 The Modelica Language 
The details of the MathModelica language as tentatively 
defined in the previous section will be described using 
an example of an electric circuit model that is given in 
the form of MathModelica expressions in this section. 
The subset of the MathModelica language described in 
this section is the part that corresponds to Modelica and 
can be used in the simulation models, not in general 
Mathematica programming. Note that here we only 
describe modeling in terms of textually programming 
MathModelica. The MathModelica environment also 
includes a graphical modeling tool and language based 
on MathModelica language, which is briefly described 
in Section 3 in this article. Visual constructs in the 
graphical environment have a one-to-one 
correspondence with constructs in the textual 
MathModelica language, or classes defined in 
MathModelica. 

Modelica models are built from classes. Like in 
other object-oriented languages, a class contains 
variables, i.e. class attributes representing data. The 
main difference compared with traditional object-
oriented languages is that instead of functions (methods) 
we use equations to specify behavior. Equations can be 
written explicitly, like a=b, or can be inherited from 
other classes. Equations can also be specified by the 
connect statement. The statement 
connect(v1,v2); expresses coupling between the 
variables v1 and v2. These variables are instances of 
connector classes and are attributes of the connected 
object. This gives a flexible way of specifying topology 



 - 4 - 

of physical systems described in an object-oriented way 
using Modelica. 

In the following sections we introduce some basic 
and distinctive syntactical and semantic features of 
Modelica, such as connectors, encapsulation of 
equations, inheritance, declaration of parameters and 
constants. Powerful parametrization capabilities (which 
are advanced features of Modelica) are discussed in 
Section 2.10. 

2.1 Connection Diagrams 
As an introduction to Modelica we will present a model 
of a simple electrical circuit shown in Figure 1. 

The circuit can be broken down into a set of 
standard connected electrical components. We have a 
voltage source, two resistors, an inductor, a capacitor 
and a ground point. Models of such standard 
components are available in Modelica class libraries. 

 

AC 

R1 (10 ohm) 

C (10 mF) 

R2 (100 ohm) 

L (0.1 H) 

G  
Figure 1. Connection diagram of the electric circuit. 

A declaration like the one below specifies R1 to be an 
object or instance of the class Resistor and sets the 
default value of the resistance, R, to 10. 

Resistor R1(R = 10);

A Modelica description of the complete circuit appears 
as follows: 
model Circuit

Resistor R1(R = 10);
Capacitor C(C = 0.01);
Resistor R2(R = 100);
Inductor L(L = 0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end Circuit;

A composite model like the circuit model described 
above specifies the system topology, i.e. the 
components and the connections between the 
components. The connections specify interactions 

between the components. In some previous object-
oriented modeling languages connectors are referred to 
as cuts, ports or terminals. The keyword connect is a 
special operator that generates equations taking into 
account what kind of interaction is involved as 
explained in Section 2.3. 

Variables declared within classes are public by 
default, if they are not preceded by the keyword 
protected which has the same semantics as in Java. 
Additional public or protected sections can appear 
within a class, preceded by the corresponding keyword. 

2.2 Type Definitions 
The Modelica language is a strongly typed language 
with both predefined and user-defined types. The built-
in "primitive" data types support floating-point, integer, 
boolean, and string values. These primitive types 
contain data that Modelica understands directly. The 
type of every variable must be stated explicitly. The 
primitive data types of Modelica are listed in Table 1. 

 
Type Description

Boolean either true or false 
Integer corresponding to the C int data type, 

usually 32-bit two's complement 
Real corresponding to the C double data 

type, usually 64-bit floating-point 
String string of 8-bit characters 

Table 1. Predefined data types in Modelica 

It is possible to define new user-defined types: 

type name = type "optionaltextcomment";

An example is to define a temperature measured in 
Kelvin, K, which is of type Real with the minimum 
value zero; 

type Temperature =
Real(Unit="K", Min=0)

"temperature measured in Kelvin";

Below the user-defined types of Voltage and 
Current are defined. 

type Voltage=Real(unit="V");
type Current=Real(unit="A");

This defines the symbol Voltage to be a specialization 
of the type Real which is a basic predefined type. Each 
type (including the basic types) has a collection of 
default attributes such as unit of measure, initial value, 
minimum and maximum value. These default attributes 
can be changed when declaring a new type. In the case 
above the unit of measure of Voltage is changed to 
"V". A corresponding definition is made for Current 
below. 

type Current=Real(unit="A");

 



 - 5 - 

In MathModelica, the basic structuring element is a 
class. The general keyword class is used for declaring 
classes. There are also seven restricted class categories 
with specific keywords, such as type (a class that is an 
extension of built-in classes, such as Real, or of other 
defined types) and connector (a class that does not 
have equations and can be used in connections). For a 
valid model, replacing the type and connector 
keywords by the keyword class still keeps the model 
semantically equivalent to the original, because the 
restrictions imposed by such a specialized class are 
already fulfilled by a valid model. Other specific class 
categories are model, record, and block. Moreover, 
functions and packages are regarded as special kinds of 
restricted and enhanced classes, denoted by the keyword 
function for functions, and package for packages. 

The idea of restricted classes is advantageous 
because the modeler does not have to learn several 
different concepts, but just one: the class concept. All 
basic properties of a class, such as syntax and semantics 
of definition, instantiation, inheritance, generic 
properties are identical to all kinds of restricted classes. 
Furthermore, the construction of MathModelica 
translators is simplified considerably because only the 
syntax and semantic of a class have to be implemented 
along with some additional checks on restricted classes. 
The basic types, such as Real or Integer are built-in 
type classes, i.e., they have all the properties of a class. 
The previous definitions have been expressed using the 
keyword type which is equivalent to class, but limits 
the defined type to be an extension of a built-in type, a 
record type or an array type. Note however that the 
restricted classes that are packages and functions have 
some special properties that are not present in general 
classes. 

2.3 Connector Classes 
When developing models and model libraries for a new 
application domain, it is good to start by defining a set 
of connector classes which are used as templates for 
interfaces between model instances. A common set of 
connector classes used by all models in the library 
supports compatibility and connectability of the 
component models. 

2.3.1 Pin 

The following is a definition of an electrical connector 
class Pin, used as an interface class for electrical 
components. The voltage, v, is defined as an effort 
variable, and the current, i, as a flow variable. This 
implies that voltages will be set equal when two or more 
components are connected together, 
i.e. nvvv === K21 , and currents are summed to zero 
at the connection point, i.e. 021 =+++ niii K . 
Connector[Pin,

Voltage v;
Flow Current i

]

Connection statements are used to connect instances of 
connector classes. A connection statement 
connect(Pin1,Pin2); with the instances Pin1 and 
Pin2 of connector class Pin, connects the two pins so 
that they form one node (in this case one electrical 
connection). This implies two equations, namely: 

Pin1.v = Pin2.v
Pin1.i + Pin2.i = 0

The first equation says that the voltages of the 
connected wire ends are the same, i.e. 

nvvv === K21 . The second equation corresponds to 
Kirchhoff's current law saying that the currents sum to 
zero at a connection point (assuming positive value 
while flowing into the component), i.e. 

021 =+++ niii K . The sum-to-zero equations are 
generated when the prefix flow is used in the 
declaration. Similar laws apply to flow rates in a piping 
network and to forces and torques in mechanical 
systems. 

2.4 Partial (Virtual) Classes 
A useful strategy for reuse in object-oriented modeling 
is to try to capture common properties in superclasses 
which can be inherited by more specialized classes. For 
example, a common property of many electrical 
components such as resistors, capacitors, inductors, and 
voltage sources, etc., is that they have two pins. This 
means that it is useful to define a generic "template" 
class, or superclass, that captures the properties of all 
electric components with two pins. This class is partial, 
i.e. virtual in standard object-oriented terminology, 
since it does not specify all properties needed to 
instantiate the class. 
partial model TwoPin "Superclass of
elements with two electrical pins"

Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

The class (or model) TwoPin has two pins, p and n, a 
quantity, v, that defines the voltage drop across the 
component and a quantity, i, that defines the current 
into the pin p, through the component and out from the 
pin n. This can be summarized in the following points: 
• Classes that inherit TwoPin have at least two pins, 

p and n. 
• The voltage, v, is calculated as the potential at pin 

p minus the potential at pin n, i.e. v = p.v -
n.v;. 



 - 6 - 

• The current at the negative pin of a component 
equals the current at the positive pin, only with 
different sign, i.e. p.i + n.i=0; 

• The current, i, through a component is defined as 
the current at the positive pin, i.e. i = p.i;. 

 
p 

p.i 

p.v 

n.i 

n.v 
n 

i 

i i + -TwoPin  

 
Figure 2. Structure of a TwoPin class with two pins 

The equations define generic relations between 
quantities of a simple electrical component. In order to 
be useful a constitutive equation must be added. The 
keyword Partial indicates that this model class is 
incomplete. The keyword is optional. It is meant as an 
indication to a user that it is not possible to use the class 
as it is to instantiate components. 

The string after the class name is a comment that is 
a part of the language, i.e. these comments are 
associated with the definition and are normally 
displayed by dialogues and forms presenting details 
about class definitions. 

2.5 Equations and Acausal 
Modeling 

Acausal modeling means modeling based on equations 
instead of assignment statements. Equations do not 
specify which variables are inputs and which are 
outputs, whereas in assignment statements variables on 
the left-hand side are always outputs (results) and 
variables on the right-hand side are always inputs. Thus, 
the causality of equation-based models is unspecified 
and fixed only when the equation systems are solved. 
This is called acausal modeling. 

The main advantage with acausal modeling is that 
the solution direction of equations will adapt to the data 
flow context in which the solution is computed. The 
data flow context is defined by specifying which 
variables are needed as outputs and which are external 
inputs to the simulated system. 

The acausality of MathModelica (Modelica) library 
classes makes these more reusable than traditional 
classes containing assignment statements where the 
input-output causality is fixed. 

Consider for example the constitutive equation 
from the Resistor class below: 

R*i = v

This equation can be used in two ways. The variable v 
can be computed as a function of i, or the variable i 
can be computed as a function of v, as shown in the two 
assignment statements below: 

i := v/R
v := R*I

In the same way consider the following equation from 
the class TwoPin. 

v = p.v - n.v

This equation gives rise to one of the three assignment 
statements shown below,when the equation system is to 
be solved, depending on the data flow context where the 
equation appears: 

v := p.v - n.v
p.v := v + n.v
n.v := p.v – v

2.6 Inheritance, Parameters and 
Constants 

We will use the Resistor example below to explain 
inheritance, parameters and constants. 

The Resistor inherits TwoPin using the 
extends statement. A model parameter, R, is defined 
for the resistance, and is used to state the constitutive 
equation for an ideal resistor, namely Ohm's Law: 
v=R*i. We add a definition of a parameter for the 
resistance and Ohm's law to define the behavior of the 
Resistor class in addition to what is inherited from 
TwoPin: 

model Resistor
"Ideal electrical resitor"
extends TwoPin;
parameter Real R(unit = "ohm")

"Resistance";
equation

R*i = v;
end Resistor;

The keyword parameter specifies that the variable is 
constant during a simulation run, but can change values 
between runs. This means that parameter is a special 
kind of constant, which is implemented as a static 
variable that is initialized once and never changes its 
value during a specific execution. A parameter is a 
variable that makes it simple for a user to modify the 
behavior of a model. There are also Modelica constants 
that never change and can be substituted inline, which 
are specified by the keyword constant. Additional 
examples of constants and parameters, whose default 
values are defined via a so-called declaration equations 
that appear in the declarations: 

Constant Real c0 = 2.99792458E8;
Constant String redcolor = "red";
Constant Integer population = 1234;
Parameter Real speed = 25;

There are several predefined constants in the 
Modelica.Constants package, e.g. Planck, 
Boltzmann, and molar gas constants. In contrast to 
constants, parameters can be defined via input to a 
model, thus a parameter can be declared without a 
declaration equation. For example: 

parameter Real mass,velocity;



 - 7 - 

The keyword extends specifies inheritance from a 
parent class. All variables, equations and connects are 
inherited from the parent. Multiple inheritance is 
supported in Modelica. 

Just like in C++, the parent class cannot be 
replaced in a subclass. In Modelica similar restrictions 
also apply to equations and connections. 

In C++ and Java a virtual function can be 
replaced/specialized by a function with the same name 
in the child class. In Modelica 2.0 equations in 
equation section cannot be directly named (but 
indirectly using a local class for grouping a set of 
equations) and therefore we cannot directly replace 
equations. When classes are inherited, equations are 
accumulated. This makes the equation-based semantics 
of the child classes consistent with the semantics of the 
parent class. 

2.7 Time and Model Dynamics 
Models of dynamic systems are models where behavior 
evolves as a function of time. We use a predefined 
variable time, which steps forward during system 
simulation.  

The classes defined below for electric voltage 
sources, capacitors, and inductors, have all dynamic 
time dependent behavior, and can also reuse the 
TwoPin superclass. In the differential equations in the 
classes Capacitor and Inductor, v' and i' denote 
the time derivatives of v and i respectively. 

During system simulation the variables i and v 
evolve as functions of time. The differential equations 
solver will compute the values of )(ti  and )(tv  (t is 
time) so that )()( titvC =′  for all values of t. 

2.7.1 VsourceAC 

A class for the voltage source can be defined as follows. 
This VsourceAC class inherits TwoPin since it is an 
electric component with two connector attributes, n and 
p. A parameter, VA, is defined for the amplitude, and a 
parameter f for the frequency. Both are given default 
values, 220 V, and 50 Hz respectively, that however can 
easily be modified by the user when running 
simulations, e.g. through the graphical user interface. A 
constant PI is also declared using the value for p 
defined in the Modelica Standard Library, just to 
demonstrate the declaration of a constant.. The input 
voltage v is defined by )***2sin(* timefVAv π= . 
Note that time is a builtin Modelica primitive. 

model VsourceAC
"Sine-wave voltage source"
extends TwoPin;
parameter Real VA=220"Amplitude [V]";
parameter Real f=50 "Frequency [Hz]";

protected
constant Real PI = 3.141592;

equation

v = VA*sin(2*PI*f*time);
end VsourceAC;

2.7.2 Capacitor 

The Capacitor inherits TwoPin using extends. A 
parameter, C, is defined for the capacitance, and is used 
to state the constitutive equation for an ideal capacitor, 

namely, 
C
i

dt
dv =  

model Capacitor
"Ideal electrical capacitor"
extends TwoPin;
parameter Real C(unit = "F")

"Capacitance";
equation

der(v) = i/C;
end Capacitor;

2.7.3 Inductor 

The Inductor inherits TwoPin using extends. A 
parameter, L, is defined for the inductance, and is used 
to state the constitutive equation for an ideal inductor, 

namely, v
dt
diL =*  

model Inductor
"Ideal electrical inductor"
extends TwoPin;
parameter Real L(unit = "H")

"Inductance";
equation

L*der(i) = v;
end Inductor;

2.7.4 Ground 

Finally, we define a Ground class which in the circuit 
model is instantiated as a ground point that serves as a 
reference value for the voltage levels. 
model Ground "Ground"

Pin p;
equation

p.v = 0;
end Ground;

2.8 Definition and Simulation of the 
Complete Circuit Model 

After all the component classes have been defined, it is 
possible to construct a circuit. First the components are 
declared, then the parameter values are set, and finally 
the components are connected together using connect. 



 - 8 - 

 

AC 

R1 (10 ohm) 

C (10 mF) 

R2 (100 ohm) 

L (0.1 H) 

G  
Figure 3. Diagram of the electric circuit, once again. 

We show the Circuit model once more: 

model Circuit
Resistor R1(R = 10);
Capacitor C(C = 0.01);
Resistor R2(R = 100);
Inductor L(L = 0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end Circuit;

We simulate the model with the default initial values 
and parameter settings in the range 0 § t §0.1. The 
status bar in the lower left corner of the notebook shows 
the status of the simulation. Since this is the first time 
we simulate the circuit model Simulate will generate 
C-code and compile the code before the simulation. 

Simulate@Circuit, 8t, 0, 0.1<D; 
Let us plot the current in the inductor for the first 0.1 
second. 

PlotSimulation@8L.i@tD<, 8t, 0, 0.1<D; 
 

0.02 0.04 0.06 0.08 0.1
t

-2 

-1 

1 

2 

 
Note that the current starts at 0 Ampere, which is the 
default initial value. Let us change the initial values for 
the inductor current and the inductance using the 
options InitialValues and ParameterValues 
respectively. This time Simulate will use the 
compiled code from the previous simulation as we have 

only changed initial value and parameter value, and not 
the structure of the problem. 
Simulate@Circuit, 8t, 0, 0.1<,
InitialValues −> 8L.i m 1<,
ParameterValues → 8L.L m 1<D; 

A plot shows the result. Note the difference in initial 
current and also the difference in amplitude due to the 
changed inductance. 

PlotSimulation@8L.i@tD<, 8t, 0, 0.1<D; 
 

0.02 0.04 0.06 0.08 0.1 
t 

-0.5 

0.5 

1

 

2.9 The Modelica Notion of 
Subtypes 

The notion of subtyping in Modelica is influenced by a 
type theory of Abadi and Cardelli [Abadi-Cardelli-96]. 
The notion of inheritance in Modelica is independent 
from the notion of subtyping. According to the 
definition, a class A is a subtype of a class B if and only 
if the class A contains all the public variables declared 
in the class B, and the types of these variables are 
subtypes of types of corresponding variables in B. The 
main benefit of this definition is additional flexibility in 
the definition and usage of types. For instance, the class 
TempResistor is a subtype of Resistor, without 
being a subclass of Resistor. 

model TempResistor
extends TwoPin;
parameter Real R

"Resistance at reference Temp.";
parameter Real RT=0

"Temp. dependent Resistance.";
parameter Real Tref=20

"Reference temperature.";
Real Temp=20

"Actual temperature";
equation

v = i*(R + RT*(Temp-Tref));
end TempResistor;

Subtyping compatibility is checked for example in class 
instantiation, redeclarations and function calls. If a 
variable a is of type A, and A is a subtype of B, then the 
variable a can be initialized by a variable of type B. 
Redeclaration is a way of modifying inherited classes as 
discussed in the next section. 

Note that TempResistor does not inherit the 
Resistor class. There are different definition for 



 - 9 - 

evaluation of v. If equations are inherited from 
Resistor then the set of equations will become 
inconsistent in TempResistor, since there would be 
two definitions of v. For example, the specialized 
equation below from TempResistor: 

v=i*(R+RT*(Temp-Tref))

and the general equation from class Resistor: 

v=R*i

are incompatible. Modelica currently does not support 
explicitly named equations and replacement of 
equations, except for the cases when the equations are 
collected into a local class, or a declaration equation is 
present in a variable declaration. 

2.10 Class Parametrization 
A distinctive feature of object-oriented programming 
languages and environments is the ability to reuse 
classes from standard libraries for particular needs. 
Obviously, this should be done without modification of 
the library code. The two main mechanisms that serve 
for this purpose are: 
• Inheritance. This is essentially “copying” class 

definitions and adding additional elements 
(variables, equations and functions) to the 
inheriting class. 

• Class parametrization (also called generic classes 
or types). This mechanism replaces a generic type 
identifier in a whole class definition by an actual 
type. 

In Modelica we can use redeclaration to control class 
parametrization. Assume that a library class is defined 
as follows: 
model SimpleCircuit

Resistor R1(R=100), R2(R=200),
R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end SimpleCircuit;

Assume also that in our particular application we would 
like to reuse the definition of SimpleCircuit: we 
want to use the parameter values given for R1.R and 
R2.R and the circuit topology, but exchange Resistor 
for the previously mentioned temperature-dependent 
resistor model, TempResistor. 

This can be accomplished by redeclaring R1 and 
R2 as in the following type definition which defines 
RedefinedSimpleCircuit to be a special variant of 
SimpleCircuit. 

Type@RedefinedSimpleCircuit,
SimpleCircuit@8
Redeclare@TempResistor R1D,
Redeclare@TempResistor R2D
<D

D  

type RedefinedSimpleCircuit =

SimpleCircuit(

redeclare TempResistor R1,

redeclare TempResistor R2);

 

Since TempResistor is a subtype of Resistor, it is 
possible to replace the ideal resistor model by a more 
specific temperature dependent model. Values of the 
additional parameters of TempResistor can also be 
added in the redeclaration: 

redeclare TempResistor R1(RT=0.1,
Tref=20.0)

Replacing Resistor by TempResistor is a very 
strong modification. However, it should be noted that all 
equations that are defined in the previous Circuit 
example model are still valid. 

2.11 Discrete and Hybrid Modeling 
Macroscopic physical systems in general evolve 
continuously as a function of time, obeying the laws of 
physics. This includes the movements of parts in 
mechanical systems, current and voltage levels in 
electrical systems, chemical reactions, etc. Such systems 
are said to have continuous dynamics. 

On the other hand, it is sometimes beneficial to 
make the approximation that certain system components 
display discrete behavior, i.e. changes of values of 
system variables may occur instantaneously and 
discontinuously. In the real physical system the change 
can be very fast, but not instantaneous. Examples are 
collisions in mechanical systems, e.g. a bouncing ball 
that almost instantaneously changes direction, switches 
in electrical circuits with quickly changing voltage 
levels, valves and pumps in chemical plants, etc. We 
talk about system components with discrete dynamics. 
The reason for making the discrete approximation is to 
simplify the mathematical model of the system, making 
the model more tractable and usually speeding up the 
simulation of the model several orders of magnitude. 

Since the discrete approximation only can be 
applied to certain subsystems, we often arrive at system 
models consisting of interacting continuous and discrete 
components. Such a system is called a hybrid system 
and the associated modeling techniques hybrid 
modeling. The introduction of hybrid mathematical 
models creates new difficulties for their solution, but the 
disadvantages are far outweighed by the advantages. 



 - 10 - 

Modelica provides two kinds of constructs for 
expressing hybrid models: conditional expressions or 
conditional equations to describe discontinuous and 
conditional models, and when-equations to express 
equations that are only valid at discontinuities, e.g. 
when certain conditions become true. For example, if-
then-else conditional expressions allow modeling of 
phenomena with different expressions in different 
operating regions, as for the equation describing a 
limiter below. 
y = if u > limit then limit else u;

A more complete example of a conditional model is the 
model of an ideal diode. The characteristic of a real 
physical diode is depicted in Figure 4, and the ideal 
diode characteristic in parameterized form is shown in 
Figure 5. 

 
Figure 4. Real diode characteristic. 

u

s=0

s
s

i1

i1 i2

v1 v2
u

 
Figure 5.  Ideal diode characteristic. 

Since the voltage level of the ideal diode would go to 
infinity in an ordinary voltage-current diagram, a 
parameterized description is more appropriate, where 
both the voltage u and the current i, same as i1, are 
functions of the parameter s. When the diode is off no 
current flows and the voltage is negative, whereas when 
it is on there is no voltage drop over the diode and the 
current flows. 
model Diode "Ideal diode"

extends TwoPin;
Real s;
Boolean off;

equation

off = s < 0;
if off then v=s else v=0;

// conditional equations
i = if off then 0 else s;

// conditional expression
end Diode;

 
When-equations have been introduced in Modelica to 
express instantaneous equations, i.e. equations that are 
valid only at certain points, e.g. at discontinuities, when 
specific conditions become true. The syntax of when-
equations for the case of a vector of conditions is shown 
below. The equations in the when-equation are 
activated when at least one of the conditions become 
true. A single condition is also possible. 

when {condition1, condition2, …} then
<equations>...

end when;

A bouncing ball is a good example of a hybrid system 
for which the when-clause is appropriate when modeled. 
The motion of the ball is characterized by the variable 
height above the ground and the vertical velocity. 
The ball moves continuously between bounces, whereas 
discrete changes occur at bounce times, as depicted in 
Figure 6. When the ball bounces against the ground its 
velocity is reversed. An ideal ball would have an 
elasticity coefficient of 1 and would not lose any energy 
at a bounce. A more realistic ball, as the one modeled 
below, has an elasticity coefficient of 0.9, making it 
keep 90 percent of its speed after the bounce. 
model BouncingBall

"Simple model of a bouncing ball"
constant Real g = 9.81

"Gravity constant";
parameter Real c = 0.9

"Coefficient of restitution";
parameter Real radius=0.1

"Radius of the ball";
Real height(start = 1)

"Height of the ball center";
Real velocity(start = 0)

"Velocity of the ball";
equation

der(height) = velocity;
der(velocity) = -g;
when height <= radius then

reinit(velocity,-c*pre(velocity));
end when;

end BouncingBall;

The bouncing ball model contains the two basic 
equations of motion relating height and velocity as well 
as the acceleration caused by the gravitational force. At 
the bounce instant the velocity is suddenly reversed and 
slightly decreased, i.e. velocity(after bounce) = -
c*velocity(before bounce), which is accomplished 
by the special syntactic form of instantaneous equation: 
reinit(velocity,-c*pre(velocity)).



 - 11 - 

 
Figure 6. A bouncing ball. 

Example simulations of the bouncing ball model are 
available in Section 4. 

2.12 Discrete Events 
In the previous section on hybrid modeling we briefly 
mentioned the notion of discrete events. But what is an 
event? Using every day language an event is simply 
something that happens. This is also true for events in 
the abstract mathematical sense. An event in the real 
world, e.g. a music performance, is always associated 
with a point in time. However, abstract mathematical 
events are not always associated with time but they are 
usually ordered, i.e. an event ordering is defined. By 
associating an event with a point in time, e.g. as in 
Figure 7 below, we will automatically obtain an 
ordering of events to form an event history. Since this is 
also the case for events in the real world we will in the 
following always associate a point in time to each event. 
However, such an ordering is partial since several 
events can occur at the same point in time. To achieve a 
total ordering we can use causal relationships between 
events, priorities of events, or if these are not enough 
simply pick an order based on some other event 
property. 

 

   time event 1 event 2 event 3 

 
Figure 7. Events are ordered in time and form an 
event history. 

The next question is whether the notion of event is a 
useful and desirable abstraction, i.e. do events fit into 
our overall goal of providing an object-oriented 
declarative formalism for modeling the world? There is 
no question that events actually exist, e.g. a cocktail 
party event, a car collision event, or a voltage transition 
event in an electrical circuit. A set of events without 
structure can be viewed as a rather low-level abstraction 
- an unstructured mass of small low-level items that just 
happen. 

The trick to arrive at declarative models about what 
is, rather than imperative recipies of how things are 
done, is to focus on relations between events, and 
between events and other abstractions. Relations 
between events can be expressed using declarative 

formalisms such as equations. The object-oriented 
modeling machinery provided by Modelica can be used 
to bring a high-level model structure and grouping of 
state variables affected by events, relations between 
events, conditions for events, and behavior in the form 
of equations associated with events. This brings order 
into what otherwise could become a chaotic mess of 
low-level items. 

Our abstract “mathematical” notion of event is an 
approximation compared to real events. For example, 
events in Modelica take no time - this is the most 
important abstraction of the synchronous principle to be 
described later. This abstraction is not completely 
correct with respect to our cocktail party event example 
since there is no question that a cocktail party actually 
takes some time. However, experience has shown that 
abstract events that take no time are more useful as a 
modeling primitive than events that have duration. 
Instead, our cocktail party should be described as a 
model class containing state variables such as the 
number of guests that are related by equations active at 
primitive events like opening the party, the arrival of a 
guest, ending the party, serving the drinks, etc. 

To conclude, an event in Modelica is something 
that happens that has the following four properties: 
• A point in time that is instantaneous, i.e. has zero 

duration. 
• An event condition that switches from false to 

true for the event to happen. 
• A set of variables that are associated with the 

event, i.e. are referenced or explicitly changed by 
equations associated with the event. 

• Some behavior associated with the event, expressed 
as conditional equations that become active or are 
deactivated at the event. Instantaneous equations is 
a special case of conditional equations that are only 
active at events. 

 

2.12.1 Discrete-time and Continuous-time 
Variables  

The so called discrete-time variables in Modelica only 
change value at discrete points in time, i.e. at event 
instants, and keep their values constant between events. 
This is in contrast to continuous-time variables which 
may change value at any time, and usually evolve 
continuously over time. Figure 8 shows graphs of two 
variables, one continuous-time and one discrete-time. 



 - 12 - 

time event 1 event 2 event 3

y 

z

y,z 

 
Figure 8. A discrete-time variable z changes value 
only at event instants, whereas continuous-time 
variables like y and z may change value both 
between and at events. 

Note that discrete-time variables change their values at 
an event instant by solving the equations  active at the 
event. The previous value of a variable, i.e. the value 
before the event, can be obtained via the pre function. 

Variables in Modelica are discrete-time if they are 
declared using the discrete prefix, e.g. discrete 
Real y, or if they are of type Boolean, Integer, or 
String, or of types constructed from discrete types. A 
variable being on the left-hand side of an equation in a 
when-equation is also discrete-time. A Real variable 
not fulfilling the conditions for discrete-time is 
continuous-time. It is not possible to have continuous-
time Boolean, Integer, or String variables.  
 

3 The MathModelica Integrated 
Interactive Environment. 

The MathModelica system consists of three major 
subsystems that are used during different phases of the 
modeling and simulation process, as depicted in Figure 
9 below. 

 

  

MathModelica
Modeling and Simulation 

  

NotebooksSimulation  
Center 

Model  
Editor  

Environment 3D Graphics
 and CAD 

  

 
Figure 9. The MathModelica system architecture. 

These subsystems are the following: 
• The graphic Model Editor used for design of 

models from library components. 

• The interactive Notebook facility, for literate 
programming, documentation, running simulations, 
scripting, graphics, and symbolic mathematics with 
Mathematica. 

• The Simulation center, for specifying parameters, 
running simulations and plotting curves. 

A menu palette enables the user to select whether to use 
the Notebook interface for editing and simulations, or 
the Model Editor combined with the Simulation Center 
graphical user interface. 

Additionally, MathModelica is loosely coupled to 
two optional subsystems for 3D graphics visualization 
and automatic translation of CAD models to Modelica. 
In order to provide the best possible facilities available 
on the market for the user, MathModelica integrates and 
extends several professional software products that are 
included in the three subsystems. For example, the 
model editor is a customization and extension of the 
diagram and visualization tool Visio [Visio] from 
Microsoft, the simulation center includes simulation 
algorithms from Dynasim [Elmqvist-96], and the 
Notebook facility includes the technical computing 
system Mathematica [Wolfram-97] from Wolfram 
Research. Basing the Model Editor on Visio gives it 
properties such as power, flexibility, and 
customizability, but currently limits the system to 
MicroSoft Windows based platforms. However, a 
Model Editor with basic functionality for Unix 
platforms is under development. 

A key aspect of MathModelica is that the modeling 
and simulation is done within an environment that also 
provides a variety of technical computations. This can 
be utilized both in a preprocessing stage in the 
development of models for subsystems as well as for 
postprocessing of simulation results such as signal 
processing and further analysis of simulated data. 

3.1 Graphic Model Editor. 
The MathModelica Model Editor is a graphical user 
interface for model diagram construction by "drag-and-
drop" of model classes from the Modelica Standard 
Library or from user defined component libraries, 
visually represented as graphic icons in the editor. A 
screen shot of the Model Editor is shown in Figure 10. 
In the left part of the window three library packages 
have been opened, visually represented as overlapping 
windows containing graphic icons. The user can drag 
models from these windows (called stencils in Visio 
terminology) and drop them on the drawing area in the 
middle of the tool. 



 - 13 - 

 

Figure 10. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified. 

The Model Editor is an extension of the Microsoft 
Visio software for diagram design and schematics. This 
means that the user has access not only to a well 
developed and user friendly graph drawing application, 
but also to a vast array of professional design features 
to make graphical representations of developed models 
visually attractive. Since Modelica classes often 
represent physical objects it is of great value to have a 
sufficiently rich graphical description of these classes. 

The Model Editor can be viewed as a user 
interface for graphical programming in Modelica. Its 
basic functionality consists of selection of components 
from libraries, connection of components in model 
diagrams, and entering parameter values for different 
components 

For large and complex models it is important to be 
able to intuitively navigate quickly through component 
hierarchies. The Model Editor supports such navigation 
in several ways. A model diagram can be browsed and 
zoomed.  

The Model Editor is well integrated with 
Notebooks. A model diagram stored in a notebook is a 
tree-structured graphical representation of the Modelica 
code of the model, which can be converted into textual 
form by a command.  

3.2 Simulation Center. 
The simulation center is a subsystem for running 
simulations, setting initial values and model 
parameters, plot results, etc. These facilities are 
accessible via a graphic user interface accessible 
through the simulation window, e.g. see Figure 11 
below. However, remember that it is also possible to 

run simulations from the textual user interface 
available in the notebooks. The simulation window 
consists of five areas or subwindows with different 
functionality: 
• The uppermost part of the simulation window is a 

control panel for starting and running simulations. 
It contains two fields for setting start and stop time 
for simulation, followed by Build, Run
Simulation, Plot, and Stop buttons. 

• The left subwindow in the middle section shows a 
tree-structure view of the model selected and 
compiled for simulation, including all its 
submodels and variables. Here, variables can be 
selected for plotting.  

• The center subwindow is used for diagrams of 
plotted variables. 

• The right subwindow in the middle section 
contains the legend for the plotted diagram, i.e. the 
names of the plotted variables. 

• The subwindow at the bottom is divided into three 
sections: Parameters, Variables, and 
Messages, of which only one at a time is visible. 
The Parameters section, shown in Figure 11, 
allows changing parameter values, whereas the 
Variables section allows modifying intial (start) 
values, and the Message section to view possible 
messages from the simulation process. 

If a model parameter or initial value has been changed, 
it is possible to rerun the simulation without rebuilding 
the executable code if the changed parameter does not 
influence the equation structure. Structure changing 
parameters are sometimes called structural parameters. 



 - 14 - 

 

 
Figure 11. The Simulate window with plots of the signals Inertia1.flange_a.tau and Inertia1.w selected in 
the subwindow menus. 

3.3 Interactive Notebooks with 
Literate Programming. 

In addition to purely graphical programming of models 
using the Model Editor, MathModelica also provides a 
text based programming environment for building 
textual models using Modelica. This is done using 
Mathematica Notebooks, which are documents that 
may contain technical computations and text, as well as 
graphics. Hence, these documents are suitable to be 
used for simulation scripting, model documentation 
and storage, model analysis and control system design, 
etc. In fact, this article is written as such a notebook 
and in the live version the examples can be run 
interactively. A sample notebook is shown in Figure 
12. 

The MathModelica Notebook facility is actually 
an interactive WYSIWYG (What-You-See-Is-What-
You-Get) realization of Literate Programming, a form 
of programming where programs are integrated with 
documentation in the same document, originally 
proposed in [Knuth-84]. A noninteractive prototype 
implementation of Literate Programming in 
combination with the document processing system 
LaTex has been realized [Knuth-94]. However, 
MathModelica is one of very few interactive 
WYSIWYG systems so far realized for Literate 
Programming, and to our knowledge the only one yet 
for Literate Programming in Modeling, which also 
might be called Literate Modeling. 

Integrating Mathematica with MathModelica does 
not only give access to the Notebook interface but also 

to thousands of available functions and many 
application packages, as well as the ability of 
communicating with other programs and import and 
export of different data formats. These capabilities 
make MathModelica more of a complete workbench 
for the innovative engineer than just a modeling and 
simulation tool. Once a model has been developed 
there is often a need for further analysis such as 
linearization, sensitivity analysis, transfer function 
computations, control system design, parametric 
studies, Monte Carlo simulations, etc. 

In fact, the combination of the ability of making 
user defined libraries of reusable components in 
Modelica and the Notebook concept of living technical 
documents provides an integrated approach to model 
and documentation management for the evolution of 
models of large systems 



 - 15 - 

 

 
Figure 12. Example of MathModelica notebook. 

3.3.1 Tree Structured Hierarchical 
Document Representation. 

Traditional documents, e.g. books and reports, 
essentially always have a hierarchical structure. They 
are divided into sections, subsections, paragraphs, etc. 
Both the document itself and its sections usually have 
headings as labels for easier navigation. This kind of 
structure is also reflected in MathModelica notebooks. 
Every notebook corresponds to one document (one file) 
and contains a tree structure of cells. A cell can have 
different kinds of contents, and can even contain other 
cells. The notebook hierarchy of cells thus reflects the 
hierarchy of sections and subsections in a traditional 
document. 

 
Figure 13. The package Mypackage in a notebook 

In the MathModelica system, Modelica packages 
including documentation and test cases are primarily 
stored as notebooks, e.g. as in Figure 12. Those cells 
that contain Modelica model classes intended to be 
used from other models, e.g. library components or 
certain application models, should be marked as 
exports cells. This means that when the notebook is 
saved, such cells are automatically exported into a 
Modelica package file in the standard Modelica textual 
representation (.mo file) that can be processed by any 
Modelica compiler and imported into other models. For 
example, when saving the notebook MyPackage.nb 
of Figure 13, a file MyPackage.mo would be created 
with the following contents: 
package MyPackage

model class3
...
end class3;
model class2 ...
model class1 ...
package MySubPackage

model class1
...
end class1;

end MySubPackage;
end MyPackage;

3.3.2 Program Cells, Documentation 
Cells, and Graphic Cells. 

A notebook cell can include other cells and/or arbitrary 
text or graphics. In particular a cell can include a code 
fragment or a graph with computational results. 

The contents of cells can for example be one of 
the following forms: 
• Model classes and parts of models, i.e. formal 

descriptions that can be used for verification, 
compilation and execution of simulation models. 

• Mathematical formulas in the traditional 
mathematical two dimensional syntax. 

• Text/documentation, e.g. used as comments to 
executable formal model specifications. 

• Dialogue forms for specification and modification 
of input data. 

• Result tables. The results can be automatically 
represented in (live) tables, which can even be 
automatically updated after recomputation. 

• Graphical result representation, e.g. with 2D vector 
and raster graphics as well as 3D vector and 
surface graphics. 

• 2D structure graphs, that for example are used for 
various model structure visualizations such as 
connection diagrams and data structure diagrams. 

A number of examples of these different forms of cells 
are available throughout this paper.  

 



 - 16 - 

3.3.3 Mathematics with 2D-syntax, 
Greek letters, and Equations 

MathModelica uses the syntactic facilities of 
Mathematica to allow writing formulas in the standard 
mathematical notation well-known, e.g. from textbooks 
in mathematics and physics. Certain parts of the 
Mathematica language syntax are however a bit 
unusual compared to many common programming 
languages. The reason for this design choice is to make 
it possible to use traditional mathematical syntax. The 
following three syntactic features are unusual: 
• Implied multiplication is allowed, i.e. a space 

between two expressions, e.g. x and f(x), means 
multiplication just as in mathematics. A 
multiplication operator * can be used if desired, 
but is optional. 

• Square brackets are used around the arguments at 
function calls. Round parentheses are only used for 
grouping of expressions. The exception is 
TraditionalForm, see below. 

• Support for two-dimensional mathematical 
syntactic notation such as integrals, division bars, 
square roots, matrices, etc. 

The reason for the unusual choice of square brackets 
around function arguments is that the implied  
multiplication makes the interpretation of round 
parenthesis ambiguous. For example, f(x+1) can be 
interpreted either as a function call to f with the 
argument x+1, or f multiplied by (x+1). The 
integral in the cell below contains examples of both 
implied multiplication and two-dimensional integral 
syntax. The cell style is called MathModelica input 
form (called StandardForm in Mathematica) and is 
used for mathematics and Modelica code in 
Mathematica syntax: 

‡
x f@xD

1 + x2 + x3
 Åx

 
There is also a purely textual input form using a linear 
sequence of characters. This is for example used for 
entering Modelica models in the standard Modelica 
syntax, and is currently the only cell format in 
MathModelica that can interpret standard Modelica 
syntax. However, all mathematics can also be 
represented in this syntax. The above example in this 
textual format appears as follows: 
Integrate[(x*f[x])/(1 + x^2 + x^3), x]

Finally, there is also a cell format called 
TraditionalForm which is very close to traditional 
mathematical syntax, avoiding the square brackets. The 
above-mentioned syntactic ambiguities can be avoided 
if the formula is first entered using one of the above 
input forms, and then converted to 
TraditionalForm. ‡ x f HxL
x3 + x2 + 1

 ‚ x
 

The MathModelica environment allows easy 
conversion between these forms using keyboard or 
menu commands. Below we show a small example of a 
Modelica model class SimpleDAE represented in the 
Mathematica style syntax of Modelica that allows 
greek characters and two dimensional syntax. The 
apostrophe (') is used for the derivatives just as in 
traditional mathematics, corresponding to the Modelica 
der() operator. 

ModelASimpleDAE,
Real β1;

Real x2;

EquationA
β1'

1 + Hβ1'L2
+

sin@x2'D
1 + Hβ1'L2

+ β1 x2 + β1 m 1;

sin@β1'D −
x2'

1 + Hβ1'L2
− 2 β1 x2 + β1 m 0;

EE  

We simulate the model for ten seconds by giving a 
Simulate command: 

Simulate[SimpleDAE,{t,0,10}];

We use the command PlotSimulation for plotting 
the solutions for the two state variables, which of 
course both are functions of time, here denoted by t in 
Mathematica syntax: 

PlotSimulation@8β1@tD, x2@tD<, 8t, 0, 10<D;  

 

2 4 6 8 10 
t 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

x 2 t
β 1 t

 
A phase plane plot appears as follows: 

 

0.1 0.2 0.3 0.4 0.5 0.6 

0.1

0.2

0.3

0.4

0.5

0.6

 



 - 17 - 

3.4 Environment and Language 
Extensibility 

Programming environments need to be flexible to adapt 
to changing user needs. Without flexibility, a 
programming tool will become too hard to use for 
practical needs, and stopped to be used. Adaptability 
and flexibility are especially important for integrated 
environments, since they need to interact with a 
number of external tools and data formats, contain 
many different functions, and usually need to add new 
ones. 

There are two major ways to extend a 
programming environment: 
• Extension of functionality, e.g. through user-

defined commands, user-extensible menus, and a 
scripting languages for programmability. 

• Extension of language and notation, e.g. by 
facilities to add new syntactic constructs and new 
notation, or extend the meaning of existing ones. 

Mathematica has been designed from the start to be an 
inherently extensible environment, which is what is 
used in MathModelica. Almost anything can be 
redefined, extended, or added. 

3.4.1 Scripting for Extension of 
Functionality 

An interactive scripting language is a common way of 
providing extensibility and flexibility in functionality. 
The MathModelica environment primarily uses the 
Mathematica language and its interpreter as a scripting 
language, as can be seen from a number of examples in 
this paper. Another possibility would be to use the 
Modelica language itself as a scripting language, e.g. 
by providing an interpreter for the algorithmic and 
expression parts of the language. This can easily be 
realized in MathModelica since the intermediate form 
has been designed to be compatible with Mathematica, 
and we already have Modelica input cells: just use 
Modelica input cells also for commands, which are sent 
to the Mathematica interpreter instead of the simulator. 

3.4.2 Extensible Syntax and Semantics 

As was already apparent in the section on mathematical 
syntax, MathModelica provides a Mathematica-like 
input syntax for Modelica in addition to the usual 
Modelica syntax. One reason is to give support for 
mathematical notation, as explained previously. 
Another reason is to provide user extensible syntax.  

This is easy since syntactic constructs in 
Mathematica apart from the operators use a simple 
prefix syntax: a keyword followed by square brackets 
surrounding the contents of the construct, i.e. the same 
syntax as for function calls. If there is a need to add a 
new construct no changes are needed in the parser, and 
no reserved words need to be added. Just define a 
Mathematica function to do the desired symbolic or 
numeric processing. 

The other major class of syntactic constructs are 
operators. There are special facilities in Mathematica to 
add new operators by defining their priority, operator 
syntax, and internal representation. It is also possible to 
extend the meaning of existing operators like +, *, -, 
etc. However, it is not possible to just use any 
Mathematica function or operator without a Modelica 
definition within a Modelica class. For this to work, a 
MathModelica/Modelica definition of the function or 
operator must be provided. 

3.4.3 Mathematica vs Modelica syntax. 

In order to to show the difference between the standard 
Modelica textual syntax and the extensible 
Mathematica-like syntax, we first show a simple model 
in a Modelica-style input cell: 
model secondordersystem

Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
xdot=der(x);
der(xdot)+a*der(x)+x=1;

end secondordersystem;

The same model in the Mathematica-like 
Modelica syntax appears below. Note the use of the 
simple prefix syntax: a keyword followed by square 
brackets surrounding the contents of the construct. All 
reserved words, predefined functions, and types in 
MathModelica start with an upper-case letter just as in 
Mathematica. Equation equality is represented by the 
== operators since = is the assignment operator in 
Mathematica. The derivative operator is the 
mathematical apostrophe (') notation rather than der(). 
The semicolon (;) is a sequencing operator to group 
more than one declaration, statement, or expression 
together. 

Note that the Start attribute values below 
(start in Modelica standard syntax), e.g. for x and 
xdot, are defined using declaration modifier equations 
Start==0. These start attributes are used as hints 
for the initial conditions when the simulation starts. 
The simulator is free to deviate somewhat from these 
hints if needed to obtain a consistent set of initial 
values by solving an equation system for the initial 
values. However, if the attribute fixed is true 
(default false), then the initial variable value is 
required to be the start attribute value. 

Model[secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation[
xdot == x';
xdot' + a*x' + x == 1

]
]



 - 18 - 

3.5 Simulation, Translation, and 
Graphic Animation of CAD 
Models 

The Model Editor provides an easy-to-use high level 
user interface that works quite well for most 
application areas. However, for certain application 
areas such as design of 3D mechanical parts and 
assemblies of such parts the two-dimensional user 
interface of the Model Editor is not very intuitive and 
sometimes hard to use. On the other hand, tools with 
3D interactive user interfaces for design of mechanical 
systems already exist. These are known as CAD 
systems for mechanical applications. 

For these reasons we have developed an 
integration mechanism, i.e. a translator, between 
existing CAD systems and the MathModelica 
environment. A CAD system is used as the interactive 
user interface to design the geometry, constraints, and 
connection structure of the mechanical application. 
This design is then automatically translated into a 
mechanical Modelica model for dynamic simulation. 
The generated Modelica model consists of connected 
instances of classes from the Modelica MBS (Multi 
Body System) library [Otter-95], [Otter-96]. Such 
translators integrated with the simulation environment 
have so far been developed for the two CAD systems 
SolidWorks [Engelson-99] and AutoDesk's Mechanical 
Desktop [Bunus-00]. 

We have also developed an OpenGL based 3D 
visualizer and animation system called MVIS 
(Modelica VISualizer) [Engelson-00] that provides 
online dynamic display of the mechanical assembly 
during simulation, or offline display based on saved 
state information for each time step. 

Both the MVIS visualizer and the CAD translators 
are separate subsystems which communicate with the 
rest of the MathModelica environment using files and 
other means. They are not yet official parts of the 
MathModelica product release, and are therefore 
indicated by a dotted line in the previously presented 

MathModelica structure diagram. The interplay 
between the simulation environment and the CAD 
environment is shown in Figure 14 below. 

Both translators are implemented as CAD system 
plug-ins that extract geometry, mass, inertia, and 
constraints information, and translate this information 
to Modelica source code. This code is combined with 
other code fragments, e.g. control system models, and 
simulated. 

 MathModelica Simulation 
Environment

CAD
Environment

Mechanical 
Model Design 

Standard 
Component

Library 

Simulation 
Environment 

Standard 
Component

Library 

Static Model 
Visualization 

Dynamic Model 
Visualization 
(Animation)

Data 
Plot

Visualization 

MVIS 
 

Figure 14. Functional structure of the information flow 
between the MathModelica simulation environment, 
the MIVS 3D visualizer and the CAD environment. 

The output can subsequently be visualised as a data 
plot of the system variables and/or as a 3D or 2D 
dynamic model animation. The 3D visualisations are 
scenes that display the geometry of the parts in motions 
prescribed by the simulation results. The graphical user 
interface of the CAD model and the output 
visualisation capabilities of the simulation environment 
make it easy to describe and modify model geometry as 
well as examine analysis results at the same time. A 
more detailed picture of the translation and 
visualization mechanisms including associated data 
flows it is shown Figure 15 below. 



 - 19 - 

 

Plugin translator 
to Modelica 

Mechanical Desktop CAD System
DWG 

Parts 

Assemblies 

Mass & 
Inertia 

Mates related 
information 

TRANSLATION 

Mechanical Desktop CAD System 
with attached translator 

Mechanical 
MODELICA 

Model 
model.mo 

Modelica 
Component 

Libraries 

C External 
Functions 

MODELICA 
EXECUTION 

2D Graph 
Viewer 

MathModelica
Simulation 

Environment

Geometry 

STL Format 

MVIS
3D 

Visualization 
and Animation 

 
Figure 15. The path from a static CAD model to a dynamic system simulation and visualization. 

Figure 15 above shows a mechanical model designed 
in the AutoCAD Mechanical Desktop Environment 
serving as the starting point of the specification of the 
virtual prototype with dynamic properties. The model 
is first saved in the DWG format, which contains all 
the information, including connections and mates 
constraints, related to the geometrical properties of the 
parts and the whole mechanical assembly. 

The geometry of each part is exported to the STL 
file format [3Dsystems-00] for use by the MVIS 
visualizer. At the same time, the mass and inertia of the 
parts are extracted together with mates information 
from the mechanical assembly. The translator uses this 
information to generate a corresponding set of 
Modelica class instances coupled by connections. This 
automatically generated Modelica file is processed by 
the MathModelica simulation environment. The 
simulation code can be enhanced by adding 
components from other Modelica libraries or by adding 
externally defined C code. In this phase electrical, 
control, or hydraulics components can be added to the 
generated mechanical model, providing multi-domain 
simulation. The translated CAD model contains a set of 
dynamic equations of motion. The solution of these 
equations during simulation computes the dynamic 
response to a given set of initial conditions including 
force and/or torque loads, which might even be 
functions of time. 

One might ask why develop yet another tool for 
multibody simulation of mechanical systems? There 
are already commercially available MBS simulation 
packages like ADAMS or Working Model 3D. Many 
CAD systems are integrated with some multibody 

simulation tool. However, the primary limitation of 
these environments is the difficulty of integrating 
multi-domain simulation within the same environment. 
Usually an interface to common simulation tools, like 
MATLAB and Simulink, is provided, but such 
solutions are not very flexible and do not give good 
performance because of the loose integration. By 
contrast, the MathModelica environment provides 
solutions to both of the following two major 
requirements: 
• The need to integrate multi-domain simulation in 

the same environment. 
• The generation of quality documentation coupled 

to the design and code. 

The main advantage of the MathModelica solution is 
that multidomain modeling and simulation is available 
in an integrated way in the same environment. This is 
provided in a way that is both very flexible and gives 
very efficient simulations, which for example is needed 
for tightly interacting system components like 
controllers embedded in mechanical systems. The 
control algorithms can for example be tested in parallel 
with the design of the mechanical parts of the system. 

4 Application Examples 
This section gives a number of application examples of 
the use of the Mathmodelica environment. The intent is 
to demonstrate the power of integration and 
interactivity - the interplay between the object-oriented 
modeling and simulation capabilities of Modelica 
integrated with the powerful scripting facilities of 
Mathematica within MathModelica. This includes the 



 - 20 - 

representation of simulation results as 1D and 2D 
interpolating functions of time being combined with 
arithmetic operations and functions in expressions, 
advanced plotting facilities, and computational 
capabilities such as design optimization, fourier 
analysis, and solution of time-dependent PDEs. 

4.1 Advanced Plotting and 
Interpolating Functions 

This section illustrates the flexible usage of simulation 
results represented as interpolating functions, both for 
further computations that may include simulation 
results in expressions, and for both simple and 
advanced plotting. The simple bouncing ball model 
below from [MA-02a] is used in the simulation and 
plotting examples. 
model BouncingBall

"Simple model of a bouncing ball"
constant Real g = 9.81

"Gravity constant";
parameter Real c = 0.9

"Coefficient of restitution";
parameter Real radius=0.1

"Radius of the ball";
Real height(start = 1)

"Height of the ball center";
Real velocity(start = 0)

"Velocity of the ball";
equation

der(height) = velocity;
der(velocity) = -g;
when height <= radius then

reinit(velocity,-c*pre(velocity));
end when;

end BouncingBall;

4.1.1 Interpolating Function 
Representation of Simulation 
Results 

The following simulation of the above 
BouncingBall model is done for a short time period 
using very few points: 
res1=Simulate[BouncingBall,{t,0,0.5},

NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-
26 10:48:10 : {0., 0.5} : 15 data
points : 1 events : 7 variables>
{c, g, height, radius, velocity,
height' velocity'}

The results returned by Simulate are represented by 
an access descriptor or handle. Note that the output 
also mentions the parameters c and g in the "variables" 
list even though their values are constant and not 
generated by the simulation. Some of the contents of 
such descriptor are shown as the result of the above 
call to Simulate. At this stage the simulation data is 

stored on disk and referenced by res1 which acts as a 
handle to the simulation data. When one of the 
variables from the last simulation is referenced, e.g. 
height, radius, etc., the data for that variable are 
loaded into the system in a load-by-need manner, and 
represented as an ordinary Mathematica 
InterpolatingFunction. 

Working with simulation result datasets in 
Mathematica is made in a very convenient way using 
the Mathematica InterpolatingFunction 
mechanism that encapsulates the data into a function 
object and provides interpolation so that the data acts 
as a regular function. The mechanism of loading 
simulation data into the system and representing it as a 
function object is performed by the function 
VariableTrajectory, which can be called 
explicitly as below, but is called automatically on any 
variable from the last simulation when referenced. 
h=VariableTrajectory[height]

The expression returned from the 
VariableTrajectory is an anonymous function 
object having one formal parameter (for the time t) 
and consists of a body containing an expression that 
computes a value of the variable for the given time. In 
this case the body consist of a Mathematica  Which
expression that switches between two (or more) 
InterpolatingFunction objects dependent on 
whether the time is less than the event time point at 
0.428 or not. The InterpolatingFunction objects 
uses interpolation order 3 as default but can be altered 
by using options. Pure discrete data, i.e data changing 
only at event points, is encapsulated by one 
InterpolatingFunction object with zero 
interpolation order to get a piecewise constant behavior 
in the interpolation. This is more efficient than using 
Which statements. The system will automatically 
choose the most efficient representation of these two 
alternatives. 

The interpolation function can now be used in any 
computation in Mathematica. In this case we just 
evaluate the derivative at the time 0.2: 
h'[0.2]
-1.962

In the case above Mathematica made the differentiation 
of the InterpolatingFunction object h. 
Normally the derivatives of the simulation variables are 
also available in the simulation data.  

As previously mentioned, to help the 
MathModelica user, variables of the most recent 
simulation are always accessible directly. In this case 
the function VariableTrajectory is automatically 
applied. Therefore, instead of assigning the variable h 
as above, one can write the following and get the same 
result: 
height'[0.2]
-1.962



 - 21 - 

Note, to keep variable values from previous 
simulations accessible, one should use 
VariableTrajectory on the appropriate variable, 
specifying the desired descriptor, e.g. res1: 

h=VariableTrajectory[height,
SimulationResult->res1];

Now perform a new simulation, with the result denoted 
by res2: 

res2=Simulate[BouncingBall,{t,0,0.5},
NumberOfIntervals->10,
ParameterValues->c==0.95];

Having the previous height curve represented as the 
function object h we can easily compute the difference 
of the curves between the simulations, e.g. using a plot 
expression height[t]-h[t].

4.1.2 PlotSimulation 
First we simulate the bouncing ball for eight seconds 
and store the results in the variable res1 for 
subsequent use in the plotting examples. 
res1=Simulate[BouncingBall,{t,0,8}];

The command PlotSimulation is used for simple 
standard plots. If nothing else is specified, i.e. by the 
optional SimulationResult parameter, the 
command refers to the results from the last simulation. 
In the diagram below the height above ground of the 
ball from the bouncing ball model simulation is plotted 
for the first eight seconds of simulation. The optional 
parameter PlotJoined has been set to False to 
create a dotted plot: 
PlotSimulation[height[t],{t,0,8},

PlotJoined->False];

2 4 6 8 t 

0.2

0.4

0.6

0.8

1 

Figure 16. Dotted plot of bouncing ball example 
model. 

PlotSimulation can also handle expressions 
containing simulated results. When this is done, a 
warning is returned to emphasize that interpolation is 
performed which could result in a slightly less accurate 
plot. 

PlotSimulation@Æ−Cos@height@tDD, 8t, 0, 8<D;  

2 4 6 8
t

0.45

0.5

0.55

Æ−Cos@height@tDD

 
Figure 17. Plot of expression involving interpolated 
function of simulation result. 

Plotting several arbitrary functions can be done using a 
list of function expressions instead of a single 
expression: 

PlotSimulationA9height@tD +
è
3,

Abs@velocity@tDD=, 8t, 0, 8<E;  

2 4 6 8
t

1

2

3

4

Abs@velocity@tDDè!!!!3 +height@tD

 
Figure 18. Plotting arbitrary functions in the same 
diagram. 

Now we simulate the bouncing ball again but with 
different value of the coefficient of restitution, c,  
which is changed to 0.95. The result is stored in 
res2. 

res2 = Simulate@BouncingBall, 8t, 0, 8<,
ParameterValues → c m 0.95D;  

The optional argument SimulationResult specifies 
which simulation data to use. In this case we will use 
res1 and res2. The two plots are stored as two 
graphics objects gr1 and gr2, which are displayed 
together using the Mathematica command Show: 



 - 22 - 

gr1 = PlotSimulation@height@tD, 8t, 0, 8<,
SimulationResult → res1,

DisplayFunction → IdentityD;
gr2 = PlotSimulation@height@tD, 8t, 0, 8<,

SimulationResult → res2,

DisplayFunction → IdentityD;
Show@GraphicsArray@8gr1, gr2<D,
DisplayFunction → $DisplayFunctionD;  

2 4 6 8
t

0.2

0.4

0.6

0.8

1

height@tD

2 4 6 8
t

0.2

0.4

0.6

0.8

1

height@tD

 
Figure 19. Parallel display of two diagrams. 

It is possible to plot variables with the same name from 
several different simulations together. This is specified 
by an array value for the optional argument 
SimulationResult: 

PlotSimulation@height@tD, 8t, 0, 8<,
SimulationResult → 8res1, res2<D;  

2 4 6 8
t

0.2

0.4

0.6

0.8

1

height@tDheight@tD

 
Figure 20. Plot of variables from several simulations in 
the same diagram. 

The plot colors are specified by the 
$PlotSimulationColors predefined variable. 

PlotSimulation@8height@tD, height@tD2,
height@tD3, height@tD4, height@tD5,
height@tD6, height@tD7<, 8t, 0, 2<D;  

0.5 1 1.5 2
t 

0.2 

0.4 

0.6 

0.8 

1 

 
Figure 21. Plot of multiple curves with different 
colors. 

4.1.3 ParametricPlotSimulation 
Parametric plots can be done using 
ParametricPlotSimulation. 

ParametricPlotSimulation@
8height@tD, velocity@tD<,
8t, 0, 8<D;  

0.2 0.4 0.6 0.8

-4

-2

2

4

 
Figure 22. A parametric plot. 

In the same way as for PlotSimulation the 
ParametricPlotSimulation function can handle 
several plots: 

ParametricPlotSimulation@
88height@tD, velocity@tD<,
8velocity@tD, height@tD<<,
8t, 0, 8<D;  

-4 -2 2 4

-4

-2

2

4

 
Figure 23. Multiple parametric plots in the same 
diagram. 



 - 23 - 

ParametricPlotSimulation can also handle 
results form different simulations and plot only the 
actual data points: 

ParametricPlotSimulation@8height@tD,
velocity@tD<, 8t, 0, 3<,
PlotJoined → False,

SimulationResult → 8res1, res2<D;  

0.2 0.4 0.6 0.8

-4

-2

2

4

 
Figure 24. Parametric plots of data points from 
different simulations in the same diagram. 

4.1.4 ParametricPlotSimulation3D 

In this example we are going to use the Rossler 
attractor to show the ParametricPlotSimula-
tion3D command. The Rossler attractor is named 
after Otto Rossler from his work in chemical kinetics. 
The system is described by three coupled non-linear 
differential equations: 

zx
dt
dz

yx
dt
dy

xy
dt
dx

)( γβ

α

−+=

+=

−−=

 

Here βα, and γ are constants. The attractor never 
forms limit circles nor does it ever reach a steady state. 
The model is shown in Mathematica syntax, enabling 
the use of greek characters: 

Model@Rossler, "Rossler attractor",

Parameter Real α m 0.2;

Parameter Real β m 0.2;

Parameter Real γ m 8;

Real x@8Start m 1<D;
Real y@8Start m 3<D;
Real z@8Start m 0<D;
Equation@
x' m −y − z;

y' m x + α y;

z' m β + x z − γ z

D
D  

The model is simulated using different initial values. 
Changing these can considerably influence the 
appearance of the attractor. 

Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x m 2, y m 2.5, z m 0<D;  

The Rossler attractor is easy to plot using 
ParametricPlotSimulation3D: 

ParametricPlotSimulation3D@
8x@tD, y@tD, z@tD<,
8t, 0, 40<,
AxesLabel → 8X, Y, Z<D;  

-10
0

10

X

-10

0

10Y

0

10

20

30

40

Z

-10

0

10Y

 
Figure 25. 3-D parametric plot of interpolated curve 
from the Rossler attractor simulation. 

The plot does not look smooth at some areas, 
especially for high values of Z. Let us take a look at the 
actual data points of the simulation: 

ParametricPlotSimulation3D@
8x@tD, y@tD, z@tD<,
8t, 0, 40<, PlotJoined → False,

AxesLabel → 8X, Y, Z<D;  

-10
0

10

X

-10

0

10Y

0

10

20

30

40

Z

-10

0

10Y

 
Figure 26. 3-D parametric plot of actual data points 
from the Rossler attractor simulation. 



 - 24 - 

There seem to be few data points outside the "rings". 
This can be fixed by adding data points during 
simulation. The default value is 500. Let us try 1000 
data points: 

Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x m 2, y m 2.5, z m 0<,
NumberOfIntervals → 1000D;  

Now the plot looks smoother: 

ParametricPlotSimulation3D@
8x@tD, y@tD, z@tD<,
8t, 0, 40<,
AxesLabel → 8X, Y, Z<D;  

-10
0

10

X

-10

0

10Y

0

10

20

30

40

Z

-10

0

10Y

 
Figure 27. 3-D parametric plot of curve with many 
data points from the Rossler attractor simulation. 

4.2 Design Optimization 
This is an example of how the powerful scripting 
language of MathModelica can be utilized to solve 
non-trivial optimization problems that contain dynamic 
simulations. First we will define a Modelica model of a 
linear actuator with spring damped stopping and then a 
first order system. Using MathModelica scripting we 
will then find a damping for the translational spring-
damper such that the step response is as "close" as 
possible to the step response from a first order system. 

Consider the following model of a linear actuator 
with a spring damped connection to an anchoring 
point: 

 
SlidingMass1 SpringDamper1 Fixed1 IdealGearR2T1 

Inertia1

SpringDamper2 
Inertia2

tau
Torque1 Step1 

 
Figure 28. A LinearActuator model containing a 
spring damped connection to an achoring point. 
model LinearActuator

import
Modelica.Mechanics.Translational;

import Modelica.Mechanics.Rotational;
import Modelica.Blocks.Sources;
Translational.SlidingMass

SlidingMass1(m=0.5);
Translational.SpringDamper

SpringDamper1(d=3,c=20);
Translational.Fixed Fixed1;
Rotational.IdealGearR2T

IdealGearR2T1 ;
Rotational.Inertia

Inertia1(J=0.1) ;
Rotational.SpringDamper

SpringDamper2(c=15,d=2);
Rotational.Inertia

Inertia2(J=0.1) ;
Rotational.Torque Torque1;
Sources.Step Step1;

equation
connect(Inertia1.flange_b,

IdealGearR2T1.flange_a);
connect(IdealGearR2T1.flange_b,

SlidingMass1.flange_a);
connect(SlidingMass1.flange_b,

SpringDamper1.flange_a);
connect(SpringDamper1.flange_b,

Fixed1.flange_b);
connect(Inertia1.flange_a,

SpringDamper2.flange_b);
connect(SpringDamper2.flange_a,

Inertia2.flange_b);
connect(Inertia2.flange_a,

Torque1.flange_b);
connect(Torque1.inPort,

Step1.outPort)
end LinearActuator;

 

We simulate a step response and store the result in 
res0. 

res0 = Simulate@LinearActuator,
8t, 0, 5<D;  



 - 25 - 

PlotSimulation@SlidingMass1.s@tD,
8t, 0, 5<D;  

1 2 3 4 5
t 

0.01

0.02

0.03

0.04

0.05

0.06

SlidingMass1 

 
Figure 29. Plot of step response from the linear 
actuator. 

Assume that we have some freedom in choosing the 
damping in the translational spring-damper. A number 
of simulation runs show what kind of behavior we have 
for different values of the dampingparameter d. The 
Mathematica Table[] function is used in 
Simulate[] to collect the results into an array res. 
This array then contains the results from simulations of 
LinearActuator with a damping of 2 to 14 with a 
step size of 2, i.e. seven simulations are performed. 

res = Table@Simulate@LinearActuator,
8t, 0, 4<,
ParameterValues →

8SpringDamper1.d m s<D,
8s, 2, 15, 2<D;  

PlotSimulation@SlidingMass1.s@tD,
8t, 0, 4<,
SimulationResult → res,

Legend → FalseD;  

1 2 3 4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 
Figure 30. Plots of step responses from seven 
simulations of the linear actuator with different 
camping coefficients. 

Now assume that we would like to choose the damping 
d so that the resulting system behaves as closely as 

possible to the following first order system response, 
obtained by solving a first order ODE using NDSolve: 

res1 = NDSolve@80.2 y'@tD + y@tD m 0.05,

y@0D m 0<, 8y<, 8t, 0, 4<D;  

We make a comparison with the step response we 
simulated first (d=2) and the first order system. 

PlotSimulation@8SlidingMass1.s@tD,
y@tD ê. res1<, 8t, 0, 4<,
SimulationResult → res0D;  

1 2 3 4
t

0.01

0.02

0.03

0.04

0.05

0.06

8InterpolatingFunction@880., 4.<<, <>D@tD<HSlidingMass1.sL@tD

 
Figure 31. Comparison plot between the step response 
of the linear actuator and a first-order system. 

Now, let us make things a little more automatic. 
Simulate and compute the integral of the square error 
from t=0 to t=4. 

res = Simulate@LinearActuator, 8t, 0, 4<,
ParameterValues → 8SpringDamper1.d m 3<D;  

NIntegrate@First@Hy@tD ê. res1L −

SlidingMass1.s@tDD2, 8t, 0, 4<D  
0.000162505

We define a function, f(a), doing the same thing as 
above, but for different spring-damper parameters 
d=a.

f@a_D := Module@8res, t<,
res = Simulate@

LinearActuator, 8t, 0, 4<,
ParameterValues →

8SpringDamper1.d m a<
D;

NIntegrate@First@Hy@tD ê. res1L −

SlidingMass1.s@tDD2, 8t, 0, 4<DD  
and tabulate some results for 102 ≤=≤ ad

res2 = Table@8a, f@aD<, 8a, 2, 10, .5<D  
{{2,0.000317667},
{2.5,0.000221484},{3.,0.000162505},



 - 26 - 

{3.5,0.000125513},{4.,0.000102749},
{4.5,0.0000898832},{5.,0.000084067},
{5.5,0.0000836711},{6.,0.0000874586},
{6.5,0.0000945743},{7.,0.000104399},
{7.5,0.000116464},{8.,0.000130394},
{8.5,0.000145922},{9.,0.000162819},
{9.5,0.000180894},{10.,0.000200008}}

The tabulated values are interpolated using an 
interpolating function object. The default interpolation 
order is 3. 

fpre = Interpolation@res2D;  

Plot@fpre@aD, 8a, 2, 10<D;  

4 6 8 10

0.00015

0.0002

0.00025

0.0003

 
Figure 32. Plot of the error function for finding a 
minimum deviation from the desired step response. 

The minimizing value of a can be computed using 
FindMinimum: 

FindMinimum@fpre@sD, 8s, 4<D  80.0000832564 , 8s → 5.28642 <<  

A simulation with the optimal parameter value 

Simulate@LinearActuator, 8t, 0, 4<,
ParameterValues →

8SpringDamper1.d m 5.28642<D;  

A plot comparing the first and second order system 
response together with a plot of the squared error 
amplified with a factor 100. 

PlotSimulation@8SlidingMass1.s@tD,
y@tD ê. res1,
100 HSlidingMass1.s@tD −

Hy@tD ê. res1LL2<, 8t, 0, 4<,
Legend → FalseD;  

1 2 3 4

0.01

0.02

0.03

0.04

0.05

 
Figure 33. Comparison plot of the first and second 
order system step responses together with the squared 
error. 

4.3 Fourier Analysis of Simulation 
Data 

Consider a weak axis excited by a torque pulse train. 
The axis is modeled by three segments joined by two 
torsion springs. The following diagram is imported 
from the MathModelica Model Editor where the model 
was defined. 

 

 
tau 

Torque1 Inertia1 Spring1 Inertia2 Spring2 Inertia3 Pulse1  
Figure 34. A WeakAxis model excited by a torque 
pulse train. 

The corresponding Modelica code: 
model WeakAxis

Modelica.Mechanics.Rotational.Torque
Torque1;

Modelica.Mechanics.Rotational.Inertia
Inertia1;

Modelica.Mechanics.Rotational.Spring
Spring1(c=0.7);

Modelica.Mechanics.Rotational.Inertia
Inertia2;

Modelica.Mechanics.Rotational.Spring
Spring2(c=1);

Modelica.Mechanics.Rotational.Inertia
Inertia3;

Modelica.Blocks.Sources.Pulse
Pulse1(width={1},period={200});

equation
connect(Pulse1.outPort,

Torque1.inPort);
connect(Torque1.flange_b,

Inertia1.flange_a);
connect(Inertia1.flange_b,

Spring1.flange_a);
connect(Spring1.flange_b,

Inertia2.flange_a);
connect(Inertia2.flange_b,

Spring2.flange_a);
connect(Spring2.flange_b,

Inertia3.flange_a);
end WeakAxis;



 - 27 - 

We simulate the model during 200 seconds: 

Simulate@WeakAxis , 8t, 0, 200<D;  

The plot of the angular velocity of the rightmost axis 
segment appears as follows: 

PlotSimulation@8Inertia3.w@tD,
Torque1.τ@tD<, 8t, 0, 200<D;  

50 100 150 200
t

0.5

1

1.5

HTorque1.τL@tDHInertia3.wL@tD

 
Figure 35. Plot of the angular velocity of the rightmost 
axis segment of the WeakAxis model. 

Now, let us sample the interpolated function 
Inertia3.w using a sample frequency of 4Hz, and 
put the result into an array using the Mathematica 
Table array constructor: 

data1 = Table@Inertia3.w@tD,
8t, 0, 200, .25<D;  

Compute the absolute values of the discrete Fourier 
transform of data1 with the mean removed: 

fdata1 = Abs@Fourier@data1 −

MeanValue@data1DDD;  
Plot the first 80 points of the data. 

ListPlot@fdata1@@Range@80DDD,
PlotStyle → 8Red, PointSize@0.015D<D;  

20 40 60 80

2

4

6

8

10

Figure 36. Plot of the data points of the Fourier 
transformed angular velocity. 

It is easy to write a function FourierPlot that 
repeats the above operations. FourierPlot also 
scales the axes such that amplitude of trigonometric 
components are plotted against frequency (Hz). 

FourierPlot@Inertia3.w@tD, 8t, 0, 200<,
0.5, PlotJoined → True, PlotStyle → RedD  

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 
Figure 37. Plot of the data points of the Fourier 
transformed angular velocity. 

It can be shown that the frequencies of the eigenmodes 
of the system is given by the imaginary parts of the 
eigenvalues of the following matrix (c1 and c2 are the 
spring constants) 

1

2 π
 EigenvaluesA

i

k

0 1 0 0 0 0
−c1 0 −c1 0 0 0
0 0 0 1 0 0

−c1 0 −c1 − c2 0 −c2 0
0 0 0 0 0 1
0 0 −c2 0 −c2 0

y

{

ê.

8c1 → 0.7, c2 → 1<E êê Chop  

80.256077 Ç, −0.256077 Ç,

0.143343 Ç, −0.143343 Ç, 0, 0<  

These values, 0.256077, 0.143344, fit very well with 
the peaks in the above diagram. 

4.4 Solution and 2D-Interpolation 
of Discretized PDEs 

Currently Modelica cannot handle partial differential 
equations directly since there is only the notion of 
differentiation with respect to time built into the 
language. However, in many cases derivatives with 
respect to other variables such as for example spatial 
dimensions can be handled by simple discretizations 
schemes easily implemented using the array 
capabilities in Modelica. Here we will give an example 
of how the one dimensional wave equation can be 
represented in Modelica and how MathModelica can be 
used for simulation and display of the results, as well 
as representing the result as a 2D interpolating 
function. 

The one dimensional wave equation is given by a 
partial differential equation of the following form: 



 - 28 - 

∑2 p
∑t2

= c2 ∑
2 p
∑ x2  

where p = p[x, t] is a function of both space and 
time. As a physical example let us consider a duct of 
length 10 where we let 55 ≤≤− x describe its spatial 
dimension. Since Modelica only can handle time as the 
independent variable we need to discretize the problem 
in the spatial dimension and approximate the spatial 
derivatives using difference approximations using the 
approximation 

∑2 p
∑ x2 º

pi-1 + pi+1- 2 pi

Dx2  

Utilizing this approach a Modelica model of a duct 
whose pressure dynamics is given by the wave 
equation can be written as follows: 
model WaveEquationSample

import Modelica.SIunits;
parameter SIunits.Length L=10

"Length of duct";
parameter Integer n=30

"Number of sections";
parameter SIunits.Length dL=L/n

"Section length";
parameter SIunits.Velocity c=1;
SIunits.Pressure

p[n](start=initialPressure(n));
Real dp[n](start=fill(0,n));

equation
p[1]=exp(-(-L/2)^2);
p[n]=exp(-(L/2)^2);
dp=der(p);
for i in 2:n-1 loop

der(dp[i])=
c^2*(p[i+1]-2*p[i]+p[i-1])/dL^2;

end for;
end WaveEquationSample;

Here we are using a Modelica function 
initialPressure (defined below) to specify the 
initial value of the pressure along the duct. Assume that 
we would like an initial pressure profile in the duct of 

the form ‰
-x2

,i.e., 

PlotAÆ−x2, 8x, −5, 5<E;  

-4 -2 2 4

0.2

0.4

0.6

0.8

1

 

Figure 38. The initial pressure profile of the duct. 

function initialPressure
input Integer n;
output Real p[n];

protected
parameter Modelica.SIunits.Length

L=10;
algorithm
  for i in 1:n loop 
       p[i]:=exp(-(-L/2+(i-1)/(n-1)*L)^2); 
  end for; 
end initialPressure; 
 

We simulate the WaveEquationSample model: 

Simulate@WaveEquationSample , 8t, 0, 10<D;  

The result is packed into a 2D interpolation function: 

Plot3D@intp@x, tD, 8x, −5, 5<, 8t, 0, 10<,
PlotPoints → 30, PlotRange → 8−1, 1<,
AxesLabel → 8"x", "t", "p@x,tD"<D;  

 

-4
-2

0 
2 

4 
x

0 
2 
4 
6
8 
10

t
-1

-0.5
0

0.5
1

-4
-2

0 
2 

4 
x

 
Figure 39. A 3D plot of the pressure distribution in the 
duct. 

Let us also plot the wave as a function of position for a 
fixed point in time 

Plot@intp@x, 1.2D, 8x, −5, 5<D;  

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

 
Figure 40. The wave as a function of position at 
time=1.2. 



 - 29 - 

5 Using the Symbolic Internal 
Representation 

In order to satisfy the requirement of a well integrated 
environment and language, the new MathModelica 
internal representation was designed with a 
Mathematica compatible version of the syntax. Note 
that the Mathematica version of the syntax has the 
same internal abstract syntax tree representation and 
the same semantics as Modelica, but different concrete 
syntax. Which syntax to use, the standard Modelica 
textual syntax, or the Mathematica-style syntax for 
Modelica is however largely a matter of taste.  

The fact that the Modelica abstract syntax tree 
representation is compatible with the Mathematica 
standard representation means that a number of 
symbolic operations such as simplifying model 
equations, performing Laplace transformations, and 
performing queries on code as well as automatically 
constructing new code is available to the user. The 
capability of automatically generating new code is 
especially useful in the area of model diagnosis, where 
there is often a need for generating a number of 
erroneous models for diagnosis based on corresponding 
fault scenarios. 

5.1 Mathematica Compatible 
Internal Form 

An inherent property of Mathematica is that code or 
models are normally not written as free formatted text. 
Instead, Mathematica expressions (also called terms) 
are used, internally represented as abstract syntax trees. 
These can be conveniently written in a tree-like prefix 
form, or entered using standard mathematical notation. 
Every term is a number, an identifier, or a form such 
as: 

[ ]ntermtermhead ,,1 K  

For example, an expression: a+b is represented as 
Plus[a,b] in prefix form, also called FullForm
syntax. A while loop is represented as the term 
While[test,body]. 

In order to satisfy the requirement of a well 
integrated environment, we designed the new 
MathModelica internal representation with a 
Mathematica compatible version of the concrete 
syntax, called MathModelicaForm. Note that 
MathModelicaForm has the same abstract syntax 
trees and the same semantics as ModelicaForm 
representing standard Modelica, but different concrete 
syntax. This means that essentially the same language 
constructs are written differently, as illustrated below. 
Since the same internal representation is used, a cell 
expressed in ModelicaForm can easily be converted 
to MathModelicaForm or vice versa by just calling 
GetDefinition with a different value of the 
Format parameter. 

The Mathematica language syntax uses some 
special operators, see below, and arbitrary arithmetic 
expressions composed from terms. 

ntermterm ;;1 K   //sequencing operator 
{ }ntermterm ;;1 K  //array/list constructor 

21 termterm   //Implied multiplication by space  
       instead of * 

21 termterm ==  // Equation equality 

Internally the MathModelica system uses the 
MathModelicaFullForm format. This format is the 
abstract syntax of the MathModelica language where 
all the elements of the language have been defined to 
be easy to extract and compare for the functions 
operating on the MathModelica language 
representation, as well as achieving a high degree of 
compatibility with both Modelica and Mathematica. 

The following is a simple constant declaration: 
model Arr

constant Real
unitarr[2,2] = {{1,0},{0,1}}
"2D Identity";

end Arr;

This definition is stored internally in the 
MathModelicaFullForm format which can be 
retrieved by calling the function GetDefinition 
which returns the internal abstract syntax tree 
representation of the model: 

ff2 = GetDefinition@Arr,
Format → MathModelicaFullFormD  

The tree is wrapped into the node Hold[] to prevent 
symbolic evaluation of the model representation while 
we are manipulating it. All nodes are shown in prefix 
form excepts the array/list nodes shown as {...} instead 
of the prefix form List[...] for arrays. 

Hold@SetType@Arr,
TYPE@Model@Declaration

@TYPE@Real, 82, 2<, 8Constant<, 8<D,
VariableComponent@unitarr,
ValueBinding@881, 0<, 80, 1<<D,
8<, 8<, NullD
D;
"2D Identity"

D, 8<, 8<, 8<
D, 8<, Null, Null

D
D  

A declaration of a variable such as unitarr is 
represented by the Declaration node in the abstract 
syntax. This node has two arguments: the type and the 
variable instance. The type is represented by the TYPE 
node which stores the name, array dimension, type 



 - 30 - 

attributes (Constant) and type modifications (which 
is empty in this case). The instance argument contains 
a VariableComponent including the name of the 
variable, the initialization (ValueBinding), at the 
end the comment string that is associated with the 
variable. 

There are several goals behind the design of the 
MathModelicaFullForm format, which are fulfilled 
in the current system: 
• Abstract syntax. The format systematically sorts 

out the different constructs in the language making 
the navigation of types and code easier.  

• Preserving the syntactic structure of both Modelica 
and Mathematica code. This means that the 
mapping from Modelica to MathModelica-
FullForm format should be injective, e.g. the 
source code can be recreated from the intermediate 
form, and that transformations from Modelica via 
MathModelicaFullForm into Mathematica 
style Modelica form should be reversible.  

• Explicit semantic structure. The format has 
reserved fixed attribute positions for certain kinds 
of semantic information, to simplify semantic 
analysis and queries. There is also a canonical 
subset of the format which is even simpler for 
semantic analysis, but does not always recreate 
exactly the same source code since the same 
declaration often can be stated in several ways. 

• Symbol table and type representation format. The 
MathModelicaFullForm format should be 
possible to use in the symbol table, e.g. to 
represent types. Types are represented by 
anonymous type expressions such as the TYPE 
node in the above example. Anonymous means 
that the type representation is separate from the 
entity having the type. 

• Internal standard.  
       The MathModelicaFullForm format should be 

used by all the components in the MathModelica 
system. 

Below we show a small model secondordersystem 
in the different representations. First the textual 
Modelica model: 
model secondordersystem

Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
xdot=der(x);
der(xdot)+a*der(x)+x=1;

end secondordersystem;

This model is parsed and stored internally as Modelica 
in the abstract syntax MathModelicaFullForm 
representation. This can be retrieved and unparsed into 
standard Modelica as follows: 

GetDefinition@secondordersystem,
Format → ModelicaFormD  

model secondordersystem
Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
xdot = der(x);
der(xdot)+a*der(x)+x = 1;

end secondordersystem;

We retrieve the model once more, but specify 
unparsing into the Mathematica style Modelica syntax 
by setting the format argument to 
MathModelicaForm. The model is enclosed in a 
Hold node to prevent symbolic evaluation. 

GetDefinition@secondordersystem,
Format → MathModelicaFormD  

Hold @Model @secondordersystem ,

Real x@8Start == 0<D;
Real xdot @8Start == 0<D;
Parameter Real a == 1;

Equation @
xdot == x�;

xdot � + a x� + x == 1DDD  

Finally we obtain the MathModelicaFullForm of 
the model. Certain operators like {}, ==, +, etc. 
are still unparsed as infix notation. To get the prefix 
notation List[], Equal[], Plus[], etc. for 
these operators, use the FullForm command on the 
result. 

GetDefinition@secondordersystem,
Format → MathModelicaFullFormD  

Hold @SetType @secondordersystem , TYPE @Model @
Declaration @TYPE @Real , 8<, 8<, 8<D,
VariableComponent @x, Null , 8<,8ElementModification @start , EqualBinding @0D,8<, 8<, Null D<, Null DD;

Declaration @TYPE @Real , 8<, 8<, 8<D,
VariableComponent @xdot , Null , 8<,8ElementModification @start , EqualBinding @0D,8<, 8<, Null D<, Null DD;

Declaration @TYPE @Real , 8<, 8Parameter <, 8<D,
VariableComponent @a, EqualBinding @1D, 8<, 8<,
Null DD;

Equation @
xdot == x�;

xdot � + a x� + x == 1DD, 8<, 8<, 8<D, 8<, Null , Null DD  



 - 31 - 

5.2 Extracting and Simplifying 
Model Equations 

This section will illustrate a few user-accessible 
symbolic operations on equations, such as obtaining 
the system of equations and the set of variables from a 
Modelica model, and symbolically simplifying this 
system of equations with the intention of performing 
symbolic Laplace transformation. 

5.2.1 Definition and Simulation of 
Model1 

The example class Model1 has been drawn in the 
graphic model editor and imported into the notebook 
below: 

 
R=%R 

Resistor1 L=%L 
Inductor1 

Ground1

k=%k

EMF1 
%na
me=
%V 

ConstantVoltage1 
c=%c

Spring1 J=%J

Inertia1
J=%J

Inertia2

Figure 41. Connection diagram of Model1. 

We simulate the model, smooth the result, and make 
two plots, where the first is a plot of the product of the 
voltage and current over Resistor1: 

res0 = Simulate@Model1, 8t, 0, 25<,
ParameterValues → 8Resistor1.R m 0.9<D; 

res1 = SmoothInterpolation@res0D;  

PlotSimulation@8HResistor1.vL@tD∗

HResistor1.iL@tD<, 8t, 0, 10<D;  

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

0.3

 
Figure 42. Plot of the current-voltage product over 
Resistor1 in Model1. 

The second plot is parametric where we plot the 
Resistor1 current against its derivative for both the 
original result and the smoothed version: 

ParametricPlotSimulation@
8HResistor1.iL@tD,
HResistor1.iL'@tD<, 8t, 0, 25<,
SimulationResult → 8res0, res1<D;  

-0.2 0.2 0.4 0.6

-0.2

0.2

0.4

0.6

0.8

1

 
Figure 43. Parametric plots of the Resistor1 current 
against its derivative, both original and smoothed. 

5.2.2 Some Symbolic Computations 

Now, flatten Model1 and extract the model equations 
and the model variables as lists, and compute the 
lengths of these lists: 

eqn = GetFlatEquations@Model1D;  

Length@eqnD  

48 

Length@GetFlatVariables@Model1DD  

49 

There is one equation less than the number of 
variables. Therefore, add an equation for zero torque on 
the right flange to the equation system: 
eqn = Append@eqn,

Inertia2.flangeÄb.tau m 0D;  
We would like to simplify the equations by eliminating 
the connector variables before further symbolic 
processing. First obtain the connector variables from 
the flattened model: 

connvars = GetFlatConnectionVariables

@Model1D  



 - 32 - 

8Resistor1 . p . v, Resistor1 . p . i,

Resistor1.n . v, Resistor1 . n . i,

Inductor1.p . v, Inductor1 . p . i,

Inductor1.n . v, Inductor1 . n . i,

Ground1.p . v, Ground1 . p . i,

EMF1.p . v, EMF1 . p . i, EMF1 . n . v,

EMF1.n . i, EMF1 . flangeÄb . phi,

EMF1.flangeÄb . tau,

ConstantVoltage1.p . v,

ConstantVoltage1.p . i,

ConstantVoltage1.n . v,

ConstantVoltage1.n . i,

Spring1.flangeÄa . phi,

Spring1.flangeÄa . tau,

Spring1.flangeÄb . phi,

Spring1.flangeÄb . tau,

Inertia1.flangeÄa . phi,

Inertia1.flangeÄa . tau,

Inertia1.flangeÄb . phi,

Inertia1.flangeÄb . tau,

Inertia2.flangeÄa . phi,

Inertia2.flangeÄa . tau<  

Use the Eliminate function for symbolic elimination 
of some variables from the system of equations. 

eqn2 = Eliminate@eqn, connvarsD  

: 
der@Inertia1 . phiD m Inertia1.w &&

der@Inertia1 . wD == Inertia1 . a &&

der@Inertia2 . phiD == Inertia2 . w &&

der@Inertia2 . wD == Inertia2 . a &&

ConstantVoltage1.i == −HResistor1 . iL&&
ConstantVoltage1.v m

HEMF1 . kL HEMF1 . wL+

der@Inductor1 . iD HInductor1 . LL+

HResistor1 . iL HResistor1 . RL&&
ConstantVoltage1.V m

HEMF1 . kL HEMF1 . wL+

der@Inductor1 . iD HInductor1 . LL+

HResistor1 . iL HResistor1 . RL&&
EMF1.i == Resistor1 . i &&

EMF1.v == HEMF1 . kL HEMF1 . wL&&
Inductor1.i == Resistor1 . i &&

Inductor1.v == der@Inductor1 . iD
HInductor1 . LL &&

HInertia1 . aL HInertia1 . JL m

HEMF1 . kL HResistor1 . iL+

Spring1.tau &&

Inertia1.phi == Inertia2 . phi −

Spring1.phiÄrel &&

HInertia2 . aL HInertia2 . JL == −

HSpring1 . tauL &&
Resistor1.v == HResistor1 . iL
HResistor1 . RL &&

HSpring1 . cL HSpring1 . phiÄrel0L m

HSpring1 . cL HSpring1 . phiÄrelL−

Spring1.tau &&

Inertia2.flangeÄb . phi == Inertia2 . phi &&

Inertia2.flangeÄb . tau == 0 &&

derH−1L@EMF1 . wD == Inertia2 . phi −

Spring1.phiÄrel  

5.3 Symbolic Laplace 
Transformation and Root 
Locus Computation 

We would now like to perform a Laplace 
transformation of the symbolic equation system 
obtained in the previous section. This can be done by 
the application of two transformation rules: 

[ ] [ ] sbbder
s
aader →→− _,_)1( . Note that )1(−der is 

the inverse of taking a derivative, i.e. an integration 
operation. Note also that the second rule contains an 
implied multiplication. 

eq3 = eqn2 ê. 9derH−1L@a_D →
a

s
, der@b_D → s b=

 



 - 33 - 

sHInertia1 . phiL==Inertia1 . w&&

sHInertia1 . wL==Inertia1 . a&&

sHInertia2 . phiL==Inertia2 . w&&

sHInertia2 . wL==Inertia2 . a&&

ConstantVoltage1.i == −HResistor1 . iL&&
ConstantVoltage1.vm

HEMF1 . kLHEMF1 . wL+

sHInductor1 . iLHInductor1 . LL+

HResistor1 . iLHResistor1 . RL&&
ConstantVoltage1.Vm

HEMF1 . kLHEMF1 . wL+

sHInductor1 . iLHInductor1 . LL+

HResistor1 . iLHResistor1 . RL&&
EMF1.i ==Resistor1 . i&&

EMF1.v ==HEMF1 . kLHEMF1 . wL&&
Inductor1.i ==Resistor1 . i&&

Inductor1.v ==sHInductor1 . iLHInductor1 . LL&&
HInertia1 . aLHInertia1 . JLm

HEMF1 . kLHResistor1 . iL+

Spring1.tau&&

Inertia1.phi ==Inertia2 . phi−

Spring1.phiÄrel&&

HInertia2 . aLHInertia2 . JLm−HSpring1 . tauL&&
Resistor1.v ==HResistor1 . iLHResistor1 . RL&&
HSpring1 . cLHSpring1 . phiÄrel0Lm

HSpring1 . cLHSpring1 . phiÄrelL−

Spring1.tau&&

Inertia2.flangeÄb . phi== Inertia2 . phi&&

Inertia2.flangeÄb . tau== 0&&
EMF1 . w

s
== Inertia2 . phi−Spring1 . phiÄrel

 

Introduce short names for the model parameter to 
obtain a more concise symbolic notation: 

shortnames =

8Resistor1 . R → R, Inductor1.L → L,

EMF1.k → k, Inertia1 . J → J1,

Spring1.c → c1, Spring1 . phiÄrel0 → 0,

Inertia2.J → J2<;  

Derive the relation between Inertia2.w and the 
input voltage 

eq4 =

Eliminate@eq3,
Complement@
GetFlatNonConnectionVariables@Model1D,
8Inertia2.w<DD ê. shortnames  

Hk c1 HConstantVoltage1 . VL m

k2 c1 HInertia2 . wL +

R s c1 J1 HInertia2 . wL +

L s2 c1 J1 HInertia2 . wL +

k2 s2 J2 HInertia2 . wL +

R s c1 J2 HInertia2 . wL +

L s2 c1 J2 HInertia2 . wL +

R s3 J1 J2 HInertia2 . wL +

L s4 J1 J2 HInertia2 . wLL && s ≠ 0  

The transfer function H is obtained by symbolically 
solving for Inertia2.w in the equation system eq4, 
and using the obtained solution on a form
Inertia2.w -> expr to eliminate Inertia2.w, 
thus obtaining H: 

H@s_D = FirstA Inertia2.w

ConstantVoltage1 . V
ê.

Solve@eq4, Inertia2 . wDE  

Hk c1LêHk2 c1 + R s c1 J1 + L s2 c1 J1 +

k2 s2 J2 + R s c1 J2 + L s2 c1 J2 +

R s3 J1 J2 + L s4 J1 J2L  

5.3.1 A Root Locus Computation 

A list of model parameter values is defined for 
subsequent use: 

parametervalues = 8R → 1, L → 1, c1 → 1,

J1 → 1, J2 → 1, k → 1<;  

We compute the poles of the transfer function to obtain 
the root locus: 

N@poles ê. parametervaluesD  

8−0.395123 − 0.506843 Ç,

−0.395123 + 0.506843 Ç,

−0.104876 − 1.552491 Ç,

−0.104876 + 1.552491 Ç<  

A root locus plot is given below, substituting values for 
the model parameters: 

ParametricPlotComplexPlane@
CharacteristicRoots@H@sD, sD ê.
8R → 1, L → 1, c1 → 0.7,

J1 → 1, J2 → JJ, k → 1<,
8JJ, 0.1, 2<D;  



 - 34 - 

-0.5 -0.4 -0.3 -0.2 -0.1

-2

-1

1

2

 
Figure 44. Root locus plot over the complex plane. 

5.4 Queries and Automatic 
Generation of Models 

This example of advanced scripting shows how the 
easily accessible internal representation in the form of 
abstract syntax trees can be used for automatic 
generation of models. The CircuitTemplateFn is a 
function returning a symbolic representation of a 
model. This function has two formal pattern parameters 
where the second one specifies an internal structure. 
The first parameter is name_, which matches symbolic 
names. The underscore in name_ is not part of the 
parameter identifier itself, it is just a short form of the 
syntax name:_, which means that name will match 
any item.  

The second pattern parameter is the list 
{type1_,type2_,type3_}, internally containing 
the three pattern parameters type1_, type2_,
type3_. This second parameter will therefore only 
match lists of length 3, thereby binding the pattern 
variables type1, type2, and type3 to the 
three type names presumably occurring in the list at 
pattern matching. For example, matching 
{type1_,type2_,type3_} against the list 
{Capacitor, Conductor, Resistor} will 
bind the variable type1 to Capacitor, type2 to 
Conductor, and type3 to Resistor. 

CircuitTemplateFn@name_,
8type1_, type2_, type3_<D := H
Model@name,
type1 a;

type2 b;

type3 c;

Modelica.Electrical.Analog.Basic.Ground g;

Equation@
Connect@g.p, a.pD;
Connect@a.n, b.pD;
Connect@b.p, c.pD;
Connect@b.n, g.pD;
Connect@c.n, g.pD
D
DL  

The aim of this exercise is to automatically generate 
models based on this template for all combinations of 
the types that extend the type OnePort in the library 
package Modelica.Electrical.Analog.Basic. 

First we need to extract all the types that extends 
the type OnePort in the library package 
Modelica.Electrical.Analog.Basic. This is 
done by performing a query operation on the internal 
form using the Select function which has two 
arguments: the list to be searched, and a predicate 
function returning true or false. Only the elements for 
which the predicate is true are returned. In this case the 
query is performed on the list of model names in the 
package 
Modelica.Electrical.Analog.Basic. This list 
is returned by the function ListModelNames. 

First we call GetDefinition below to load the 
Modelica.Eletrical.Analog.Basic package 
into the internal symbol table: 

GetDefinition@Modelica.Electrical.Analog.BasicD; 

Then we perform the actual query: 

types=Select[
ListModelNames[
Modelica.Electrical.Analog.Basic

],
Function[

modelName,
Not[

FreeQ[
GetDefinition[

modelName,
Format->MathModelicaFullForm

],
HoldPattern[

Extends[
TYPE[Modelica.Electrical.

Analog.Interfaces.
OnePort,{},{},{}

]
]

]
]

]



 - 35 - 

]
]

8Modelica.Electrical.Analog.Basic.Inductor,
Modelica.Electrical.Analog.Basic.Capacitor,

Modelica.Electrical.Analog.Basic.Conductor,

Modelica.Electrical.Analog.Basic.Resistor<  

All 64 three-type combinations, e.g. 
{Inductor,Inductor,Inductor}, 
{Inductor,Inductor,Capacitor}, etc., their 
prefixes not shown for brevity, of these 4 types are 
computed by taking a generalized outer product of the 
three types lists, which is flattened. 

typecombinations =

Flatten@Outer
@List, types, types, typesD,
2D;  

Length@typecombinationsD  

64 

We generate a list of 64 synthetic model names by 
concatenating the string "foo" with numbers, using the 
Mathematica string concatenation operation "<>": 

names = Table@ToExpression@
"foo" <> ToString@iDD, 8i, 64<D  

8foo1, foo2, foo3, foo4, foo5, foo6,

foo7, foo8, foo9, foo10, foo11, foo12,

foo13, foo14, foo15, foo16, foo17, foo18,

foo19, foo20, foo21, foo22, foo23, foo24,

foo25, foo26, foo27, foo28, foo29, foo30,

foo31, foo32, foo33, foo34, foo35, foo36,

foo37, foo38, foo39, foo40, foo41, foo42,

foo43, foo44, foo45, foo46, foo47, foo48,

foo49, foo50, foo51, foo52, foo53, foo54,

foo55, foo56, foo57, foo58, foo59, foo60,

foo61, foo62, foo63, foo64<  

Here all 64 test models are created by the call to 
MapThread which applies CircuitTemplateFn to 
each combination. 

MapThread@CircuitTemplateFn,
8names, typecombinations<D;  

We retrieve the definition of one of the automatically 
generated models, foo53, and unparse it from its 
internal representation to the Modelica textual form: 

GetDefinition@foo53, Format → ModelicaFormD  
model foo53

Modelica.Electrical.Analog.
Basic.Resistor a;

Modelica.Electrical.Analog.
Basic.Capacitor b;

Modelica.Electrical.Analog.

Basic.Inductor c;
Modelica.Electrical.Analog.

Basic.Ground g;
equation

connect(g.p,a.p);
connect(a.n,b.p);
connect(b.p,c.p);
connect(b.n,g.p);
connect(c.n,g.p);

end foo53;

We are now creating a Total model within which all 
64 generated models will be instantiated. First create an 
empty model: 

Model@Total,
D;  

Then use the Within statement to move the current 
scope inside the model and then make a declaration, 
i.e. instantiation of the first test model: 

Within@TotalD  

Declare@foo1 m1D  

Since we are free to use Mathematica scripting we had 
better use a loop for the 63 remaining declarations: 

Do@
With@8type = names@@iDD,
instanceName =

ToExpression@"m" <> ToString@iDD<,
Declare@type instanceNameD
D,
8i, 2, Length@namesD<
D;  

Finally we move the scope back to the global scope. 

EndWithin@D  

Retrieve the generated model Total, where we have 
abbreviated the output to save some space. 

GetDefinition@Total, Format → ModelicaFormD  
model Total

foo64 m64;
foo63 m63;
foo62 m62;
foo61 m61;
foo60 m60;
...
foo3 m3;
foo2 m2;
foo1 m1;

end Total;

Finally, simulate the Total model to verify that the 
test models are semantically correct. 



 - 36 - 

Simulate@Total, 8t, 0, 1<D;  

5.5 Language Extension Example 
for PDEs. 

As previously stated, the uniform prefix syntax makes 
it easy to experiment with language extensions since 
both the syntax and the internal representation are 
obtained automatically. The example below is from an 
experiment in extending Modelica with partial 
differential equations [Saldamli-01]. Here we have 
added a new restricted class called Domain, the prefix 
Space, and a new kind of equation section called 
Boundary containing equations that specify boundary 
conditions. 
Class@TestModel,
Parameter Real xc m 0;

Parameter Real yc m 0;

Parameter Real r = 1;

Parameter Real delta = 0;

Domain Circle dom@8xc m xc, yc m yc, r m r<D;
Space Real u;

Boundary@
uP8dom, 0<T m finit@dom.x, dom.yD;
∂tuP8dom, 0<T m 0;

uP8dom.lefthalf, time<T m delta;

∂xuP8dom.lefthalf, time<T m 0;

∂yuP8dom.lefthalf, time<T m 0;

uP8dom.righthalf, time<T m delta;

∂xuP8dom.righthalf, time<T m 0;

∂yuP8dom.righthalf, time<T m 0;

D;
Equation@

∂8t,2<uP8dom, time<T m ∂8x,2<uP8dom, time<T
+ ∂8y,2<uP8dom, time<T;

D;
D;  

A plotted result of a solution at a specific time instant 
from running the prototype simulator on this model: 

30
40

50
60

70
30

40

50

60

70

-1

-0.5

0

0.5

1

30
40

50
60

70  
Figure 45. Plot of PDEs solution at a specific time 
instant. 

6 Conclusion 
This paper has presented a number of important issues 
concerning integrated interactive programming 
environments, especially with respect to the 
MathModelica environment for object-oriented 
modeling and simulation. We have especially 
emphasized environment properties such as integration 
and extensibility.  

One of the current strong trends in software 
systems is the gradual unification of documents and 
software. Everything will eventually be integrated into 
a uniform, perhaps XML-based, representation. The 
integration of documents, model code, graphics, etc. in 
the MathModelica environment is one strong example 
of this trend.  

Another important aspect is extensibility. 
Experience has shown that tools with built-in 
extensibility mechanisms can cope with unforeseen 
user needs to a great extent, and therefore often have a 
substantially longer effective usage lifetime.  

The MathModelica system is currently one of the 
best existing examples of advanced integrated 
extensible environments. However, as most  systems, it 
is not perfect. There are still a number of possible 
future improvements in the system including enhanced 
programmability and extensibility. 

Acknowledgements 
We thank the entire MathModelica team from 
MathCore AB and the Dymola team at Dynasim, as 
well as our colleagues at PELAB - the Programming 
Environment Laboratory, without whom this work 
would not have been possible. We also would like to 
thank Peter Bunus for inspiration and help in preparing 
this paper. 

Acknowledgements to the following individuals in the 
MathModelica team for contributions to the design and 
implementation of the MathModelica system: Andreas 
Karström, Pontus Lidman, Henrik Johansson, Yelena 
Turetskaya, Mikael Adlers, Peter Aronsson, Vadim 
Engelsson, and to Jan Brugård and Andreas Idebrant 
for contributions to the MathModelica documentation 
including a number of the examples used in this paper. 
Thanks to Kristina Swenningsson for creating a nice 
working athmosphere at MathCore AB. 

Modelica Association Members 
The authors would also like to thank the other members 
of the Modelica Association (see below) for inspiring 
discussions and contributions to the Modelica language 
design. Modelica 2.0 was released March 15, 2002. 
The Modelica Association was formed in Linköping 
Sweden, at Feb. 5, 2000 and is responsible for the 
design of the Modelica language (see 
www.modelica.org). 

Special thanks to Hilding Elmqvist, who was the 
first chairman of the Modelica Association, and to 



 - 37 - 

Martin Otter, second chairman of the Modelica 
Association. 

Contributors to the Modelica Language, version 2.0 

Peter Aronsson, MathCore, Linköping 
Bernhard Bachmann , University of Applied Sciences, 
Bielefeld 
Peter Beater, University of Paderborn, Germany 
Dag Brück, Dynasim, Lund, Sweden 
Peter Bunus, Linköping University, Sweden 
Hilding Elmqvist, Dynasim, Lund, Sweden  
Vadim Engelson, Linköping University, Sweden 
Peter Fritzson, Linköping University, Sweden 
Rüdiger Franke, ABB Corporate Research, Ladenburg 
Pavel Grozman, Equa, Stockholm, Sweden 
Johan Gunnarsson, MathCore, Linköping 
Mats Jirstrand, MathCore, Linköping 
Sven Erik Mattsson, Dynasim, Lund, Sweden 
Hans Olsson, Dynasim, Lund, Sweden 
Martin Otter, German Aerospace Center, 
Oberpfaffenhofen, Germany 
Levon Saldamli, Linköping University, Sweden 
Michael Tiller, Ford Motor Company, Detroit, U.S.A. 
Hubertus Tummescheit, Lund Institute of Technology, 
Sweden 
Hans-Jürg Wiesmann, ABB Corporate Research Ltd., 
Baden, Switzerland 

Contributors to the Modelica Standard Library, 
version 2.0 

Peter Beater, University of Paderborn, Germany 
Christoph Clauß, Fraunhofer Institute for Integrated 
Circuits, Dresden, Germany 
Martin Otter, German Aerospace Center, 
Oberpfaffenhofen, Germany 
André Schneider, Fraunhofer Institute for Integrated 
Circuits, Dresden, Germany

Funding Organizations 
Several funding organizations have over the years 
contributed to research on object-oriented modeling 
language design and simulation tool technology at 
PELAB, Department of Computer and Information 
Science, Linköping University, preceding the 
development of the MathModelica system. These 
include NUTEK - The Swedish Board for Technical 
Development, e.g within the Modelica Tools project, 
TFR - the previous Swedish Council for Technical 
research, SSF - the Swedish Strategic Research 
Foundation under the ECSEL project, WITAS – the 
Wallenberg Laboratory for Information Technology 
and Autonomous Systems at Linköping University, and 
EU under the projects GIPE-II, PREPARE, and 
Europort. We also acknowledge support from SKF AB. 

References 
[3DSystems-00] 3Dsystems Inc. Stereo Lithography Interface 
Specification - The STL format. 2000. 

[Abadi-Cardelli-96] Martin Abadi and Luca Cardelli, A 
Theory of Objects, Springer Verlag, ISBN 0-387-94775-2, 
1996. 

[Andersson-94] Mats Andersson. Object-Oriented Modeling 
and Simulation of Hybrid Systems. Ph.D. thesis, Department 
of Automatic Control, Lund Institute of Technology, Lund, 
Sweden, 1994. 

[Breunese-97] Breunese A.P.J., and J.F. Broenink: Modeling 
mechatronic systems using the SIDOPS+ language, 
Proceedings of ICBGM'97, 3rd International Conference on 
Bond Graph Modeling and Simulation, Phoenix, Arizona, 
SCS Publishing, San Diego, California, Simulation Series, 
Vol. 29, No.1, ISBN 1-56555-050-1, pp 301-306. January 12-
15, 1997. 

[Bunus-00] Peter Bunus, Vadim Engelson, Peter Fritzson. 
Mechanical Models Translation and Simulation in Modelica. 
In Proceedings of Modelica Workshop 2000. Lund 
University, Lund, Sweden, O ct 24-26, 2000. 

[Elmqvist-78] Hilding Elmqvist. A Structured Model 
Language for Large Continuous Systems. PhD  thesis, 
Department of Automatic Control, Lund Institute of 
Technology, Lund, Sweden. 

[Elmqvist-96] Hilding Elmqvist, Dag Bruck, Martin Otter. 
Dymola - User's Manual. Dynasim AB, Research Park Ideon, 
Lund, 1996. 

[Elmqvist-99] Hilding Elmqvist, Sven-Erik Mattsson and 
Martin Otter. Modelica - A Language for Physical System 
Modeling, Visualization and Interaction. In Proceedings of 
the 1999 IEEE Symposium on Computer-Aided Control 
System Design, Hawaii, Aug. 22-27, 1999. 

[Engelson-99] Vadim Engelson, Håkan Larsson, Peter 
Fritzson. 1999. A Design, Simulation and Visualization 
Environment for Object-Oriented Mechanical and Multi-
Domain Models in Modelica. In Proceedings of  the IEEE 
International Conference on Information Visualization, pp 
188-193,  London, July 14-16, 1999. 

[Engelson-00] Vadim Engelson. Tools for Design, Interactive 
Simulation, and Visualization of Object-Oriented Models in 
Scientific Computing. Ph.D. Thesis, Dept. of Computer and 
Information Science, Linköping University, Linköping, 
Sweden. 2000. 

[Ernst-97] Thilo Ernst, Stephan Jähnichen, and Matthias 
Klose: The Architecture of the Smile/M Simulation 
Environment. Proc. 15th IMACS World Congress on 
Scientific Computation, Modelling and Applied Mathematics, 
Vol. 6, Berlin, Germany, pp. 653-658, 1997. 

[Fritzson-83] Peter Fritzson. Symbolic Debugging through 
Incremental Compilation in an Integrated Environment. The 
Journal of Systems and Software, 3, 285-294, (1983). 

[Fritzson-92a] Peter Fritzson, Dag Fritzson. The Need or 
High-Level Programming Support in Scientific Computing - 
Applied to Mechanical Analysis. Computers and Structures, 
Vol. 45, No. 2, pp. 387-295, 1992. 

[Fritzson-92b]Peter Fritzson, Lars Viklund, Johan Herber, 
Dag Fritzson: Industrial Application of Object-Oriented 
Mathematical Modeling and Computer Algebra in 
Mechanical Analysis, In Proc. of TOOLS EUROPE'92, 
Dortmund, Germany, March 30 - April 2, 1992. Published by 
Prentice Hall. 



 - 38 - 

[Fritzson-95] Peter Fritzson, Lars Viklund, Dag Fritzson, 
Johan Herber. High Level Mathematical Modeling and 
Programming in Scientific Computing. IEEE Software, pp. 
77-87, July 1995. 

[Fritzson-98]  Peter Fritzson and Vadim Engelson. Modelica 
- A Unified Object-Oriented Language for System Modeling 
and Simulation. In Proceedings of the 12th European 
Conference on Object-Oriented Programming, ECOOP'98 , 
Brussels, Belgium, July 20-24, 1998. 

[Fritzson-98b] Peter Fritzson, Vadim Engelson, Johan 
Gunnarsson. An Integrated Modelica Environment for 
Modeling, Documentation and Simulation. In Proceedings of 
Summer Computer Simulation Conference '98, Reno, 
Nevada, USA, July 19-22, 1998. 

[Goldberg-89] Adele Goldberg and David Robson, Smalltalk-
80, The Language. Addison-Wesley, 1989  

[Jirstrand-99] Mats Jirstrand, Johan Gunnarsson, and Peter 
Fritzson. MathModelica - a  new modeling and simulation 
environment for Modelica. In Proceedings of the Third 
International Mathematica Symposium, IMS’99, Linz, 
Austria, Aug, (1999). 

[Knuth-84]  Donald E. Knuth.  Literate Programming. The 
Computer Journal, NO27(2) ( May): 97-111. (1984)  

[Knuth-94] Donald E. Knuth, Silvio Levy.  The Cweb 
System of Structured Documentation /Version 3.0. Addison-
Wesley Pub Co; 1994. 

[MA-97a] Modelica Association. Modelica - A Unified 
Object-Oriented Language for Physical Systems Modeling - 
Tutorial and Design Rationale Version 1.0, Sept 1997. 

[MA-97b] Modelica Association. Modelica - A Unified 
Object-Oriented Language for Physical Systems Modeling - 
Language Specification Version 1.0, Sept 1997. 

[MA-02a] Modelica Association. Modelica - A Unified 
Object-Oriented Language for Physical Systems Modeling - 
Tutorial and Design Rationale Version 2.0, March 2002. 

[MA-02b] Modelica Association. Modelica - A Unified 
Object-Oriented Language for Physical Systems Modeling - 
Language Specification Version 2.0, February 2002. 

[Mattsson-93] Sven-Erik Mattsson, Mats Andersson, and 
Karl-Johan Åström. Object-oriented modelling and 
simulation. In Linkens, Ed., CAD for Control Systems, 
chapter 2, pp. 31-69. Marcel Dekker Inc, New York, 1993.  

[Oh-96] Min Oh,3 and C.C. Pantelides. A modelling and 
simulation language for combined lumped and distributed 
parameter systems. Computers and Chemical Engineering, 
20, pp. 611--633, 1996.  

[Piela-91] Piela P.C., T.G. Epperly, K.M. Westerberg, and 
A.W. Westerberg. ASCEND: An object-oriented computer 
environment for modeling and analysis: the modeling 
language. Computers and Chemical Engineering, 15:1, pp. 
53--72, 1991.  

[Otter-95] Martin Otter. Objektorientierte Modellierung 
mechatronischer Systeme am Beispiel geregelter Roboter, 
Dissertation, Fortshrittberichte VDI, Reihe 20, Nr 147. 1995. 

[Otter-96] Martin Otter, Hilding Elmqvist, Francois E. 
Cellier. Modeling of Multibody Systems with the Object-
oriented Modeling Language Dymola. Nonlinear Dynamics, 
9:91-112,  Kluwer Academic Publishers. 1996. 

[Sahlin-96] Per Sahlin, A. Bring, and E.F. Sowell. The 
Neutral Model Format for building simulation, Version 3.02. 
Technical Report, Department of Building Sciences, The 
Royal Institute of Technology, Stockholm, Sweden, June 
1996.  

[Saldamli-01] Levon Saldamli, Peter Fritzson. A Modelica-
Based Language for Object-Oriented Modeling with Partial 
Differential Equations. In Proceedings of the 4th 
International EuroSim Congress, Delft, the Netherlands, June  
26-29, 2001. 

[Sandewall-78] Erik Sandewall. Programming in an 
Interactive Environment: the "LISP" Experience. Computing 
Surveys, Vol. 10, No. 1, March 1978. 

[Teitelman-69] Warren Teitelman. Toward a Programming 
Laboratory. In Proc. of First Int. Jt. Conf. on Artificial 
Intelligence, 1969. 

[Teitelman-74] Warren Teitelman. INTERLISP Reference 
Manual. Xerox Palo Alto Research Center, Palo Alto, CA, 
1974. 

[Teitelman-77] Teitelman, W. A display oriented 
programmer's assistant. Computer, 39-50. (1977, August 22-
25) 

[Tiller-01] Michael M. Tiller. Introduction to Physical 
Modeling with Modelica. Kluwer Academic Publishers, 2001. 

[Visio] http://www.microsoft.com/office/visio/  

[Wolfram-88] Stephen Wolfram. Mathematica System for 
Doing Mathematics by Computer. Addison-Wesley, 1988. 

[Wolfram-97] Stephen Wolfram. The Mathematica Book, 
Wolfram Media, 1997. 

 

 

 

 

 
 
 
 
 
 


