

Robust Initialization of Differential Algebraic Equations

EOOLT'07 Berlin

Bernhard Bachmann Fachhochschule Bielefeld Bielefeld Peter Aronsson MathCore Engineering AB Linköping Peter Fritzson Linköping University Linköping

Outline

- Mathematical Formulation of Hybrid DAEs
- Symbolic Transformation Steps
- Initialization in Modelica (Conventional)
- Higher-Index DAEs
- System versus Component initialization
- Example (3-Phase System)

Mathematical Formalism

General representation of hybrid DAEs:

 $\underline{0} = \underline{f}\left(t, \ \underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}\right)$

t	time
$\underline{\dot{x}}(t)$	vector of differentiated state variables
$\underline{x}(t)$	vector of state variables
$\underline{y}(t)$	vector of algebraic variables
$\underline{u}(t)$	vector of input variables
$\underline{q}(t_e), \underline{q}_{pre}(t_e)$	vectors of discrete variables
$\underline{c}(t_e)$	vector of condition expressions
<u>p</u>	vector of parameters and/or constants

Numerical Aspects for Simulation (Explicit Euler Method)

Integration of explicit ordinary differential equations (ODEs):

$$\underline{\dot{x}}(t) = \underline{f}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right), \qquad \underline{x}(t_0) = \underline{x}_0$$

Numerical approximation of the derivative and/or right-hand-side:

$$\underline{\dot{x}}(t_n) \approx \frac{\underline{x}(t_{n+1}) - \underline{x}(t_n)}{t_{n+1} - t_n} \approx \underline{f}\left(t_n, \underline{x}(t_n), \underline{u}(t_n), \underline{p}\right)$$

Iteration scheme:

$$\underline{x}(t_{n+1}) \approx \underline{x}(t_n) + (t_{n+1} - t_n) \cdot \underline{f}(t_n, \underline{x}(t_n), \underline{u}(t_n), \underline{p})$$

Calculating an approximation of $\underline{x}(t_{n+1})$ based on the values of $\underline{x}(t_n)$

<u>Here:</u> Explicit Euler integration method

Convergence?

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Basic Transformation Steps Mathematical View

Transformation to explicit state-space representation:

Implicit function theorem:

Necessary condition for the existence of the transformation is that the following matrix is regular at the point of interest:

$$\det\left(\frac{\partial}{\partial \underline{z}}\underline{f}(t,\underline{z}(t),\underline{x}(t),\underline{u}(t),\underline{p})\right) \neq 0$$

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Symbolic Transformation Algorithmic Steps

 $(\dot{x}(t))$

$$\underline{0} = \underline{f}\left(t, \underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{p}\right)$$

- Construct bipartite graph representation
 - Structural representation of the equation system
- Solve the matching problem
 - Assign to each variable exact one equation
 - Same number of equations and unknowns
- Construct a directed graph
 - Find sinks, sources and strong components
 - Sorting the equation system

$$\underline{0} = \underline{f}\left(t, \underline{z}(t), \underline{x}(t), \underline{u}(t), \underline{p}\right), \quad \underline{z}(t) = \begin{bmatrix} \underline{x}(t) \\ \underline{y}(t) \end{bmatrix}$$
n
$$\underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix} = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$
is
$$\underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix} = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

$$\underline{\dot{x}}(t) = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$
$$\underline{y}(t) = \underline{k}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

Initialization of Dynamic Models Conventional

- Initialization of "free" state variables
 - Transformed DAE after index-reduction
 - States can be chosen at start time
 - same number of additional equations and "free" states
- Initialization of parameters
 - Determine parameter settings
 - Parameters can be calculated at start time
 - same number of additional equations and "free" parameters

Initialization mechanism in Modelica

- attribute start
- initial equation section
 - attribute fixed for parameters

 $\underline{0} = f\left(t, \underline{\dot{x}}(t), \underline{x}(t), y(t), \underline{u}(t), p\right)$ $\underline{0} = \underline{f}\left(t, \underline{z}(t), \underline{x}(t), \underline{u}(t), \underline{p}\right), \quad \underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix}$ $\underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ y(t) \end{pmatrix} = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$ $\underline{\dot{x}}(t) = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$ $y(t) = \underline{k}(t, \underline{x}(t), \underline{u}(t), p)$

2007-07-30

B. Bachmann, P. Aronsson, P. Fritzson

Example: 3-Phase Electrical System

Steady-state initialization?

- States I1.i, I2.i, I3.i are not constant!
- Here: Initial values set to 0 (standard settings, attribute start)
- Transformation to rotating reference system necessary

Example: 3-Phase Electrical System

Park-Transformation to rotating reference system:

- Write states as vector $i_abc[3] = \{11.i, 12.i, 13.i\}$
- Park-transformation to dq0-reference frame

Example: 3-Phase Electrical System Initialize States

```
model Test3PhaseSystem
    parameter Real shift=0.4;
    Real i_abc[3]={I1.i,I2.i,I3.i};
    Real i_dq0[3];
    ...
initial equation
    der(i_dq0)={0,0,0};
```

equation

```
i_dq0 = P*i_abc;
end Test3PhaseSystem
```

Steady-state initialization:

- Derivatives of i_dq0 are only introduced during initialization
- Differentiation of i_dq0 = P*i_abc necessary
- No higher-index problem

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Example: 3-Phase Electrical System Initialize Parameters


```
der(i_dq0) = {0,0,0};
power = -0.12865;
```

equation

```
...
u_dq0 = P*u_abc;
i_dq0 = P*i_abc;
power = u_dq0*i_dq0;
end Test3PhaseSystem
```

Parameter initialization:

- Non-linear equation, no unique solution power=u_dq0*i_dq0=-0.12865
- Attribute fixed (default true)
- Attribute start (default 0)

Define new LR – Component:

- States are LR1.I1.i, LR1.I2.i, LR1.I3.i
- Connectors based on rotating reference system
- Initial equations defined locally
- no higher-index problem

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Higher-Index-DAEs

General representation of DAEs:

$$\underline{0} = \underline{f}\left(t, \ \underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{p}\right)$$

t time

- $\underline{\dot{x}}(t)$ vector of differentiated state variables
- $\underline{x}(t)$ vector of state variables
- y(t) vector of algebraic variables
- $\underline{u}(t)$ vector of input variables
- *p* vector of parameters and/or constants

Differential index of a DAE:

The minimal number of analytical differentiations of the equation system necessary to extract by algebraic manipulations an explicit ODE for all unknowns.

Higher-Index-DAEs

DAE with differential index 0:

$$\underline{0} = \underline{f}\left(t, \ \underline{\dot{x}}(t), \underline{x}(t), \underline{u}(t), \underline{p}\right) \longrightarrow \underline{\dot{x}}(t) = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

DAE with differential index 1:

$$\underbrace{\underline{0}} = \underline{f}\left(t, \ \underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{p}\right) \\
 \downarrow \\
 \underline{\dot{x}}(t) = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right) \\
 \underline{y}(t) = \underline{k}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right) \xrightarrow{\underline{\dot{x}}(t)} \underbrace{\underline{\dot{x}}(t)}_{\underline{\dot{x}}(t)} = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right) \\
 \underline{\dot{y}}(t) = \underline{k}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right) \xrightarrow{\underline{\dot{y}}(t)} \underbrace{\underline{\dot{y}}(t)}_{\underline{\dot{x}}(t)} = \frac{d}{dt}\underline{k}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

Higher Index Problems Structurally Singular Systems

Higher-index DAEs

- Differential index of a DAE
- Structural singularity of the adjacence matrix
- Index reduction method using symbolic differentiation of equations

Numerical issues

- Consistent initialization
- Drift phenomenon
- Dummy derivative method

State selection mechanism in Modelica

- Attribute StateSelect:

```
never, avoid, default, prefer, always
```

$$\underline{0} = \underline{f}\left(t, \underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{p}\right)$$

trix

$$\underline{0} = \underline{f}\left(t, \underline{z}(t), \underline{x}(t), \underline{u}(t), \underline{p}\right), \quad \underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix}$$

$$\underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix} = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

$$\downarrow$$

a

$$\underline{\dot{x}}(t) = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$$

 $y(t) = \underline{k}(t, \underline{x}(t), \underline{u}(t), p)$

Higher-Index-DAEs -- Numerical Problems

- Consistent initial conditions
 - Relation between states are eliminated when differentiating
 - Initial conditions need to be determined using the algebraic constrains
 - Automatic procedure possible using assign algorithm on the constrained equations
- Drift phenomenon
 - Algebraic constrained no longer fulfilled during simulation
 - Even worse when simulating stiff problems

=> Dummy-Derivative method

Principles of the Dummy-Derivative Method

- Matching algorithm fails
 - System is structurally singular
 - Find minimal subset of equations
 - more equations than unknown variables
 - Singularity is due to equations constraining states
- Differentiate subset of equations
 - Static state selection during compile time
 - choose one state and corresponding derivative as purely algebraic variable
 - o so-called dummy-state and dummy derivative
 - by differentiation introduced variables are algebraic
 - continue matching algorithm
 - check initial conditions
 - Dynamic state selection during simulation time
 - store information on constrained states
 - make selection dynamically based on heuristic criteria
 - new state selection triggers an event (re-initialize states)

Initialization of Higher-Index Problems

- Initialization (conventional)
 - Transformed DAE after index-reduction
 - Define initial equations on system level
 - same number of additional equations and "free" states
- Initialization (advanced)
 - Transformed DAE after index-reduction
 - Define initial equations on component level
 - same number of additional equations and "free" states locally
 - consistent overdetermined system

 $\underline{0} = f\left(t, \underline{\dot{x}}(t), \underline{x}(t), y(t), \underline{u}(t), p\right)$ $\underline{0} = \underline{f}\left(t, \underline{z}(t), \underline{x}(t), \underline{u}(t), \underline{p}\right), \quad \underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{pmatrix}$ $\underline{z}(t) = \begin{pmatrix} \underline{\dot{x}}(t) \\ y(t) \end{pmatrix} = \underline{g}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$ $\underline{\dot{x}}(t) = \underline{h}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right)$ $y(t) = \underline{k}(t, \underline{x}(t), \underline{u}(t), p)$

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Solving Overdetermined Systems

Nonlinear system of equations

- *m*, number of equations
- *n*, number of variables
- $-m \ge n$

$$f_1(z_1,...,z_n) = 0$$

:
$$f_m(z_1,...,z_n) = 0$$

Corresponding minimization problem

- solution solves the nonlinear system of equations

$$F(z_1,...,z_n) = \sum_{i=1}^m f_i(z_1,...,z_n)^2 \to \min$$

Derivative-free methods implemented in OpenModelica

- Simplex method of Nelder and Mead
- Minimization method of Brent

Example: 3-Phase Electrical System Higher-Index-Problem (Conventional)

Higher Index problem:

- Algebraic dependency between differentiated variables LR1.I1.i, LR1.I2.i, LR1.I3.i and LR2.I1.i, LR2.I2.i, LR2.I3.i
- Only 3 states are left after index-reduction
- Define initial equations globally (Cumbersome)

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Higher Index problem:

- Algebraic dependency between differentiated variables LR1.I1.i, LR1.I2.i, LR1.I3.i and LR2.I1.i, LR2.I2.i, LR2.I3.i
- Initial equations still defined locally
- Overdetermined equation system during initial time!

2007-07-30 B. Bachmann, P. Aronsson, P. Fritzson

Conclusions and Future Work

- Advanced Initialization of DAEs
 - System versus component initialization
 - Well-posed overdetermined systems

Prototype in OpenModelica

- Implementation of concept
 - derivative-free minimization algorithms
- Thorough testing necessary
- Improve efficiency
- Use advanced numerical minimization algorithms
 - Globally convergent methods
 - Calculation of Jacobian matrix of the equation system