

Modelica – A General Object-Oriented Language for Continuous and
Discrete-Event System Modeling and Simulation

Peter Fritzson, Peter Bunus

PELAB - Programming Environment Laboratory
Department of Computer and Information Science,

Linköping University, SE-581 83, Linköping, Sweden
{petbu,petfr}@ida.liu.se

Abstract

Modelica is a general equation-based object-oriented
language for continuous and discrete-event modeling of
physical systems for the purpose of efficient simulation.
The language unifies and generalizes previous object-
oriented modeling languages. The Modelica modeling
language and technology is being warmly received by the
world community in modeling and simulation. It is
bringing about a revolution in this area, based on its ease
of use, visual design of models with combination of lego-
like predefined model building blocks, its ability to define
model libraries with re-usable components and its
support for modeling and simulation of complex
applications involving parts from several application
domains. In this paper we present the Modelica language
with emphasis on its language features and one of the
associated simulation environments. Simulation models
can be developed in an integrated problem-solving
environment by using a graphical editor for connection
diagrams. Connections are established just by drawing
lines between objects picked from a class library. The
principles of object oriented physical systems modeling
and the multi-domain capabilities of the language are
presented in the paper by several examples.

1. Introduction

Modelica is a new language for hierarchical object-
oriented physical modeling which is developed through an
international effort [6][3] [8][9]. The language unifies and
generalizes previous object-oriented modeling languages.
Modelica is intended to become a de facto standard. The
language has been designed to allow tools to generate
efficient simulation code automatically with the main
objective to facilitate exchange of models, model libraries
and simulation specifications. It allows defining
simulation models modularly and hierarchically and
combining various formalisms expressible in the more
general Modelica formalism. The multidomain capability

of Modelica gives the user the possibility to combine
electrical, mechanical, hydraulic, thermodynamic etc,
model components within the same application model.
Compared to other equation based languages available
today. Modelica is primarily a modeling language,
sometimes called hardware description language, that
allows the user to specify mathematical models of
complex physical systems, e.g. for the purpose of
computer simulation of dynamic systems where behavior
evolves as a function of time. Modelica is also an object-
oriented equation based programming language, oriented
towards computational applications with high complexity
requiring high performance. The four most important
features of Modelica are:
• Modelica is primarily based on equations instead of

assignment statements. This permits acausal modeling
that gives better reuse of classes since equations do
not specify a certain data flow direction. Thus a
Modelica class can adapt to more than one data flow
context.

• Modelica has multi-domain modeling capability,
meaning that model components corresponding to
physical objects from several different domains such
as e.g. electrical, mechanical, thermodynamic,
hydraulic, biological and control applications can be
described and connected.

• Modelica is an object-oriented language with a
general class concept that unifies classes, generics —
known as templates in C++, and general subtyping
into a single language construct. This facilitates reuse
of components and evolution of models.

• Modelica has a strong software component model,
with constructs for creating and connecting
components. Thus the language is ideally suited as an
architectural description language for complex
physical systems, and to some extent for software
systems.

The reader of the paper is referred to [9][8] and [13]
for a complete description of the language and its

functionality from the perspective of the motivations and
design goals of the researchers who developed it.

In the following section, the object oriented
mathematical modeling principle is briefly introduced
together some Modelica language constructs. In Section 3
the continuous system modeling capabilities of the
Modelica language are introduced with the help of a
simple simulation example. Section 4 and Section 5
present some discrete Modelica language constructs and
corresponding discrete and hybrid simple simulation
examples. In Section 6 the Modelica package concept is
briefly introduced and a mechanical example is provided
from the Modelica Standard Multi-Body Library. Section
7 introduces MathModelica: a fully integrated program
solving environment for full system modeling and
simulation. Finally, future work and concluding remarks
are given.

2. Object-Oriented Mathematical Modeling

Traditional object-oriented programming languages
like Simula, C++, Java, and Smalltalk, as well as
procedural languages such as Fortran or C, support
programming with operations on stored data. The stored
data of the program includes variable values and object
data. The number of objects often changes dynamically.
The Smalltalk view of object-orientation emphasizes
sending messages between (dynamically) created objects.

The Modelica view on object-orientation is different
since the Modelica language emphasizes structured
mathematical modeling. Object-orientation is viewed as a
structuring concept that is used to handle the complexity
of large system descriptions. A Modelica model is
primarily a declarative mathematical description, which
simplifies further analysis. Dynamic system properties are
expressed in a declarative way through equations.

The concept of declarative programming is inspired by
mathematics where it is common to state or declare what
holds, rather than giving a detailed stepwise algorithm on
how to achieve the desired goal as is required when using
procedural languages. This relieves the programmer from
the burden of keeping track of such details. Furthermore,
the code becomes more concise and easier to change
without introducing errors.

Thus, the Modelica view of object-orientation, from
the point of view of object-oriented mathematical
modeling, can be summarized as follows:
• Object-orientation is primarily used as a structuring

concept, emphasizing the declarative structure and
reuse of mathematical models.

• Dynamic model properties are expressed in a
declarative way through equations.

• An object is a collection of instance variables and
equations that share a set of stored data.

• Object orientation is not viewed as dynamic message
passing.

The declarative object-oriented way of describing
systems and their behavior offered by Modelica is at a
higher level of abstraction than the usual object-oriented
programming since some implementation details can be
omitted. For example, the users do not need to write code
to explicitly transport data between objects through
assignment statements or message passing code. Such
code is generated automatically by the Modelica compiler
based on the given equations.

Just as in ordinary object-oriented languages classes
are blueprints for creating objects. Both variables and
equations can be inherited between classes. Function
definitions can also be inherited. However, specifying
behavior is primarily done through equations instead of
via methods. There are also facilities for stating
algorithmic code including functions in Modelica, but this
is an exception rather than the rule.

As briefly mentioned before, acausal modeling is a
declarative modeling style meaning modeling based on
equations instead of assignment statements. The main
advantage is that the solution direction of equations will
adapt to the data flow context in which the solution is
computed. The data flow context is defined by stating
which variables are needed as outputs, and which are
external inputs to the simulated system. The acausality of
Modelica library classes makes these more reusable than
traditional classes containing assignment statements where
the input-output causality is fixed.

To illustrate the idea of acausal physical modeling we
give an example of a simple electrical circuit, see Figure
1. The connection diagram of the electrical circuit shows
how the components are connected and roughly
corresponds to the physical layout of the electrical circuit
on a printed circuit board. The physical connections in the
real circuit correspond to the logical connections in the
diagram. Therefore the term physical modeling is quite
appropriate.

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

Figure 1. Connection diagram of the acausal simple

circuit model.
The Modelica SimpleCircuit class below directly

corresponds to the circuit depicted in the connection
diagram of Figure 1. Each graphic object in the diagram
corresponds to a declared instance in the simple circuit
model. The model is acausal since no signal flow, i.e

cause-and-effect flow, is specified. Connections between
objects are specified using the connect statement, which is
a special syntactic form of equation that we will tell more
about later.

model SimpleCircuit
 Resistor R1(R=10);
 Capacitor C(C=0.01);
 Resistor R2(R=100);
 Inductor L(L=0.1);
 VsourceAC AC;
 Ground G;
equation
 connect (AC.p, R1.p);// Capacitor circuit
 connect (R1.n, C.p);
 connect (C.n, AC.n);
 connect (R1.p, R2.p);// Inductor circuit
 connect (R2.n, L.p);
 connect (L.n, C.n);
 connect (AC.n, G.p);// Ground
end SimpleCircuit;

As a comparison we show the same circuit modeled

using causal block oriented modeling (e.g using Simulink)
depicted as a diagram in

Figure 2. Here the physical topology is lost – the
structure of the diagram has no simple correspondence to
the structure of the physical circuit board. This model is
causal since the signal flow has been deduced and is
clearly shown in the diagram.

-1

 1

sum3

+1

 -1

sum1

+1

+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Figure 2. The simple circuit model using causal
block oriented modeling with explicit signal flow.

2.1. Modelica Classes

Modelica, like any object-oriented computer language,
provides the notions of classes and objects, also called
instances, as a tool for solving modeling and programming
problems. Every object in Modelica has a class that
defines its data and behavior. A class has three kinds of
members:
• Fields are data variables associated with a class and

its instances. Fields store results of computations

caused by solving the equations of a class together
with equations from other classes.

• Equations specify the behavior of a class. The way in
which the equations interact with equations from
other classes determines the solution process, i.e.
program execution.

• Classes can be members of other classes.
Here is the declaration of a simple class that might

represent a point in a three-dimensional space:

class Point
 "point in a three-dimensional space"
 public Real x;
 Real y, z;
end Point;

2.2. Inheritance

One of the major benefits of object-orientation is the
ability to extend the behavior and properties of an existing
class. The original class, known as the superclass or base
class, is extended to create a more specialized version of
that class, known as the subclass or derived class. In this
process, the behavior and properties of the original class
in the form of field declarations, equations, and other
contents is reused, or inherited, by the subclass.

Let us regard an example of extending a simple
Modelica class, e.g. the class Point introduced
previously. First we introduce two classes named
ColorData and Color, where Color inherits the data
fields to represent the color from class ColorData and
adds an equation as a constraint. The new class
ColoredPoint inherits from multiple classes, i.e. uses
multiple inheritance, to get the position fields from class
Point and the color fields together with the equation
from class Color.

record ColorData
 Real red;
 Real blue;
 Real green;
end ColorData;

class Color
 extends ColorData;
equation
 red + blue + green = 1;
end Color;

class Point
 public Real x;
 Real y, z;
end Point;

class ColoredPoint
 extends Point;
 extends Color;
end ColoredPoint;

2.3. Modelica Equations

As we already stated, Modelica is primarily an
equation-based language in contrast to ordinary
programming languages where assignment statements
proliferate. Equations are more flexible than assignments
since they do not prescribe a certain data flow direction.
This is the key to the physical modeling capabilities and
increased reuse potential of Modelica classes.

Thinking in equations is a bit unusual for most
programmers. In Modelica the following holds:
• Assignment statements in conventional languages are

usually represented as equations in Modelica.
• Attribute assignments are represented as equations.
• Connections between objects generate equations.

Equations are more powerful than assignment
statements. For example, consider a resistor equation
where the resistance R multiplied by the current i is equal
to the voltage v:

R*i = v;

This equation can be used in three ways corresponding
to three possible assignment statements: computing the
current from the voltage and the resistance, computing the
voltage from the resistance and the current, or computing
the resistance from the voltage and the current. This is
expressed in the following three assignment statements:

i := v/R;
v := R*i;
R := v/i;

2.4. Components

Components are connected via the connection
mechanism realized by the Modelica language, which can
be visualized in connection diagrams. A component
framework realizes components and connections, and
insures that communication works over the connections.
For systems composed of acausal components the
direction of data flow, i.e. the causality, is initially
unspecified for connections between those components.
Instead the causality is automatically deduced by the
compiler when needed. Components have well-defined
interfaces consisting of ports, also known as connectors,
to the external world. These concepts are illustrated in

Figure 3.

Component

Interface

Connection Component

Connector
Acausal coupling

Causal coupling

Figure 3. Connecting two components within a
component framework.

Modelica uses a slightly different terminology

compared to most literature on software component
systems: connector and connection, rather than port and
connector respectively in software component literature.

In the context of Modelica class libraries software
components are Modelica classes. However when building
particular models, components are instances of those
Modelica classes. A component class should be defined
independently of the environment where it is used, which
is essential for its reusability. This means that in the
definition of the component including its equations, only
local variables and connector variables can be used. No
means of communication between a component and the
rest of the system, apart from going via a connector, is
allowed. A component may internally consist of other
connected components, i.e. hierarchical modeling.

2.5. Connectors and Connector Classes

Modelica connectors are instances of connector

classes, i.e. classes with the keyword connector or
classes with the class keyword that fulfill the constraints
of connector restricted classes. Such connectors declare
variables that are part of the communication interface of a
component defined by the connectors of that component.
Thus, connectors specify the interface for interaction
between a component and its surroundings.

 v +

i

pin

Figure 4. A component with an electrical pin

connector; i.e. an instance of a Pin
For example, class Pin is a connector class that can be used

to specify the external interface for electrical components that
have pins as interaction points.

connector Pin
 Voltage v;
 flow Current i;
end Pin;
Pin pin; // An instance pin of class Pin

Since Modelica is a multidomain language, connector
classes can be formulated for a number of different
application domains. The Flange connector class below,
analogous to Pin, is used to describe interfaces for one-
dimensional interaction in the mechanical domain by
specifying the position s and force f at a point of
interaction.

 s

f

flange

Figure 5. A component with a mechanical flange

connector.

connector Flange
 Position s;
 flow Force f;
end Flange;
Flange flange; // An instance flange of
 class Flange

2.6. Connections

Connections between components can be established
between connectors of equivalent type. Modelica supports
equation-based acausal connections, which means that
connections are realized as equations. For acausal
connections, the direction of data flow in the connection
need not be known. Additionally, causal connections can
be established by connecting a connector with an input
attribute to a connector declared as output.

Two types of coupling can be established by
connections depending on whether the variables in the
connected connectors are non-flow (default), or declared
using the prefix flow:
• Equality coupling, for non-flow variables, according

to Kirchhoff's first law.
• Sum-to-zero coupling, for flow variables, according

to Kirchhoff's current law.
For example, the keyword flow for the variable i of

type Current in the Pin connector class indicates that all
currents in connected pins are summed to zero, according
to Kirchhoff’s current law.

pin 1 pin 2

+ +

i i

v v

Figure 6. Connecting two components that have

electrical pins.

Connection statements are used to connect instances of
connection classes. A connection statement
connect(pin1,pin2) with pin1 and pin2 of

connector class Pin, connects the two pins so that they
form one node. This produces two equations, namely:

pin1.v = pin2.v
pin1.i + pin2.i = 0

The first equation says that the voltages of the
connected wire ends are the same. The second equation
corresponds to Kirchhoff's current law saying that the
currents sum to zero at a node (assuming positive value
while flowing into the component). The sum-to-zero
equations are generated when the prefix flow is used.
Similar laws apply to flows in piping networks and to
forces and torques in mechanical systems.

3. Continuous Time Simulation

As an introduction to the Modelica continuous time

simulation capabilities we will present a model of a rocket
landing on the moon surface adapted from [4].

Here is a simple class called CelestialBody that can
be used to store data related to celestial bodies such as the
earth, the moon, asteroids, planets, comets, and stars:

class CelestialBody
 constant Real g = 6.672e-11;
 parameter Real radius;
 parameter String name;
 Real mass;
end CelestialBody;

Equations is the primary means of specifying the

behavior of a class in Modelica, even though algorithms
and functions are also available. The way in which the
equations interact with equations from other classes
determines the solution process, i.e. program execution,
where successive values of variables are computed over
time. This is exactly what happens during dynamic system
simulation. During solution of time dependent problems,
the variables store results of the solution process at the
current time instant.

The class Rocket embodies the equations of vertical
motion for a rocket which is influenced by an external
gravitational force field gravity, and the force thrust
from the rocket motor, acting in the opposite direction to
the gravitational force, as in the expression for
acceleration below:

mass
gravitymassthrust

onaccelerati
*−

=

The following three equations are first-order differential
equations stating well-known laws of motion between altitude,
vertical velocity, and acceleration:

()thrustabstemassLossRasmas *−=′

velocityealtitud =′

onacceleratiyvelocit =′

All these equations appear in the class Rocket below,
where the mathematical notation (') for derivative has
been replaced by the pseudo function der() in Modelica.
The derivative of the rocket mass is negative since the
rocket fuel mass is proportional to the amount of thrust
from the rocket motor.

class Rocket "rocket class"
 parameter String name;
 Real mass(start=1038.358);
 Real altitude (start= 59404);
 Real velocity(start= -2003);
 Real acceleration;
 Real thrust; // Thrust force on rocket
 Real gravity;// Gravity forcefield
 parameter Real massLossRate=0.000277;
equation
 (thrust-mass*gravity)/mass=acceleration;
 der(mass) = -massLossRate * abs(thrust);
 der(altitude) = velocity;
 der(velocity) = acceleration;
end Rocket;

The following equation, specifying the strength of the

gravitational force field, is placed in the class
MoonLanding in the next section since it depends on both
the mass of the rocket and the mass of the moon:

()2..
.*.

radiusmoonaltitudeapollo
massmoongmoon

gravity
+

=

The amount of thrust to be applied by the rocket motor
is specific to a particular class of landings, and therefore
also belongs to the class MoonLanding:

()

()

0
2

1

else
force

thenimethrustEndTtimeifelse
force

theneaseTimethrustDecrtimeifthrust

<

<=

Members of a Modelica class can have two levels of
visibility: public or protected. The default is public
if nothing else is specified, e.g. regarding the variables
force1 and force2 in the class MoonLanding below.
The public declaration of force1, force2, apollo,
and moon means that any code with access to a
MoonLanding instance can read or update those values.
The other possible level of visibility, specified by the
keyword protected – e.g. for the variables
thrustEndTime and thrustDecreaseTime, means
that only code inside the class as well as code in classes
that inherit this class are allowed access. However, only
code inside the class is allowed access to the same
instance of a protected variable.

Note that an occurrence of one of the keywords
public or protected means that all member

declarations following that keyword assume the
corresponding visibility until another occurrence of one of
those keywords.

The variables thrust, gravity and altitude
belong to the apollo instance of the Rocket class and
are therefore prefixed by apollo in references such as
apollo.thrust. The gravitational constant g, the mass,
and the radius belong to the particular celestial body
called moon on which surface the apollo rocket is
landing.

class MoonLanding
 parameter Real force1 = 36350;
 parameter Real force2 = 1308;
protected
 parameter Real thrustEndTime = 210;
 parameter Real thrustDecreaseTime = 43.2;
public
 Rocket apollo(name="apollo13");
 CelestialBody moon (name="moon",
 mass=7.382e22,
 radius=1.738e6);
equation
 apollo.thrust =
 if (time<thrustDecreaseTime) then
 force1
 else if (time<thrustEndTime) then
 force2
 else 0;
 apollo.gravity = moon.g*moon.mass
 /(apollo.altitude + moon.radius)^2;
end MoonLanding;

We simulate the MoonLanding model during the time
interval {0, 230} by the following command, using the
MathModelica simulation environment:

Simulate[MoonLanding, {t, 0, 230}]

Since the solution for the altitude of the Apollo rocket
is a function of time, it can be plotted in a diagram, see
Figure 7. It starts at an altitude of 59404 (not shown in the
diagram) at time zero, gradually reducing it until
touchdown at the lunar surface when the altitude is zero.
Note that the MathModelica PlotSimulation
command, by default, if nothing else is specified, refers to
the results of the most recent simulation.

PlotSimulation[apollo.altitude[t],

{t, 0, 208}]

50 100 150 200

5000

10000

15000

20000

25000

30000

Figure 7. Altitude of the Apollo Rocket over the

lunar surface.

The thrust force from the rocket is initially high but is
reduced to a low level after 43.2 seconds, i.e. the value of
the simulation parameter thrustDecreaseTime, as
shown in Figure 8.

PlotSimulation[apollo.thrust[t],
 {t, 0, 208}]

50 100 150 200

5000

10000

15000

20000

25000

30000

35000

Figure 8. Thrust from the rocket motor, with an

initial high thrust f1 followed by a lower thrust f2.

The mass of the rocket decreases from initially
1038.358 to around 540 as the fuel is consumed, see
Figure 9.

PlotSimulation[apollo.mass[t], {t, 0, 208}]

50 100 150 200

575

600

625

650

675

700

Figure 9. Rocket mass decreases when the fuel is

consumed.

PlotSimulation[apollo. gravity [t],
 {t, 0, 208}]

50 100 150 200

1.58

1.59

1.61

1.62

1.63

Figure 10. Gradually increasing gravity when the

rocket approaches the lunar surface.

The rocket initially has a high negative velocity when

approaching the lunar surface. This is reduced to zero at
touchdown giving a smooth landing, as shown in Figure
11.

PlotSimulation[apollo.velocity[t],
 {t, 0, 208}]

50 100 150 200

-400

-300

-200

-100

Figure 11. Vertical velocity relative to the lunar

surface.

4. Discrete Event Modeling

Physical systems evolve continuously over time,
whereas certain man-made systems evolve by discrete
steps between states. These discrete changes, or events,
when something happens, occur at certain points in time.
We talk about discrete event dynamic systems as opposed
to continuous dynamic systems directly based on the
physical laws derived from first principles, e.g. from
conservation of energy, matter, or momentum. One of the
key issues concerning the use of events for modeling is
how to express behavior associated with events. The
traditional imperative way of thinking about a behavior at
events is a piece of code that is activated when an event
condition becomes true and then executes certain
actions, e.g. as in the when-statement skeleton below:

when (event_conditions) then
 event-action1;
 event-action2;
 ...
end when;

On the other hand, a declarative view of behaviour can
be based on equations. When-clauses are used to express

equations that are only valid (become active) at events,
e.g. at discontinuities or when certain conditions become
true. The conditional equations automatically contain only
discrete-time expressions since they become active only at
event instants, i.e. at discrete points in time and may
change.

when <conditions> then
 <equations>
end when;

For example, the two equations in the when-clause
below become active at the event instant when the
Boolean expression x > 2 becomes true.

when x > 2 then
 y1 = sin(x);
 y3 = 2*x + y1+y2;
end when;

If we instead use a Boolean vector expression
containing three elements as the conditions, then the two
equations will be activated at event instants when either of
the three conditions: x > 2, sample(0,2), or x < 5
becomes true. Typically each condition in the vector
gives rise to its own event instants.

when {x > 2, sample(0,2), x < 5} then
 y1 = sin(x);
 y3 = 2*x + y1+y2;
end when;

So-called discrete-time variables in Modelica only
change value at discrete points in time, i.e. at event
instants, and keep their values constant between events.
This is in contrast to continuous-time variables which may
change value at any time, and usually evolve continuously
over time. Figure 12 shows a graph of a discrete-time
variable, and Figure 13 two evolving continuous-time
variables.

time

x

event 1 event 2 event 3

Figure 12. A discrete-time variable x changes value

only at event instants.

Variables in Modelica are discrete-time if they are

declared using the discrete prefix, e.g. discrete
Real y, or if they are of type Boolean, Integer, or
String, or of types constructed from discrete types. A
variable assigned in a when-statement or being on the left-

hand side of an equation in a when-clause is discrete-time.
A Real variable not assigned in any when-statement or
being on the left-hand side of an equation in a when-
clause is continuous-time. It is not possible to have
continuous-time Boolean, Integer, or String
variables.

time

y, z

event 1 event 2 event 3

y

z

Figure 13. Continuous-time variables like y and z
may change value both between and at events.

In Figure 13 above, both y and z are classified as

continuous-time variables and are allowed to change at
any point in time. The y variable is a continuous function
of time whereas z is discontinuous at several points in
time. Two of those points where z is discontinuous are
not associated with any events, which will create some
extra work and possibly numerical difficulties for the
numerical equation solver. In this case it would have been
better to have z as a discrete-time variable with events at
all its points of discontinuity.

4.1. Event-Related Built-in Functions and
Operators

Modelica provides a number of built-in functions and
operators related to events and time, which are quite
useful in discrete and hybrid modeling. Some functions
generate events, some can be used to express conditions
for triggering events, one function prevents events, and
some operators and functions provide access to variable
values before the current event as well as causing
discontinuous change of variable values at an event.

The function sample(first,interval)returns true and
can be used to trigger triggers events at time instants first
+ i*interval (i=0,1,...), where first is the time of the first
event and interval is the time interval between the
periodic events. It is typically used in models of
periodically sampled systems.

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Figure 14. The call sample(t0,d) returns true and
triggers events at times t0+i*d, where i=0,1,etc.

The function call pre(y) gives the “predecessor

value” of y. For a discrete-time variable y at an event
pre(y) is the value of y immediately preceding the event,
as depicted in Figure 15 below. The argument y must be a
variable and not a general expression

time

y

event

y

pre(y)

Figure 15. At an event, pre(y) gives the previous

value of y immediately before the event, except for
event iteration when the value is from the previous

iteration.

The pre operator can only be applied to a variable y,

e.g. as in the expression pre(y), if the following three
conditions are fulfilled:
• The variable y has type Boolean, Integer, Real,

or String, or a subtype of those.
• The variable y is a discrete-time variable.
• The operator is not used within a function

At the initial time when simulation starts, pre(y) =
y.start, i.e. it is identical to the start attribute value of
its argument. Certain Modelica variables can be declared
as constants or simulation parameters by using the
prefixes constant and parameter respectively. Such
variables do not change value during simulations. For a
constant or parameter variable c, it is always the case that
c = pre(c).

4.2. A Simple Discrete Simulation Model.

As a very simple example of discrete time simulation

we can consider a simple server model with queue. We
start by first defining a model which generates customers
at random time moments. This model calls the function
normalvariate which is a random number generator
function used to generate the time delay until the next
customer arrival.

model CustomerGeneration
 Random.discreteConnector dOutput;
 parameter Real mean = 0;
 parameter Real stDeviation = 1;
 discrete Real normalDelta;
 discrete Real

nextCustomerArrivalTime(start=0);
 discrete Random.Seed

randomSeed(start={23,87,187});
equation
 when pre(nextCustomerArrivalTime)<=time
 then (normalDelta,randomSeed)=

normalvariate(mean,
stDeviation,
pre(randomSeed));

 nextCustomerArrivalTime =
pre(nextCustomerArrivalTime) +
abs(normalDelta);

 end when;
 dOutput.dcon = (nextCustomerArrivalTime

 <>pre(nextCustomerArrivalTime);
end CustomerGeneration;

Simulate[CustomerGeneration,{t,0,10}]
PlotSimulation[nextCustomerArrivalTime[t

],{t,0,10}]

2 4 6 8 10
time

4

6

8

10
arrival time

2

Figure 16. Customers generated at random time

moments.

Based on the previously defined model, we can now
design a server model which through one of its input ports
will accept the arriving customers from the
CustomerGeneration model.

model ServerWithQueue
 Random.discreteConnector dInput;
 parameter Real serveTime=0.1;
 discrete Real nrOfArrivedCustomers;
 discrete Real nrOfServedCustomers;
 discrete Real
 nrOfCustomersInQueue(start=0);
 discrete Boolean
 readyCustomer(start=false);
 discrete Boolean
 serveCustomer(start=false);
 Real resetTime;

equation
 when dInput.dcon then
 nrOfArrivedCustomers =

 pre(nrOfArrivedCustomers)+1;
 end when;

 when readyCustomer then
 nrOfServedCustomers =
 pre(nrOfServedCustomers)+1;
 end when;

 when (pre(nrOfCustomersInQueue)==0 and
 dInput.dcon) or

 (pre(nrOfCustomersInQueue)>=1 and
 pre(readyCustomer))then
 serveCustomer=true;
 resetTime=time;
 end when;

 readyCustomer = (serveCustomer and
 (serveTime < time-resetTime));
 nrOfCustomersInQueue =

nrOfArrivedCustomers -
nrOfServedCustomers;

end ServerWithQueue;

The nrOfCustomersInQueue represents the current number
of customers in the system. The event generated by the when
dInput.dcon statement represents the arrival of a new customer
through the input port of the server model. The event
readyCustomer represents completed service of a customer. To
serve a customer if takes serveTime time. The simulation of the
whole system can be done by defining a test model which
connects the CustomerGeneration model with the
ServerWithQueue model.

model testServer1
 CustomerGeneration customer;
 ServerWithQueue server(serveTime=0.4);
equation
 connect(customer.dOutput,server.dInput);
end testServer1;

Using the MathModelica simulation environment we

simulate the model for 10sec with the time necessary to
serve a customer serveTime=0.4sec.

Simulate[testServer1,{t,0,10}]
PlotSimulation[
 {server.nrOfArrivedCustomers[t],
 server.nrOfServedCustomers[t],

server.nrOfCustomersInQueue[t]},{t,0,10}]

2 4 6 8 10 t
2
4
6
8
10
12
14 server.nrOfCustomersInQueue

server.nrOfServedCustomers
server.nrOfArrivedCustomer
s

Figure 17. Number of arrived customers, number of

served customers, and number of customers waiting in
the queue.

5. Hybrid Modeling

As we have mentioned previously physical systems
evolve continuously over time, whereas certain man-made
systems evolve by discrete steps between states.

A hybrid system contains both discrete parts and
continuous parts. A typical example is a digital computer
interacting with the external physical world, as depicted
schematically in Figure 18. This is however a very
simplified picture since the discrete parts usually are
distributed together with physical components in many
technical systems.

This subsection gives an introduction to modeling and
simulating discrete event dynamic systems and hybrid
dynamic systems using Modelica.

Computer

Physical World

Sensors Actuators

Figure 18. A hybrid system where a discrete

computer senses and controls the continuous physical
world.

5.1. Bouncing Ball Simulation

A bouncing ball is a good example of a hybrid system
for which the when-clause is appropriate as a modeling
construct. The motion of the ball is characterized by the
variable height above the ground and the vertical
velocity v. The ball moves continuously between bounces,
whereas discrete changes occur at bounce times, as
depicted in Figure 19 below. When the ball bounces
against the ground its velocity is reversed. An ideal ball
would have an elasticity coefficient of 1 and would not
lose any energy at a bounce. A more realistic ball, as the
one modeled below, has an elasticity coefficient of 0.9,
making it keep 90 percent of its speed after the bounce.

Figure 19. A bouncing ball

The bouncing ball model contains the two basic

equations of motion relating height and velocity as well as

the acceleration caused by the gravitational force. At the
bounce instant the velocity is suddenly reversed and
slightly decreased, i.e. v(after bounce) = -c*v(before
bounce), which is accomplished by the special syntactic
form of instantaneous equation: reinit(v,-c*v).

model BouncingBall "Bouncing ball model"
 parameter Real g=9.81;
 parameter Real c=0.90;
 // elasticity constant of ball
 Real height(start=0);
 // height above ground
 Real v(start=10); // velocity
equation
 der(height) = v;
 der(v) = -g;
 when height<0 then
 reinit(v, -c*v);
 end when;
end BouncingBall;

The reinit(v, -c*v) equation effectively

“removes” the previous equation defining statevariable
and “adds” a new equation statevariable =
valueexpression that gives a new definition to
statevariable. Neither the number of variables nor the
number of equations is changed. The single assignment
rule of Modelica is therefore not violated. The “single
assignment rule” roughly means that the number of
equations is the same as the number of variables.

6. Modelica Packages and Libraries

6.1. Modelica Packages

Packages in Modelica may contain definitions of

constants and classes including all kinds of restricted
classes, functions, and subpackages. By the term
subpackage we mean that the package is declared inside
another package, no inheritance relationship is implied.
Parameters and variables cannot be declared in a package.
The definitions in a package should be related in some
way, which is the main reason they are placed in a
particular package. Packages are useful for number of
reasons:
• Definitions that are related to some particular topic

are typically grouped into a package. This makes
those definitions easier to find and the code more
understandable.

• Packages provide encapsulation and coarse grained
structuring that reduces the complexity of large
systems. An important example is the use of packages
for construction of (hierarchical) class libraries.

• Name conflicts between definitions in different
packages are eliminated since the package name is

implicitly prefixed to names of definitions declared in
a package.

• Information hiding and encapsulation can be
supported to some extent by declaring protected
classes, types, and other definitions that are only
available inside the package and therefore
inaccessible to outside code.

• Modelica defines a method for locating a package by
providing a standard mapping of package names to
storage places, typically file or directory locations in a
file system.

• Identification of packages. A package stored
separately, e.g. on a file, can be (uniquely) identified.

As an example, consider the package
ComplexNumbers below which contains a data structure
declaration, the record Complex, and associated
operations such as Add, Multiply, MakeComplex,
etc. The package is declared as encapsulated which
is the recommended software engineering practice to keep
the system well structured as well as being easier to
understand and maintain.

encapsulated package ComplexNumbers

record Complex
 Real re;
 Real im;
end Complex;

function Add
 input Complex x;
 input Complex y;
 output Complex z;
algorithm
 z.re := x.re + y.re;
 z.im := x.im + y.im
end Add;

function Multiply
 input Complex x;
 input Complex y;
 output Complex z;
algorithm
 z.re := x.re*y.re – x.im*y.im;
 z.im := x.re*y.im + x.im*y.re;
end Multiply;

function MakeComplex
 input Real x;
 input Real y;
 output Complex z;
algorithm
 z.re := x;
 z.im := y;
end MakeComplex;

// Declarations of Subtract, Divide,
// RealPart, ImaginaryPart, etc.
// (not shown here)
end ComplexNumbers;

The example below presents a way how one can make

use of the package ComplexNumbers, where both the
type Complex and the operations Multiply and Add are
referenced by prefixing them with the package name
ComplexNumbers.

class ComplexUser
 ComplexNumbers.Complex a(x=1.0, y=2.0);
 ComplexNumbers.Complex b(x=1.0, y=2.0);
 ComplexNumbers.Complex z,w;
equation
 z = ComplexNumbers.Multiply(a,b);
 w = ComplexNumbers.Add(a,b);
end ComplexUser;

A well-designed package structure is one the most
important aspects that influences the complexity,
understandability, and maintainability of a large software
systems. There are many factors to consider when
designing a package, e.g.:
• The name of the package.
• Structuring of the package into subpackages.
• Reusability and encapsulation of the package.
• Dependences on other packages.

Modelica defines a standard mapping of hierarchical
package structures onto file systems or other storage
mechanisms such as databases, which provides the user
with a simple and unambiguous way of locating a
package. The Modelica library path mechanism makes it
possible to make multiple packages and package
hierarchies simultaneously available for lookup.

All these mechanisms give the user a considerable
flexibility and power in structuring a package. This
freedom should however be used in an appropriate way.

The name of a package should be descriptive and relate
to the topic of the definitions in the package. The name
can be chosen to be unique within a project, within an
organization, or sometimes in the whole world, depending
on the typical usage scope of the package.

Since classes can be placed in packages, and packages
is a restricted form of class, Modelica allows packages to
contain subpackages, i.e. packages declared within some
other package. This implies that a package name can be
composed of several simple names appended through dot
notation, e.g. “Root package”.” Package level two”.”
Package level three”, etc. Typical examples can be found
in the Modelica standard library, where all level zero
subpackages are placed within the root package called
Modelica. This is an extensive library containing
predefined subpackages from several application domains
as well as subpackages containing definitions of common
constants and mathematical functions. A few examples of
names of subpackages in this library follow here:
Modelica.Mechanics.Rotational.Interfaces
Modelica.Electrical.Analog.Basic
Modelica.Blocks.Interfaces

6.2. Modelica Libraries

The equation-based foundation of the Modelica

language enables simulation in an extremely broad range
of scientific and engineering areas. For this reason an
extensive Modelica base library is under continuous
development and improvement being an intrinsic part of
the Modelica effort (see www.modelica.org). Some of the
model libraries include application areas such as
mechanics, electronics, hydraulics and pneumatics. These
libraries are primarily intended to tailor Modelica toward
a specific domain by giving modelers access to common
model elements and terminology from that domain.

We briefly present the multi-body system library
together with a simple modeling example. The MBS
(Multi Body System) library has been developed in [11],
An overview can be found in [10]. Our modeling example
consists of a mass hanging from a spring in a gravity field.
When the spring-mounted body is disturbed from its
equilibrium position, its ensuing motion in the absence of
any imposed external forces is called free vibration.
However, in the real world, every mechanical system
possesses some inherent degree of friction which will act
as a consumer of mechanical energy. Therefore, we
should add to our system a viscous damper for the
purpose of limiting or retarding the vibration. A schematic
diagram of the system under consideration is shown in
Figure 20.

3D Damper

inertial

y
x

S
prismS = [0, -1, 0]

3D Spring

body1 = [0, -0.2, 0]

Figure 20. Schematic diagram of a damped free

vibration mass system
The Modelica code for the model considered above is

shown below:

import Modelica.Aditions.MultiBody;
model Model1
 Parts.InertialSystem inertial;
 Joints.Prismatic prismS(n={0,-1,0});
 Parts.Body2 body(r={0,-1,0},m=1);
 Forces.Spring spring1(c=300);
 Forces.Damper damper1(d=2);

equation
connect(inertial.frame_b,prismS.frame_a;
connect(prismS.frame_b,body.frame_a);

connect(prismS.frame_b,spring1.frame_b;
connect(spring1.frame_a,prismS.frame_a;
connect(spring.frame_b,damper1.frame_b);
connect(damper1.frame_a,spring1.frame_a);
end Model1;

An instance of the Inertial class defines the global
coordinate system and gravitational forces (the inertial
frame). All parameter vectors and tensors are given in the
home position of the multi-body system with respect to the
inertial frame. One instance of class Inertial must
always be present for every multi-body model. All other
objects are in some way connected to the inertia system,
either directly or through other objects.

Every basic mechanical component from the MBS
library has at least one or two interfaces to connect the
element rigidly to an other mechanical elements. A
distinguishing feature of multi-body systems is the
presence of joints, which impose different types of
kinematic constrains between the various bodies of the
kinematic chain. The motions between links of the
mechanism must to be constrained to produce the proper
relative motion, i.e. the motion chosen by the designer for
the particular task to be performed.

A Prismatic joint has been introduced in order to
produce the relative motion in the Y-direction. The
relative motion direction is specified by the parameter
vector n=[0,-1,0] which is the axis of translation
resolved in frame_a.

1 2 3 4 5
t

0.01

0.02

0.03

0.04

0.05

0.06

Figure 21. Plot of Mass1.s(t) absolute position of the

center of the mass1 component.

7. The MathModelica Simulation
Environment.

MathModelica[16] is an integrated problem-solving
environment (PSE) for full system modeling and
simulation using Modelica. The environment integrates
Modelica-based modeling and simulation with graphic
design, advanced scripting facilities, integration of code
and documentation, and symbolic formula manipulation
provided via Mathematica. These capabilities give the
environment considerable power, combined with easy of
use. Import and export of Modelica code between internal
structured and external textual representation is supported

by MathModelica. For example, the system is typically
used for the creation of “virtual prototypes”, computer
simulations that behave like a real physical object or
system, e.g., an electrical network, a turbo engine, an
aircraft, or an industrial robot.

Figure 22. The MathModelica Environment

structure.

The environment uses extensively the principles of

literate programming [7], and integrates most activities
needed in simulation design: modeling, symbolic
processing, transformation and formula manipulation,
storage of simulation models, version control, input and
output data visualization, storage and generation of
documentation. The Mathematica[14] system is part of
the MathModelica environment. The interpreted
Mathematica language integrates several features into a
unified integrated environment: numerical and symbolic
calculations, functional, procedural, rule-based and
graphical programming. Additionally, the language
incorporates many features of traditional mathematical
notation and the goal of the language is to provide a
precise and consistent way to specify computations.

The Mathematica system is divided into two distinct
parts: the computer algebra engine (“kernel”) that receives
and evaluates all expressions sent to it and the user
interface (“front-end”). The front-end provides the
programming interface to the user and is concerned with
such issues as how input is entered and how computation
results are displayed to the user.

MathModelica uses Mathematica’s front-end
documents that are called notebooks, Figure 23. They
combine text, executable commands, numerical results,
graphics, and sound in a single document. A notebook
provides users with a medium in which they can document
their solution along with the computation itself. To
provide these powerful integrated capabilities without
reinventing the wheel, MathModelica integrates and
extends a number of software products such as the
technical computing system Mathematica [14] from
Wolfram Research, the diagram and visualization tool
Visio from Microsoft, and Dymola the simulation engine
from Dynasim[15] grouped in three modules: Notebooks,
Model Editor, and Simulation Center, as it is shown in
Figure 22.

 MathModelica
Simulation System

Notebooks Simulation
Center

Model
Editor

Figure 23. The MathModelica Simulation Environment: Notebook, Model Editor and Simulation Center screen
captures.

7.1. The Model Editor

The MathModelica Model Editor is a graphical user
interface for model diagram construction by “drag-and-
drop” of ready made components from model libraries
graphically represented by Visio stencils. The libraries
correspond to the physical domains represented in the
Modelica Standard Library or components from user
defined component libraries. A screen shot of the Model
Editor is shown in the middle of Figure 23. The Model
Editor is an extension of the Microsoft software Visio for
diagram design and schematics. This means that the user
has access to a well-developed and user-friendly
application but also a vast array of design features to make
graphical representations of developed models look
professional. Since Modelica components often represents

physical objects it is of great value to have a sufficiently
rich graphical description of these objects.

 The Model Editor can be viewed as a user interface
for graphical programming in Modelica. Its basic
functionality is the selection of components from ready-
made libraries, connection of components in model
diagrams, and to entering parameter values for different
components.

For large and complex models it is important to be able
to intuitively navigate quickly through component
hierarchies. The Model Editor supports this in several
ways. A model diagram can be browsed and zoomed.
Aggregate components can be opened in separate
windows by double-clicking on their icons.

 Parameter values of a component can be accessed by
right-clicking on a component and open the Custom

Properties form. The complete textual Modelica model is
stored in a so-called Notebook, which also can be opened
by right-clicking a component.

 The Model Editor is well integrated with Notebooks.
A model diagram in a notebook is a graphical
representation of the Modelica code, which can be
converted into textual form by a command. Double-
clicking on a model diagram in a notebook will open the
Model Editor and the model can be graphically edited.

 The combination of the ability of making user
defined libraries of reusable components in Modelica and
the Notebook concept of living technical documents
supports model management and evolution of models of
large systems. MathModelica is also an open environment
both with respect to the ability of communicating with
other programs as well as import and export of different
data formats. A key aspect of MathModelica is that the
modeling and simulation activities are done within an
environment that also provides a variety of technical
computations. This can be utilized both in a preprocessing
stage in the development of models for subsystems as well
as for post processing of simulation results such as signal
processing and further analysis of simulated data with the
help of the environment component called Simulation
Center shown in the lower right corner of Figure 23.

The symbolic computer-algebra capabilities can be
applied to equations from Modelica models. For example,
below a list of equations is extracted from a Modelica
model, a new equation is appended to the list, and
Mathematica pattern matching and transformation rules
are used to transform the list of equations to a list of
equations in Laplace form, which can be Laplace
transformed, to be used as input for further analysis or a
new Modelica-based simulation.

eqnlist = GetFlatEquations[Model1];
AppendTo[eqnlist,Inertia.flange_b.tau ==0];
laplaceeqns = eqnlist /.

{1/der[a_] :> a/s, der[b_] :> s*b};

8. Future Work

The work by the Modelica Association on the further
development of Modelica and tools is continuing. Several
companies and research institutes are pursuing or planning
development of tools based on Modelica. In our case we
focus on interactive implementation of Modelica
integrated with Mathematica to provide integration of
model design, coding, documentation, simulation and
graphics.

8.1. Partial Differential Equation Extension

In order to specify models containing partial
differential equations, the concept of geometric domains

and domain boundaries are needed in the Modelica
language, as well as multi-variable functions and
equations that are defined over such domains and
boundaries. Furthermore, the connection mechanism need
to be generalized to use domains or domain boundaries as
connection regions between components with separate
domains[11].

8.2. Debugging of Simulation Models

Determining the cause of errors in models of physical
systems is hampered by the limitations of the current
techniques of debugging declarative equation based
languages. Improved debugging and verification tools
need to be developed in order to statically detect a broad
range of errors without having to execute the simulation
model. Since the simulation system execution is
expensive, static debugging tools should greatly reduce
the number of test cases usually needed to validate a
simulation model. The user should be presented to the
original source code of the program and not burdened
with understanding the intermediate code or the numerical
artifacts for solving the underlying system of equations.
When a simulation model fails to compile, the errors
should be reported consistent with the user’s perception of
the simulation model or source code and possible repair
strategies should also be provided [2].

8.3. Parallel Simulation

To deal with the growing complexity of modeled
systems in the Modelica language, the need for
parallelisation becomes increasingly important in order to
keep simulation time within reasonable limits. A Modelica
compiler usually performs many optimizations to reduce
the number of equations and to increase the efficiency of
the simulation code. However, for large and complex
models there are also opportunities to successfully exploit
parallelism in the simulation code. Current research is on
an automatic parallelisation tool for Modelica models that
reads the automatic generated simulation code produced
by the standard Modelica compiler and by using specially
adapted scheduling algorithms produces parallel
simulation code for execution in a multiprocessor
environment [1].

Acknowledgements

The authors would like to thank the other members of

the Modelica Association (see below) for inspiring
discussions and their contributions to the Modelica
language design. Modelica 1.4 was released December 15,
2000. The Modelica Association was formed in Linköping

Sweden, at Feb. 5, 2000 and is responsible for the design
of the Modelica language (see www.modelica.org).

Contributors to the Modelica Language, version 1.4

Bernhard Bachmann, Fachhochschule Bielefeld, Germany
Peter Bunus, Linköping University, Linköping, Sweden
Dag Brück, Dynasim, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Vadim Engelson, Linköping University, Sweden
Jorge Ferreira, University of Aveiro, Portugal
Peter Fritzson, Linköping University, Linköping, Sweden
Pavel Grozman, Equa, Stockholm, Sweden
Johan Gunnarsson, MathCore, Linköping, Sweden
Mats Jirstrand, MathCore, Linköping, Sweden
Clemens Klein-Robbenhaar, Germany
Pontus Lidman, MathCore, Linköping, Sweden
Sven Erik Mattsson, Dynasim, Lund, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen,
Germany
Tommy Persson, Linköping University, Sweden
Levon Saldamli, Linköping University, Sweden
André Schneider, Fraunhofer Institute for Integrated Circuits,
Dresden, Germany
Michael Tiller, Ford Motor Company, Detroit, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jürg Wiesmann, ABB Corporate Research Ltd., Baden,
Switzerland

Contributors to the Modelica Standard Library,
version 1.4

Peter Beater, University of Paderborn, Germany
Christoph Clauß, Fraunhofer Institute for Integrated Circuits,
Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen,
Germany
André Schneider, Fraunhofer Institute for Integrated Circuits,
Dresden, Germany
Hubertus Tummescheit, Lund Institute of Technology, Sweden

We also thank the entire MathModelica team from
MathCore AB and the Dymola team at Dynasim, as well
as our colleagues at PELAB - the Programming
Environment Laboratory, without whom this work would
not have been possible.

References

[1] Aronsson, P.; Fritzson, P. “Parallel Code Generation in
MathModelica, an Object Oriented Component Based
Simulation Environment" In Proceedings of Workshop on
Parallel/High Performance Object-Oriented Scientific
Computing (POOSC’01 14-18 Oct 2001, Tampa, Florida, USA)

[2] Bunus, P. and Fritzson, P. “Applications of Graph
Decomposition Techniques to Debugging Declarative Equation
Based Languages”. In Proceedings of the 42nd SIMS
Conference (Porsgrunn Norway, Oct 8-9,2001)

[3] Elmqvist, H.; S. E. Mattsson and M. Otter. 1999.
“Modelica - A Language for Physical System Modeling,

Visualization and Interaction.” In Proceedings of the 1999 IEEE
Symposium on Computer-Aided Control System Design (Hawaii,
Aug. 22-27).

[4] Francois E. Cellier. Continuous System Modeling. Springer
Verlag, New York 1991.

[5] Fritzson P.; V. Engelson; J. Gunnarsson. 1998. "An
Integrated Modelica Environment For Modeling,
Documentation and Simulation." In Proceedings of the 1998
Summer Computer Simulation Conference (Reno, Nevada,
USA, July 19-22).

[6] Fritzson P and V. Engelson. “Modelica, A Unified Object-
Oriented Language for System Modeling and Simulation.” In
Proceedings of ECOOP'98 (the 12th European Conference on
Object-Oriented Programming)(Brussels, Jul. 20-24,1998).

[7] Knuth, D.E.. “Literate Programming” The Computer
Journal, NO27(2) (May 1984): 97-111.

[8] Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling - Tutorial
and Design Rationale Version 1.4 (December 15, 2000).

[9] Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling – Language
Specification Version 1.4. (December 15, 2000).

[10] Otter, M.; Elmqvist H.; F. E. Cellier.:. Modeling of
Multibody Systems with the Object-oriented Modeling
Language Dymola. Nonlinear Dynamics, 9:91-112, Kluwer
Academic Publishers. 1996.

[11] Otter, M.: Objektorientierte Modellierung mechatronischer
Systeme am Beispiel geregelter Roboter. Dissertation,
Fortshrittberichte VDI, Reihe 20, Nr 147. 1995

[12] Saldamli, L. and Fritzson, P. A Modelica-based Language
for Object-Oriented Modeling with Partial Dirential Equations.
In A. Heemink, L. Dekker, H. De Swaan Arons, I. Smith, and T.
van Stijn, editors, Proceedings. of the 4th International
EUROSIM Congress (Delft, The Netherlands, June 2001).

[13] Tiller M. Michael. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publisher 2001.

[14] Wolfram S. The Mathematica Book. Wolfram Media Inc.
(February). (1996).

[15] www.dynasim.se Dynasim AB, Sweden

[16] www.mathcore.se MathCore AB, Sweden

