
1

Hybrid dynamics in Modelica:
should all events be considered

synchronous

Ramine Nikoukhah
INRIA

EOOLT 2007

Modelica/Scicos

• Modelica: language for modeling physical
systems. Originally continuous-time modeling
extended to discrete-time.

• Scicos: block diagram environment for modeling
dynamical systems. For discrete and explicit
continuous-time models.

• Modelica/Scicos: same type of hybrid systems to
model. They face similar problems.

Objective: Apply Scicos solutions to Modelica

2

OUTLINE

• Conditioning and sub-sampling in Modelica
– Synchronous versus simultaneous
– Primary and secondary when clauses
– Restrictions on the use of when and if
– Continuous-time dynamics
– Initial conditions
– Union of events

• Back-end compiler

Conditioning and sub-sampling in
Modelica

• when-elsewhen for sub-sampling and if-then-
else for conditioning.

• Scicos counterparts: event generation and if-
then-else and ESelect block.

• Two different types of when:
– Primary when: event is detected by zero-crossing or

similar mechanism
– Secondary when: event is the consequence of a

jump of a discrete variable

3

Events considered synchronous if they can be
traced back to a single event

when sample(0,1) then
d=pre(d)+1;

end when;

when d>3 then
a=pre(a)+1;

end when;

First when is primary, the other is secondary and related
to the first one.

d jumps activating event

Synchronous versus simultaneous

Events considered asynchronous if they
cannot be traced back to a single event

equation
x=time*time/2;
der(y)=time;
when (x>2) then

z=pre(z)+3;
v=u+1;

end when;
when (y>2) then
u=z+1;

end when

x and y are theoretically identical but
the numerical solver may find:

1. x>2 first and then y>2
2. y>2 first and then x>2
3. both detected simultaneously

We consider case 3 as 1 or 2:
• z=pre(z)+3; v=u+1; u=z+1;
• u=z+1; z=pre(z)+3; v=u+1;

Dymola considers three cases:
• z=pre(z)+3; v=u+1; u=z+1;
• u=z+1; z=pre(z)+3; v=u+1;
• z=pre(z)+3; u=z+1; v=u+1;

Both solutions lead to non-
deterministic simulations

4

Some models are inherently nondeterministic:
normal to have nondeterministic simulation

Explicit synchronization removes non-determinism:

equation
der(x)=1;
when x>1 then

<eq1>
end when;
when x>1 then

<eq2>
...
end when;

equation
der(x)=1;
E=x>1;
when E then

<eq1>
end when;
when E then

<eq2>
...
end when;

equation
der(x)=1;
E=x>1;
when E then

<eq1>
<eq2>

...
end when;

Note: we shall see later, when type Event is introduced, that E=x>1 should be
replaced with E=event(x>1). In fact E=x>1 should not always be allowed.

should be
written

automatically
transformed to

Most cases synchronized events are declared
explicitly by user. Only risk is use of sample

May want to consider sample(0,1) and sample(0,1) as
synchronous:

equation
when sample(0,1) then

a=b;
end when;
when sample(0,1) then

b=c;
end when;

equation
E=sample(0,1);
when E then

a=b;
end when;
when E then

b=c;
end when;

Difficult if come from different
models or have different
parameters: sample(1/3,2)

Solutions: 1. Use Boolean (or Event) and synchronize modules with a
unique clock

2. Treat sample as a special pre-compilation directive
(Simulink solution)

5

In Simulink-like solution, samples would be synchronized
with each other by finding a fastest common clock. But they
are not synchronized with other time events.

So even by adopting Simulink-like solution and
introducing type Event, there is no reason to
assume synchronized primary when clauses.

Basic assumption: primary when clauses are based on
time events (of type zero-crossing) and are asynchronized.

This assumption is in contradiction with Dymola’s
interpretation of Modelica specification.

Primary and secondary when clauses
• All when’s cannot be classified as primary or secondary.

Some are mixed.

equation
der(x)=1;

when sample(0,1) then
d=pre(d)+j;

end when;

when x>d then
b=a;

end when;

Two possibilities:
1. x crosses constant d (zero-crossing)
2. d jumps across the condition at

sample time

Mixed when clause

6

Removing mixed when clauses
equation
der(x)=1;

when sample(0,1) then
d=pre(d)+j;

end when;

when x>d then
b=a;

end when;

equation
der(x)=1;

when sample(0,1) then
d=pre(d)+j;
if ((x>d) and not(x>pre(d))) then
b=a ;

end if ;
end when;

when zcross(x-d) then
b=a;

end when;

transformation

Note: inside sample(0,1) when, pre(x)=x so
(x>d) and not(pre(x)>pre(d)) ≡ (x>d) and not(x>pre(d)) ≠ edge(x>d)

Note: resulting model does not respect single assignment rule.
But that is OK because the two when clauses are primary (asynchronous).
Moreover, the if does not have an else branch defining b (OK too, will see later).

Other type of mixed when clause
equation

der(x)=0;

when x>3 then
a=pre(a)+1;

end when;

when time>2 then
reinit(x,pre(x)+4);

end when; mixed when clause:
Activated by x crossing 3 continuously

or jumping across by reinit

Must take into account the dual nature of x.

x is continuous and discrete

7

Removing the mixed types

equation
der(x)=0;

when x>3 then
a=pre(a)+1;

end when;

when time>2 then
reinit(x,x+4);

end when;

equation
der(x)=0;

when zcross(x-3) then
a=pre(a)+1;

end when;

when time>2 then
x=pre(x)+4;
if (x>3) and not(pre(x)>3) then

a=pre(a)+1;
end if ;

end when;

transformation

Note: synchronization aspect of reinit is ambiguous in the specification.
reinit(x,pre(x)+4) ≡ x=pre(x)+4 is a possible interpretation.

Note: resulting model does not respect single assignment rule.
OK because the two when clauses are primary (asynchronous)

Restrictions on use of when and if
• Case of when: Single assignment rule must be

removed for transformed model.

We may consider removing it also for the original
model.

equation
der(x) = a ;
when (x>1) then

a = -1 ;
end when ;
when (x<-1) then

a = 1 ;
end when ;

clearly
asynchronous

Accept this model with a warning

8

Consider following modifications:

equation
when c1 then

b=a;
end when;

when c2 then
b=a;

end when;

1. Restriction be lifted for primary when clauses.
2. Restriction be lifted in all when clauses as long as the

equations defining common variables are identical. For
example for all conditions c1, c2 (synchronous or not),
accept:

Note: Second modification concerns only transformed model.

• Case of if: remove conditions on number of equations
in different branches after transformation for discrete
variables.
Accept:

Similar restriction on elsewhen should be removed as well, at
least for the transformed model.

Consider accepting as original model with a warning

equation
when sample(0,1) then
if u>0 then
v=1;

end if;
end when;

equation
when sample(0,1) then
if u>0 then
v=1;

else
v=pre(v) ;

end if;
end when;

not equivalent to

Note: allowing absence of else branch not just a facility but real sub-sampling.

9

Continuous-time dynamics

equation
y=sin(time) ;
der(x)=y ;
when x<.2 then

a=y ;
end when ;

• Equations in equation section but outside when clauses
are always active (Scicos terminology).

• Scicos defines a fictitious activation clock. It activates
all the time except at event times. So:

1. It is asynchronous with other events.

2. Its union with other events yields “always activation”.

Note: the content of always active section
copied inside all when clauses.

equation
when continuous then

y=sin(time) ;
der(x)=y ;

end when ;
when x<.2 then

y=sin(time) ;
der(x)=y ;
a=y ;

end when

transformation

primary
when clauses

Initial conditions

when initial then
a=0 ;
d=3 ;
if …..
…

end when ;

• All initial conditions grouped inside a single when
clause after the front-end compilation:

when initial considered asynchronous with all
other events.

when terminal can be defined similarly.

10

Union of events

when {c1,c2,c3} then
< eq1 >

< eq2 >
…..

end when;

• when and elsewhen clauses can be activated at the union of
events

The content of synchronous when clauses
should not be executed more than once
during synchronous activation:

equation
der(x)=x;
when x>1 then

d=pre(d)+1;
end when;
when {d>2,2*d>4} then

a=pre(a)+1 ;
end when;

c1, c2, c3 may be synchronous or not

equation
der(x)=x;
when x>1 then

d=pre(d)+1;
end when;
when x>1 then

e=pre(e)+1;
end when;
when {d>2,e>2} then

a=pre(a)+1 ;
end when;

a incremented once

a incremented twice

Dymola’s interpretation

when sample(0,3) then
d=pre(d)+1;

end when;
when time>=3 then

e=pre(e)+1;
end when;
when {d>1,e>0} then

a=pre(a)+1 ;
end when;

• Example:

Dymola increments a once

In Dymola d>1, e>0 are synchronous (a is incremented only once at time 3).
This interpretation must be avoided even if treating sample as in Simulink.

11

Union of events in Scicos: sum of activation signals

when {c1,c2,c3} then
< eq1 >
< eq2 >
…..

end when;

A precompiler separates sums in Scicos. Same can be done for
Modelica:

when c1 then
< eq1 >

< eq2 >
…..

end when;
when c2 then

< eq1 >
< eq2 >
…..

end when;
when c3 then

< eq1 >
< eq2 >
…..

end when;

This transformation removes all
union-of-events constructors

Back-end compiler

when initial then
...

end when;
when continuous then

….
end when;
when <xxx> then

…
end when;
when <yyy> then
…

end when ;
………

• The application of the transformations (on a flat Modelica
model) leads to:

Model now contains a series of when clauses: primary and secondary

primary and secondary
when clauses

12

Compiler: phase I
• Secondary when clauses are removed to obtain a model

containing only primary when clauses (similar to Scicos
compiler phase 1)

During simulation, depending on the event, the corresponding (and
only the corresponding) when section is executed.

• Each primary when is associated with an asynchronous
(independent) event → content of each when compiled
separately

Compiler: phase II

• For each content, do static scheduling and generate
code (Scicos compiler phase 2)

