crown  1.0.0
src/step_frequency_height.cpp
Go to the documentation of this file.
00001 /*
00002  Copyright 2015 Nicolas Melot
00003 
00004  This file is part of Crown.
00005 
00006  Crown is free software: you can redistribute it and/or modify
00007  it under the terms of the GNU General Public License as published by
00008  the Free Software Foundation, either version 3 of the License, or
00009  (at your option) any later version.
00010 
00011  Crown is distributed in the hope that it will be useful,
00012  but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014  GNU General Public License for more details.
00015 
00016  You should have received a copy of the GNU General Public License
00017  along with Crown. If not, see <http://www.gnu.org/licenses/>.
00018 
00019 */
00020 
00021 
00022 #include <fstream>
00023 
00024 #include <crown/scaling.h>
00025 
00026 #include <pelib/AmplOutput.hpp>
00027 #include <pelib/AmplInput.hpp>
00028 
00029 using namespace std;
00030 using namespace pelib;
00031 
00032 int
00033 main(int argc, char **argv)
00034 {
00035         // Open and read input file
00036         ifstream taskgraph(argv[1], std::ios::in);
00037 
00038         Algebra input = AmplInput(AmplInput::floatHandlers()).parse(taskgraph);
00039         taskgraph.close();
00040 
00041         cout << setprecision(6)
00042         << setiosflags(ios::fixed)
00043         << setiosflags(ios::showpoint);
00044         
00045         input = frequency_height(input);
00046 
00047         // Garbage to make output to look like Ampl/Gurobi output
00048         cout << "Presolve eliminates 0 constraints and 0 variables." << endl;
00049         cout << "Substitution eliminates 0 variables." << endl;
00050         cout << "Adjusted problem:" << endl;
00051         cout << "0 variables:" << endl;
00052         cout << "       0 binary variables" << endl;
00053         cout << "       0 linear variable" << endl;
00054         cout << "0 constraints, all linear; 0 nonzeros" << endl;
00055         cout << "0 linear objective; 0 nonzero." << endl;
00056         cout << endl;
00057         cout << ": timelim 300" << endl;
00058 
00059         float m = input.find<Scalar<float> >("m")->getValue();
00060         float M = input.find<Scalar<float> >("M")->getValue();
00061         if(m < 0 && M > 0)
00062         {
00063                 cout << "Height heuristic: infeasible" << endl;
00064                 cout << "29 simplex iterations" << endl;
00065                 cout << "plus 1 simplex iteration for intbasis" << endl;
00066         }
00067         else
00068         {
00069                 cout << "plus 1 simplex iteration for intbasis" << endl;
00070                 cout << "Height heuristic: heuristic solution; nonoptimal 0" << endl;
00071                 cout << "29 simplex iterations" << endl;
00072         }
00073         
00074         AmplOutput(AmplOutput::floatHandlers()).dump(cout, input);
00075         AmplOutput(AmplOutput::floatHandlers()).dump(cout, Scalar<float>("complexity", frequency_height_complexity(input)));
00076 
00077         return EXIT_SUCCESS;
00078 }
00079