
Enhancing Modelica towards
variable structure systems

Author: Dirk Zimmer
ETH Zürich, Institute of Computational Science, Department of Computer Science

ECOOL 2007, Berlin

SOL
An object-oriented modeling language

for variable structure systems.

SOL

© Dirk Zimmer, July 2007, Slide 2

Department of Computer Science
Institute of Computational Science

ETH Zürich

• Motivation

• Modeling concept

• Presentation of Sol
– Fundamentals

– Model hierarchy and type-system

– Implementation: Equations and transmissions

• Example 1: Switch of the engine model

• Current state of the implementation and Outlook

• Example 2: Pendulum with a structural change

Overview

© Dirk Zimmer, July 2007, Slide 3

Department of Computer Science
Institute of Computational Science

ETH Zürich

• Many contemporary models contain structural changes at run time:
– ideal switching processes.
– variable number of entities or agents.
– variable level of detail.
– user interaction.

• A general modeling language supporting variable structure systems offers a
number of important benefits.

• Modelica is very limited in this respect. The limitations originate from
technical points of view and from a lack of expressiveness.

• MOSILAB offers a first approach to handling variable structure systems in a
more general sense.

Motivation I

© Dirk Zimmer, July 2007, Slide 4

Department of Computer Science
Institute of Computational Science

ETH ZürichMotivation II

• We took a rather fundamental approach and decided to develop a new
language: Sol. The motivation behind this project is twofold:

• One, Sol shall offer a platform for the development of corresponding
technical solutions. This concerns…

• dynamic recausalization
• dynamic treatment of higher index problems
• etc…

• Two, Sol is a language experiment. We want to explore the full power of a
declarative modeling approach and how it can handle potential, future
problem fields.

• Sol is not a product! We don’t intend to throw another modeling language or
dialect on the market. Sol is primarily a tool to enable principal research on
the subject of variable structure systems.

© Dirk Zimmer, July 2007, Slide 5

Department of Computer Science
Institute of Computational Science

ETH ZürichModeling concepts

• Sol attempts to be a language of minimal complexity

• Sol redefines the fundamental concepts of Modelica on a dynamic basis.

• Sol enables the creation, exchange and destruction of components at
simulation time.

• To this end, the modeler describes the system in a constructive way, where
the structural changes are expressed by conditionalized declarations. These
conditional parts can then get activated and deactivated during run-time.

• The constructive approach avoids an explicit description of modes and
transitions and yet proves to be fairly powerful.

• The following slides provide an informal and incomplete introduction to
Sol.

© Dirk Zimmer, July 2007, Slide 6

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Fundamental entity

• A model is the essential language
element in Sol. It is of very general
use and consists always of three
optional parts:

• The header: Here you can define
constants or specify inheritances or
include sub-models.

• The interface: parameters and
variables that are visible from outside
are specified in the interface section.

• The implementation describes the
actual relations between the variables
and introduces the dynamics.

model myFirst

define minute as 60;

interface:
parameter Real tau << 1;
parameter Real sat << 1;
static Real x;

implementation:
static Real v;
when initial then

x = 0;
end

v = der(x);
x = (sat-x)*(tau/minute);

end myFirst;

© Dirk Zimmer, July 2007, Slide 7

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Hierarchy and inheritance

• Sol enables the hierarchic
organization of models within
models (e.g. packages)

• Sol offers means for type-
generation like model-
extension (extends), model-
redefinitions (redefine) or
variable-redeclarations
(redeclare).

• These mechanisms can be
applied to complete packages
as well.

package Mechanics

package Interfaces

connector Frame
interface:

static potential Real x;
static flow Real f;

end Frame;

model OnePort
interface:

static Frame f;
end OnePort;

model TwoPort
interface:

static Frame fa;
static Frame fb;

end TwoPort;

end Interfaces;

model Body extends Interfaces.OnePort;
interface:

parameter Real m;
end Body;

model Prismatic extends Interfaces.TwoPort;
interface:

parameter Real s;
…

…

© Dirk Zimmer, July 2007, Slide 8

Department of Computer Science
Institute of Computational Science

ETH Zürich

Executing…
solsim TestStruct.sol -o out.dot –struct

dot -Tps out.dot -o out.ps

produces a graph of the model hierarchy

Sol: Hierarchy and inheritance

© Dirk Zimmer, July 2007, Slide 9

Department of Computer Science
Institute of Computational Science

ETH Zürich

package Mechanics

package Interfaces

connector Frame
interface:

static potential Real x;
static flow Real f;

end Frame;

model OnePort
interface:

static Frame f;
end OnePort;

model TwoPort
interface:

static Frame fa;
static Frame fb;

end TwoPort;

end Interfaces;

model Body extends Interfaces.OnePort;
interface:

parameter Real m;
end Body;

model Prismatic extends Interfaces.TwoPort;
interface:

parameter Real s;
…

…

Sol: Type-system

• Like Modelica, Sol features a
structural type system. Thus,
separate lines of implementation
can be compatible.

• The type is defined in the
interface-section (except for the
extensions).

• Redeclarations or redefinitions
must provide sub-types of their
original representation.

© Dirk Zimmer, July 2007, Slide 10

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Type-system

Executing…
solsim TestStruct.sol -o out.dot –types

dot -Tps out.dot -o out.ps

produces a graph of the type hierarchy

© Dirk Zimmer, July 2007, Slide 11

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Model-Implementation

• The implementation consists of a block.

• A block may contain…
– declarations of variables or model-instances

– equations or transmissions

– nested (conditional) blocks

© Dirk Zimmer, July 2007, Slide 12

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Member-access

• At the declarations the identifier is
linked either statically or
dynamically to its model-instance.

• Members of an instance can be
accessed through

– The . operator

– A connection statement

– The () operator

• Instances can be anonymously
declared.

model Sinus
interface:

static Real x;
static out Real y;

implementation:
…

end Sinus;

implementation:
static Sinus s;

//1st variant

s.x = u;
s.y = v;
//2nd variant (silly here)

connection(s.x,u);
connection(s.y,v);
//3rd variant

v = s(x=u);

v = Sinus(x=u);

© Dirk Zimmer, July 2007, Slide 13

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Statements

• Sol provides 3 operators for setting
up relations
– equation (=)
– causal copy-transmission (<<)
– causal move-transmission (<-)

• The transmission operators can be
applied to model-instances.

• Dynamic instances can be created
by transmitting anonymous
declarations to a dynamically-
linked identifier. Moving to the
trash deletes instances.

parameter Real R;
static Real u;
static Real i;

u = R*i;

static Boolean open;
open << false;

dynamic Resistor currentR;
currentR <- HeatResistor{R<<100};

trash <- currentR;

© Dirk Zimmer, July 2007, Slide 14

Department of Computer Science
Institute of Computational Science

ETH ZürichSol: Branches

• Sol features if-else-branches and
when-else-branches.

• If-branches are evaluated during
an update-step.

• When branches are evaluated at
the end of an update-procedure
and their contents gets activated
for the next update procedure.

• There are no syntactical
restrictions on the content of the
branches.

model Gain

interface:
parameter Real gf;
static out Real g_out;
static Real g_in;

implementation:
static Real h ;
h << gf * g_in;

if h < 0.5 then
g_out << Gain(g_in << h);

else then
g_out << h;

end;

end Gain;

© Dirk Zimmer, July 2007, Slide 15

Department of Computer Science
Institute of Computational Science

ETH ZürichExample 1

• Let us model a simple machine, consisting of an engine that drives a fly-
wheel.

• Two models are provided for the engine:

– The first model “Engine1” applies a constant torque on the flange.

– In the second model “Engine2”, the torque is dependent on the positional
state similar to a piston-engine.

• The machine-model connects the engine and the fly-wheel. It contains a
structural change that is reflected by a substitution of the engine-models.

• Initially, the fly-wheel is at rest, and the more complex engine model is
used. When the speed exceeds a certain threshold, it seems appropriate
to average the torque. Thus, the simpler engine-model is used instead.

• The example in the paper (shown in the next slides) had to be adapted to
the current state of implementation.

© Dirk Zimmer, July 2007, Slide 16

Department of Computer Science
Institute of Computational Science

ETH ZürichExample 1
model FlyWheel
interface:

parameter Real inertia << 1;
static Flange f;
static Real w;

implementation:
static Real z;
w = der(f.phi);
z = der(w);
f.t = inertia*z;
when initial then w=0; f.phi=0; end;

end FlyWheel;

model Machine
implementation:

static FlyWheel Wheel1{inertia<<10};
static Boolean fast;
if fast then
static Engine1 E{meanTorque<<100};
connection(E.f,Wheel1.f);

else then
static Engine2 E{meanTorque<<100};
connection(E.f,Wheel1.f);

end;
when initial then fast<<false; end;
when Wheel1.w > 50 then fast<<true; end;

end Machine;

connector Flange
interface:

static potential Real phi;
static flow Real t;

end flange;

partial model Engine
interface:

parameter Real meanTorque<<1;
static Flange f;

end Engine;

model Engine1 extends Engine;
implementation:

f.t = meanTorque;
end Engine1;

model Engine2 extends Engine;
implementation:

static Real transm;
transm = 1+sin(f.phi);
f.t = meanTorque*transm;

end Engine2;

© Dirk Zimmer, July 2007, Slide 17

Department of Computer Science
Institute of Computational Science

ETH ZürichExample 1

model Machine

implementation:
static FlyWheel Wheel1{inertia<<10};
dynamic Engine E;
connection(E.f,Wheel1.f);

when initial then
E <- Engine2{meanTorque << 100};

end;
when Wheel1.w > 50 then
E <- Engine1{meanTorque << 100};

end;

end Machine;

• The previous model contained a
separate branch for each mode.
The transitions are modeled by
when-statements.

• Here we present a second variant,
where the model-instance is
dynamically linked to the
identifier.

• The corresponding update of the
connection statement is treated
automatically by the system.

© Dirk Zimmer, July 2007, Slide 18

Department of Computer Science
Institute of Computational Science

ETH ZürichExample 1: Results

Executing…
solsim TestEngine.sol -o out.dat -sim 10 0.001

pgnuplot results.gnu

simulates through 10’000 Euler steps and draws a plot of the angular velocity

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

7.5 7.55 7.6 7.65 7.7 7.75 7.8

39

39.5

40

40.5

41

© Dirk Zimmer, July 2007, Slide 19

Department of Computer Science
Institute of Computational Science

ETH Zürich

The program solsim is an interpreter

1. The model-textfile is parsed and mapped on the internal data-structures.

2. The type generation is processed (extensions, redefinitions..).

3. The relevant model-instances are created.

4. The corresponding transmissions (and equations) are dynamically flattened
and ordered.

5. The dynamically flattened system is then evaluated.

6. The evaluation of branch-statements may lead to further instantiations or to
the deletion of existing instances.

7. Thus, a structural change leads to an update (not rebuild) of the dynamically
flattened system.

8. The evaluation continues until the end of the simulation.

Current Implementation

© Dirk Zimmer, July 2007, Slide 20

Department of Computer Science
Institute of Computational Science

ETH ZürichOutlook

The current implementation is still in an early stage and represents only an
intermediate solution. Our future work will focus on…

• The dynamic causalization processes

• The dynamic handling of higher-index problems

• The inclusion of arrays

• Well-specified handling of discrete events

• Strict and formal presentation of the language

• Development of optimization schemes.

Obviously we have now a large playground for our research.

© Dirk Zimmer, July 2007, Slide 21

Department of Computer Science
Institute of Computational Science

ETH Zürich2nd Example

• Let us model a pendulum. The mass is
constrained in its movement by a non-
elastic, mass-less wire.

• In general this model is highly non-linear.
The video on the right hand side displays
a stiff but continuous approximation of
the model. It was modeled and simulated
in Dymola.

• We present now two conceptual solutions
in Sol where the system is modeled in an
ideal way by a structural change.

• The structural change is modeled at
different levels of abstraction.

© Dirk Zimmer, July 2007, Slide 22

Department of Computer Science
Institute of Computational Science

ETH Zürich

model WirePendulum

interface
parameter Real l;
static Real[2] x;
static Real[2] v;

implementation:
static Boolean free;

if free then
static Body b{x_start<<x,

v_start<<v};
when dist(a=fa.x, b=fb.x) >= l
then

free << false;
x << b.x;
v << b.v;

end;
…

2nd Example: 1st Version

…
else then

static Fixed fix{x << [0,0]};
static Body b{};
static Revolute{w_start<<f(v),

phi_start<<g(x)}
static Translation{n<<[l,0]}
connection(fix.f,R.fa);
connection(R.fb,T.fa);
connection(T.fb,b.f);

when (x=T.f*T.r) <= 0 then
free << true;
x << b.x;
v << b.v;

end;

end;

when initial then
free << true;
x << 0.4; y << 1.0;

end;

end WirePendulum

In the first version, the structural change
is modeled at the top level.

© Dirk Zimmer, July 2007, Slide 23

Department of Computer Science
Institute of Computational Science

ETH Zürich

model WirePendulum2
interface:

parameter Real l;
static Real[2] x;

implementation:
static Fixed f;
static Revolute r;
static LimitedPrismatic p;
static Body b;

connection(f.f,r.fa);
connection(r.fb,p.fa);
connection(p.fb,b.f);

end FreePendulum2

2nd Example: 2nd Version

• The first version simply models a
transition between two separate
models.

• However, this transition is non-
physical. The actual force-impulse
is not taken into account.

• The second variant (on the right)
does not contain a structural change
at the top-level. It must be in one of
the sub-models.

• Let us examine the sub-models…

© Dirk Zimmer, July 2007, Slide 24

Department of Computer Science
Institute of Computational Science

ETH Zürich

model Body
interface:

parameter Real m;
parameter Real I;

static IFrame f;

implementation:
static Real[2] v; static Real[2] a;
static Real w; static Real z;
static Real Vpre; static Real Wpre;

f = m*a; t = I*z;
v = der(f.x); w = der(f.phi);

f.F = m*(f.Ve-Vpre);
f.T = I*(f.We-Wpre);

when f.impulse then
Vpre << pre(v);
Wpre << pre(w);
v << f.Ve;
w << f.We;

else then
a = der(v);
z = der(w);

end;

end Body;

2nd Example: 2nd Version

model Fixed
interface:

parameter Real m;
parameter Real I;
static IFrame f;

implementation:
static Real[2] v;
static Real[2] a;
static Real w;
static Real z;

f.x = x;
f.phi = phi;
Ve = 0;
We = 0;

end Fixed;

The corresponding sub-models own
equations and operations for the
handling of mechanical impulses.

© Dirk Zimmer, July 2007, Slide 25

Department of Computer Science
Institute of Computational Science

ETH Zürich

model LimitedPrismatic
interface:

parameter Real l;
parameter Real[2] n;
static Real s;
static Real v;
static Real a;
static frame fa;

static frame fb;

implementation:
static Boolean free;

static Real[2] r;
r[1]=n[1]*sin(fa.phi)+n[2]*cos(fa.phi);
r[2]=n[2]*sin(fa.phi)-n[2]*cos(fa.phi);
fb.x = fa.x+s*r;
fa.phi = fb.phi;
a = der(v);
fa.t = cross(r*s,fb.f) + fb.t;
fa.f + fb.f = 0;

fa.We = fb.Wb;
fa.Ve = fb.Ve + cross(r*s,fa.We);
fa.F + fb.F = [0,0]:

fa.T = cross(r*s,fb.F) + fb.T = 0;

2nd Example: 2nd Version

if free then
fa.f*r = 0;
when dist(a=fa.x, b=fb.x) >= l
then
fa.impulse << true;
fa.impulse << true;

end;
else then
s = l;
when (fa.f-fb.f)*r*sign(x=s) < 0
then free << true; end;

end;

when fa.impulse then
free << false;
(fa.Ve - fb.Ve)*r = 0;
v = 0;
fa.impulse << false;
fa.impulse << false;

else then
fa.F*r = 0;
v = der(s);

end;

end LimitedPrismatic

© Dirk Zimmer, July 2007, Slide 26

Department of Computer Science
Institute of Computational Science

ETH Zürich2nd Example: Conclusions

• In the second version, the structural change was modeled in the limited
joint and involves a force-impulse.

• The second version is a truly object-oriented solution. However, it is more
demanding with respect to the simulator’s capabilities (dynamic handling
of index-changes, etc.).

• Consider the task where you want to extend your model to a double-
pendulum of the same kind. The first approach reveals to be a dead-end
whereas the second one can easily be extended.

• However, important is that both approaches shall be possible in Sol.

© Dirk Zimmer, July 2007, Slide 27

Department of Computer Science
Institute of Computational Science

ETH Zürich2nd Example: Conclusions

• None of the two variants is per se the better one. The decision between
different variants depends on the current task and can only be made
by the modeler.

• Thus, a general modeling language shall attempt to refrain from
enforcing modeling-decisions. It should only provide the elementary
means and let the modeler compose his solution out of them.

The End

