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Abstract 

The high complexity of modern electronic systems has resulted in a 
substantial increase in the time-to-market as well as in the cost of 
design, production, and testing. Recently, in order to reduce the design 
cost, many electronic systems have employed a core-based system-on-
chip (SoC) implementation technique, which integrates pre-defined 
and pre-verified intellectual property cores into a single silicon die. 
Accordingly, the testing of manufactured SoCs adopts a modular 
approach in which test patterns are generated for individual cores and 
are applied to the corresponding cores separately. Among many 
techniques that reduce the cost of modular SoC testing, test scheduling 
is widely adopted to reduce the test application time. This thesis 
addresses the problem of minimizing the test application time for 
modular SoC tests with considerations on three critical issues: high 
testing temperature, temperature-dependent failures, and defect 
probabilities. 

High temperature occurs in testing modern SoCs and it may cause 
damages to the cores under test. We address the temperature-aware 
test scheduling problem aiming to minimize the test application time 
and to avoid the temperature of the cores under test exceeding a 
certain limit. We have developed a test set partitioning and 
interleaving technique and a set of test scheduling algorithms to solve 
the addressed problem. 

Complicated temperature dependences and defect-induced 
parametric failures are more and more visible in SoCs manufactured 
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with nanometer technology. In order to detect the temperature-
dependent defects, a chip should be tested at different temperature 
levels. We address the SoC multi-temperature testing issue where tests 
are applied to a core only when the temperature of that core is within a 
given temperature interval. We have developed test scheduling 
algorithms for multi-temperature testing of SoCs. 

Volume production tests often employ an abort-on-first-fail 
(AOFF) approach which terminates the chip test as soon as the first 
fault is detected. Defect probabilities of individual cores in SoCs can 
be used to compute the expected test application time of modular SoC 
tests using the AOFF approach. We address the defect-probability 
driven SoC test scheduling problem aiming to minimize the expected 
test application time with a power constraint. We have proposed 
techniques which utilize the defect probability to generate efficient 
test schedules. 

Extensive experiments based on benchmark designs have been 
performed to demonstrate the efficiency and applicability of the 
developed techniques. 
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Chapter 1 
Introduction 

In order to assure correct circuit behavior, integrated circuits (ICs) 
have to be tested after fabrication. Nowadays, manufacturing test has 
become an essential part of IC production. Considered as a major 
contributor to the testing cost, test time needs to be reduced for the 
sake of cost reduction. Among various techniques, test scheduling is 
an efficient approach to reduce the test time. This thesis deals with test 
scheduling problems for systems-on-chip (SoCs) with specific 
concerns on temperature and power related issues as well as the 
consideration of defect probabilities. This chapter motivates our work 
and summarizes the contributions and the organization of the thesis.  

1.1 Motivation 
The steadily decreasing feature size of electronic devices in ICs has 
enabled higher integration density. Today’s ICs may consist of 
billions of transistors manufactured with nanometer technology. As a 
consequence, more functionality is added into the system and higher 
performance is achieved, which results in substantially increased 
complexity of the system. Challenges have arisen in design, 
production and test of such highly complex electronic systems. 
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ICs manufactured with very-large-scale integration (VLSI) 
technology may have defects that are process-variation induced flaws 
or physical imperfections. Defects may lead to faults which can cause 
malfunction or system failure. Some faults can be detected by test 
methods, while others may escape all applied tests and cause 
reliability problems in the field. It is very important to capture as 
many faults as possible with production tests at the chip level, because 
escaping chip tests result in huge costs spent for testing, diagnosis and 
maintenance at the printed-circuit-board (PCB) and system levels, 
according to the rule of ten [Davis. 1994]. Therefore, effective test 
methods have to he developed for production tests of modern ICs.  

Testing is expensive. It has been reported that testing cost is about 
50% to 60% of IC manufacturing cost [Bushnell, et al. 2000]. 
Although the cost of ICs has been decreasing with the advances in 
technology, the percentage of the total cost attributed to testing has 
increased [Bushnell, et al. 2000]. One of the major contributors of 
testing cost is the test time, which increases along with the system 
complexity and has a significant impact on the time-to-market of final 
products.  

While the semiconductor industry steadily follows Moore's law 
[Moore. 1965], the time between technology nodes has been 
significantly shortened, exacerbating the time-to-market pressure. In 
order to improve the design productivity of highly complex electronic 
systems within a shortened time period, a module-based design 
methodology, referred to as the core-based system-on-chip, has been 
widely adopted by the industry. The core-based SoC design 
methodology integrates pre-designed and pre-verified intellectual 
property (IP) blocks, referred to as cores, into a single silicon die.  

Naturally, the testing of modern SoCs inherits the modular design 
style, making the test of cores to be independent from each other. 
Nonetheless, the modular SoC test becomes difficult and expensive, 
due to inefficient test access mechanisms (TAMs), large volume of 
test data, high power consumption, and high temperature. The long 
test application time (TAT) is one of the major contributors to the total 
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testing cost. Several techniques have been proposed to reduce the 
TAT. Firstly, advanced automatic test-pattern generation (ATPG) 
tools are used to generate more efficient test patterns. Secondly, 
efficient test scheduling techniques which schedule tests in parallel are 
employed to increase the test concurrency and to reduce the TAT. 
Thirdly, design-for-test (DFT) techniques, such as built-in self-test 
(BIST), are used to enhance the testability of circuits and reduce the 
TAT via higher test speed.  

Although the proposed techniques reduce the TAT effectively, 
they increase the power consumption during test. Applying test 
patterns to the circuits under test cause a substantial increase of 
switching activity in the circuitry, especially in parallel testing or at-
speed testing. This leads to the fact that more power is dissipated in 
circuits in testing mode than in normal functional mode. The 
substantially increased power consumption during test poses several 
problems, such as power supply noise, IR-drop and crosstalk which 
cause test fails and loss of yield. High power consumption also leads 
to high temperature which may damage the devices under test (DUTs). 
Thus, power consumption has to be taken into account for test time 
reduction and test scheduling methods.  

As the process technology goes into the nanometer regime, the 
power density further increases along with the integration density. In 
the ICs manufactured with nanometer technology, taking the heat 
away from the chip becomes more difficult. This makes the high 
temperature problem more severe for the testing of the latest 
generation of SoCs. Therefore, test scheduling for SoC should also 
aim to avoid high operating temperature that may lead to permanent 
damage to the DUTs. More exactly, the temperature of SoC cores has 
to be strictly kept below a certain temperature limit and under such a 
constraint the TAT should be minimized.  

Furthermore, testing ICs at different temperatures becomes 
necessary for current and future technologies. This is because the 
occurrence of parametric failures arises rapidly due to widely 
distributed process variations and the wide spectrum of subtle defects 
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introduced by new manufacturing processes and materials [Segura, et 
al. 2004].  

The existence of complicated temperature dependences and 
defect-induced parametric failures indicates that we need to test a chip 
at multiple temperatures. Multi-temperature testing aims to screen the 
chips having various defects that can only be efficiently sensitized at 
certain temperatures. Different tests may be needed and applied at 
different temperatures, and each test targets a particular type of defects 
that can be detected at a certain temperature interval. Alternatively, 
the same test can also be applied at different temperature intervals so 
that outliers can be screened through a comparison of the test results. 
A multi-temperature test needs substantially long TAT, since a uni-
temperature test is already time consuming. The long TAT problem is 
further exacerbated when multi-temperature testing is combined with 
modular SoC testing. Therefore, we need efficient test scheduling 
methods to reduce the TAT of multi-temperature SoC tests.  

In volume production tests, an IC is usually discarded as soon as a 
fault is detected. This test approach is referred to as abort-on-first-fail 
(AOFF). Using the AOFF test approach leads to a substantial decrease 
in the TATs of volume production tests. In order to further reduce the 
TAT, defect probabilities of individual cores can be utilized to 
generate efficient test schedules for SoC tests using the AOFF 
approach. The defect probabilities can be derived from the statistical 
analysis of the production process or generated based on inductive 
fault analysis.  

To summarize, SoC testing is a difficult and challenging problem. 
Many issues should be considered, such as test application time, 
temperature, power consumption, and defect probabilities, which are 
the topics of this thesis.  
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1.2 Problem Formulation 
In this thesis, we aim to minimize the TAT of core-based SoCs. We 
address three test time minimization problems concerning different 
trade-offs and constraints, and we use different test scheduling 
techniques to solve these problems. The formulations of the addressed 
problems are described as follows. 

First, we address the test time minimization problem with 
constraints on the temperatures of the CUTs and on the width of the 
test-bus deployed for test-data transportation. In order to prevent the 
core temperatures from exceeding the temperature limits, an entire test 
set is divided into shorter test sequences between which cooling 
periods are introduced. Furthermore, the test sequences for different 
cores can be interleaved in order to improve the efficiency of the test 
schedule. Thus, the test time minimization problem is formulated as 
how to generate test schedules for the partitioned and interleaved test 
sets such that the TAT is minimized while the temperature and test-
bus width constraints are satisfied. 

Second, we address the test time minimization problem for multi-
temperature testing. In multi-temperature testing, an IC is tested at 
different temperature levels in order to efficiently sensitize the 
temperature-dependent defects. We divide the temperature range into 
multiple intervals, and minimize the TAT within each temperature 
interval. For each interval, a temperature upper limit and lower limit 
are imposed. The test scheduling algorithm minimizes the TAT such 
that test patterns are applied to a CUT only when the temperature of 
the CUT remains in the temperature interval, and, at the same time, 
the test-bus width limit is satisfied.  

The third problem that we deal with is how to minimize the TAT 
when an AOFF test approach is employed for core-based SoC testing. 
Using the AOFF test approach, the test process is terminated as soon 
as a fault is detected. The termination of the test process is considered 
as a random event which occurs with a certain probability. Thus, for 
volume production tests, we minimize the expected test application 
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time (ETAT), which is the mathematical expectation of the TAT. The 
ETAT is calculated according to a generated test schedule and the 
given defect probabilities of individual cores. In particular, we employ 
a hybrid BIST technique which combines both deterministic and 
pseudorandom tests for each core in an SoC. The test time 
minimization problem is formulated as follows. Given the defect 
probabilities of cores and the test sets for the hybrid BISTs, generate a 
test schedule such that the ETAT is minimized. A related problem is 
the minimization of test time for volume production tests with a power 
constraint. We formulate the problem as how to generate the test 
schedule with minimal ETAT and the power constraint is satisfied.  

1.3 Contributions 
The main contributions of this thesis are as follows. First, we propose 
a test set partitioning and interleaving (TSPI) technique for 
temperature aware SoC test scheduling. This technique assumes that a 
test bus is employed to transport test data. The limit of the test-bus 
width and the limits of the core temperatures are given as constraints. 
In order to avoid overheating the CUTs during test, a test set is 
partitioned into multiple test sequences and cooling periods are 
introduced between consecutive test sequences. The partitioned test 
sets are further interleaved in order to reduce the TAT and to utilize 
the test bus efficiently. We have proposed two approaches to solve the 
constrained test scheduling problem. Both approaches employ the 
TSPI technique. One approach assumes the lateral heat flow between 
cores can be ignored. We develop a constraint logic programming 
(CLP) model and a heuristic algorithm for test scheduling [He, et al. 
2006b], [He, et al. 2007], [He. 2007], [He, et al. 2008b], [He, et al. 
2010b]. The other approach assumes significant later thermal 
influence between cores. We propose a thermal-simulation driven test 
scheduling algorithm which performs thermal simulations to obtain 
instantaneous temperature values of the CUTs and uses a finite-state 
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machine (FSM) model to manage the temperatures of the CUTs in test 
scheduling [He, et al. 2008a]. 

Second, we propose a SoC test scheduling technique for multi-
temperature testing. The proposed technique generates the shortest test 
schedule for applying SoC tests in different temperature intervals. 
This means that the test patterns should only be applied when the core 
temperature is within a certain interval. We use the TSPI technique, a 
FSM model, and heating sequences to manage the temperature of 
CUTs in test scheduling. A heuristic algorithm is developed to 
minimize the TAT [He, et al. 2010a].  

Third, we propose a defect-probability driven SoC test scheduling 
technique based on the AOFF test approach and hybrid BIST 
architecture. In this technique, we use the ETAT as the cost function 
and we develop a heuristic algorithm to generate the test schedule 
with minimized ETAT [He, et al. 2004]. In order to avoid possible 
damage, test failures, and yield loss caused by the high test power 
consumption and high temperature, we propose a technique to 
generate the shortest test schedules with a power constraint [He, et al. 
2005], [He, et al. 2006a], [He. 2007], [He, et al. 2009].  

The publications that are relevant in the context of this thesis are 
listed as follows.  

 

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2004. Hybrid BIST 
Test Scheduling Based on Defect Probabilities. In Proceedings of the 
13th IEEE Asian Test Symposium, Kenting, Taiwan, November 15 - 
November 17, pp. 230-235. 

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2005. Power-
Constrained Hybrid BIST Test Scheduling in an Abort-on-First-Fail 
Test Environment. In Proceedings of the 8th Euromicro Conference 
on Digital System Design, Porto, Portugal, August 30 - September 3, 
pp. 83-86. 
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HE, Z., PENG, Z. AND ELES, P. 2006a. Power Constrained and 
Defect-Probability Driven SoC Test Scheduling with Test Set 
Partitioning. In Proceedings of the 2006 Design, Automation and Test 
in Europe Conference, Munich, Germany, March 6 - March 10, pp. 
291-296. 

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI, 
B.M. 2006b. Thermal-Aware SoC Test Scheduling with Test Set 
Partitioning and Interleaving. In Proceedings of the 21st IEEE 
International Symposium on Defect and Fault Tolerance in VLSI 
Systems, Arlington, Virginia, USA, October 4 - October 6, pp. 477-
485. 

HE, Z. 2007. System-on-Chip Test Scheduling with Defect-
Probability and Temperature Considerations. Licentiate of 
Engineering. Thesis No. 1313. Linköping Studies in Science and 
Technology. Linköping University. 

HE, Z., PENG, Z. AND ELES, P. 2007. A Heuristic for Thermal-Safe 
SoC Test Scheduling. In Proceedings of the 2007 IEEE International 
Test Conference, Santa Clara, California, USA, October 21 - October 
26, pp. 1-10. 

HE, Z., PENG, Z. AND ELES, P. 2008a. Simulation-Driven Thermal-
Safe Test Time Minimization for System-on-Chip. In Proceedings of 
the 17th IEEE Asian Test Symposium, Sapporo, Japan, November 24 - 
November 27, pp. 283-288. 

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI, 
B.M. 2008b. Thermal-Aware SoC Test Scheduling with Test Set 
Partitioning and Interleaving. Journal of Electronic Testing: Theory 
and Applications, 24(1-3), pp. 247-257. 

HE, Z., PENG, Z. AND ELES, P. 2009. Thermal-Aware Test 
Scheduling for Core-based SoC in an Abort-on-First-Fail Test 
Environment. In Proceedings of the 12th Euromicro Conference on 
Digital System Design, Patras, Greece, August 27 - August 29, pp. 
239-246. 
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HE, Z., PENG, Z. AND ELES, P. 2010a. Multi-Temperature Testing 
for Core-based System-on-Chip. In Proceedings of the 2010 Design, 
Automation and Test in Europe Conference, Dresden, Germany, 
March 8 - March 12, pp. 208-213. 

HE, Z., PENG, Z. AND ELES, P. 2010b. Thermal-Aware SoC Test 
Scheduling. (Book Chapter) In Design and Test Technology for 
Dependable System-on-Chip, R. UBAR, J. RAIK AND H.T. 
VIERHAUS, Eds. IGI Global. 

1.4 Thesis Organization 
The rest of the thesis is organized as follows. Chapter 2 presents the 
background and related work of core-based SoC testing. The generic 
design flow of electronic systems and the basic concepts of defects 
and testing are introduced. The SoC test architecture and test 
scheduling techniques are described. Power and temperature issues in 
SoC testing are discussed and related thermal modeling techniques are 
presented. The multi-temperature testing and AOFF test approach are 
also discussed.  

Chapter 3 and Chapter 4 address the temperature aware SoC test 
time minimization problem. Different test scheduling techniques are 
proposed for two types of SoCs where the lateral thermal influence 
between cores is either negligible or should be considered, respectively. 

Chapter 5 addresses the test time minimization problem for multi-
temperature testing. A test scheduling technique is proposed to 
generate the shortest test schedule such that the test patterns are 
applied only when the temperature of each core is within an interval. 

Chapter 6 and Chapter 7 address the test time minimization 
problem for volume production tests using the AOFF test approach. 
Defect-probability driven test scheduling techniques are proposed to 
minimize the ETAT with a power constraint.  

Chapter 8 concludes the thesis and discusses possible directions of 
future work. 
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Chapter 2 
Background and 

Related Work 

This chapter presents the basic concepts of electronic system design 
and test, followed by a discussion on core-based SoC testing. The 
background and related work on test scheduling, power and 
temperature aware testing, multi-temperature testing, as well as the 
AOFF test approach are described.  

2.1 Generic Design Flow 
In order to manage the system complexity, the design of electronic 
systems has to be organized in a hierarchical approach which covers 
several levels of abstraction. In general, there are four abstraction 
levels, referred to as the system level, register-transfer (RT) level, 
logic level, circuit level, in a top-down order. Figure 2.1, often 
referred to as “Gajski and Kuhn’s Y-chart” [Gajski, et al. 1983], 
illustrates a structured view on the electronic systems design space, 
where the four levels of abstraction are categorized into three domains, 
namely the behavioral, structural and physical (or geometry) domain. 
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In the different domains, designers have a different perspective on 
their design tasks, as listed in Table 2.1. A typical design flow is 
depicted in Figure 2.2 [Devadas, et al. 1994]. 

 
Figure 2.1: Visualization of electronic systems design space 

Table 2.1: Design tasks in different domains 

Domains 
Abs. Levels Behavioral Domain Structural Domain Physical/Geometry 

Domain 

System Level Algorithm, Process CPU, Memory, Bus Chip, Cluster, 
Physical Partitions 

RT level RT Specification ALU, Register Macro-Cell Layout 

Logic Level Boolean Equation Gate, Flip-Flop Cell Layout 

Circuit Level Transfer Function Transistor Transistor Layout 

 

CPU, Memory, Bus

ALU, Register

Gate, Flip-Flop

Transistor

Structural 
Domain

RT Level

Logic Level

Circuit Level

Transistor Layout

Macro-Cell Layout

Chip, Cluster, Physical Partitions

Physical / Geometry
Domain

Cell Layout

System Level

Algorithm, Process
Register-Transfer Spec.

Boolean Equation

Behavioral 
Domain

Transfer Function
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Figure 2.2: A typical electronic systems design flow 

Here, a synthesis step is referred to as a transformation of a design 
from a higher level of abstraction into a lower level of abstraction, or 
from one domain to another domain. Each step in the design flow is 
explained as follows. 

(1) System-Level Synthesis: The specification of a electronic 
system is usually given as a description of the system functionality 
and a set of design constraints. In this step, the system specification is 
analyzed and a behavioral description is written in a hardware 
description language or natural language. 

(2) High-Level Synthesis: In this step, the system-level 
specification is transformed into a description of RT-level (RTL) 
components such as arithmetic logic units (ALUs) and registers. The 
basic components in the RTL design implement the given system-
level specification. In order to obtain the RTL design, the high-level 
synthesis usually consists of the following steps [Elliott. 1999]: 
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derivation of a control/data-flow graph (CDFG), operation scheduling, 
resource allocation and binding, derivation of the RTL data-path 
structure, and description of a controller such as a FSM. 

(3) Logic Synthesis: In this step, a RTL design is first translated 
into a set of logic functions. Thereafter, the translated RTL design is 
optimized according to different requirements given by the designer. 
The optimized design is then mapped to a netlist of logic gates, using 
a technology library provided by a vendor. 

(4) Circuit-Level Synthesis: In this step, the logic netlist is 
transformed into the transistor implementation of the circuit.  

(5) Layout Design: In this step, the circuits are mapped to the 
silicon implementation with routing and placement design. 

As illustrated in Figure 2.2, when the logic netlist has been 
obtained, the testability improvement and test generation (TG) are 
performed using design automation tools. After fabrication, each IC is 
tested using the generated test patterns and the qualified parts are 
delivered to customers.  

2.2 Faults and Testing 
In general, testing is a method to assure correct behavior of a system. 
Usually, a test exercises the system with a set of stimuli and analyzes 
the system responses to see if they are exactly the same as expected. 
Electronic testing is an experimental approach in which an electronic 
system is exercised with test stimuli and the system response is 
analyzed and compared with the expected response in order to 
ascertain the correctness of the system behavior.  

In this thesis, an instance of incorrect system operation is referred 
to as an error. According to different causes, errors can be further 
categorized as design errors, fabrication errors, fabrication defects, 
and physical failures [Abramovici, et al. 1994]. The different types of 
error are defined as follows.  
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Design errors can be incomplete or inconsistent specifications, 
incorrect mapping between different levels of design, or violations of 
design rules. Fabrication errors can be wrong components, incorrect 
wiring, shorts caused by improper soldering, etc. Fabrication defects 
are not directly attributed to human errors, but rather result from an 
imperfect manufacturing process. Examples of fabrication defects are 
shorts and opens in ICs, improper doping profiles, mask alignment 
errors, and poor encapsulation. Physical failures occur during the 
lifetime of a system due to component wear-out and/or environmental 
factors. Examples of physical failures are metal connectors thinning 
out with time, broken metal line due to electron migration or corrosion, 
etc. Some environmental factors, such as temperature, humidity, and 
vibrations, accelerate the aging of components. Other environmental 
factors, such as cosmic radiation and particles, may induce failures in 
ICs immediately [Abramovici, et al. 1994]. 

Fabrication errors, fabrication defects, and physical failures are 
collectively referred to as physical faults. In the context of this thesis, 
testing is referred to as a quality-assurance means that targets physical 
faults. According to the stability in time, physical faults can be 
categorized as (1) permanent faults, which are always present after 
their occurrence; (2) intermittent faults, which only exist during some 
time intervals; (3) transient faults, which are typically characterized by 
one-time occurrence and are caused by a temporary change in 
environmental factors or radiations [Abramovici, et al. 1994]. 

In general, a direct mathematical treatment of testing and 
diagnosis is not applicable to physical faults. The solution is to deal 
with logical faults, which are a convenient representation of the effect 
of the physical faults on the operation of the system. A logic fault can 
be detected by observing an error caused by it, which is usually 
referred to as a fault effect. The basic assumptions regarding the 
nature of logical faults are referred to as a fault model. Different fault 
models are proposed and employed to deal with different types of 
faults, such as static faults, delay faults, bridging faults, etc. A widely 
used fault model is the stuck-at fault model which assumes that a 
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single wire is permanently “stuck” at the logic one or logic zero value 
[Abramovici, et al. 1994]. 

2.3 Core-based SoC Testing 
Scaling of process technology has enabled a dramatic increase of the 
integration density, which enables more and more functionality to be 
integrated into a single chip. With the increasing system performance, 
the design complexity has also been growing steadily. A critical 
challenge to electronic engineers is that the shorter life cycle of an 
electronic system has to compete with its longer design cycle. 
Therefore, more efficient hierarchical design methodologies, such as 
the core-based SoC design methodology [Murray, et al. 1996], [Zorian, 
et al. 1999], have to be deployed in order to reduce the time-to-market.  

A common approach to modern core-based SoC design reuses 
pre-designed and pre-verified IP cores that are provided by different 
vendors. IP cores are integrated into the system which is manufactured 
on a single silicon die. An abstract example of an SoC design is 
depicted in Figure 2.3. The SoC consists of several IP cores with 
different functionality and a user-defined logic (UDL) module. In 
general, IP cores of SoCs can be processors (e.g. microcontroller, 
DSP), memory subsystems (e.g. RAM/ROM, Flash Memory), bus 
infrastructure (e.g. system bus, peripheral bus), I/O subsystems (e.g. 
USB, FireWire, Ethernet, DMA), analog and mixed-signal subsystems 
(e.g. PWM, A/D-D/A, RF), and peripheral subsystems (e.g. audio, 
video, graphic, display, camera). The UDL modules are usually used 
to “glue” the IP cores for the intended system.  

In order to test individual cores in an SoC, a test architecture 
consisting of certain resources has to be available. The test 
architecture for SoCs usually includes the test sources, test sinks, and 
test access mechanisms (TAMs). Figure 2.4 illustrates an example of a 
generic core-based SoC test architecture. 
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Figure 2.3: An IP core-based SoC example 

 
Figure 2.4: Generic core-based SoC test architecture 
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A test source is a test-pattern provider which can be either 
external or on chip. A typical external test source is an automatic test 
equipment (ATE) in which a local memory stores the generated test 
patterns. An on-chip test source can be a ROM which stores already 
generated test patterns, a counter, or a linear feedback shift register 
(LFSR) used for test pattern generation in BIST.  

A test sink is a test response/signature analyzer that detects faults 
by comparing test responses/signatures with the expected ones. An 
ATE can be an external test sink that analyzes the test 
responses/signatures transported from the DUTs. A test sink can also 
be on chip, such as single-input signature register (SISR) or multi-
input signature register (MISR) used for signature analysis in BIST. 

A TAM is an infrastructure designed for test data transportation. It 
is often used to transport test patterns from the test source to the CUTs 
and to transport test responses/signatures from the CUTs to the test 
sink. A TAM can be a bus infrastructure, such as a reusable functional 
bus, e.g. advanced microprocessor bus architecture (AMBA) [Flynn. 
1997], [Harrod. 1999], reuse of addressable system bus (RASBuS) 
[Hwang, et al. 2001] etc, or a dedicated test bus, e.g. flexible-width 
test bus architecture [Iyengar, et al. 2003]. A TAM can also be 
dedicated wire connections, e.g. direct access test scheme (DATS) 
[Immaneni, et al. 1990], multiplexing/DaisyChain/distributed test 
architecture [Aerts, et al. 1998], TestRail [Marinissen, et al. 1998], etc.  

In an SoC test architecture, a wrapper, which is a thin shell 
surrounding a core, is usually designed to switch the CUT between 
different modes, such as normal functional, internal test, and external 
test modes [Marinissen, et al. 2000]. The TAM together with the 
wrappers are usually referred to as test access infrastructure (TAI). 

An example of the test architecture for external SoC tests is 
depicted in Figure 2.5. In this example, an ATE consisting of a test 
controller and a local memory serves as an external tester. The test 
patterns and a test schedule are stored in the tester memory. When the 
test starts, the test patterns are transported to the cores through a test 
bus. After activating the test patterns, the captured test responses are 
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transported to the ATE through the test bus. The ATE can be replaced 
by an embedded tester integrated in the chip. Figure 2.6 depicts an 
example of the test architecture with an embedded tester for external 
tests. 

 
Figure 2.5: Test architecture for external tests using an ATE 

 
Figure 2.6: Test architecture for external tests using an embedded tester 
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As the number of cores of an SoC has been increasing along with 
the rapid advances of technology, the amount of required test data for 
SoC testing is growing substantially. This demands a large size of 
tester memory to be used for tests. Moreover, an external test is 
usually applied at relatively low speed due to the limited TAM width, 
and therefore results in a long TAT. 

One of the solutions to this problem is to use built-in self-test, 
which generates pseudorandom test patterns and compact test 
responses into a signature inside the chip. The advantage of BIST is 
that it can be applied at high speed. However, due to the existence of 
random-pattern-resistant faults, BIST usually needs much more test 
patterns in order to achieve the same level of fault coverage as an 
external test using ATE.  

In order to avoid the disadvantages of both external test and BIST, 
a hybrid approach has been proposed as a complement of the two 
types of tests, referred to as hybrid BIST [Hellebrand, et al. 1992], 
[Touba, et al. 1995], [Sugihara, et al. 2000], [Jervan, et al. 2000]. In 
hybrid BIST, a test set consists of both pseudorandom and 
deterministic test patterns. Such a hybrid approach reduces the 
memory requirements compared to the pure deterministic testing, and 
it provides higher fault coverage and requires less test data compared 
to the stand-alone BIST solution.  

An example of the test architecture for hybrid BIST is depicted 
in Figure 2.7. In this example, an embedded tester consisting of a test 
controller and a local memory is integrated in the chip. The generated 
deterministic test patterns and a test schedule are stored in the local 
memory of the tester. When the test starts, the deterministic test 
patterns are transported to the cores through a test bus. Each core has a 
dedicated BIST circuit that can generate and apply pseudorandom test 
patterns at speed. The test controller is supposed to control both the 
deterministic and pseudorandom tests according to the test schedule.  

In order to reduce the testing cost, a wide spectra of research has 
been carried out on several challenging issues, including test 
scheduling, power aware testing, temperature aware testing, AOFF 
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test approach. The back ground and related work in these areas are 
presented in the following sections of this chapter.  

 
Figure 2.7: Test architecture for hybrid BIST 

2.4 Test Scheduling 
Test scheduling is a process of deciding the start times and durations 
of tests as well as the means to utilize the resources for the tests. 
Usually, test scheduling aims to reduce the TAT through efficiently 
planning. In recent years, different test scheduling techniques have 
been proposed.  

Non-partitioned test scheduling is proposed in [Zorian. 1993] and 
[Chou, et al. 1997]. This technique assumes that tests are scheduled 
into different sessions, which is defined as an uninterrupted period of 
time spent on testing. Tests have to be applied without interruption 
and no new test can be started before all the tests scheduled in the 
same test session are finished. Non-partitioned test scheduling results 
in long TATs. Recently, partitioned test scheduling techniques have 
been proposed in order to reduce the TAT.  
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Partitioned test scheduling is proposed in [Muresan, et al. 2000]. It 
can substantially improve the efficiency of the test schedules by 
allowing tests to be started with no need to wait for other tests to 
finish. This means that the concept of the test session no longer exists 
in the partitioned test scheduling technique. In order to facilitate this 
technique, a more complex test controller has to be designed in order 
to enable a test to start at arbitrary time moments.  

A generalized core-based SoC test scheduling problem was 
addressed in [Chakrabarty. 2000a]. The problem is formulated as 
follows. Given a set of test resources (TAMs, BIST circuits, etc.), 
minimize the TAT by determining the start time of each partitioned 
test. The author shows that the formulated problem is NP-complete 
and provides a mixed-integer linear programming (MILP) model to 
obtain the optimal schedule. For large SoC designs, the MILP model 
needs a substantially long optimization time and may not be feasible 
to obtain the optimal solution. Therefore, the author develops a 
heuristic algorithm to generate efficient test schedules with low 
computational cost.  

Preemptive test scheduling is proposed in [Iyengar, et al. 2002]. 
Similar test scheduling technique is also proposed in [Larsson, et al. 
2002]. This technique assumes that a test can be halted for a period of 
time and then restarted later. The proposed preemptive test scheduling 
technique generates shorter test schedules than non-preemptive test 
scheduling. However, preemptive testing needs a complicated test 
controller and an advanced TAM. Moreover, it cannot be adopted for 
certain types of tests such as BIST. 

2.5 Power and Temperature Issues 
Scaling of the complementary metal-oxide-semiconductor (CMOS) 
technology has enabled the industry to improve the speed and 
performance of ICs. While all the physical dimensions of a transistor 
are scaled down, the device area is reduced. At the same time, 
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designers tend to add more functionality into chips and to build more 
complex circuits, leading to increasing die area to accommodate more 
transistors [Vassighi, et al. 2006]. It is shown in [Rabaey, et al. 2003] 
that the die area sizes of Intel processors increase approximately 7% 
per year, and the number of transistors are doubled per generation. 
The latest microprocessors already integrate billions of transistors.  

With technology scaling, the power consumption of high-
performance chips increases exponentially, especially for the chips 
manufactured with deep-submicron technology. The main reason is 
that the scaling of the threshold voltage VTH causes an increase in sub-
threshold leakage current [Rabaey, et al. 2003].  

With technology scaling, not only the total power consumption 
but also the power density of chips increases [Borkar. 1999], [Gunther, 
et al. 2001]. The power density of a chip is defined as the power 
dissipated by the chip per unit area under nominal frequency and 
normal operating conditions. The reason for the increasing power 
density is that the positive supply voltage VDD and the saturated drain 
current IDSAT are scaling at a lower rate than the device area size 
[Vassighi, et al. 2006].  

The increasing power consumption and power density result in 
higher junction temperature [Vassighi, et al. 2006], [Mahajan. 2002], 
[Skadron, et al. 2004], especially in high-performance processors and 
application-specific integrated circuits (ASICs). Junction temperature 
is one of the key parameters of CMOS devices, as it affects the 
performance, power consumption, and reliability of the ICs [Segura, et 
al. 2004], [Vassighi, et al. 2006]. 

Carrier mobility decreases as temperature increases, because 
carriers collide with the Si-crystal lattice more frequently at a higher 
junction temperature. As a consequence, the driving currents of 
transistors decrease with reduced carrier mobility, which causes a 
degradation of the device performance. Similar effects occur in the 
thin interconnect metal lines using aluminum or copper process. At a 
higher temperature, the metal resistivity increases, leading to higher 
interconnect resistance. Thus, circuit performance degradation is often 
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encountered when operating temperature increases. The performance 
degradation should be avoided for both normal functional and testing 
conditions. In the normal functional mode, the performance of an IC 
directly affects the system efficiency. In the testing mode, the 
performance degradation due to high junction temperature may fail 
the test and cause loss of yield.  

The elevation of junction temperature results in an increase in 
leakage current and higher device power consumption. The elevated 
power consumption in turn increases the junction temperature 
[Vassighi, et al. 2006]. The positive feedback between the leakage 
current and junction temperature may lead a chip to thermal runaway 
in extreme cases. When a chip is in a stress condition, such as a burn-
in test where chips are tested with purposely elevated power supply 
voltage and junction temperature, the chance of thermal runaway is 
much higher. For ICs manufactured with nanometer technology, the 
situation of the positive feedback is exacerbated and thermal runaway 
is more likely to happen.  

Another issue related to junction temperature is the long-term 
reliability of ICs. Many failure mechanisms, such as electron 
migration, gate oxide breakdown, hot electron effects, negative bias 
temperature instability, etc., are accelerated when junction 
temperature is elevated [Segura, et al. 2004]. In order to maintain the 
device reliability and the lifetime of ICs, it is very important to 
efficiently and safely manage the transistor junction temperature and 
operating temperature of other parts in ICs. It is reported that even a 
small variation of junction temperature (10–15°C) may result in a 
factor of two times reduction in device lifetime [Vassighi, et al. 2006].  

According to the above discussion, one can see that it is critical to 
develop efficient power and temperature analysis and management 
techniques for the design and test of modern ICs.  
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2.6 Power Aware Testing 
Compared to the normal functional mode, ICs dissipate more power 
during test [Zorian. 1993], [Pouya, et al. 2000], [Girard. 2000], 
[Bushnell, et al. 2000], [Shi, et al. 2004]. It is reported in [Shi, et al. 
2004] that the average power dissipated in scan-based testing can be 3 
times as the power consumed during normal functional operations, 
and the peak power consumption can be 30 times as that in normal 
functional mode. 

The high test power is because a larger amount of switching 
activity occurs when applying test patterns to the circuit under test. 
There are several explanations to the increase of power consumption 
in the testing mode [Wang, et al. 2007]. First, ATPG tools tend to 
generate test patterns with a higher toggle rate in order to reduce the 
total number of test patterns and the TAT. This results in a much 
higher switching activity in the testing mode. Second, in order to 
reduce TATs, SoC tests often employ parallel testing which 
substantially increase the power dissipation during test. Third, some 
circuits, e.g. DTF circuitry, only work in the testing mode and only 
contribute to the test power consumption. Fourth, the correlation 
between consecutive test patterns is usually much lower than that 
between successive functional input vectors [Wang, et al. 1997]. 
There is no definite correlation between successive deterministic test 
patterns for scan-based tests or pseudorandom test patterns for BISTs 
[Wang, et al. 2007]. The low correlation between consecutive input 
vectors results in excessive higher switching activity and consequently 
extra power dissipation. Last, when scan-based testing is employed, 
the power dissipation is even higher because of the circuit is 
excessively stimulated while the test patterns are shifted into the scan 
cells [Bushnell, et al. 2000].  

High power dissipation during test results in several critical 
problems related to the reliability and safety of the circuit under test. 
One significant issue is the increase of power supply noise, which is 
proportional to the inductance of a power line and to the magnitude of 
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the variation of the current flowing through the power line [Wang, et 
al. 1997]. The excessive power supply noise can erroneously change 
the logic state of circuit nodes, resulting in good dies failing the test 
and consequently loss of yield. A similar type of noise, the voltage 
glitch, also increases with switching activity and can change the logic 
states of circuit nodes or flip-flops, leading to yield loss. Another 
problem caused by high switching activity during test is the IR-drop, 
which refers to the amount of decrease/increase in the power/ground 
rail voltage [Wang, et al. 2007]. With high current in the circuit under 
test, the voltages at gates may be reduced and will cause these gates to 
exhibit higher delays, leading to fails in speed-related tests and yield 
loss [Shi, et al. 2004]. A third problem caused by the high test power 
consumption is the high junction temperature which has large impacts 
on the ICs [Vassighi, et al. 2006].  

In order to prevent high power consumption during test, some 
techniques have been proposed. Low power test synthesis and DFT 
targeting RTL structures is one of the solutions, for example, low-
power scan chain design [Gerstendörfer, et al. 2000], [Rosinger, et al. 
2004], [Saxena, et al. 2001], scan cell and test pattern reordering 
[Girard, et al. 1998], [Elliott. 1999], [Rosinger, et al. 2002]. Although 
low power DFT can reduce the power consumption, this technique 
usually adds extra hardware into the design and therefore it can 
increase the circuit delay as well as the cost of every single chip. 
Power-constrained test scheduling is another approach to tackle the 
high test power consumption problem [Chou, et al. 1997], 
[Chakrabarty. 2000b], [Muresan, et al. 2000], [Ravikumar, et al. 2000], 
[Iyengar, et al. 2002], [Larsson, et al. 2006], [He, et al. 2006a]. The 
proposed techniques minimize the TAT under a fixed power envelope 
restriction. In general, the power constrained test scheduling problem 
is related to bin-packing or two-dimensional (2D) rectangle packing 
(RP) problem [Baker, et al. 1980], [Dyckhoff. 1990], [Dell'Amico, et 
al. 1997], [Lesh, et al. 2004], [Lesh, et al. 2005], [Korf. 2003], [Korf. 
2004], which is NP-complete. Heuristic algorithms are often proposed 
to solve the power constrained test time minimization problems.  
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2.7 Temperature Aware Testing 
Although the power-aware test techniques are efficient to solve the 
high power consumption problem, they cannot completely avoid the 
overheating problem because of the complex thermal phenomenon 
[Rosinger, et al. 2006] in modern electronic chips. Advanced cooling 
techniques are effective to solve the high temperature problems. 
However, they either substantially increase the system cost or usually 
require large space. Other techniques such as lower frequency and 
reduced speed do help to avoid unexpectedly high temperature during 
test, but they result in excessively long TATs and are not applicable to 
at-speed tests. In order to test new generations of SoCs safely and 
efficiently, novel and advanced testing techniques are required.  

Recently, temperature aware testing [Tadayon. 2000] has attracted 
many research interests. Liu, Veeraraghavan, and Iyengar address the 
problem of the high temperature during test, and propose a test 
scheduling technique that considers temperature constraints [Liu, et al. 
2005]. The proposed technique aims to generate thermal-safe test 
schedules and to reduce the hot-spot temperature such that the heat is 
more evenly distributed across the die. In this technique, the floor plan 
of the chip is used to guide test scheduling. 

In [Rosinger, et al. 2006], Rosinger, Al-Hashimi, and Chakrabarty 
indicate that the non-uniform distribution of the heat results in hot 
spots on the die and therefore the power constrained test scheduling 
techniques cannot guarantee the thermal safety. The authors proposed 
a simplified thermal-cost model and an approach using the core 
adjacency information to guide test scheduling. The proposed 
technique can generate the minimized thermal-safe test schedules.  

Yu, Yoneda, Chakrabarty, and Fujiwara address the temperature 
aware TAM/wrapper co-optimization problem in [Yu, et al. 2007]. 
The authors propose a test scheduling approach to generate efficient 
test schedules which are also thermal safe. The proposed approach 
uses a thermal-cost model improved from the one proposed in 
[Rosinger, et al. 2006], and employs a bin-packing algorithm to 
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minimize the TAT and at the same time to satisfy the temperature 
constraints.  

Although these proposed approaches generate efficient test 
schedules, they make strong and simplifying assumption that a CUT is 
never overheated during the application of a single test set. This 
assumption may not be valid for testing of high performance SoCs in 
which the temperature of CUTs may exceed the temperature limit 
before a single test is completed. In this thesis, we assume that before 
the completion of a single test, the temperature of a CUT may exceed 
a temperature limit beyond which the core can be damaged.  

2.8 Thermal Modeling 
In order to obtain the temperature of an IC, thermal modeling 
techniques are often used. Thermal modeling is a technique that 
provides mathematical models to predict the temperature of objects. A 
thermal model usually considers the thermal resistance and thermal 
capacitance of the object to its surroundings, as well as the heat 
generated in and removed from the object.  

The relationship between the ambient temperature, the average 
junction temperature, and the power dissipation of an IC is often 
described as:  

Tj = Ta + Pchip × Rja (2.1) 
where Ta is the ambient temperature, Pchip is the total power 
dissipation of the chip, and Rja is the junction-to-ambient thermal 
resistance. Using a three-dimensional heat flow equation, the junction-
to-ambient thermal resistance of a metal-oxide-semiconductor field-
effect transistor (MOSFET) can be calculated according to the 
geometrical parameters of the MOSFET, as shown in Equation (2.2) 
[Rinaldi. 2000]. 
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where k is the thermal conductivity of silicon and its typical value is 
1.5×10-4 W/mm°C [Rinaldi. 2001]. W and L are the channel width and 
length, respectively. 

In an IC, every physical component acts as a heat storage 
capacitor with a certain thermal capacitance, denoted with Cth. At the 
same time, a physical component also acts as a heat resistor with a 
certain thermal resistance, denoted with Rth, transferring heat through 
other components towards the ambient. Equation (2.3) models an one-
dimensional heat conduction in a homogeneous isotropic material.  
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where λth is the heat conductance, c is the thermal capacitance, ρ is the 
density of the material, T is the temperature, and x is the direction of 
the heat flow in the material.  

The thermal model described in Equation (2.3) is equivalent to the 
electrical model, given in Equation (2.4), for the transmission of 
electric-magnetic wave in a solid line [Vassighi, et al. 2006]. 
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where C is the capacitance per unit area, R is the resistance per unit 
area, and U is the voltage. It can be seen that there is a duality between 
the electrical and thermal models. Therefore, the heat conduction 
process can be modeled by a transmission-line-equivalent circuit 
consisting of only resistors and capacitors, as illustrated in Figure 2.8 
[Vassighi, et al. 2006]. Table 2.2 lists the equivalent parameters 
between the electrical and thermal models [Vassighi, et al. 2006]. 
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Figure 2.8: An electro-thermal model 

Table 2.2: Duality between the electrical and thermal models 

Thermal Model Electrical Model 

Temperature T (in K) Voltage U (in V) 

Heat Flow P (in W) Current I (in A) 

Thermal Resistance Rth (in K/W) Electrical Resistance R (in V/A) 

Thermal Capacitance Cth (in Ws/K) Electrical Capacitance C (in As/V) 

 
Accurate temperature models are needed at all abstraction levels, 

since power consumption and performance are strongly dependent on 
the thermal map of a specific implementation or architecture [Vassighi, 
et al. 2006]. For the sake of shortening the time-to-market, early 
design optimization at system level plays a very important role. 
Compared to thermal models at lower abstraction levels, architectural-
level thermal models need less computation recourses in order to be 
solved. At the same time, such models produce sufficiently accurate 
results in the context of system-level design optimization [Huang, et al. 
2004]. Before the computation of temperature values, architectural-
level thermal modeling [Huang, et al. 2006], [Yang, et al. 2007] needs 
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the following two basic steps: (1) floor plan extraction; (2) thermal 
resistance-capacitance (RC) modeling.  

Skadron et al. have investigated architectural-level electro-thermal 
modeling and have implemented a thermal simulator, HotSpot [Huang, 
et al. 2006], to calculate transient as well as steady-state temperatures 
of functional units at the architecture level. Similar work has also been 
carried on by Li et al., and a thermal simulator, ISAC [Yang, et al. 
2007], has been developed.  

In architectural-level thermal modeling, a floor plan is modeled as 
a set of blocks, each of which is further divided into a matrix of sub-
blocks. Every sub-block corresponds to a set of functional units such 
as ALU, FPU, cache memory, etc. The floor plan is specified by 
matrices of the adjacency of the sub-blocks. In SoC design and test, it 
is common practice to consider each core as such a sub-block [Zorian, 
et al. 1999], [Marinissen, et al. 2000].  

When the floor plan is extracted, the thermal resistance Rth and 
thermal capacitance Cth are calculated according to the following two 
simplifying assumptions: (1) the thermal resistance is proportional to 
the thickness of the material and inversely proportional to the size of 
the cross-sectional area across which the heat is transferred; (2) the 
thermal capacitance is proportional to the thickness of the material and 
proportional to the size of the cross-sectional area. Thus, the thermal 
resistance and thermal capacitance can be derived according to 
Equations (2.5) and (2.6), respectively [Vassighi, et al. 2006].  

Rth = t / (k × A) (2.5) 

Cth = c ×t × A (2.6) 
where t is the thickness of the material, A is the size of the cross-
sectional area of the material, k is the thermal conductivity of the 
material per unit volume, and c is the thermal capacitance per unit 
volume. Nominal values of k, at 85°C, are 100 W/m3K for silicon and 
400 W/m3K for copper. Nominal values of c are 1.75×106 J/m3K for 
silicon and 3.55×106 J/m3K for copper.  
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Using the area size, thermal resistance and thermal capacitance of 
each sub-block in the package, an equivalent electrical circuit is 
derived to model the dynamic heat flows in the chip. The dissipated 
power in each sub-block is given as an input to the thermal model in 
every time step. Thereafter, the average temperature of each sub-block 
over the time interval is calculated using numerical computation 
methods. 

In this thesis, we have used the architecture-level thermal 
simulators, either HotSpot or ISAC, for temperature aware test 
scheduling in different contexts. We assume nominal configurations 
of modern IC dies and packages for thermal simulations. The thermal 
simulator takes the floor plan of a chip and the power consumption of 
every core as inputs, and computes the temperature of each core in 
every simulation cycle. 

2.9 Multi-Temperature Testing 
Environment-sensitive defects often cause parametric failures that are 
more and more observed in ICs manufactured with nanometer 
technologies. These environmental parameters include power supply 
voltage, clock frequency, temperature, radiation, etc. In recent years, 
concerns regarding parametric failures increase rapidly due to widely 
distributed process variations and the wide spectrum of subtle defects 
introduced by new manufacturing processes and materials [Segura, et 
al. 2004], [Needham, et al. 1998], [Nigh, et al. 1998], [Montanes, et al. 
2002]. 

Some defects are sensitive to a certain temperature level. For 
example, metal interconnect defects may pass a delay test at nominal 
temperature but fail the same test at a high temperature. This indicates 
that speed tests, such as maximum-frequency test, referred to as Fmax 
test, and transition delay test, should usually be applied at a high 
temperature in order to detect these temperature-dependent defects. 
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In [Singer, et al. 2009], a closer investigation on the correlation 
between the maximum frequency and temperature was performed for 
ICs powered by ultra-low supply voltages. It shows that there exists a 
turnaround temperature point above which the maximum frequency no 
longer decreases but rather increases. This means that applying a 
speed test at a high temperature may not screen the defective chips 
because of the improper temperature setting for the test. Therefore, for 
those types of ICs, Fmax tests or transition delay tests should be applied 
at a critical temperature which can be obtained by characterization.  

Parametric failures induced by subtle defects, such as resistive 
vias/contacts and weak opens, are hard to detect even when the circuit 
operates with the lowest performance under the worst environmental 
condition. In these cases, a speed test needs to be applied at two 
temperatures (hot/cold) and at a particular frequency [Needham, et al. 
1998]. The defective chips can be screened as outliers by comparing 
the test results at the two different temperatures. 

The following sub-sections explain the temperature effects on 
CMOS circuits as well as the cause of temperature-dependent defects 
and parametric failures.  

2.9.1 Temperature Effects in CMOS 
Circuits 
As one of the environmental parameters, operating temperature has a 
large impact on the electrical properties of transistors and their 
interconnects [Segura, et al. 2004]. Carrier mobility usually decreases 
at high temperature since the carriers collide with the Si-crystal lattice 
more frequently. Similar effects occur in the thin metal lines 
connecting the transistors, increasing the interconnect resistance. Thus, 
performance degradation is often encountered at a high operating 
temperature, leading design and test efforts to focus on the high-
temperature scenarios. In practice, an IC is often tested at high 
temperatures in order to guarantee the functionality at all temperatures 
that may appear in the field. 
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Another temperature-dependent parameter is the transistor 
threshold voltage, which increases with rising temperature. The 
increasing threshold voltage results in an elevated drain current, which 
compensates for the degraded circuit performance due to the reduced 
carrier mobility and interconnect resistance. The threshold voltage 
dominates the performance after the operating temperature exceeds a 
certain point, referred to as the CMOS zero-temperature-coefficient 
(ZTC) point [Filanovsky, et al. 2001], meaning that the circuit 
performance increases with further rising temperature. Thus, there 
exist two temperature dependence regions [Filanovsky, et al. 2001], 
[Calhoun, et al. 2006], [Wolpert, et al. 2009], a normal dependence 
region in which the circuit delay increases with rising temperature, 
and a reverse dependence region in which the circuit delay decreases 
with rising temperature. Figure 6.1 illustrates circuit delay variation in 
the normal and reverse dependence regions [Wolpert, et al. 2009]. 
This phenomenon is usually observed in low-power designs with 
ultra-low supply voltage. It infers that, for those circuits in which 
reverse temperature dependence is observed, a delay test should be 
applied at the temperature point between the normal and reverse 
regions where the circuit delay is the largest.  

 
Figure 2.9: Normal and reverse temperature dependence regions 
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2.9.2 Subtle Defects and Parametric Failures 
ICs manufactured with nanometer technology, typically below 45nm, 
encounter more reliability problems and parametric failures caused by 
widely distributed variations and a wide spectrum of subtle defects. 
Defect-induced parametric failure mechanisms include weak 
interconnect opens, resistive vias and contacts, metal mouse bites and 
metal slivers, with the first two as major causes [Segura, et al. 2004]. 
In [Montanes, et al. 2002], examples of a weak interconnect open and 
a resistive via in a deep-submicron CMOS IC are given. 

Although most parametric failures are speed related, some of them 
are insensitive to a single test method such as IDDQ test, stuck-at test, 
delay test, and functional test. Simply applying a single type of tests 
may not be capable to identify the outliers from the normal parts, 
resulting in either an increased amount of test escapes or unexpected 
yield loss. In order to effectively screen the chips having subtle 
defects, multiple parameters may need to be combined for a test 
making the chip out of specification. Temperature, transition delay, 
supply voltage, and clock frequency are important parameters to be 
considered in multi-parameter testing [Segura, et al. 2004], [Needham, 
et al. 1998], [Nigh, et al. 1998].  

Operating at a certain given frequency, a chip with resistive vias 
may fail a speed test such as Fmax test and delay test, but pass the test 
at the same frequency when the operating temperature is elevated 
[Needham, et al. 1998]. As explained in [Segura, et al. 2004] and 
[Needham, et al. 1998], the root cause was the voids existing in vias. 
When the temperature increases, the surrounding metal expands 
inwardly, forcing the voids to shrink. As a consequence, the metal 
resistance is reduced and the delay becomes shorter. Figure 2.10 
illustrates that the shapes and sizes of two voids in a via vary at 
different temperatures [Segura, et al. 2004]. This subtle-defect-
induced parametric failure infers that a combination of parameters (e.g. 
frequency and temperature) is needed to sensitize the defects and a 
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comparison of test results at different temperatures is needed for 
screening the defective parts. 

 
Figure 2.10: Via voids at different temperatures 

2.10 AOFF Test Approach 
Many proposed SoC test scheduling techniques assume that tests are 
applied to their completion [Huss, et al. 1991], [Milor, et al. 1994], 
[Koranne. 2002]. However, volume production tests often employ an 
AOFF approach in which the test process is terminated as soon as a 
fault is detected. The defective parts can be either discarded directly or 
diagnosed in order to find out the cause of the faults. Using the AOFF 
approach can lead to a substantial reduction in the TAT, since a test 
needs not to be completed if any faults are detected. The test cost can 
be reduced as a consequence of the decreased TAT. The AOFF test 
approach is especially important to the early-stage production in 
which defects are more likely to appear and the yield is relatively low.  

When the AOFF test approach is employed, the defect probability 
of cores can be used for test scheduling in order to generate efficient 
test schedules [Jiang, et al. 2001], [Larsson, et al. 2004], [Ingelsson, et 
al. 2005], [He, et al. 2004], [He, et al. 2005]. The defect probabilities 
of IP cores can be derived from statistical analysis of production 
processes or generated from inductive fault analysis. 
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In [Jiang, et al. 2001], a defect-oriented test scheduling approach 
was proposed to reduce the TAT. Based on the defined cost-
performance index, a heuristic algorithm was developed to obtain the 
best testing order. In [Larsson, et al. 2004], a more accurate cost 
function using defect probabilities of individual cores was proposed. 
Based on the proposed cost function, a heuristic algorithm was also 
proposed to minimize the expected test time. In this thesis, we propose 
a method to calculated using the probability of the test process to be 
terminated at any time moment when the test response/signature is 
available and develop a heuristic algorithm to minimize the expected 
test application time using the calculated probability.  
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Chapter 3 
Temperature Aware 

Test Scheduling 

In this chapter, we address the test time minimization problem with 
temperature concerns for the SoCs in which the lateral thermal 
influence between cores is negligible. We propose a set of test 
scheduling techniques to minimize the TAT such that the temperature 
of each CUT does not exceed an imposed temperature limit and the 
total amount of test-bus width required for concurrent tests does not 
exceed the test-bus width limit. We propose a test set partitioning and 
interleaving technique that avoids overheating the CUTs and keeps 
high efficiency in utilizing the test bus for concurrent tests. Based on 
the assumption of negligible lateral heat flow, we propose a CLP 
model to obtain optimal solution to the test time minimization 
problem. However, due to the high computational complexity, the 
CLP model is infeasible to solve the problem for large SoC designs. 
Therefore, we also propose a heuristic algorithm to find efficient 
solutions to the temperature aware test time minimization problem. 
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3.1 Test Set Partitioning and 
Interleaving 
When considering SoC testing in a thermal-safe context, a long test 
applied to a core may lead to a high temperature even before the test is 
completed. A CUT may be damaged if a test is not interrupted before 
the temperature of the CUT exceeds a certain limit. In order to avoid 
overheating the CUTs, we divide an entire test set into a number of 
subsets, referred to as test sequences, and introduce a cooling period 
between the applications of two consecutive test sequences. In this 
thesis, we refer to cooling as passive cooling which represents a state 
in which a core is inactive and does not dissipate dynamic power. 
After a cooling period, the temperature of a CUT is supposed to 
decrease to a lower level, and then the succeeding test sequence may 
start. Figure 3.1 illustrates a scenario in which a test set is divided into 
four test sequences, TS1, TS2, TS3, and TS4, which are separated by 
three cooling periods. In this way, an entire test set is partitioned into 
a number of test sequences separated by cooling periods. This 
technique is referred to as test set partitioning (TSP) [He, et al. 2008a]. 
Using the TSP technique, we can effectively keep the temperature of a 
CUT below an imposed temperature limit. 

As we assume that a test bus is employed in the assumed test 
access infrastructure, the limited width of the test bus becomes a 
constraint to the test scheduling problem. When test set partitioning is 
employed to avoid overheating, the efficiency of the test-bus 
utilization should also be considered for test scheduling. In fact, 
introducing cooling periods between test sequences increases the TAT 
for an individual core, though it helps to avoid high temperature. On 
the other hand, during a cooling period for a core, the test-bus width 
allocated to this core is not utilized since no test data is required to be 
transferred to/from the core. Thus, we can release the test-bus width 
reserved for a core during its cooling periods, and allocate the released 
test-bus width to other cores for their test-data transportations and test 
applications. In this way, the test sets for different cores are 
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interleaved. We refer to this technique as test set interleaving (TSI) 
[He, et al. 2008a]. With the TSI technique, the test bus is utilized more 
efficiently and the TAT can be reduced. Figure 3.2 illustrates a 
scenario where two partitioned test sets are interleaved so that the 
TAT time is reduced with no need for extra test-bus width. 

 
Figure 3.1: Motivational example of test set partitioning 

 
Figure 3.2: Motivational example of test set interleaving 
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Figure 3.3 depicts plotted temperature profiles of two CUTs in an 
SoC when the TSPI technique is employed for test scheduling. The 
temperature values are obtained through a thermal simulation and the 
imposed temperature limit is 90°C. This experimental result shows 
that using the TSPI technique can generate an efficient test schedule 
which satisfies both the test-bus width limit and the temperature limit. 

 
Figure 3.3. Temperature profiles of two CUTs using TSPI 
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follows.  

In scan-based testing, the application of a test pattern includes 
three consecutive operations: scan-in, capture, and scan-out. During 
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pipeline of three stages corresponding to the three operations, with the 
scan-out stage for one test pattern overlapping the scan-in stage for the 
succeeding test pattern. Figure 3.4(a) illustrates the pipeline structure 
for the application of four test patterns in scan-based testing. The time 
duration of scan-in, capture, and scan-out is Li, 1, and Lo, respectively.  

When tests are interleaved, two test sequences for the same core 
are separated by test sequences for other cores. This means that 
interrupts are introduced to the pipeline of test applications and 
refilling the pipeline has to be done when a test is resumed. Figure 
3.4(b) illustrates that the pipeline of test application is interrupted. The 
test set is divided into two test sequences, each of which consists of 
two test patterns. The test is interrupted between the second and third 
test patterns. The TAT of the third test pattern is increased by Lo due 
to refilling the pipeline with the scan-in operation. This example 
shows that a time overhead is added when the test application is 
interrupted and resumed later.  

In general, when the TSPI technique is employed for test 
scheduling, the time overhead has a large impact on the TAT. 
Partitioning a test set into more test sequences may lead to a longer 
TAT, since more time overheads are introduced into the test schedule. 
In particular, in the context of temperature aware test scheduling, a 
larger number of partitions leads to an even longer TAT, because 
more cooling periods are added into the test schedule. However, 
partitioning a test set into more test sequences results in a smaller 
average length of the partitioned test sequences. This means that the 
test sequences can be packed into a more compact test schedule with a 
shorter TAT. In principle, this trade-off between different TSPI 
schemes should be considered by the test scheduling algorithm. A 
global optimization is needed in order to explore different test 
schedules in which various TSPI schemes are adopted. The number 
and length of test sequences, as well as the number and length of 
cooling periods, if applicable, vary in different TSPI schemes, leading 
to different test schedules with different TATs.  
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Figure 3.4: Pipelined applications of test patterns in scan-based testing 

3.2 Motivational Example 
In this chapter, we aim to minimize the TAT by generating an 
efficient test schedule such that the temperatures of the CUTs do not 
exceed the temperature limits of individual cores and the test-bus 
width constraint is satisfied. We consider each test sequence as a 
rectangle, with its height representing the required test-bus width and 
its width representing the TAT duration. Figure 3.5 shows a 
motivational example for the test time minimization problem. Suppose 

(a) Test application without interruption

(b) Test application with interruption
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that three test sets, TS1, TS2, and TS3, are partitioned into 5, 3, and 2 
test sequences, respectively. Note that, for a partitioning scheme in 
which the number and length of test sequences and cooling periods are 
determined, we use HotSpot to perform a thermal simulation to ensure 
that the temperature of each core does not violate the temperature 
limit. Figure 3.5(a) depicts a test schedule with the regularity 
restrictions (which is assumed in the CLP-based approach) on the 
length of test sequences and cooling periods. Figure 3.5(b) depicts an 
alternative test schedule where the regularity restrictions are removed. 
This example shows the possibility to find a shorter test schedule by 
exploring alternative solutions, which differs from each other in the 
number, length, and regularity of test sequences and cooling periods, 
as well as the way how the test sequences are interleaved. 

 
Figure 3.5: Motivational example for temperature aware test scheduling 

(a) Test schedule with regular partitioning scheme

(b) Test schedule with irregular partitioning scheme
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3.3 Basic Test Architecture 
We assume that the tester employed for an SoC test is either an ATE 
or an embedded tester in the chip. The tester consists of two major 
components, a test controller and a memory. The memory stores a test 
schedule and the generated test patterns. The test controller reads the 
test schedule and controls the transportation of the test data to/from 
the CUTs according to the test schedule. A test bus is used for the test 
data transportation between the tester and the CUTs. Each core is 
connected to the test bus through dedicated TAM wires. Through the 
test bus and TAM wires, test patterns are sent to the CUTs and test 
responses are sent back to the tester. The assumed test architectures 
are depicted in Figure 2.5 and Figure 2.6, corresponding to using an 
ATE and embedded tester as the test controller, respectively.  

3.4 System Model for SoC Testing 
We suppose that that a system-on-chip, denoted with S, consists of n 
cores, denoted with C1, C2, ... , Cn, respectively. A set of physical 
configurations F of the die and package including the floor plan of the 
SoC is given. In order to test core Ci (1 ≤ i ≤ n), li test patterns are 
generated and form a test set TSi. The test patterns/responses are 
transported through the test bus to/from core Ci. Transporting the test 
data for core Ci requires a certain amount of test-bus width Wi in bits. 
The test bus can concurrently transport test data for different cores 
under a width limit B (B ≥ Wi, i = 1, 2, ... , n) in bits, meaning that the 
test bus can deliver at most B bits of test data to the CUTs in parallel. 
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3.5 Problem Formulation 
We assume that continuously applying test patterns to a core Ci 
(1 ≤ i ≤ n) may cause the temperature of the core increase and exceed 
a certain limit TH,i and consequently results in damages to the core. 
We address the temperature aware test time minimization problem as 
how to generate a test schedule for system S such that the TAT is 
minimized, the test-bus width constraint is satisfied and the 
temperature of every CUT remains below the temperature limit TH,i. 
The formal formulation of the problem is given in Figure 3.6. 

 
Figure 3.6: Problem formulation of temperature aware test scheduling 

Problem 3.1: Minimization of TAT for temperature aware testing 

Input: 
An SoC design together with the physical configuration F of the die and 
package as well as the floor plan of the SoC;  
A set of test set for each core {TSi | i = 1, 2, ... , n};  
A set of required test-bus width for each test {Wi | i = 1, 2, ... , n};  
Test-bus width limit B;  
A set of temperature limit for each core {TH,i | i = 1, 2, ... , n}. 
 
Output: 
A test schedule with the minimal test application time. 
 
Constraints: 
1. At any time moment t before all tests are completed, the total amount 
of allocated test-bus width W(t) is less than or equal to the test-bus width 
limit B, i.e. ∀t, W(t) ≤ B, where W(t) ::= ΣjWj(t); 
2. At any time moment u before all tests are completed, the 
instantaneous temperature Ti(u) of core Ci is less than the temperature 
limit TH,i, i.e. ∀u, ∀i, Ti(u) < TH,i. 
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The formulated problem is highly complex. When considering the 
first constraint, the test time minimization problem can be mapped to a 
2D rectangle packing (RP) problem in which a test sequence is 
represented by a rectangle. The height of a rectangle represents the 
test-bus width required by the test sequence and the width of a 
rectangle represents the TAT of the test sequence (see Figure 3.5). 
Since a 2D RP problem is NP-complete [Baker, et al. 1980], no 
polynomial-time algorithm exists to obtain the optimal solution. In 
this chapter, we provide two approaches to solve the temperature 
aware test time minimization problem.  

The first approach restricts the exploration space by introducing 
the following two constraints: (1) all test sequences belonging to the 
same test set, except the first and last one, must have an identical 
length; (2) all cooling periods between the test sequences belonging to 
the same test set must have an identical length. By adding these two 
restrictions, the optimal solution to this restricted test time 
minimization problem can be obtained by using a CLP model.  

The CLP-based approach is infeasible for large SoC designs due 
to the high computational complexity of the algorithm. Alternatively, 
we propose a fast heuristic approach to solve the problem with no 
restriction on the regularity of test sequences and cooling periods, i.e. 
the test sequences and cooling periods can have flexible length. This 
means that the test sequences can be repartitioned and the cooling 
periods can be changed in test scheduling. In order to ensure the 
thermal safety, we introduce the following two restrictions to the 
heuristic approach: (1) the length of a repartitioned test sequence must 
not be to be larger than the regular length of the initially partitioned 
test sequences; (2) the length of a cooling period must not be smaller 
than the regular length of the initially fixed cooling periods.  
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3.6 Overall Solution Strategy 
The overall solution strategy to solve the formulated problem is 
illustrated in Figure 3.7. In the first step, we generate an initial 
partitioning scheme for every test set through a thermal simulation 
with the imposed temperature limits. In the second step, we use the 
proposed test scheduling algorithm to explore alternative test 
schedules with respect to different partitioning and interleaving 
schemes for the test sets. The test scheduling algorithm squeeze test 
sequences into the 2D plane, constrained by the test-bus width limit, 
such that the TAT of the test schedule is minimized.  

 
Figure 3.7: Overall solution strategy 

In order to generate thermal-safe partitioning schemes, we have 
used a temperature simulator, HotSpot, to obtain instantaneous 
temperatures of individual cores. In this chapter, we assume that the 
lateral thermal influences between cores are negligible for a certain 
type of SoCs, as the heat transfer in the vertical direction is much 
larger than that in the lateral direction. 

Initial test set partitioning 
using thermal simulation 

Test scheduling with test set 
re-partitioning and interleaving

Optimized test schedule

Initial partitioning schemes

Begin 

End 

Test sets {TSi} 
Chip physical configuration F 
Temperature limits {TH,i} 

Test sets {TSi} 
Required test-bus width {Wi} 
Test-bus width limit B 

61



CHAPTER 3 

50 

When generating the initial thermal-safe partitioning scheme, we 
assume that a test set TSi is started when the core is at the ambient 
temperature TA. Thereafter, we start the temperature simulation, and 
record the time moment th1 when the temperature of core Ci reaches 
the given temperature limit TH,i. Knowing the latest test pattern that 
has been applied by the time moment th1, we can easily obtain the 
length of the first thermal-safe test sequence TSi1 that should be 
partitioned from the test set TSi. Then the temperature simulation 
continues while the test process on core Ci has to be stopped until the 
temperature goes down to a certain degree. Note that a relatively long 
time is needed in order to cool down a core to a temperature close to 
TA, as the temperature decreases slowly at a lower temperature level 
(see the dashed curve in Figure 3.8). Thus, we let the temperature of 
core Ci decreases until the slope of the temperature curve reaches a 
given value k, at time moment tc1. The value of k can be 
experimentally set by the designer. At this moment, we have obtained 
the duration of the first cooling period di1 = tc1 – th1. Resuming the test 
process from time moment tc1, we repeat this heating-and-cooling 
cycle throughout the temperature simulation until all test patterns 
belonging to TSi are applied. Thus, we have generated the initial 
thermal-safe partitioning scheme, where test set TSi is partitioned into 
m test sequences {TSij | j = 1, 2, ... , m} and between every two 
consecutive test sequences, the duration of the cooling period is 
{dij | j = 1, 2, ... , m-1}. Figure 3.8 depicts a motivational example of 
partitioning a test set into four thermal-safe test sequences separated 
by three cooling periods. 

Once the initial thermal-safe partitioning scheme is obtained, we 
focuses on the problem of generating the shortest test schedule such 
that test-bus width constraint is satisfied. As mentioned earlier, the 
problem can be mapped to a 2D RP problem. However, our test 
scheduling problem is not a classical RP problem, due to the fact that 
the number and length of test sequences and cooling periods are not 
fixed. This makes our problem even more difficult to solve. 
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Based on the overall solution strategy, we propose two approaches 
to solve the test time minimization problem, a CLP-based approach 
and a heuristic approach, which are presented in the following two 
sections, respectively. 

 
Figure 3.8: Motivational example of the initial partitioning scheme 

3.7 CLP-based Approach with 
Regular TSP 
As demonstrated previously, in order to restrict the exploration space, 
we assume that the test sequences belonging to the same test set have 
identical length except the first and the last one. The first test 
sequence is usually longer than the others in the same test set. This is 
because the CUT is initially at the ambient temperature, and the first 
test sequence is partitioned such that it is continuously applied until 
the CUT reaches the temperature limit. Similar to the test partitions, 
the cooling periods between two test sequences from the same test set 
also have identical length. 
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3.7.1 Constraint Logic Programming 
Constraint logic programming is a programming framework which 
merges two declarative programming paradigms, namely constraint 
solving and logic programming [Jaffar, et al. 1987]. CLP defines the 
relationships between entities as constraints, and incorporates 
constraint solving methods into a logic-based programming language. 
Some key features of CLP include: (1) constraints are employed to 
describe the queries and answers which are the inputs and outputs of a 
program; (2) new variables and constraints are dynamically generated 
during execution of the program; (3) in each state of execution, all 
constraints are globally tested for satisfiability, and the results of the 
test are used to control the execution. 

As a declarative programming language, CLP is flexible and 
expressive. It allows programmers to focus on the formulation of 
problems instead of being stuck in the implementation details. 
Therefore, it has been widely used in many optimization techniques 
for a variety of applications. Some CLP tools also provide solvers to 
find the optimal solution using branch-and-bound or exhaustive search. 
We use CHIP [Van Hentenryck. 1991] in our CLP-based approach to 
solve the temperature aware test time minimization problem. 

3.7.2 CLP Model 
A partitioning scheme has three parameters, the number of partitions, 
the time duration of the first test sequence, and the time duration of a 
cooling period between two consecutive test sequences, which are 
denoted with mi, li1, and di, respectively. The individual test for each 
core starts at time moment ti, which is equal to the start time ti1 of the 
first test sequence in the same test set. 

( )nitt ii ≤≤= 11 (3.1) 

The number of partitions and the start time of every individual test 
are decided during the optimization. The start time tij and finish time 
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eij of test sequence TSij can be calculated as follows. Note that oi is the 
time overhead. 

( )nimjodltt iiijijiij ≤≤≤≤+++= −− 1,21,1, (3.2) 

( )nimjlte iijijij ≤≤≤≤+= 1,1 (3.3) 

The last test sequence in each test set is special since its finish 
time is equal to the finish time of the individual test for the core. Thus, 
the finish time ei of test set TSi is  

imii ee ,= (3.4) 

and the TAT for testing all cores is the maximum finish time of all 
individual tests, given as follows.  

{ }ini
eTAT

≤≤
=

1
max (3.5) 

TAT is the cost function of our optimization problem, and our 
objective is to find the optimal solution {(mi

*, ti
*) | i = 1, 2, ... , n} such 

that TAT is minimized, subject to the following constraint: at any time 
moment x before the completion of all individual tests, the total 
amount of test-bus width used for the concurrent test sequences is less 
than or equal to the test-bus width limit, i.e.  

BWTATx
xp

k
k ≤≤∀ ∑

=1

,  (3.6) 

where px is the number of concurrent test sequences at the time 
moment x;  

As discussed in previous sections, we assume that when a test 
starts, the CUT is at the ambient temperature TA. The test set has to be 
partitioned into a number of test sequences if the CUT reaches its 
temperature limit before the entire SoC test is completed. When 
partitioning a test set into test sequences, the length of each test 
sequence and the number of test sequences depend on the length of the 
cooling period between two consecutive test sequences. A longer 
cooling period leads to a lower temperature at which the succeeding 
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test sequence will be started. Thus, with the partitioning schemes that 
have longer cooling periods, a test set can be partitioned into fewer 
number of test sequences but each test sequence is longer. It is 
important to find a possible interval of the number of partitions for 
each test set, since our optimization algorithm explores alternative 
partitioning schemes in which the number of partitions varies between 
the minimum and the maximum values in this interval. We denote the 
interval of the number of partitions for a test set TSi with Ii (1 ≤ i ≤ n), 
and Ii = [Ii,min, Ii,max].  

As described in Section 3.6, we perform a thermal simulation to 
obtain the initial thermal-safe partitioning scheme for each test set. 
Based on the initial partitioning schemes, we can determine the 
exploration interval Ii (1 ≤ i ≤ n) for each test set. We define the 
number of partitions in the initial partitioning scheme as the minimum 
value of Ii, denoted with Ii,min. In order to find the maximum value of Ii, 
denoted with Ii,max, we have done experiments for different designs 
and we have found out that the actual numbers of partitions in the 
optimal solutions are close to the minimum values Ii,min. Thus, we 
define the maximum value of the exploration interval as 
Ii,max = K + Ii,min, where K is a constant value which can be fixed by the 
designer. The exploration interval Ii = [Ii,min, Ii,max] (i = 1, 2, ... , n) for 
each test set TSi is taken as an input to the optimization algorithm. 

For each test set TSi (1 ≤ i ≤ n), two variables have to be decided 
by the CLP solver. One is the number of partitions, denoted with mi, 
and the other is the start time of the individual test, denoted with ti. 
The finish time of an individual test is equal to its start time plus the 
time durations of all its test sequences and all the cooling periods 
added between two consecutive test sequences, given as follows. 

( )1
1

−×++= ∑
=
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m

j
iii mdlte

i

(3.7) 

During optimization, the decision variables are instantiated and 
test schedules that satisfy the constraints are explored. The CLP solver 
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finds the optimal solution which has the minimal TAT of the SoC test. 
The minimal TAT in the CLP model is formulated as:  

}}{max{min
max,min,,01min iImILtni

eTAT
iiii ≤≤≤≤≤≤

= (3.8) 

where L is a constant configured in the CLP model. Note that the 
search of the optimal solution using the CLP model is related to the 
second step (test scheduling with TSPI) in the overall solution strategy 
depicted in Figure 3.7. 

3.7.3 Experimental Results 
We use the ISCAS’89 benchmark circuits as the cores of the SoC 
designs for our experiments. Table 3.1 shows the experimental results 
for five different SoC designs with the number of cores listed in 
column 1. For each SoC design, test patterns are generated for every 
core, and the switching activities are calculated for each test pattern. 
The amount of power consumption of each test pattern is calculated 
using a cycle-accurate power estimation method proposed in [Samii, 
et al. 2006], which takes the amount of switching activity as an input 
and calculates the power consumption in Watt. We use HotSpot for 
the thermal simulation through which we obtain the initial partitioning 
schemes. The total number of partitioning schemes for each SoC 
design is listed in column 2. The imposed temperature limit is 90°C.  

We used the CLP model to obtain the optimal test schedule by 
exploring alternative numbers of partitions and start times for each test. 
Column 3 in Table 3.1 shows the problem size for each SoC design, 
defined as the product of the number of partitioning schemes and the 
number of cores in the SoC. The TAT of the optimal test schedule and 
the optimization time are listed in the columns 4 and 5. 

When optimal test schedule is obtained, we perform a thermal 
simulation according to the generated test schedule in order to check if 
the temperature of any core exceeds the temperature limit. The 
thermal simulation results confirm that the temperature of every core 
is below the temperature limit.  
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Table 3.1: TATs and execution times using the CLP model 

# of 
Cores 

# of Partitioning 
Schemes 

Problem  
Size 

TAT (# of 
Clock Cycles) 

CPU Time  
(s) 

4 7 28 2775 2.141 

12 8 96 8306 35.359 

24 20 400 9789 47.500 

36 20 720 10017 120.219 

48 20 960 10941 881.766 
 
We have also performed experiments to evaluate how the obtained 

optimization result is affected by choosing different number of 
partitioning schemes. Table 3.2 listed four different numbers of 
partitioning schemes which are explored by the CLP solver. The 
experiments are performed for an SoC design with 6 cores. The 
optimal solution is the same in the three cases of 7, 10, and 15 
partitioning schemes, as shown in the last three rows, respectively. 
When the number of partitioning schemes is 5 (see the 1st row), the 
TAT of the obtained test schedule is larger than the others, which 
infers that the best solution does not correspond to any partitioning 
scheme among the 5 alternative ones. If we introduce 2 more 
alternative partitioning schemes, a better solution is found (see the 2nd 
row). However, adding more alternatives partitioning schemes, up to 
15, do not lead to a better solution (see the 3rd and 4th rows).  

The reason for the shorter TAT with an increased number of 
alternative partitioning schemes is explained as follows. When a test 
set is partitioned into more test sequences, more time overheads and 
cooling periods are added into the test schedule. However, the 
individual test sequences and the cooling periods are shorter if the test 
set is partitioned into more test sequences, and the scheduling 
algorithm can generate more compact test schedules. This trade-off 
between different partitioning schemes has been discussed in 
Section 3.1. This experimental result infers that the optimal solution 
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may not correspond to any partitioning scheme in the minimum set of 
partitioning schemes.  

Table 3.2: TSTs w.r.t. different number of partitioning schemes 

# of 
Cores 

# of Partitioning 
Schemes 

Problem  
Size 

TAT (# of 
Clock Cycles) 

CPU Time  
(s) 

6 

5 30 9574 10.156 

7 42 9570 26.031 

10 60 9570 31.875 

15 90 9570 39.797 
 

3.8 Heuristic Approach with Irregular 
TSP 
As demonstrated previously, although the CLP-based approach can 
provide the optimal solution for the restricted problem, it is not 
feasible to obtain the solutions for large SoC designs due to its high 
computational cost. Alternatively, we propose a heuristic approach to 
solve the original test time minimization problem with no restrictions 
on the regularity of test sequences and cooling periods. 

3.8.1 Motivational Example 
The proposed heuristic algorithm for test scheduling also uses the 
TSPI technique. Since the order in which the test sets are considered 
for test scheduling has a large impact on the final test schedule, we 
construct an iterative algorithm which obtains a good scheduling 
consideration order (SCO) for all partitioned test sets. Thereafter, the 
test sequences are scheduled according to the obtained SCO. 
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Figure 3.9 shows a motivational example to illustrate the impact 
of the SCO on the test schedule. In this example, each of the 3 test sets, 
denoted with TS1, TS2, and TS3, is partitioned into 2 test 
sequences. Figure 3.9(a) and Figure 3.9(b) depict the test schedules 
when the test sets are considered for scheduling in the order of {TS1, 
TS2, TS3} and {TS3, TS2, TS1}, respectively. It can be seen that using 
the second SCO results in a shorter test schedule depicted in Figure 
3.9(b). Note that, in this example, the test sets are scheduled to the 
earliest available time moments (EATM). 

In fact, the SCO reflects the precedence of the partitioned test sets 
to be considered for scheduling. However, when algorithm considers a 
test set for scheduling, it does not all the test sequences from the same 
test set at the same time. Instead, it always take the first unscheduled 
test sequence of the currently considered test set for scheduling, and 
thereafter take the first unscheduled test sequence of the next test set 
into account. Thus, in this example, the overall scheduling 
consideration order (OSCO) for all test sequences of all test sets is 
{TS11, TS21, TS31, TS12, TS22, TS32} and {TS31, TS21, TS11, TS32, TS22, 
TS12}, for the case in Figure 3.9(a) and Figure 3.9(b), respectively. 
The main concern of not scheduling all test sequences of one test set 
at the same time is to avoid generating inefficient test schedules due to 
unnecessarily long cooling periods, inappropriate partition length, and 
inefficient test set interleaving. 

3.8.2 Heuristic Algorithm for Test 
Scheduling 
The basic idea of the proposed heuristic algorithm for test scheduling 
is to iteratively construct a queue that finally consists of all partitioned 
test sets in a particular order. The heuristic algorithm is denoted with 
Algorithm 3.1 and its pseudo-code is depicted in Figure 3.10. Note 
that Algorithm 3.1 invokes a scheduler Algorithm 3.2. 

 

70



TEMPERATURE AWARE TEST SCHEDULING 

59 

 
Figure 3.9: Motivational example of test schedules affected by the SCO 

(a) Test schedule w.r.t. SCO {TS1, TS2, TS3}

(b) Test schedule w.r.t. SCO {TS3, TS2, TS1}
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Figure 3.10: Pseudo-code of the heuristic algorithm for test scheduling 

 
 
 
 
 

Algorithm 3.1: Heuristic algorithm for temperature aware test 
scheduling 

01: Set of test sets :: U := {TSi | i = 1, 2, … , n}; 
02: Queue of test sets :: Q := ∅; 
03: Queue of test sets sorted in the best SCO :: Qbest := ∅; 
04: for (∀TS ∈ U) loop    /* outer loop */ 
05:  ηmax := 0; 
06:  Q := Qbest; 
07:  for (∀POS in Q) loop    /* inner loop */ 
08:   Insert(TS, Q, POS); 
09:   Schedcur = Schedule(Q); 
10:   η = CalcEfficiency(Schedcur); 
11:   if (η > ηmax) then 
12:    ηmax := η; 
13:    TSbest := TS; 
14:    Qbest := Q; 
15:   end if 
16:   Remove(TS, Q); 
17:  end for 
18:  Remove(TSbest, U); 
19: end for 
20: Schedule(Qbest); 
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Given the set of all test sets U = {TSi | i = 1, 2, ... , n} (line 1), the 
heuristic algorithm iteratively selects test sets and inserts them into a 
queue Q (lines 2 through 19). The positions of the test sets in Q 
represent the order in which the test sets are considered for test 
scheduling (SCO). The precedence of the positions in Q is defined as 
follows. A test set positioned closer to the queue head will be 
considered earlier for test scheduling than those test sets positioned 
further to the queue head. 

The heuristic algorithm starts with an empty queue Q = Ø (line 2). 
In each iteration step (lines 5 through 18), the objective is to select one 
test set TSk from U, and insert it into Q at a certain position POS, such 
that the (|Q| + 1) test sets are put in a good order while the precedence 
between test sets excluding the newly inserted one remains unchanged. 
The outer loop terminates when all test sets in U have been moved 
into Q, and thereafter, the heuristic algorithm invokes the scheduler to 
schedule the partitioned test sets according to the SCO presented in 
Qbest (line 20). 

For each iteration step, there are |U| alternative test sets for 
selection, where |U| is the current number of test sets remaining in U. 
For each selected test set, there are (|Q| + 1) alternative positions 
which the selected test set can be inserted to, where |Q| is the current 
number of test sets that have already been inserted into Q throughout 
previous iteration steps. Thus, in one iteration step, there are 
|U| × (|Q| + 1) alternative solutions, in which a selected test set is 
associated with an insertion position in Q. 

The example depicted in Figure 3.11 illustrates a scenario where 3 
test sets (TS3, TS8, and TS6) have been inserted in Q and 5 other test 
sets (TS1, TS2, TS4, TS5, and TS7) remain in U. For each test set in U, 
there are 4 insertion positions, which are pointed by the arrows. In this 
example, there are 20 alternative solutions. Note that each test set in 
the example has already been partitioned into a number of test 
sequences, and Algorithm 3.2 takes each test sequence for scheduling. 

We evaluate the obtained SCO by the efficiency of the generated 
partial test schedule, the higher efficiency, the better the SCO. The 
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partial test schedule is generated (line 9) by Algorithm 3.2. The 
efficiency of a test schedule (EOTS), denoted with η, is defined as 
follows. Suppose x is the size of the area covered by all scheduled test 
sequences, and y is the total area size constrained by the test-bus width 
limit and the completion time moment of the test schedule. The 
efficiency of the test schedule is (x / y). A larger value of η indicates a 
better test schedule. Figure 3.12 depicts an example which illustrates 
how the EOTS is calculated. In the example, a test schedule is 
represented as the area covered by slashed lines. The size of the area 
covered by the actual test schedule is x, and the size of the area 
covered by the larger rectangle with thick border lines is y. Based on 
the definition of EOTS, we explore alternative solutions and select the 
best solution according to the efficiency of the generated partial test 
schedules.  

By calculating and comparing the efficiencies of the alternative 
partial test schedules (line 10), the best solution that obtains the 
maximum EOTS is chosen. The maximum TSE, the chosen test set, 
and the entire queue, are recorded in ηmax, TSbest, Qbest, respectively 
(lines 12 through 14). The iteration terminates when all test sets in U 
have been moved into Q. The obtained Qbest consists of all test sets in 
the best SCO, in which the test sets will be considered for scheduling 
(line 20). 

Algorithm 3.2 schedules a queue of test sets and its pseudo-code is 
depicted in Figure 3.14. Given a queue Q of test sets, the scheduler 
takes the first unscheduled test sequence from every test set for 
scheduling, in a round-robin fashion. More concretely, the strategy of 
the scheduling algorithm is explained as follows. According to the 
SCO given in Q, the scheduler considers one test set for scheduling at 
a time. When considering each test set, the scheduler only schedules 
the first unscheduled test sequence, and thereafter turns to consider the 
next test set in Q. When one round is finished for all the test sets in Q, 
the scheduler takes the next round to consider scheduling the test 
sequences of all the test sets in the same SCO. This procedure repeats 
until all test sequences are scheduled. 
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Figure 3.11: Example of alternative solutions 

 
Figure 3.12: Efficiency of a test schedule 

Figure 3.13 depicts an example which illustrates how the 
scheduler works. In the example, three test sets, TS2, TS1, and TS3, are 
sorted in the SCO of {TS2, TS1, TS3} in Q. The test set TS2 has been 
initially partitioned into three test sequences, TS21, TS22, and TS23. The 
other two test sets, TS1 and TS3, are both partitioned into four test 
sequences. The OSCO of all test sequences is {TS21, TS11, TS31, TS22, 
TS12, TS32, TS23, TS13, TS33, TS14, TS34}, as indicated by the dashed 
arrows. 

Q

U

TS3 TS8 TS6

TS1 TS2 TS5 TS7TS4
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Figure 3.13: Illustration of the scheduling algorithm 

In the pseudo-code of Algorithm 3.2 depicted in Figure 3.14, the 
scheduling algorithm is constructed with two nested loops. The outer 
loop (lines 21 through 34) selects the first unscheduled test sequence 
for the current test set, while the inner loop (lines 22 through 33) 
selects a test set for scheduling according its position in Q. The 
algorithm terminates when all the test sequences have been scheduled. 
Note that the function GetNumOfPar(TS) in line 21 takes a test set TS 
as an input, and returns the number of test sequences that the test set 
has been partitioned into. 

When schedules a test sequence TSq,j (the j-th test sequence of the 
q-th test set in Q, see line 23 through 27), the scheduler tries to 
schedule it to the earliest available time moment tq,j (line 27). The 
earliest time moment that a test sequence can be scheduled to is the 
time moment when the required minimum cooling period succeeding 
the precedent test sequence has finished. The minimum cooling period 
dq,j is given by the initial partitioning scheme for the test set TSq (line 
27). 

Q
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TS2 TS21 TS22 TS23

TS3 TS31 TS32 TS33 TS34

Queue 
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Queue 
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Figure 3.14: Pseudo-code of the scheduling algorithm 

The scheduler tries to schedule every test sequence to the earliest 
available time moment, but there may not be sufficient space in the 
2D plan to squeeze in the test sequence at the desired EATM. Figure 
3.15 depicts such an example. It is not possible to squeeze the test 
sequence TSq,j to the EATM tq,j, due to the space between the test-bus 
width limit B and the area (in slashed lines) occupied by the scheduled 
test sequences. Actually, in this example, the earliest time moment 
that TSq,j can be scheduled to is tp. 

Algorithm 3.2: Schedule(Queue of test sets :: Q) 

21: for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop   /* outer loop */ 
22:  for (q = 1 to |Q|) loop    /* inner loop */ 
23:   Choose the q-th test set TSq in Q for scheduling; 
24:   if (TSq = ∅) then 
25:    Skip TSq and continue with the next test set; 
26:   else 
27:    Schedule the first unscheduled test sequence TSq,j  
     to the earliest available time moment  
      tq,j := GetFinishingTime(TSq,j-1) + dq,j  
     where dq := InitialCoolingSpan(TSq); 
28:    if (Failed to schedule TSq,j to tq,j) then 
29:     Estimate the completion time te of the entire test set TSq  
      by either postponing TSq,j or repartitioning all the  
      unscheduled test sequences in TSq; 
30:     Choose the solution that has a smaller te and  
      schedule the first unscheduled test sequence; 
31:    end if 
32:   end if-then-else 
33:  end for 
34: end for 
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Figure 3.15: A scheduling constraint example 

When such scheduling constraints are encountered, two alternative 
solutions are proposed. One solution is to postpone the entire test 
sequence to a time moment that it can be successfully scheduled to. 
The other solution is to split the test sequence into smaller pieces such 
that the first piece can be squeezed into the available area. Figure 3.16 
illustrates both solutions for the same example given in Figure 3.15, 
where the entire test sequence TSq,j cannot be scheduled to the time 
moment tq,j. In Figure 3.16(a), the solution is to postpone the entire 
test sequence TSq,j to time moment tp, which means squeezing TSq,j 
into the dark grey rectangular area A1 that the dashed arrow points 
to. Figure 3.16(b) illustrates the other solution, where TSq,j is split into 
two pieces which can fit into the dark grey rectangular areas S1 and S2, 
respectively. 

Both solutions can result in long test schedules. The first solution, 
which postpones the entire test sequence, also delays the succeeding 
test sequences. This can results in delaying the completion of the 
entire test set. As illustrated in Figure 3.16(a), the succeeding test 
sequence TSq,j+1 is delayed and finishes at time moment te. The second 
solution, which splits the test sequence into smaller pieces, generates 
more partitions and introduces more time overheads. In order to avoid 
these drawbacks, we repartition all the unscheduled test sequences 
from the same test set, such that the total number of test sequences 
will not increase dramatically due to the splitting. This is illustrated 
in Figure 3.16(b). After splitting TSq,j into two pieces which fits in S1 
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and S2 respectively, we also repartition the succeeding test sequence 
TSq,j+1 such that its two pieces fit into S3 and S4. Note that due to the 
splitting of TSq,j and TSq,j+1, time overheads (denoted with TO) are 
added between the repartitioned test sequences. 

As demonstrated above, both solutions can be adopted when 
scheduling a test sequence. In order to decide which solution should 
be employed, we estimate the completion time te for the entire test set 
(line 29), by assuming that all the unscheduled test sequences of this 
test set can be scheduled to their earliest available time moments. The 
solution that results in an earlier estimated completion time is chosen 
(line 30). In the example given in Figure 3.16, the second solution 
should be chosen, since it leads to a smaller te. The scheduling 
algorithm terminates when all test sequences of all test sets in Q have 
been scheduled (line 34).  

 
Figure 3.16: Two alternative solutions to deal with scheduling constraint 

(a) Postponing the entire test sequence

(b) Splitting the test sequence into smaller pieces
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3.8.3 Experimental Results 
ISCAS’89 benchmark circuits are used as the cores in the SoC designs 
for our experiments. The number of cores in the SoC designs varies 
from 12 to 78.  

The first group of experiments shows the impact of relaxing the 
regularity of test sequences and cooling periods on the TAT of the 
generated test schedules. The results of the first group of experiments 
are shown in Table 3.3. 

Table 3.3: FLSA vs. ESLA and 2PSA 

# of 
Cores 

ELSA 2PSA FLSA TAT Reduction 

TAT CPU 
Time(s) TAT CPU 

Time(s) TAT CPU 
Time(s)

from 
ELSA 

from 
2PSA 

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6% 

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3% 

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1% 

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7% 

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6% 

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9% 

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2% 

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6% 

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8% 

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9% 

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9% 

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2% 

AVG 4920.75 0.15 4294.67 0.15 3486.67 268.24 30.6% 20.5% 
 
We compare our heuristic algorithm with two other scheduling 

algorithms. The first algorithm employs a fixed SCO in which all the 
test sets are sorted decreasingly according to the length of test sets in 
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their initial partitioning schemes. Then it schedules the entire test set 
to the earliest available time moment, according to the obtained SCO. 
When scheduling the test sequences of a test set, it keeps the 
regularity of the partitions and cooling periods given by the initial 
partitioning scheme. For convenience, we call this algorithm “equal-
length scheduling algorithm” (ELSA). 

The second algorithm also employs the fixed SCO according to 
the lengths of partitioned test sets (longest first). However, different 
from the ELSA, it schedules a test set in two phases. In the first phase, 
it schedules only the first partition of all test sets, according to the 
obtained SCO. This is due to the fact that the first test sequence is 
usually much longer than the other ones from the same test set in the 
initial partitioning scheme (see Figure 3.8). In the second phase, it 
schedules all the remaining test sequences of every test set, according 
to the same SCO. Similar to the ELSA, it schedules test sequences to 
the earliest available time moment. When scheduling the test 
sequences in the second phase, it keeps the regularity of all test 
partitions and cooling periods given in the initial partitioning scheme. 
Moreover, the first cooling period succeeding the first test sequence 
may not be shorter than that in the initial partitioning scheme. This 
means that by separating the scheduling of a test set into two phases, 
the restriction on partitioning regularity is slightly relaxed, thus this 
algorithm has a higher flexibility on test set partitioning schemes than 
the ELSA. For convenience, we call the second scheduling algorithm 
“two-phase scheduling algorithm” (2PSA). 

Compared to the ELSA and 2PSA, the proposed heuristic 
algorithm has the highest flexibility on test set partitioning schemes, 
since it allows repartitioning of test sets and allows arbitrarily 
increasing lengths of cooling periods in test scheduling. For 
convenience, we call the proposed heuristic algorithm “flexible-length 
scheduling algorithm” (FLSA).  

In Table 3.3, column 1 lists the number of cores used in the SoC 
designs. Columns 2, 4, and 6 list the TATs of the test schedules 
generated for the corresponding SoC designs, by using the ELSA, 
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2PSA, and FLSA, respectively. Columns 3, 5, and 7 list the CPU 
times for executing the corresponding algorithms. Columns 8 and 9 
show the percentage of the TAT reduction by using the FLSA versus 
the ELSA and 2PSA, respectively. It can be seen that by eliminating 
restrictions on the regularity of partitioning schemes, the TAT is in 
average 30.6% and 20.5% shorter than that from the ELSA and 2PSA, 
respectively. 

The second group of experiments evaluates the efficiency of test 
schedules generated by the proposed heuristic algorithm FLSA. In this 
group of experiments, we compare the FLSA with two other heuristic 
algorithms, a straight-forward algorithm (SFA) and a simulated-
annealing-based algorithm (SABA). For this group of experiments, we 
assume the same flexibility for all the three algorithms, i.e. all of them 
employ flexible partitioning of test sets and arbitrary increasing length 
of cooling periods. 

All the three algorithms employ Algorithm 3.2 as the scheduler. 
The only difference between them is how they generate the SCO for 
the test sets. The SFA sorts all test sets decreasingly by the lengths of 
the entire test sets with the initial partitioning schemes. According to 
the obtained SCO, the scheduler chooses each test set and schedules 
the first unscheduled test sequences to the earliest available time 
moment, until all test sequences of every test set are scheduled. 

The SABA employs Algorithm 3.2 to schedule the test sequences, 
while the SCO of the test sets is generated based on a simulated-
annealing strategy. When a randomly generated SCO is obtained, the 
scheduler is invoked to schedule the test sequences according to the 
current SCO. During iterations, the best SCO that leads to the shortest 
test schedule is recorded and the algorithm returns this recorded 
solution when the stopping criterion is met. 

The results of the second group of experiments are shown in Table 
3.4. Column 1 lists the number of cores used in the SoC designs. 
Column 2 lists the TAT of the test schedule generated by SFA is 
employed, and column 3 lists the execution time to obtain the test 
schedules. Similarly, columns 4 and 5 are the TAT and execution time 
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for the FLSA, respectively. Columns 6 and 7 list the TAT and 
execution time for the SABA. In columns 7 and 8, the percentage of 
TAT reduction by using the FLSA is listed, compared to the TAT by 
using the SFA and SABA, respectively.  

It can be seen that, when using the FLSA, the TAT is in average 
13.4% shorter than that from the SFA. The TAT from FLSA is in 
average 2.9% longer than that from the SABA which is suppose to 
obtain the solution as close to the optimum as possible but requires 
much longer optimization times.  

 

Table 3.4: FLSA vs. SFA and SABA 

# of 
Cores 

SFA FLSA SABA TAT Reduction 

TAT CPU 
Time(s) TAT CPU 

Time(s) TAT CPU 
Time(s)

from 
SFA 

from 
SABA 

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6% 

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5% 

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8% 

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5% 

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8% 

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3% 

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7% 

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9% 

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3% 

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1% 

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3% 

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2% 

AVG 4006.33 0.01 3486.67 268.24 3391.25 1128.18 13.4% -2.9% 
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3.9 Summary 
In this chapter, we have presented optimization approaches to 
minimize the TAT for core-based systems with temperature limits for 
each CUT and a test-bus width limit. Based on the proposed TSPI 
technique, we use a CLP model to obtain the optimal solution to the 
test time minimization problem. Nevertheless, the optimization time 
of the CLP-based approach is excessively long for large SoC designs. 
Therefore, we propose a fast heuristic approach to solve the same 
problem. Based on the initial partitioning scheme, the proposed 
heuristic algorithm utilizes the flexibility of repartitioning the test 
sequences and enlarging the cooling periods between test sequences, 
and generates efficient test schedules. Experimental results have 
shown the efficiency of the proposed approaches. 
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Chapter 4 
Test Scheduling with 

Lateral Thermal Influence 

This chapter addresses the temperature aware test time minimization 
problem for the SoCs in which the lateral thermal influence between 
cores is significant and therefore cannot be ignored. We employ a fast 
and accurate thermal simulator, ISAC, to obtain instantaneous 
temperature values of the cores, which are further used to guide the 
test scheduling algorithm to generated the shortest thermal-safe test 
schedules.  

4.1 Lateral Thermal Influence 
In Chapter 3, it is assumed that lateral heat flows between cores can be 
neglected. This assumption fits a category of SoCs that have relatively 
large area size and small thickness of the silicon die. However, when 
the technology scales, the area size decreases while the die thickness 
is not reduced in the same order of magnitude. This leads to a 
relatively large contact area between cores. The mismatch of the 
decreasing rate in geometrical size at the horizontal and vertical 
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dimensions causes the lateral heat flow taking a higher proportion in 
the overall heat flow, and therefore cannot be ignored. In this chapter, 
we take into account the thermal influences between cores and 
develop a new test scheduling technique in order to guarantee the 
thermal safety in this new context.  

Figure 4.1 depicts a result of thermal simulation performed for an 
SoC with its die thickness equal to 200 micrometers. The SoC consists 
of two adjacent cores, both of which have an equal area size. In this 
experiment, core 1 is tested for a period of 400 microseconds while 
core 2 remains inactive. It can be seen that core 2 is passively heated 
by core 1 and the temperature of core 2 increases by 19 degrees. This 
experimental result illustrates the phenomenon that the temperature of 
an inactive core is elevated by the active cores in the neighborhood. It 
indicates that the lateral thermal influence between neighborhood 
cores should be taken into account when generating a thermal-safe test 
schedule for this type of SoCs. 

As shown in Figure 4.1, due to the significant lateral thermal 
influence, an inactive core at a lower temperature can be passively 
heated by those neighbors that have higher temperatures and therefore 
the temperature of the inactive core is elevated. The degree of the 
temperature elevation on the inactive core depends on the floor plan, 
the number of active cores in the neighborhood, and how long the 
tests last for the active cores in the neighborhood. The temperature 
elevation on an inactive core is larger, if the active cores are closer to 
the inactive core, or there are more active cores in the neighborhood, 
or the tests last longer on the active cores in the neighborhood.  

When taking into account the lateral thermal influence and the 
resulted temperature elevation effect for test scheduling, the spatial 
distribution of cores and their temperatures, as well as the temporal 
relations between individual test applications are critically important. 
They make the thermal-safe test scheduling problem highly complex. 
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Figure 4.1: Thermal simulation result showing significant lateral 
thermal influence between two adjacent cores of an SoC design 

In Chapter 3, we propose Algorithm 3.1 which determines the 
initial test set partitioning schemes according to the thermal 
simulation results of individual cores, and generates the test schedule 
with minimized TAT. However, Algorithm 3.1 cannot be directly used 
to solve the temperature aware test time minimization problem when 
the lateral thermal influence cannot be ignored. Figure 4.2 depicts 
thermal simulation results for a test schedule generated by Algorithm 
3.1. It can be seen that the temperature profiles of the CUTs exceed 
the temperature limit at several points. This example illustrates that 
Algorithm 3.1 no longer guarantees the thermal safety in the new 
context where the lateral thermal influence becomes significant. 

 35
 45
 55
 65
 75
 85
 95

 105
 115
 125
 135
 145
 155

0.0E+00 2.0E-04 4.0E-04
 35
 45
 55
 65
 75
 85
 95
 105
 115
 125
 135
 145
 155

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

Core 1
Core 2

87



CHAPTER 4 

76 

 
Figure 4.2: Test schedule generated by Algorithm 3.1 leads to violation 
of the temperature limit due to the significant lateral thermal influence 

4.2 Stop-Cooling Temperature 
As shown in Figure 3.3, when TSPI technique is used for temperature 
aware SoC testing, the testing and cooling periods alternate for every 
core. The testing periods are interrupted at the temperature limit TH, 
while the cooling periods are stopped at a relatively lower temperature 
level. In the thesis, we referred to such a lower temperature level at 
which the cooling periods are stopped as the stop-cooling temperature 
(SCT), denoted with TC. Normally, the temperature curve of a CUT 
oscillates between TC and TH. The gap between TC and TH has a large 
impact on the length of both the cooling periods and the test 
sequences. Figure 4.3 illustrates a scenario where the test schedule for 
one of the cores in an SoC varies with respect to different TC used for 
test scheduling. Note that, in Chapter 3, we use a different technique 
rather than the STC to generate the initial partitioning schemes.  
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Figure 4.3: Alternative test schedules w.r.t. various SCTs 

In Figure 4.3, three different test schedules are depicted, which are 
denoted with SCH1, SCH2, and SCH3, respectively. The corresponding 
TC and TATs are denoted with TC,1 , TC,2, TC,3 and TAT1, TAT2, TAT3, 
respectively. Comparing the temperature profiles of SCH2 and SCH3, 
we find out that SCH3 uses a higher SCT and has a longer TAT than 
SCH2. The main reason why a higher SCT can lead to a longer test 
schedule is the time overhead introduced when the test controller stops 
one test and start or resume another test. The detailed reason for the 
time overhead is explained in Section 3.1. It can be seen that SCH3 has 
shorter but more test sequences than SCH2, indicating that SCH3 has a 
larger amount of time overhead. 

On the other hand, when comparing the temperature profiles of 
SCH1 and SCH2, we can see that SCH1 uses a lower SCT and also has 
a longer TAT than SCH2. This means that a decreased SCT may not 
lead to a shorter TAT, although the amount of time overhead is 
reduced due to the decreased number of test sequences. This is 
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because the temperature of a core decreases much more slowly at 
lower temperature levels, and therefore the cooling periods are much 
longer when a lower SCT is used. If the increase in the length of 
cooling periods is larger than the decrease in the amount of time 
overhead, a longer TAT is expected. Thus, in order to generate 
efficient test schedules, we should use different SCTs to explore 
alternative TSPI schemes. 

4.3 Test Scheduling Approaches 
In this chapter, we aim to minimize TATs by generating efficient test 
schedules with temperature and test-bus width limits. The temperature 
aware test time minimization problem in the context of this chapter is 
exactly the same as Problem 3.1 defined in Section 3.2. The test 
architecture and system model are the same as those presented in 
Section 3.3 and Section 3.4, respectively. In order to avoid 
overheating the CUTs during test, the TSPI technique described in 
Section 3.1 is employed.  

We first propose a straight-forward approach (SFA) based on 
Algorithm 3.1. We also propose a more efficient technique, a thermal-
simulation driven test scheduling approach (SDSA), to solve the 
addressed test time minimization problem. Due to the temporal and 
spatial thermal interdependencies [Skadron, et al. 2004], [Huang, et al. 
2004], coarse grained thermal models cannot provide accurate results 
for the ICs which has significant lateral thermal influence between 
cores. In this chapter, in order to obtain accurate instantaneous 
temperature values with relatively low computational cost, we employ 
a fast and accurate thermal simulator, ISAC which considers the 
lateral thermal influences between cores. In the SDSA, a FSM model 
is developed to control the partitioning and interleaving process, based 
on which a heuristic algorithm is developed to generate the shortest 
thermal-safe test schedule. The heuristic algorithm explores 
alternative test schedules with respect to different SCTs. 
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4.3.1 Straight-Forward Approach 
In order to solve the temperature aware minimization problem with 
consideration of the lateral thermal influence between cores, we first 
propose a straight-forward approach (SFA) which is based on 
Algorithm 3.1. As demonstrated in Section 4.1, Algorithm 3.1 does 
not generate thermal-safe test schedules for the SoCs with significant 
lateral thermal influence. However, if we reduce the originally 
imposed temperature limit to sufficiently lower value and use it in 
Algorithm 3.1, the generated test schedule can be thermal safe.  

We denote the originally imposed temperature limit with TH,orig, 
the new temperature limit with TH,new, and the maximum temperature 
occurred in the thermal simulation result with Tmax. The difference 
between the new temperature limit and the originally imposed 
temperature limit, denoted with d, is defined as 

d = Tmax – TH,orig (4.1) 
and the new temperature limit is given by 

TH,new = TH,orig – d (4.2) 
In the SFA, Algorithm 3.1 is invoked with TH,new and a new test 

schedule is generated. A thermal simulation is performed again to 
check if the new test schedule is thermal safe. This procedure is 
repeated until the first thermal-safe test schedule is generated.  

The test schedule generated in this way can be excessively long 
because the adjusted temperature limit may be lower than needed. In 
order to further reduce the TAT, we use the same procedure to 
increase the imposed temperature limit until Tmax is sufficiently close 
to but smaller than TH,orig. The flowchart of the SFA is depicted 
in Figure 4.4, where D (D > 0) denotes a given threshold for d, m 
denotes the number of iteration steps, and M denotes a given threshold 
for the total number of iteration steps. 
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Figure 4.4: Straight-forward approach 

4.3.2 Simulation-Driven Scheduling 
Approach 
Although the SFA can generate thermal-safe test schedules, it is not 
efficient due to the long TAT of the generated test schedules as well 
as the long execution time of the algorithm. Therefore, we propose a 
simulation-driven scheduling approach (SDSA) which generates 
thermal-safe test schedules with short TAT. The SDSA performs 
thermal simulation to obtain instantaneous temperature values which 
are further used in a FSM model to guide the TSPI and test scheduling. 
The developed FSM model is depicted in Figure 4.5. 

Begin

m := 1  ;  TH,new := TH,orig 

Invoke Algorithm 3.1 with TH,new 

Thermal simulation and obtain Tmax 

TH,new := TH,new – d 

d � 0 ?

m := m + 1 

|d| � D or m > M ?

Output thermal-safe test schedule 

End

N

N
Y

Y

d := Tmax – TH,new 
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Figure 4.5: FSM model for the SDSA 

There are three states defined for a core, namely inactive, active, 
and finished, corresponding to the status that the core is not tested, the 
core is tested, and the test for the core is finished, respectively. When 
test scheduling starts, we assume that all cores are at the inactive state 
and their temperatures are equal to the ambient temperature. When a 
core is selected (see Algorithm 4.1 in Figure 4.7) for test and the 
required test-bus width is allocated for the test, a flag start_test is set 
to 1 and the state of the core moves from inactive to active. While test 
patterns are applied to the core, the temperature of the core, denoted 
with TEM, increases, and the state of the core remains active until the 
temperature reaches the temperature limit TH or the test is finished. As 
soon as the test is finished, the state of the core moves from active to 
finished. Otherwise, when the core temperature reaches TH, the core 
state moves from active to inactive and remains unchanged until the 
core temperature decreases to the stop-cooling temperature TC, from 
which the core state moves repeatedly between active and inactive 
until the test is finished. The test scheduling algorithm terminates 
when all cores are at the finished state. Figure 4.6 shows a plotted 
thermal simulation result of a test schedule generated by using the 
FSM model for an SoC with 4 cores.  

activeinactive

finished

TEM = TH

TEM <= TC & 
start_test = 1

TEM <= TH

test completed

TEM >= TC || 
start_test = 0
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Figure 4.6: Thermal-safe test schedule for an SoC consisting of 4 cores 

Using the FSM to guide the test scheduling can guarantee the 
thermal safety for the generated test schedules. However, the 
scheduling of test sequences should also take into account the test-bus 
width limit and the TAT. This is solved by using a heuristic algorithm, 
denoted with Algorithm 4.1. Its pseudo-code is depicted in Figure 4.7. 

Algorithm 4.1 takes a queue of all inactive cores ready for test as 
an input. It allocates the required test-bus width to some of the cores 
and changes their states to active. The algorithm first sorts the queue 
decreasingly according to the number of remaining test patterns 
divided by the current core temperature (line 2). This means that a 
higher priority is given to a core which has a larger number of 
remaining test patterns and a lower temperature. In this way, the 
physical parameters including the sizes of cores and the distances 
between cores have been taken into account, because the temperature 
values of the cores are given by the thermal simulator which considers 
the lateral thermal influence. Then the heuristic algorithm allocates the 
required test-bus width to the cores according to their priorities until 
there is no sufficient test-bus width to allocate or all cores have been 
activated for test. (lines 3 through 13). 
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Figure 4.7: Pseudo-code of heuristic algorithm activating cores for test 

The overall strategy of the SDSA is illustrated in Figure 4.8. The 
test scheduling algorithm iteratively explores alternative solutions by 
using different SCTs. In every iteration step, a thermal-safe test 
schedule is generated by invoking Algorithm 4.1 with a new SCT, 
denoted with TC,new. A counter k is used to count the number of 
consecutive iteration steps in which the reduction of TAT is not larger 
than a given threshold ε (ε > 0). If the TAT of the newly generated test 
schedule is less than the minimal TAT of the best solution obtained 
throughout the previous iteration steps, the current solution is recorded 
as the best solution. Further, if the reduction of TAT is greater than ε, 
counter k is reset to 0. In the cases that the current TAT is larger than 
the minimal TAT or the reduction of TAT is less than ε, counter k is 
incremented by 1. This procedure repeats until k is larger than a given 
threshold K. Thereafter the optimized test schedule is output and the 
test scheduling process terminates. 

Algorithm 4.1: Activate(Queue of inactive cores ready for test :: Q) 

01: if (IsNotEmpty(Q)) then 
02:  Sort Q decreasingly according to  
  (#_of_rem_test_patt × core_defect_prob / curr_tem); 
03:  while (GetRemainingBandwidth() > 0 & IsNotEmpty(Q)) loop 
04:  CurrentCore = GetFirstElement(Q); 
05:   ReqBwd = GetBandwidthRequirement(CurrentCore); 
06:   if (ReqBwd <= GetRemainingBandwidth()) then 
07:    Move the state of CurrentCore to active; 
08:    SubtractBandwidthRemainder(ReqBwd); 
09:    Remove(CurrentCore, Q); 
10:   else 
11:    break loop; 
12:   end if-then-else 
13:  end while 
14: end if 
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Figure 4.8: Overall solution strategy of the SDSA 

By checking the temperature value of each core at every 
simulation cycle, the test scheduling algorithm restricts the core 
temperature between TC and TH, after the core temperature is raised 
from the ambient temperature to TC. With respect to different SCTs, 
alternative test schedules based on various TSPI schemes are 
explored. Figure 4.9 depicts the TATs with respect to different SCTs 
for an SoC consisting of four cores. The best TC found by the heuristic 
algorithm is 84.065°C and the corresponding TAT is 2.4629×10-4 
seconds. 

Begin 

Set a new SCT TC,new 

TATcurr < TATmin ? 

k := k + 1 

k > K ? 

Output test schedule 

End 

Thermal-simulation driven test scheduling 

Record current solution as the best solution 

TATmin � TATcurr > � ?

k := 0 

N

Y

Y

Y

N

N 
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Figure 4.9: TAT vs. SCT 

4.4 Experimental Results 
ISCAS’89 benchmark circuits are used as cores of the SoC designs for 
our experiments. The numbers of cores in the SoC designs varies from 
4 to 36. The power consumption of a test is obtained through the same 
method mentioned in Section 3.7.3. With the obtained power 
consumption values, the thermal simulator ISAC is used to obtain 
instantaneous temperatures in test scheduling. The imposed 
temperature limit is 90°C, and the assumed frequency of test 
application is 100MHz.  

We compare the SDSA with the SFA. The experimental results 
are shown in Table 4.1. Column 1 lists the number of cores used in the 
SoC designs. Columns 2 and 4 list the TATs of test schedules 
generated for the corresponding SoC designs, using the SFA and 
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SDSA, respectively. Columns 3 and 5 list the execution times of 
corresponding algorithms. Column 6 shows the percentage of the TAT 
reduction by using the SDSA versus SFA. It can be seen that by using 
the SDSA, the TAT is reduced by about 25% to 61% for different SoC 
designs. The execution times of the SDSA are usually shorter than 
those of the SFA. This is because, in the SFA, each time when 
Algorithm 3.1 is invoked, a thermal simulation is performed for every 
core in order to generate the initial partitioning schemes according to 
the new temperature limit. 

Table 4.1: SDSA vs. SFA 

# of Cores 
SFA SDSA 

TAT 
Reduction TAT (s) CPU Time 

(s) TAT (s) CPU Time 
(s) 

6 3.9129E-4 1078 2.1013E-4 1118 46.298% 

8 3.2827E-4 4122 2.4474E-4 1222 25.446% 

12 4.4911E-4 3118 2.3117E-4 1265 48.527% 

18 3.6927E-4 7458 2.0832E-4 1193 43.586% 

24 4.5970E-4 6681 2.1004E-4 1259 54.309% 

30 5.4901E-4 12705 2.2601E-4 1357 58.833% 

36 5.7715E-4 11760 2.2360E-4 1400 61.258% 

4.5 Summary 
This chapter presents a thermal-safe test scheduling technique to 
minimize the TAT of SoC with significant lateral thermal influence. 
The test scheduling algorithm uses a FSM model and the 
instantaneous temperature values obtained from thermal simulations 
to partition, interleave, and schedule the test sets. The TAT is 
minimized such that the temperature limit and the test-bus width limit 
are satisfied.  
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Chapter 5 
Multi-Temperature 

Test Scheduling 

This chapter addresses the multi-temperature test scheduling issue. 
We propose a test scheduling technique that generates the shortest test 
schedules such that the tests are applied only when the temperature of 
CUT is within a given interval and the test-bus width limit is satisfied. 
We employ the TSPI technique and the heating patterns in order to 
ensure the temperature of a CUT is within the given interval whenever 
the test is applied. In test scheduling, a thermal simulator ISAC is used 
to obtain instantaneous temperatures of the CUTs and a FSM model is 
used to manage the temperatures of the cores.  

5.1 Problem Formulation 
We assume the same test architecture as the one described in 
Section 3.3. The system model is the same as that in Section 3.4. In 
order to sensitize temperature-dependent defects, we need to apply 
tests to an SoC at different temperature spectra. Each temperature 
spectrum is specified as a given temperature interval I = (TL, TH), 
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where TL and TH are the temperature lower limit and upper limit, 
respectively. In this chapter, it is assumed that a test should be applied 
only when the temperature of core Ci (i = 1, 2, ... , n), denoted with Ti, 
is within the temperature interval I.  

The problem we address in this chapter is to minimize the TAT by 
generating an efficient SoC test schedule such that the following two 
constraints are satisfied: (1) the amount of test-bus width required by 
the concurrent tests is less than or equal to the test-bus width limit; (2) 
a test has to be applied when and only when the temperature of the 
core is within the given temperature interval. The problem formulation 
is given in Figure 5.1. A multi-temperature testing problem can be 
further formulated as a set of such test scheduling problems associated 
with different temperature intervals.  

 
Figure 5.1: Problem formulation of multi-temperature test scheduling 

Problem 5.1: Minimization of TAT for a given temperature interval 

Input: 
An SoC together with the physical configuration F of the die and 
package as well as the floor plan of the SoC;  
A set of test set for each core {TSi | i = 1, 2, ... , n};  
A set of required test-bus width for each test {Wi | i = 1, 2, ... , n};  
Test-bus width limit B;  
Temperature upper limit TH and temperature lower limit TL.  
 
Output: 
A test schedule with the minimal test application time.  
 
Constraints: 
1. At any time moment t before all tests are completed, the total amount 
of allocated test-bus width W(t) is less than or equal to test-bus width 
limit B, i.e. ∀t, W(t) ≤ B, where W(t) ::= ΣjWj(t); 
2. At any time moment u when a test is applied to core Ci, the 
instantaneous temperature Ti(u) of the core Ci is less than the 
temperature upper limit TH, and greater than the temperature lower limit 
TL, i.e. TL < Ti(u) < TH.  
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5.2 Test Scheduling within a 
Temperature Interval 
In order to sensitize faults at a certain temperature level, a test should 
be applied to the core only when its temperature is within a 
temperature interval between an upper limit and a lower limit. 
Whenever the temperature of a core exceeds the upper limit, the test 
should be stopped and the core is turned into an idle state in which no 
dynamic power is dissipated and the core temperature decreases. 
When the temperature of the core decreases to a certain level, the test 
can be resumed if the test bus has sufficient width to transport the test 
data for the core. Thus, we use the TSPI technique presented in 
Section 3.1 for the multi-temperature SoC test scheduling.  

5.2.1 Heating Sequence 
Ideally, we expect that the temperature of a core is always maintained 
within the given temperature interval whenever a test is applied. 
However, this condition does not always hold in reality. Sometimes, 
the core temperature may decrease below the lower limit of the 
temperature interval. One reason for the decrease in the temperature of 
a core is that the test patterns consume insufficient power and the 
amount of heat generated by applying the test patterns is less than the 
amount of heat dissipated by the physical cooling system. Another 
reason is that no sufficient test-bus width is available for a test and it 
has to be postponed until the test-bus width requirement is satisfied.  

If the problem of temperature decrease is not properly addressed 
in test scheduling, it can cause invalid test schedules where tests may 
be applied at temperatures below the lower limit and cannot screen the 
targeted defects. In order to solve this problem, we apply a sequence 
of dummy patterns that consume sufficiently high power and raise the 
core temperature towards the lower limit TL. We refer to such a high-
power test pattern as a heating pattern (HP) and a sequence of heating 
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patterns as a heating sequence (HS). It should be noted that 
transporting a heating pattern through the test bus requires the same 
amount of test-bus width as what transporting a test pattern requires.  

The minimal length of a heating sequence (denoted with Lmin) 
preceding a test sequence is the number of heating patterns needed to 
raise the core temperature to TL. If the test sequence following a 
heating sequence does not consume sufficiently high power and 
causes the core temperature to decrease, the required length of the 
heating sequence (denoted with Lreq) should be larger than Lmin. The 
actual value of Lreq depends on the temperature profile of the 
succeeding test sequence. Figure 5.2 shows the temperature profiles of 
a core stimulated with a heating sequence and a test sequence 
consecutively, depicted with doted and solid curves, respectively. The 
core temperature is Ts when the HS starts. Three lengths are chosen 
for the HS, namely L1, L2, and L3, while the length of the succeeding 
test sequence is M. The HS is too short in Figure 5.2(a) and too long 
in Figure 5.2(b), causing the core temperature going out of the interval 
(TL, TH) during the test application period. The HS is given a proper 
length in Figure 5.2(c) such that the core temperature reaches a 
medium value (denoted with TM) between TL and TH before the test 
starts and remains inside the interval during the test application period. 

 
Figure 5.2: The impact of heating sequence length 
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In order to avoid frequently violating the temperature limits due to 
improperly determining the lengths of heating sequences, we propose 
a preprocessing approach for each test set S, before we perform the 
test scheduling algorithm. We define an observation frame (OF) for 
each test pattern of a test set, and the OF contains D consecutive test 
patterns. For each OF, we calculate the average power consumption 
POF of all test patterns in the OF. We categorize an observation frame 
to be a low-power frame (LPF) if its POF is smaller than a threshold 
power value PTHD, or a high-power frame (HPF) if otherwise. PTHD is 
defined as a power consumption value that ultimately causes the core 
temperature to reach a steady-state at TM. We perform a series of 
steady-state temperature analysis to find PTHD.  

Before scheduling a test sequence, we must determine the required 
length Lreq of its preceding HS. If the OF associated with the first test 
pattern of the test sequence is a LPF, Lreq should be equal to the 
number of heating patterns that heats the core to TM. Otherwise, Lreq 
should be equal to Lmin. 

5.2.2 FSM for Thermal Management in Test 
Scheduling 
As a part of the test scheduling algorithm, we develop a finite state 
machine to control the states of cores. A core has the following states: 
heating, testing, cooling, waiting, and complete, defined as follows.  

Testing: the core is tested within the temperature interval (TL, TH). 
Cooling: the core is passively cooled down without any test 

pattern applied, and its temperature is decreasing from TH towards TL.  
Heating: the core is actively heated by heating patterns and its 

temperature is increasing. 
Waiting: the core is waiting for allocation of sufficient amount of 

test-bus width for its test and the temperature of the core is usually 
below TL.  

Complete: the core has finished its test.  
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Figure 5.3 depicts the temperature profile of a core and illustrates 
the relation of core state and temperature. When the test scheduling 
process starts, we assume that all cores are at the waiting state and 
their temperatures are equal to the ambient temperature TA (TA < TL). 
Each core is associated with a dedicated flag start, indicating that the 
core is chosen for test if it is equal to 1, or is not chosen for test if 
otherwise. A core remains within the waiting state until it is selected 
for test. From the waiting state, a core can move to the heating state if 
its temperature T is below TL, or to the testing state if T is already 
within the imposed temperature interval. In the heating state, a core is 
applied with heating patterns and its temperature increases to TL or TM, 
depending on whether the observation frame of the succeeding test 
pattern is an HPF or LPF, respectively. As soon as the core 
temperature T exceeds TL or TM, the state of the core is changed to the 
testing state. The core stays in the testing state as long as its 
temperature T remains inside the temperature interval if the test is not 
finished. Otherwise, the core moves to the cooling state when T 
exceeds TH, or the waiting state when T falls below TL, or the complete 
state when the test is finished. In the cooling state, a core is supposed 
to be cooled down until T reaches to a stop-cooling temperature TC 
(TC ≥ TL), after which the core moves to the testing state if it is 
selected for test, or remains in the cooling state until it is moved to the 
waiting state if it is not selected for test. The entire SoC test finishes 
after all cores reach the complete state. Figure 5.4 illustrates the five 
states and the transitions between the states. 

It should be noted that a cooling period ends at the stop-cooling 
temperature TC where TC ≥ TL. The purpose of introducing TC is to 
further reduce the TAT, especially when cooling a core to TL needs 
substantially long time. We have developed a heuristic algorithm, to 
search for the best TC between TL and TH. The heuristic algorithm is an 
iterative algorithm that sets a new TC for each iteration step and 
invokes the proposed test scheduling algorithm to calculate the TAT 
with respect to the current TC. The heuristic algorithm returns the TC 
with which the TAT is the shortest among all iterations.  
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Figure 5.3: Core states w.r.t. changes of temperatures 

 
Figure 5.4: FSM model for multi-temperature test scheduling 

5.2.3 Test Scheduling Algorithm 
We propose a test scheduling algorithm to generate a test schedule 
that meets the temperature and test-bus width requirements. The test 
scheduling approach employs the thermal simulator ISAC to obtain 
instantaneous temperature values which are used by the proposed 
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finite state machine to control state transitions for every core. The test 
scheduling algorithm uses the FSM model to update the state of every 
core at every simulation cycle, and maintains a queue of cores in the 
waiting state in order to activate some cores for test, if available. The 
test scheduling algorithm stops when all cores reach the complete state.  

We develop an algorithm, denoted with Algorithm 5.1, to activate 
cores for test, and its pseudo-code is depicted in Figure 5.5. The 
algorithm takes the queue (Q) of all cores in the waiting state as an 
input. According to the ratio r of the number of remaining test patterns 
to the current temperature of each core (line 1), Algorithm 5.1 selects 
as many cores as possible to start/resume their tests, if their test-bus 
width requirements can be met. A core that has a relatively larger 
number of remaining test patterns and is relatively colder gets a higher 
value of r and hence is given higher priority to be scheduled for test. 
As such, the scheduling algorithm takes into account the impact of the 
distance between cores on the temperature, since a core located further 
away from a hot core is more likely to have a lower temperature than 
the direct neighbors of the hot core. By allocating the required test-bus 
width to the selected cores (line 5) and changing their states to testing 
(line 6), the algorithm activates as many cores as possible for test. 

 
Figure 5.5: Pseudo-code of the algorithm activating cores for test 

Algorithm 5.1: Activate(Queue of cores in the waiting state :: Q) 

01: Sort Q decreasingly according to r 
  where r ::= # of remaining test patterns / core temperature 
02: C = GetFrontElement(Q); 
03: while (RemainingBusWidth() > 0 & IsNotEmpty(Q)) loop 
04:  if (RequiredBusWidth(C) ≤ RemainingBusWidth()) then 
05:   AcquireBusWidth(C); 
06:   ChangeState(C, testing); 
07:   RemoveElement(C, Q); 
08:  end if 
09:  C = GetNextElement(Q); 
10: end while 
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5.3 Experimental Results 
We select ISCAS’89 benchmark circuits as cores of 6 different SoCs. 
The number of cores in these SoCs varies from 4 to 42. The cores 
have different physical sizes, depending on their complexity. We use 
the same power estimation method as the one used for experiments 
presented in Section 3.7.3 to calculate the power consumption (in 
Watt) of a core. Taking the floor plan of an SoC and the power 
consumption profiles of individual cores as inputs, the thermal 
simulator calculates instantaneous temperatures of all individual cores 
at every cycle of the test process. The assumed scan frequency is 
100MHz.  

We employ the proposed test scheduling technique to generate test 
schedules for the SoCs. Two groups of experiments are performed to 
generate different test schedules for each SoC with respect to different 
temperature intervals (at low, medium, and high temperature levels) as 
well as to different test-bus width limits (low, marginal, and high), 
respectively.  

Table 5.1 shows the impact of the temperature interval on the 
TAT. The first column lists the numbers of cores in the SoC designs. 
Columns 2, 4, and 6 list the TATs (in number of cycles) of the 
generated test schedules with respect to different temperature intervals. 
Columns 3, 5, and 7 list the CPU times (in seconds) for the generation 
of the corresponding test schedules. The test-bus width limit for the 
experiments in this group is 60 bits. The experimental results show 
that the test schedule length decreases along with increasing 
temperature level at which the tests should be applied. This is because 
it takes a longer time to cool down a core when a test is applied at a 
lower temperature level.  

Table 5.2 shows the impact of the test-bus width on the TAT. The 
first column lists the number of cores in the SoC designs. Columns 2, 
4, and 6 list the TATs (in number of cycles) of the generated test 
schedules with respect to different test-bus width limits. Columns 3, 5, 
and 7 list the corresponding CPU times (in seconds) the generation of 
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the corresponding test schedules. The imposed temperature interval 
for the experiments in this group is 85-100°C. It can be seen that the 
length of test schedule decreases with increasing test-bus width limit.  

 

Table 5.1: TATs with different temperature intervals (B=60) 

# of Cores 
TL=65C, TH=80C TL=85C, TH=100C TL=105C, TH=120C 

TAT CPU 
Time (s) TAT CPU 

Time (s) TAT CPU 
Time (s) 

4 59887 347 29651 171 19562 115 

8 61014 404 30256 180 20194 124 

16 64658 411 31023 195 21055 138 

25 71913 433 35785 214 24798 152 

36 74886 477 37249 221 26402 168 

42 76102 490 37989 243 27031 174 
 
 

Table 5.2: TATs with different test-bus width (TL=85°C, TH=100°C) 

# of Cores 
B=40 B=60 B=80 

TAT CPU 
Time (s) TAT CPU 

Time (s) TAT CPU 
Time (s) 

4 29821 145 29651 171 29648 177 

8 30261 182 30256 180 29752 197 

16 31623 210 31023 195 34613 218 

25 38391 252 35785 214 35415 230 

36 38568 267 37249 221 35936 245 

42 39785 264 37989 243 36430 251 
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The third group of experiments compares the TATs of test 
schedules generated using different SCTs, either TC found by the 
heuristic algorithm or the given lower limit TL. Table 5.3 shows the 
impact of the SCT on the TAT. The fist column lists the number of 
cores in the designs. Columns 2 and 4 list the TATs of test schedules 
using TL and TC as the SCT, respectively. Columns 3 and 5 show the 
CPU times (in seconds) for test scheduling. The TAT reduction (in 
percentage) is listed in Column 6. The experiments in this group are 
performed with a temperature interval 85-100°C and a test-bus width 
limit of 60 bits. It is seen that using the TC found by the heuristic 
algorithm reduce the TAT by up to about 9% rather than using TL. 
Similar results are shown in Table 5.4 where the temperature interval 
is 65-80°C and the test-bus width limit is 60 bits. With this 
temperature interval, the TAT reduction is up to about 20%.  

The third group of experimental results indicates that using TC 
rather than TL for test scheduling leads to a greater reduction on the 
TAT when the temperature interval is imposed at a lower temperature 
level. On the other hand, the CPU time for test scheduling becomes 
substantially longer because of the increased time for determining TC.  

 

Table 5.3: TATs with/without TC  (B=60, TL =85°C, TH =100°C) 

# of Cores 
Use TL (85°C) as TC Use TC found by HA 

TAT 
Reduction TAT CPU Time 

(s) TAT CPU Time 
(s) 

4 29651 171 28711 1265 3.17% 

8 30256 180 29142 1327 3.68% 

16 31023 195 29779 1402 4.01% 

25 35785 214 33654 1511 5.96% 

36 37249 221 34372 1776 7.72% 

42 37989 243 34627 1843 8.85% 
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Table 5.4: TATs with/without TC  (B=60, TL =65°C, TH =80°C) 

# of Cores 
Use TL (65°C) as TC Use TC found by HA 

TAT 
Reduction TAT CPU Time 

(s) TAT CPU Time 
(s) 

4 59887 347 52691 2340 12.02% 

8 61014 404 52746 2366 13.55% 

16 64658 411 55376 2587 14.36% 

25 71913 433 59162 2830 17.73% 

36 74886 477 60701 2865 18.94% 

42 76102 490 60935 2884 19.93% 
 

5.4 Summary 
In this chapter, we address the problem of long test application time 
when applying multi-temperature testing to systems-on-chip. We 
propose a test scheduling approach to minimize the TAT such that a 
test is applied only when the core temperature is within a given 
interval and the test-bus width limit is satisfied. The proposed test 
scheduling technique employs a thermal simulator to partition and 
interleave test sets on-the-fly and uses a FSM model to manage the 
state transitions for all cores. Experimental results show that, in 
general, the TAT is longer when a test is applied at a lower 
temperature level and/or with a lower test-bus width limit. Moreover, 
the TAT can be further reduced by stopping the cooling periods at an 
explored temperature rather than at the imposed temperature lower 
limit, especially for the tests applied at a low temperature level. 
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Chapter 6 
Defect-Probability 

Driven Test Scheduling 

In this chapter, we address the test time minimization problem for 
volume-production SoC tests using the AOFF approach. We employ 
an hybrid BIST, in which a test set is composed of both 
pseudorandom and deterministic test patterns, for core-based SoCs. In 
order to minimize the expected test application time, we take into 
account the defect probabilities of individual cores in test scheduling. 
A heuristic algorithm is proposed for test scheduling.  

6.1 Problem Formulation 

6.1.1 Basic Definitions and Assumptions 
In this chapter, we employ the test architecture depicted in Figure 2.7 
for hybrid BIST. In the test architecture, every core has its dedicated 
BIST circuit. Moreover, a single test bus is used to transport 
deterministic test data between the CUTs and the embedded tester. In 
order to test a core, a set of test patterns are generated. A test set may 
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consist of both deterministic test patterns (DTPs) and pseudorandom 
test patterns (PTPs). A subset of the DTPs in the test set is referred to 
as a deterministic test sequence (DTS), and a subset of PTPs in the test 
set is referred to as a pseudorandom test sequence (PTS).  

Due to the use of BIST circuits for every core and the single test 
bus for deterministic tests, we assume that PTPs for different cores 
can be concurrently applied, while the DTPs can only be applied 
sequentially. Figure 6.1 depicts a hybrid BIST test schedule for a 
system consisting of 5 cores, where TSi denotes the test set for core Ci 
(i = 1, 2, ... ,5). The white and grey rectangles represent the DTSs and 
the PTSs, respectively. In this example, DTPs are scheduled to be 
applied sequentially, while PTPs for different cores are scheduled to 
be applied in parallel. 

 
Figure 6.1: A hybrid BIST schedule example 

In this chapter, the test set, the deterministic test sequence, and the 
pseudorandom test sequence for core Ci (1 ≤ i ≤ n) are denoted with 
TSi, DTSi, and PTSi, respectively. In the cases that more than one 
deterministic test sequence or pseudorandom test sequence is 
partitioned from the original test set, DTSiv and PTSiw denote the v-th 
deterministic test sequence and the w-th pseudorandom test sequence 
in test set TSi, respectively. Suppose that the number of deterministic 
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test patterns and pseudorandom test patterns in test set TSi are di and ri, 
respectively. The j-th (1 ≤ j ≤ di) deterministic test pattern of DTSi is 
denoted with DTij. The k-th (1 ≤ k ≤ ri) pseudorandom test pattern of 
PTSi is denoted with PRik. 

In this thesis, the defect probability of a core, in short, core defect 
probability (CDP), is defined as the probability of a core having 
defects. We denote the defect probability of core Ci (1 ≤ i ≤ n) with 
CDPi. Similarly, the defect probability of an SoC, in short, system 
defect probability (SDP), is defined as the probability of an SoC 
having defects, meaning that some cores are defective.  

We assume that the defect probabilities of different cores in an 
SoC are independent. Then, the SDP is given by 

( )∏ =
−−=

n

i iCDPSDP
1

11 (6.1) 

We suppose that a test process can be terminated with a certain 
probability. The probability of a test process being terminated at a 
certain time moment depends on the following two probabilities: (1) 
the probability of an individual test being terminated due to detection 
of faults, referred to as individual-test failure-probability (ITFP); (2) 
the probability of an individual test being passed with no faults 
detected, referred to as individual-test success-probability (ITSP). 

We assume that the failure probabilities of individual tests for the 
cores in an SoC are independent, meaning that the probability of 
detecting faults in a core does not depend on that in another core. We 
also assume that the success probabilities of individual tests for the 
cores in an SoC are independent, meaning that the probability of 
detecting no faults in a core does not depend on that in another core. 

In this chapter, we assume that a deterministic test cannot be 
interrupted by the pseudorandom test for the same core. On the other 
hand, we assume that a pseudorandom test can be interrupted by the 
deterministic test for the same core. More concretely, this means that 
the following scenario can occur: a pseudorandom test is stopped at a 
certain moment, and, after the application of the entire deterministic 
test set for the same core, the pseudorandom test resumes until the 
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completion. We make this assumption due to the following concerns. 
The signature of a pseudorandom test is available only when the test is 
completed while the TAT of a pseudorandom test is usually very long. 
If we are allowed to interrupt a pseudorandom test and analyze the 
signature more frequently, we can terminate the test earlier if faults 
are detected and hence can shorten the TAT. However, frequently 
switching deterministic and pseudorandom tests for a core introduces 
time overheads [Goel, et al. 2003]. Thus, we assume that a 
pseudorandom test can be interrupted at most once. Under such 
assumption, the time overhead is substantially small and therefore can 
be ignored.  

Furthermore, in this chapter, we assume the deterministic tests for 
different cores are scheduled sequentially and consecutively, due to 
the following concerns. First, deterministic test patterns are considered 
more efficient since usually a deterministic test pattern can cover more 
faults than a pseudorandom test pattern. Second, the test responses of 
deterministic test patterns can be obtained at each test application 
cycle, and therefore a deterministic test can be terminated at the end of 
any test application cycle if faults are detected. This also infers that 
we do not need to delay a deterministic test in order to insert a long 
pseudorandom test.  

6.1.2 Possible Test Termination Moment 
When the AOFF approach is employed for a hybrid BIST, there are 
two possible scenarios regarding the termination of the test process. 
During the application of a deterministic test sequence, the test 
response is captured as soon as a test pattern has been applied. By 
analyzing the test response, the test can be aborted immediately, if 
faults are detected. On the other hand, during the application of a 
pseudorandom test sequence, the signature is not available until all the 
pseudorandom test patterns in the test sequence have been applied. By 
analyzing the obtained signature, the test can be aborted, if faults are 
detected. Thus, using the AOFF approach, the test process is possible 
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to be terminated at the end of every test application cycle of the 
deterministic test patterns, or at the end of every application period of 
a pseudorandom test sequence. This discussion leads to the notion of 
possible test termination moment (PTTM). 

A PTTM is a time moment when the test process can be 
terminated due to detection of faults. According to the discussion on 
the termination of the test process, a PTTM is the time moment 
immediately after a deterministic test pattern or a pseudorandom test 
sequence has been applied and the test response or the signature has 
been analyzed.  

For a given test schedule, all PTTMs are known. Figure 6.2 
illustrates the PTTMs in a test schedule for an SoC with 5 cores. In 
this example, the DTPs are depicted with white rectangles and the 
PTSs are depicted with grey rectangles. The grey solid lines indicate 
the PTTMs at which a DTP has been applied, e.g. PTTMs 1, 2, 3, 4, 5, 
6, 7, 8, 9, and 10. The black dotted lines indicate the PTTMs at which 
a PTS has been finished, e.g. PTTMs 4, 5, 7, 9, 10, 12, and 13. Note 
that some of the PTTMs are considered identical, since they overlap at 
the same time moment, e.g. PTTMs 4, 5, 7, 9, 10, and 12. 

 
Figure 6.2: Possible test termination moments in a test schedule 
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From this discussion, we can see that a pseudorandom test 
sequence can be treated as a single test pattern, since they have the 
same effect on test termination. It should be noted that a test 
application cycle of a test pattern differs in combinatorial-circuit 
testing and the scan-based testing. In combinatorial-circuit testing, 
applying a test pattern needs one clock cycle, whereas in scan-based 
testing, a test application cycle of test patterns includes three stages, 
scan-in, capture, and scan-out, as explained in Section 3.1. 

6.1.3 Expected Test Application Time 
We consider the termination of the test process at a certain moment as 
a random event which happens with a certain probability. Thus, the 
TAT is a random variable, and its mathematical expectation, referred 
to as the expected test application time (ETAT), is the expected value 
of the actual TATs. 

Let Ax be the random event that the test process is aborted at 
PTTM x, and let T be the random event that the test process is passed 
on completion. Then, the ETAT is given by  

[ ]( ) [ ]TpLAptETAT
Xx

xx ×+×= ∑
∈∀

(6.2) 

where x is a PTTM, X is the set of all PTTMs, tx is the TAT by the 
moment x, L is the TAT by the completion moment, p[Ax] is the 
probability of event Ax, and p[T] is the probability of event T. 

In Equation (6.2), the ETAT is presented as a sum of two literals. 
The first literal corresponds to the case in which the test process can 
be terminated at different PTTMs because at least one individual test 
has detected faults. The second literal corresponds to the case in which 
the test process is passed on completion without detection of any 
faults. Indeed, Equation (6.2) interprets the ETAT as the sum of the 
probabilistic TATs at different PTTMs. 

It should be noted that two different events Ax and Ay (x ≠ y) are 
exclusive, i.e. ∀x, y ∈ X, x ≠ y, Ax ∩ Ay = ∅. Events Ax and T are also 
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exclusive, i.e. ∀x ∈ X, Ax ∩ T = ∅. The reason is that, if the test 
process is terminated at a certain moment x (x ∈ X), it must have 
passed all the moments earlier than x and it will never go through any 
moments later than x. In another word, if Ax (x ∈ X) happens, any 
other event Ay (∀y ∈ X, y ≠ x) as well as T cannot happen. 

In order to know whether the test process is aborted or not at any 
PTTM x, we have to check every individual test to see if they have 
detected faults by the moment x. The test process is aborted at PTTM 
x, if and only if both of the following two conditions are satisfied: (1) 
at least one of the tests that are stopped at PTTM x to analyze test 
responses/signatures detects faults; (2) all the other tests that are not 
able to be stopped at PTTM x had not detect any faults until their 
latest passed PTTMs before x. Therefore, Ax is equivalent to the 
intersection of the following two events: one event is that at least one 
of those tests which are just stopped at PTTM x detect faults; and the 
other event is that those tests which are not able to be stopped at the 
moment x had not detected any faults until the latest PTTMs when 
they were stopped for a check. 

Let Yx be the set of all individual tests that are stopped at PTTM x, 
let Zx be the set of all individual tests that are not able to be stopped at 
PTTM x, let Fx(y) be the event that the individual test y detects at least 
one fault at PTTM x, and let Px(z) be the event that the individual test 
z had not detected any faults until the latest PTTM before x when z 
was stopped to for a check. Then, event Ax is given by 
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Figure 6.3 shows an example where the test process is aborted at 
PTTM 7. This means that, at PTTM 7, at least one of the two partial 
tests TS3 and TS4 has detected faults, and the other partial tests TS1, 
TS2, and TS5 had not detect any faults until the latest moments when 
they were stopped for a check. More specifically, TS1 had not detected 
any faults until PTTM 4, TS2 had not detect any faults since it has 
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never stopped until the current PTTM, and TS5 had not detected any 
faults until PTTM 6.  

 
Figure 6.3: Example of the test process aborted at PTTM 7 

Let E be the set of all tests that are completed without detection of 
faults, and let P(e) be the event that the test e has not detected faults 
until completion. Then, event T is given by 

( )I
Ee

ePT
∈∀

= (6.4) 

According to the definition of PTTM, at PTTM x, Yx should not be 
empty and at least one test belonging to Yx should detect faults, 
otherwise the test process would have not been aborted at PTTM x. 
Moreover, for a test y ∈ Yx, it should be the currently checked DTP or 
PTS that detects the faults, and the DPT(s) and PTS(s) that were 
finished before x should not detect any faults, otherwise the test had 
already been aborted earlier. On the other hand, at PTTM x, all the 
tests in Zx should have not detected any faults so far, otherwise the test 
process would have been aborted earlier and would not have reached 
PTTM x. Table 6.1 lists the sets Yx and Zx at every PTTM x in the 
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example depicted in Figure 6.2. The set E includes all the individual 
tests. For the example in Figure 6.2, E = {TS1, TS2, TS3, TS4, TS5}. 

Table 6.1: Yx and Zx at each PTTM x in Figure 6.2 

x Yx Zx 

1 {TS1} ∅ 

2 {TS1} ∅ 

3 {TS1} ∅ 

4 {TS1, TS5} ∅ 

5 {TS3, TS5} {TS1} 

6 {TS5} {TS1, TS3} 

7 {TS3, TS4} {TS1, TS5} 

8 {TS4} {TS1, TS3, TS5} 

9 {TS2, TS4} {TS1, TS3, TS5} 

10 {TS1, TS2} {TS3, TS4, TS5} 

12 {TS4, TS5} {TS1, TS2, TS3} 

13 {TS2} {TS1, TS3, TS4, TS5} 

 
We have assumed that the failure probabilities of individual tests 

are independent, and that the success probabilities of individual tests 
are independent. Thus, p[Ax], namely the probability of the test 
process being terminated at a PTTM x, is given by 
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and p[T], namely the probability of the test process being passed on 
completion without detecting any faults, is given by 
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Substitute p[Ax] and p[T] in Equation (6.2) with Equations (6.5) 
and (6.6), the ETAT is given by 
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where x is a PTTM, X is the set of all PTTMs, tx is the TAT by the 
moment x, L is the TAT by the completion moment, Yx is the set of all 
individual tests that are stopped at PTTM x, Zx is the set of all 
individual tests that are not able to be stopped at PTTM x, p[Fx(y)] is 
the probability of the individual test y detecting at least one fault at 
PTTM x, p[Px(z)] is the probability of individual test z detecting no 
faults until the latest PTTM before x when z was stopped for a check, 
and CDPi is the defect probability of core Ci. 

In this thesis, we define the incremental fault coverage (IFC) of a 
DTP/PTS as the percentage of the faults that are only detected by this 
DTP/PTS and have not been detected by any previously applied test 
patterns from the same test set. 

Let y be individual test which detects faults at PTTM x, let v be 
the DTP/PTS which belongs to y and is finished exactly at PTTM x, 
and let IFC(v) be the incremental fault coverage of v. Then, p[Fx(y)] is 
given by 

( )[ ] ( ) ix CDPvIFCyFp ×= (6.8) 

Let z be the individual test that is not able to be stopped at PTTM 
x, let CDPi be the defect probability of core Ci which test z is applied 
to, let w (0 < w < x) be the latest PTTM when test z was checked for 
test effects, let m (0 ≤ m ≤ di + ri) be the number of test patterns 
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(deterministic or pseudorandom) that had been applied by PTTM w, 
and let vj be the j-th test pattern of test z. Then, p[Px(z)] is given by 

( )[ ] ( )∑
=

×−=
m

j
jix vIFCCDPzPp

1

1 (6.9) 

The deduction of Equations (6.8) and (6.9) are presented in 
Appendix A. Thus, the ETAT has been completely formulated.  

In this chapter, our objective is to minimize the ETAT. We 
propose a heuristic algorithm that uses the ETAT as the cost function 
and generates test schedules with the minimized ETATs. 

6.2 Test Scheduling Approach 
The heuristic algorithm for test scheduling is a defect-probability 
driven scheduling approach which generate test schedules with 
minimized ETATs. As demonstrated earlier, in the context of hybrid 
BIST and AOFF test approach, it is essential to schedule deterministic 
test sequences efficiently, as they have high fault-coverage and can be 
terminated at every test application cycle if faults are detected.  

The incremental fault coverage of test patterns, the failed sets and 
the passed sets vary with different schedule of the DTSs. Therefore, 
the failing probabilities, the passing probabilities, and the ETAT also 
vary with different test schedules. 

It is natural to schedule the DTSs for the cores with higher defect 
probabilities earlier. However, such a solution does not necessarily 
lead to the minimal ETAT. In addition to the defect probabilities of 
cores, other factors such as the efficiency of test patterns and the 
length of individual test sequences have to be taken into account. 

The proposed heuristic algorithm iteratively constructs two sets of 
DTSs, namely a scheduled set S and an unscheduled set U. The 
scheduled set S is an ordered set and it is supposed to include all the 
DTSs when the algorithm is terminated. The DTSs in S are associated 
with a particular order O according to which the DTSs should be 
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considered for scheduling so that the ETAT of the generated test 
schedule is the minimum. The unscheduled set U is a complement set 
of S, related to the complete set of all DTSs. This means that U always 
includes the unscheduled DTSs during any iteration step.  

S is initialized with an empty set, while U is initialized with the 
complete set of all DTSs. In each iteration step, all DTSs in U are 
considered as candidates while only one of them is selected and 
inserted into S, at a position between the already scheduled DTSs. 
Note that the original order of the scheduled DTSs remains unchanged.  

Suppose that in one iteration step, S consists of m (0 ≤ m < n) 
scheduled DTSs. The objective in this iteration step is to select one 
DTS from U and insert it into S. Since there are (n − m) DTSs in U for 
selection and (m + 1) alternative positions in S for insertion, there are 
in total (n − m) × (m + 1) different solutions to explore.  

How to explore and decide on the alternative solutions is 
illustrated through an example depicted in Figure 6.4. In this example, 
there are five hybrid test sets (n = 5) and two of them have been 
temporarily scheduled in previous iteration steps (m = 2). The 
depicted partial test schedule shows that S = [DTS1, DTS4] and 
U = {DTS2, DTS3, DTS5}. There are three different positions for a 
candidate to be inserted in S, namely INSPOS1, INSPOS2, and 
INSPOS3, pointed by the three short arrows. The heuristic algorithm 
explores all the nine alternative solutions each of which is identified 
by the pair (DTSi, INSPOSj) which means that DTSi is selected from U 
and inserted into S at the position INSPOSj. Thereafter, all the DTSs in 
S are scheduled sequentially according the fixed order, and their 
corresponding PTSs are scheduled to the earliest available times. If 
the TAT of a PTS is longer than the reserved period before the start 
time of the scheduled DTS for the same core, this PTS has to be split 
into two partitions such that the TAT of the first partition fits the 
reserved period and the second partition is scheduled right after the 
DTS is finished. For each explored partial test schedule, the expected 
partial test application time (EPTAT) is calculated. When all solutions 
have been explored, the solution with the minimal EPTAT is 
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selected. Figure 6.5 shows a partial test schedule where solution (DTS3, 
INSPOS2) is selected as the best solution. Thus, the updated S is [DTS1, 
DTS3, DTS4] and the updated U is {DTS2, DTS5}. This example also 
shows the range for calculating the EPTAT of a partial test schedule.  

 
Figure 6.4: Alternative solutions 

 
Figure 6.5: Partial test schedule for the best solution 

The pseudo-code of the heuristic algorithm is given in Figure 6.6. 
Line 1 initializes S with an empty set and line 2 initializes U with the 
complete test set. The outer loop (lines 3 through 19) moves one 
unscheduled DTS from U and inserts it into S (lines 17 and 18). The 
DTS to be moved from U is decided within the middle loop (lines 6 
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through 15) which explores all alternative solutions. For each 
candidate in U (line 6), each possible position that a candidate in U 
can be inserted into S is explored within the inner loop (lines 7 
through 15). For each alternative solution (line 7), the partial test 
schedule is generated (line 8) and the EPTAT of the generated partial 
test schedule is calculated (line 9). Thereafter, the current EPTAT is 
compared to the minimal EPTAT obtained so far (line 10) and the best 
solution is updated if the current EPTAT is smaller (lines 11 through 
14). The algorithm returns the generated test schedule with the 
minimal ETAT (line 20), when all the DTSs in U have been moved 
into S. The computational time complexity of the proposed heuristic 
algorithm is O (kn4), where n is the number of cores and k is the 
average number of deterministic test patterns generated for a core. 

 
Figure 6.6: Pseudo-code of the heuristic algorithm for test scheduling 

Algorithm 6.1: Heuristic algorithm for test scheduling 

01: S := ∅; 
02: U := {DTS1, DTS2, ... , DTSn}; 
03: while (U ≠ ∅) loop    /* outer loop */ 
04:  Reset(EPTATmin); 
05:  IPS := GetInsPosSet(S); 
06:  for (∀ DTS ∈ U) loop    /* middle loop */ 
07:   for (∀ InsPos ∈ IPS) loop    /* inner loop */ 
08:    PartSchedcur := GenPartSched(S, DTS, InsPos); 
09:    EPTATcur := CalcETAT(PartSchedcur); 
10:    if (EPTATcur < EPTATmin) then 
11:     EPTATmin := EPTATcur; 
12:     DTSsel := DTS; 
13:     InsPossel := InsPos; 
14:    end if 
15:   end for 
16:  end for 
17:  Insert(S, DTSsel, InsPossel); 
18:  Remove(U, DTSsel); 
19: end while 
20: Return( GenFullSched(S) ); 
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6.3 Experimental Results 
The cores of the SoC designs for our experiments are selected from 
the ISCAS’85 benchmark circuits. For each SoC design, five different 
hybrid test sets are generated. Various hybrid test sets have different 
numbers of DTPs and PTPs. The defect probabilities of individual 
cores are randomly generated such that the system defect probability 
is 0.6 (meaning that the yield is 40%). The experimental results are 
listed in Table 6.2. Each value in the table is the average value of five 
different experiments for each SoC design. 

Table 6.2: Comparison of different scheduling algorithms 

# of 
cores 

Random 
Scheduling 

Our Heuristic 
Algorithm 

Simulated 
Annealing 

Exhaustive 
Search 

ETAT CPU 
Time(s) ETAT CPU 

Time(s) ETAT CPU 
Time(s) ETAT CPU 

Time(s) 

5 248.97 1.1 228.85 0.6 228.70 1144.2 228.70 1.2 

7 261.38 64.4 232.04 1.4 231.51 1278.5 231.51 80.0 

10 366.39 311.8 312.13 6.6 311.68 3727.6 311.68 112592.6 

12 415.89 346.8 353.02 12.2 352.10 4266.8 n/a n/a 

15 427.34 371.6 383.40 25.2 381.46 5109.2 n/a n/a 

17 544.37 466.6 494.57 43.6 493.93 6323.8 n/a n/a 

20 566.13 555.4 517.02 85.4 516.89 7504.4 n/a n/a 

30 782.88 822.4 738.74 380.4 736.51 11642.4 n/a n/a 

50 1369.54 1378.0 1326.40 3185.0 1324.44 21308.8 n/a n/a 
 

In order to evaluate the efficiency of the proposed heuristic 
algorithm, we compare it with a random scheduling algorithm. The 
ETATs of the generated test schedules by using the random 
scheduling and our heuristic algorithm are listed in columns 2 and 4, 
respectively. It is shown that the ETATs of the test schedules 
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generated by our heuristic algorithm are 5% to 15% shorter than those 
produced by the random scheduling algorithm.  

In order to evaluate the accuracy of the proposed heuristic 
algorithm, we compare it with two other scheduling algorithms which 
are based on a simulated-annealing strategy and an exhaustive search, 
respectively. The ETATs of the generated test schedules by using the 
simulated-annealing algorithm and the exhaustive search are listed in 
columns 6 and 8, respectively. The CPU times of the four approaches 
are listed in columns 3, 5, 7, and 9. The experimental results show that 
the ETATs from the proposed heuristic algorithm are very close to 
those from the algorithms based on simulated-annealing strategy and 
exhaustive search. Moreover, the execution time of our heuristic 
algorithm is substantially shorter. These ETATs and CPU times are 
also plotted in Figure 6.7 and Figure 6.8, respectively. 

 
Figure 6.7: ETATs with different approaches 
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Figure 6.8: Execution times of different scheduling approaches 

6.4 Summary 
This chapter presents a defect-probability driven test scheduling 
technique for hybrid BIST using the AOFF test approach. In this 
technique, the defect probabilities of individual cores are utilized. We 
propose a method to compute the ETAT which reflects the test 
application time of volume production tests. We also propose a 
heuristic algorithm to generate efficient test schedules with minimal 
ETAT. Experimental results have shown the efficiency of the 
proposed technique.  
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Chapter 7 
Power Constrained 
Defect-Probability 

Driven Test Scheduling 

In Chapter 6, we develop a defect-probability driven test scheduling 
approach which minimizes the ETAT for volume production tests 
using the AOFF test approach. The proposed technique assumes the 
BISTs for all cores can be applied concurrently. However, testing 
large number of core in parallel can result in power and thermal 
related problems. In this chapter, we present a power constrained 
defect-probability driven test scheduling technique. In order to 
improve the efficiency of test schedules, we employ the test set 
partitioning and test pattern reordering techniques. We develop a 
heuristic algorithm to find efficient test set partitioning scheme and 
further to minimize the ETAT of generated test schedules.  
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7.1 Motivational Example 
We assume that the power consumption in the circuit by applying a 
test pattern is proportional to the total number of transitions between 
this test pattern and the preceding test pattern, occurring at all the 
primary inputs, primary outputs, and internal nodes. The peak-power 
consumption by applying a test sequence is defined as the maximum 
power consumed by applying each of the test patterns belonging to the 
test sequence (see Figure 7.4). 

Figure 7.1 shows an example of a power-constrained test schedule 
for five DTSs and five PTSs, illustrated with white and grey 
rectangles, respectively. Each test sequence is represented as a 
rectangle with its height and width corresponding to the peak-power 
consumption and the time duration of the test sequence, respectively. 
The area size of a rectangle is equal to the peak-power consumption 
multiplied by the time duration. The constraint on the peak-power 
consumption is denoted with POWC. It should be noted that test 
sequences belonging to the same core, such as DTS1 and PTS1, cannot 
be scheduled in parallel due to the test conflict. 

Comparing the size of the effective scheduled area occupied by all 
test sequences to the size of the overall schedulable area confined by 
the line of peak-power constraint and the line of test completion time, 
one can find out that the efficiency of the test schedule in Figure 7.1(a) 
is low since a large area is wasted. One solution to improve the 
efficiency of the test schedule is to employ test set partitioning TSP to 
decrease the sizes of test sequences. As shown in Figure 7.1(b), PTS1, 
is partitioned into PTS11 and PTS12, PTS3 is partitioned into PTS31 and 
PTS32, and PTS5 is partitioned into PTS51 and PTS52. The partitioned 
test sequences have a shorter time duration and/or a smaller peak-
power consumption than the non-partitioned ones, and therefore can 
be scheduled at those time moments which are not possible for the 
non-partitioned test sequences. From this example, it can be observed 
that using TSP can substantially reduce the TAT. 
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Figure 7.1: Power-constrained test schedule without/with TSP 

(a) A test schedule without TSP

(b) A test schedule with TSP
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7.2 Problem Formulation 
In this chapter, we use the same definitions given in Section 6.1.1 and 
the hybrid BIST architecture depicted in Figure 2.7. We assume that a 
deterministic test set is partitioned into ai (0 ≤ ai ≤ di, 1 ≤ i ≤ n) DTSs, 
and a pseudo-random test set is partitioned into bi (0 ≤ bi ≤ ri, 1 ≤ i ≤ n) 
PTSs, where ai + bi > 0. Figure 7.2 depicts the PTTMs in a power-
constrained test schedule, where the dotted lines indicate the finish 
time moments of DTPs, and the dashed lines indicate the finish time 
moments of PTSs. Overlapped time moments are treated as identical 
PTTMs. 

In order to minimize the ETAT, we use TSP in test scheduling. 
The power constrained test time minimization problem is similar to 
the classical 2D RP problem and is formulated as follows. Given the 
power constraint, the pseudorandom test sets and deterministic test 
sets, minimize the ETAT of generated test schedule for all partitioned 
PTS and DTS. We develop a heuristic approach to explore alternative 
TSP schemes and generate efficient test schedules.  

 
Figure 7.2: PTTMs in a power-constrained test schedule 
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7.3 Test Scheduling Techniques 

7.3.1 Test Set Partitioning 
The size of a test sequences has a large impact on the test schedule 
length. Dividing test sequences into smaller partitions with shorter 
time duration and lower individual peak-power consumptions leads to 
more efficient test schedule. This is because the partitioned test 
sequences have smaller area sizes and can be packed more tightly into 
the power constrained 2D plane. Figure 7.3(a) shows a non-partitioned 
deterministic test set for core Ci. Figure 7.3(b) shows three test 
sequences, DTSi1, DTSi2, and DTSi3, partitioned from the original test 
set depicted in Figure 7.3(a). In Figure 7.3(b), the individual peak-
power consumptions of the first two partitions, DTSi1 and DTSi2, are 
lower than that of the non-partitioned test sequence in Figure 7.3(a). 
The grey rectangles with dashed boarder lines illustrate the reduced 
area sizes due to partitioning.  

 
Figure 7.3: Test set partitioning and time overhead 
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Although test set partitioning can lead to smaller partitions, it 
introduces time overheads for the partitioned test sequences in scan-
based testing. This phenomenon occurs when DTSs and PTSs 
belonging to the same core are interleaved, as in the example depicted 
in Figure 7.3. There, the three partitioned deterministic test sequences 
(DTSi1, DTSi2, and DTSi3) are interleaved with two partitioned 
pseudorandom test sequences (PTSi1 and PTSi2) for the same core Ci. 
The time overheads are indicated by the rectangles filled with slashed 
lines and situated at the left of PTSi1, DTSi2, PTSi2, and DTSi3. The 
reason for the time overheads is explained in details in Section 3.1. 

7.3.2 Test Pattern Reordering 
Reordering test patterns can reduce power consumption and make the 
power profile of a test sequence relatively smoother and easier to be 
manipulated in test scheduling [Rosinger, et al. 2002]. Thus, for all 
deterministic tests, we use test pattern reordering (TSR) as a pre-
processing step for test set partitioning. In Figure 7.4(a), the original 
power profile of a DTS is depicted. As a comparison, the power 
profile after reordering the test patterns is shown in Figure 7.4(b). It is 
shown that after reordering the test patterns, the power profile is much 
smoother and the peak-power consumption is reduced by 39%. 

 
Figure 7.4: Motivational example of test set reordering 

(a) Power profile before TSR (b) Power profile after TSR 
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7.3.3 Heuristic Algorithm for Test Set 
Partitioning 
We propose a heuristic algorithm for test set partitioning of 
deterministic test sets. The algorithm starts with the original test set. 
In each iteration step, one of the existing partitions is divided into two 
test sequences. The algorithm stops when partitions cannot be further 
divided, i.e. every partitioned test sequence consist of one test pattern. 
Here the cost function is defined as the sum of the area sizes of all the 
partitioned test sequences, and the objective is to find a partitioning 
scheme which has the lowest cost among all explored solutions. 

In each iteration step, we have to decide which existing partition 
should be selected to be split into two test sequences, and at which 
position (test pattern) the selected partition should be divided. Using 
an exhaustive search among all possible solutions within an iteration 
step, we obtain the local optimal partitioning scheme which has the 
lowest cost and add one more partition. Among all the local optimal 
partitioning schemes with different number of partitions, the one 
having the minimum cost is acquired and accepted as the best 
solution. Figure 7.5 illustrates how the sum of the area sizes of all 
partitions distributes with the numbers of partitions. Usually the best 
partitioning scheme has a relatively small number of partitions in 
relation to the total number of test patterns in the test set. For example, 
in Figure 7.5, a test set with 149 test patterns should be divided into 21 
partitions such that the sum of their area sizes is minimized. 

When a PTS is divided into two partitions, two signatures are 
needed in order to obtain the test results at the end of both partitions, 
which means that an additional signature should be generated. Thus, 
extra memory is also needed to store this additional expected signature, 
and an extra time slot is needed to analyze the additional signature. In 
this chapter, we assumed that there exists sufficient memory in a tester 
to store the signature. We ignore the extra time slots for analyzing the 
additional signatures, since it is very short, compared to the time 
duration of the PTS.  
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Figure 7.5: Sum of area sizes w.r.t. number of partitions 

7.3.4 Heuristic Algorithm for Test 
Scheduling 
Before the heuristic algorithm for test scheduling is presented, some 
basic principles for test set partitioning and test scheduling are 
summarized as follows. 

(1) Test sequences belonging to the same core cannot be 
scheduled in parallel.  

(2) DTSs are scheduled sequentially since a single test bus is used, 
while PTSs are scheduled in parallel subject to the peak-power 
constraint.  

(3) The scheduling of DTSs is performed before the scheduling of 
PTSs, meaning that DTSs have higher scheduling priorities than PTSs. 
This is because of the assumptions (described in Section 6.1.1) that 
deterministic tests can be stopped after every test pattern, while 
pseudorandom tests can only be terminated at the end of the test 
sequences, when the signatures are available. Moreover, DTPs are 
usually more efficient in detecting faults than PTPs.  
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(4) PTSs are first sorted in a decreasing order according to some 
parameters such as the defect probability of a core, the peak-power 
consumption, and the time duration of a test sequence. Thereafter, 
PTSs are scheduled to the earliest available time moment. DTSs, 
however, are scheduled according to the order obtained by a defect-
probability driven heuristic algorithm. 

The TSP is integrated into the test scheduling approach in the 
following way. By using the approach proposed in Section 7.3.3, 
deterministic test sets are partitioned statically, meaning that they are 
partitioned before they are scheduled. Pseudorandom test sets, on the 
other hand, are partitioned during the test scheduling. When it is not 
possible to schedule a PTS to the earliest time moment due to its large 
area size, the test sequence is divided into two partitions such that the 
first one can be scheduled as expected, and the scheduling of the 
second one is performed later. 

Based on the basic principles described above, a heuristic 
algorithm is developed to find an efficient test schedule for all test 
sequences in an iterative way. One iteration step of the heuristic 
algorithm is illustrated through an example in Figure 7.6. Suppose that 
we have five DTSs (DTS1, DTS21, DTS22, DTS31, and DTS32), and three 
PTSs (PTS1, PTS2, and PTS3). Two DTSs (DTS31 and DTS1) have 
already been scheduled. In this iteration step, we have to decide which 
one out of the three unscheduled DTSs (DTS21, DTS22, and DTS32) 
should be scheduled to which time moment among A, B, and C, as 
illustrated in Figure 7.6. After a DTS is scheduled to a time moment, 
the three PTSs (PTS1, PTS2, and PTS3) are scheduled to the remaining 
space. Test set partitioning may be needed at this step. The expected 
partial test application time is then calculated within the range of the 
scheduled DTSs (see Figure 7.7). When all the possible nine solutions 
in the current iteration step have been explored, the solution with the 
smallest EPTAT is accepted and the three scheduled DTSs are taken 
as a base for the next iteration step. The heuristic algorithm stops 
when no more unscheduled DTSs are left, and then the final test 
schedule is obtained. Note that when a test sequence is scheduled, the 
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order of the already scheduled test sequences should remain 
unchanged. 

 
Figure 7.6: One iteration step of the heuristic algorithm 

Figure 7.7 shows a solution in which DTS22 is scheduled to time 
moment B. During the scheduling of PTSs, PTS2 is partitioned into 
two test sequences (PTS21 and PTS22). The EPTAT calculation range is 
from the beginning of DTS31 to the end of DTS1. The gap between 
PTS3 and PTS22 is due to the fact that DTS22 and PTS22 cannot be 
scheduled concurrently due to the test conflict. 

A formal description of the heuristic algorithm for test scheduling 
is presented as follows. Suppose that we have N DTSs altogether, and 
m (0 ≤ m < N) of them have already been scheduled in a certain 
iteration step. We need to schedule one more DTS selected from the 
set of (N − m) unscheduled DTSs to an appropriate time moment, 
without changing the order of the scheduled test sequences. When a 
selected DTS has been scheduled to a time moment, all the PTSs are 
then scheduled into the remaining space, with dynamic test set 
partitioning, if needed. The EPTAT of this solution is then calculated 
within the time range of the (m + 1) scheduled DTSs. When all the 
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(N − m) × (m + 1) possible solutions have been explored, the solution 
with the minimum EPTAT value is accepted. The new list of 
scheduled DTSs is then used as a base for the next iteration step. 
Repeating this procedure from the initial state (where m = 0) until all 
the DTSs and PTSs are scheduled (when m = N), we get the final 
optimized schedule. 

 
Figure 7.7: Illustration of one solution in the iteration step 

The pseudo-code of the heuristic algorithm is depicted in Figure 
7.8. The algorithm has three major nested loops. The outer loop (lines 
1 through 19) increments the number of scheduled DTSs, the middle 
loop (lines 4 through 17) selects every unscheduled DTS, and the 
inner loop (lines 5 through 16) explores every possible time moment 
for scheduling. Inside the inner loop, after the selected DTS is 
scheduled (line 6), pseudorandom test sets are partitioned, if needed, 
and then scheduled (lines 7 through 10). The EPTAT of the present 
schedule is calculated (line 11) and compared to the minimum EPTAT 
for a decision (lines 12 through 15). The final test schedule is returned 
in the end (line 20). 
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Figure 7.8: Pseudo-code of the heuristic algorithm for test scheduling 

7.4 Experimental Results 
ISCAS’89 benchmark circuits are used as cores in the SoC designs for 
our experiments. All cores are redesigned to insert one single scan 
chain, and the STUMPS architecture is used for BIST. 

In the first group of experiments, the proposed test set partitioning 
and test scheduling technique is employed. We perform experiments 

Algorithm 7.1: Heuristic algorithm for test scheduling 

01: for (#_Sched_DTS := 0 to N-1) loop    /* outer loop */ 
02:  Reset(EPTATmin); 
03:  m := #_Sched_DTS; 
04:  for (∀UnschedDTSij) loop    /* middle loop */ 
05:   for (∀PTTM Tx) loop    /* inner loop */ 
06:    Schedule(UnschedDTSij, Tx); 
07:    for (∀ pseudorandom test set PTSk ) loop 
08:     Partition(PTSk) if needed; 
09:     Schedule(PTSk); 
10:    end for; 
11:    EPTATcur := CalcEPTAT(); 
12:    if (EPTATcur < EPTATmin) then 
13:     EPTATmin := EPTATcur; 
14:     Solutionbest := Solutioncur; 
15:    end if; 
16:   end for; 
17:  end for; 
18:  Apply(Solutionbest); 
19: end for; 
20: Return(TestSchedulefinal); 
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for 5 groups of SoC designs. Each group has 5 different SoC designs 
which have the same number of cores of different types, and the cores 
are assigned with different defect probabilities. The numbers of cores 
in the SoC designs are 5, 10, 20, 30, and 50 for each group, 
respectively. For each SoC design we impose three different peak-
power constraints. The experimental results presented in Table 7.1 are 
average values from 15 experiments (5 different designs with the same 
number of cores multiplied by 3 different peak-power constraints). 
The defect probabilities of individual cores are randomly generated, 
such that the system defect probability is 0.6, i.e. 40% system yield. 

In order to evaluate the efficiency of our heuristic algorithm, a 
classical bottom-left-decreasing (BLD) scheduling algorithm [Lesh, et 
al. 2005] is taken for comparison. The BLD algorithm sorts DTSs and 
PTSs decreasingly according to their area sizes (the peak-power 
consumption multiplied by the time duration), and then schedules 
them using the bottom-left strategy. As shown in Table 7.1, by 
employing our heuristic algorithm, the ETAT is reduced about 20% to 
29% compared to the BLD scheduling algorithm, with an acceptable 
increase in execution time. On the other hand, in order to evaluate the 
accuracy of our heuristic algorithm to find a near-optimal test 
schedule, we compared our heuristic algorithm with a simulated 
annealing (SA) algorithm. For small designs with 5 and 10 cores, the 
SA algorithm reaches the imposed termination condition in an 
acceptable time and is supposed to return a solution as close to the 
optimal solution as possible. For large SoC designs with 20, 30, and 
50 cores, the SA algorithm takes unacceptably long time to reach the 
termination condition. Thus, for these experiments, we let the SA 
algorithm run for a time equal to that needed by our heuristic 
algorithm. From Table 7.1, it is shown that in small designs, the SA 
algorithm works just slightly better than our heuristic algorithm (2% 
to 3% lower ETAT), but has up to two orders of magnitude longer 
execution time than our heuristic algorithm. For the large SoC designs, 
our heuristic algorithm found better solutions with 4% to 7% lower 
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ETAT than what the SA algorithm produces in the same amount of 
execution time. 

In the second group of experiments where the same SoC designs 
are used, we evaluate the effect of test set partitioning. As a 
comparison, we used a defect-probability driven test scheduling 
heuristic algorithm which does not allow test set partitioning. For the 
sake of fairness, both the partitioned and non-partitioned heuristic 
algorithm use test pattern reordering to reduce peak-power 
consumption. The experimental results are listed in Table 7.2. As 
shown in the table, using test set partitioning can reduce the ETAT by 
16% to 30%. This experimental result is also plotted in Figure 7.9. 

Table 7.1: Comparison of different scheduling approaches using TSP 

# of Cores 
BLD Our Heuristic SA 

ETAT CPU 
Time (s) ETAT CPU 

Time (s) ETAT CPU 
Time (s) 

5 7783 0.01 6247 2.5 6126 276.0 

10 10590 0.02 7983 26.9 7732 568.7 

20 20081 0.04 14239 293.9 14808 301.5 

30 28578 0.06 21117 493.4 22290 503.9 

50 50562 0.11 37463 4372.9 40074 4409.3 
 

Table 7.2: Comparison of scheduling approaches using/not using TSP  

# of Cores 
Without TSP With TSP 

ETAT CPU Time (s) ETAT CPU Time (s) 

5 8269 0.09 6247 2.5 

10 11357 0.86 7983 26.9 

20 18016 14.2 14239 293.9 

30 26710 68.6 21117 493.4 

50 44713 589.1 37463 4372.9 
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Figure 7.9: Comparison of scheduling approaches using/not using TSP 

7.5 Summary 
This chapter presents a power constrained defect-probability driven 
test scheduling approach for volume production test using the AOFF 
test approach. Defect probabilities of individual cores are utilized to 
guide test scheduling which employs test set reordering and test set 
partitioning techniques. Heuristic algorithms for test set partitioning 
and test scheduling are proposed to generate efficient test schedules. 
Experimental results have shown that the proposed method is efficient 
to minimize the ETAT. 
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Chapter 8  
Conclusions and 

Future Work 

This chapter concludes the thesis and discusses possible directions for 
future work. 

8.1 Conclusions 
The aim of the work presented in this thesis is to reduce the cost of 
electronic testing. The major contribution of this thesis is that it 
proposes a set of test scheduling techniques to minimize the test 
application time with different considerations, including temperature, 
power consumption, and defect probability. 

The first proposed technique is temperature aware test scheduling 
based on test set partitioning and interleaving. This technique aims to 
generate efficient test schedules and avoid high temperature during 
test. The presented test scheduling technique generates the shortest 
test schedule for core-based SoCs such that the imposed temperature 
limit and test-bus width limit are satisfied. The test set partitioning 
technique aims to avoid overheating the cores under test by dividing a 
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test set into shorter test sequences and inserting cooling periods 
between the partitioned test sequences. The test set interleaving 
technique aims to improve the efficiency of the test schedules by 
utilizing the cooling periods of one core to test other cores. Based on 
the test set partitioning and interleaving technique, we propose two 
different solutions to the test time minimization problem with the 
temperature and test-bus width constraints. The first solution targets 
the SoCs with negligible lateral thermal influence. A CLP-based 
approach and a heuristic approach are proposed for test scheduling. 
The second solution targets the SoCs with significant lateral thermal 
influence, and a thermal-simulation driven approach is proposed for 
test scheduling.  

The second proposed technique is multi-temperature testing which 
aims to test SoCs at different temperature intervals so that the 
temperature-dependent defects can be efficiently sensitized. A 
thermal-simulation driven test scheduling approach is proposed to 
minimize the test application time such that a test is applied to a core 
under test only when the temperature of the core is within a given 
interval and the test-bus width constraint is satisfied. 

The third proposed technique is defect-probability driven test 
scheduling based on the AOFF test approach. This technique aims to 
minimize the expected test application time for volume production 
tests. In order to avoid the power and temperature related problems 
during test, we propose a power constrained test scheduling approach 
for hybrid BIST.  

Extensive experiments have been performed and the experimental 
results have shown the efficiency of the proposed techniques.  

8.2 Future Work 
Recently, a three-dimensional (3D) integration technique has emerged 
in IC designs. This technique stacks the silicon die in the vertical 
dimension and the dies on different layers are connected by the 
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through-silicon vias (TSVs). The advantages of 3D-stacked ICs 
include reduced number and length of wires, decreased 
interconnection delay, increased integration density, and improved 
performance. Moving from the 2D integration technique, the 3D-
stacked ICs encounter a greater challenge in thermal-related issues. 
High temperature occurs in 3D-stacked ICs as the active silicon layer 
heat each other while no efficient cooling solutions exist to take away 
the heat. When testing 3D-stacked ICs, the thermal issues have to be 
addressed since the testing power dissipation is much higher. 
Temperature aware testing for 3D-stacked ICs is an interesting topic 
for our future work. A possible research direction is the 3D 
temperature aware test scheduling which minimizes the test 
application time while keeps the temperature of the CUTs below a 
given limit for 3D-stacked SoCs. New techniques based on the test 
scheduling approaches proposed in this thesis can be developed for 3D 
temperature aware test scheduling.  

Process variation related testing is another possible direction for 
future work. When the CMOS process moves into deep-nanometer 
regime, the reliability of ICs becomes a great challenge due to process 
variation. Traditional temperature aware testing techniques may not be 
applicable since variation in physical parameters appears between or 
within silicon dies. Combining the offline test scheduling techniques 
using thermal simulation and online test scheduling techniques using 
temperature sensors for temperature aware testing can be an 
interesting research direction in the future.  

 

147



148



 

 

List of Figures 

Figure 2.1: Visualization of electronic systems design space ............. 12 
Figure 2.2: A typical electronic systems design flow ......................... 13 
Figure 2.3: An IP core-based SoC example ........................................ 17 
Figure 2.4: Generic core-based SoC test architecture ......................... 17 
Figure 2.5: Test architecture for external tests using an ATE ............ 19 
Figure 2.6: Test architecture for external tests using an embedded 
tester .................................................................................................... 19 
Figure 2.7: Test architecture for hybrid BIST..................................... 21 
Figure 2.8: An electro-thermal model ................................................. 30 
Figure 2.9: Normal and reverse temperature dependence regions ...... 34 
Figure 2.10: Via voids at different temperatures ................................ 36 
Figure 3.1: Motivational example of test set partitioning ................... 41 
Figure 3.2: Motivational example of test set interleaving .................. 41 
Figure 3.3. Temperature profiles of two CUTs using TSPI ................ 42 
Figure 3.4: Pipelined applications of test patterns in scan-based testing
 ............................................................................................................ 44 
Figure 3.5: Motivational example for temperature aware test 
scheduling ........................................................................................... 45 
Figure 3.6: Problem formulation of temperature aware test scheduling
 ............................................................................................................ 47 
Figure 3.7: Overall solution strategy .................................................. 49 
Figure 3.8: Motivational example of the initial partitioning scheme .. 51 
Figure 3.9: Motivational example of test schedules affected by the 
SCO ..................................................................................................... 59 
Figure 3.10: Pseudo-code of the heuristic algorithm for test scheduling
 ............................................................................................................ 60 

149



LIST OF FIGURES 

138 

Figure 3.11: Example of alternative solutions .................................... 63 
Figure 3.12: Efficiency of a test schedule .......................................... 63 
Figure 3.13: Illustration of the scheduling algorithm ......................... 64 
Figure 3.14: Pseudo-code of the scheduling algorithm ...................... 65 
Figure 3.15: A scheduling constraint example ................................... 66 
Figure 3.16: Two alternative solutions to deal with scheduling 
constraint ............................................................................................ 67 
Figure 4.1: Thermal simulation result showing significant lateral 
thermal influence between two adjacent cores of an SoC design ....... 75 
Figure 4.2: Test schedule generated by Algorithm 3.1 leads to 
violation of the temperature limit due to the significant lateral thermal 
influence ............................................................................................. 76 
Figure 4.3: Alternative test schedules w.r.t. various SCTs ................. 77 
Figure 4.4: Straight-forward approach ............................................... 80 
Figure 4.5: FSM model for the SDSA ................................................ 81 
Figure 4.6: Thermal-safe test schedule for an SoC consisting of 4 
cores .................................................................................................... 82 
Figure 4.7: Pseudo-code of heuristic algorithm activating cores for test
 ............................................................................................................ 83 
Figure 4.8: Overall solution strategy of the SDSA ............................. 84 
Figure 4.9: TAT vs. SCT .................................................................... 85 
Figure 5.1: Problem formulation of multi-temperature test scheduling
 ............................................................................................................ 88 
Figure 5.2: The impact of heating sequence length ............................ 90 
Figure 5.3: Core states w.r.t. changes of temperatures ....................... 93 
Figure 5.4: FSM model for multi-temperature test scheduling .......... 93 
Figure 5.5: Pseudo-code of the algorithm activating cores for test .... 94 
Figure 6.1: A hybrid BIST schedule example .................................. 100 
Figure 6.2: Possible test termination moments in a test schedule .... 103 
Figure 6.3: Example of the test process aborted at PTTM 7 ............ 106 
Figure 6.4: Alternative solutions ...................................................... 111 
Figure 6.5: Partial test schedule for the best solution ....................... 111 
Figure 6.6: Pseudo-code of the heuristic algorithm for test scheduling
 .......................................................................................................... 112 
Figure 6.7: ETATs with different approaches .................................. 114 
Figure 6.8: Execution times of different scheduling approaches...... 115 
Figure 7.1: Power-constrained test schedule without/with TSP ....... 119 
Figure 7.2: PTTMs in a power-constrained test schedule ................ 120 

150



LIST OF FIGURES 

139 

Figure 7.3: Test set partitioning and time overhead .......................... 121 
Figure 7.4: Motivational example of test set reordering ................... 122 
Figure 7.5: Sum of area sizes w.r.t. number of partitions ................. 124 
Figure 7.6: One iteration step of the heuristic algorithm .................. 126 
Figure 7.7: Illustration of one solution at the iteration step .............. 127 
Figure 7.8: Pseudo-code of the heuristic algorithm for test scheduling
 .......................................................................................................... 128 
Figure 7.9: Comparison of scheduling approaches using/not using TSP
 .......................................................................................................... 131 
 

 

151



152



 

 

List of Tables 

Table 2.1: Design tasks in different domains ...................................... 12 
Table 2.2: Duality between the electrical and thermal models ........... 30 
Table 3.1: TATs and execution times using the CLP model .............. 56 
Table 3.2: TSTs w.r.t. different number of partitioning schemes ....... 57 
Table 3.3: FLSA vs. ESLA and 2PSA ................................................ 68 
Table 3.4: FLSA vs. SFA and SABA ................................................. 71 
Table 4.1: SDSA vs. SFA ................................................................... 86 
Table 5.1: TATs with different temperature intervals (B=60) ............ 96 
Table 5.2: TATs with different test-bus width (TL=85°C, TH=100°C)96 
Table 5.3: TATs with/without TC  (B=60, TL =85°C, TH =100°C) ...... 97 
Table 5.4: TATs with/without TC  (B=60, TL =65°C, TH =80°C) ........ 98 
Table 6.1: Yx and Zx at each PTTM x w.r.t. Figure 6.2 ..................... 107 
Table 6.2: Comparison of different scheduling algorithms .............. 113 
Table 7.1: Comparison of different scheduling approaches using TSP
 .......................................................................................................... 130 
Table 7.2: Comparison of scheduling approaches using/not using TSP
 .......................................................................................................... 130 
 

 

153



154



 

 

List of Abbreviations 

2D Two-Dimensional 

2PSA Two-Phase Scheduling Algorithm 

3D Three-Dimensional 

ALU Arithmetic Logic Unit 

AMBA Advanced Microprocessor Bus Architecture 

AOFF Abort-on-First-Fail 

ASIC Application-Specific Integrated Circuit 

ATE Automatic Test Equipment 

ATPG Automatic Test Pattern Generation 

BIST Built-In Self-Test 

BLD Bottom-Left Decreasing 

CDFG Control/Data-Flow Graph 

CDP Core Defect Probability 

CLP Constraint Logic Programming 

CMOS Complementary Metal-Oxide-Semiconductor 

CPU Central Processing Unit 

CUT Core Under Test 

DATS Direct Access Test Scheme 

DFT Design for Test 

DMA Direct Memory Access 

155



LIST OF ABBREVIATIONS 

144 

DSP Digital Signal Processor 

DTP Deterministic Test Pattern 

DTS Deterministic Test Sequence 

DUT Device Under Test 

EATM Earliest Available Time Moment 

ELSA Equal-Length Scheduling Algorithm 

EPATA Expected Partial Test Application Time 

ETAT Expected Test Application Time 

FLSA Flexible-Length Scheduling Algorithm 

FPU Floating-Point Unit 

FSM Finite-State Machine 

HP Heating Pattern 

HPF High-Power Frame 

HS Heating Sequence 

IFC Incremental Fault Coverage 

IC Integrated Circuit 

ILP Integer Linear Programming 

IP Intellectual Property 

ISCAS International Symposium on Circuits and Systems 

ITFP Individual Test Failure Probability 

ITSP Individual Test Success Probability 

LFSR Linear Feedback Shift Register 

LPF Low-Power Frame 

MCM Multi-Chip Module 

MILP Mixed-Integer Linear Programming 

MISR Multi-Input Signature Register 

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor 

OF Observation Frame 

156



LIST OF ABBREVIATIONS 

145 

OSCO Overall Scheduling Consideration Order 

PCB Printed-Circuit Board 

PTAT Partial Test Application Time 

PTP Pseudorandom Test Pattern 

PTS Pseudorandom Test Sequence 

PTTM Possible Test Termination Moment 

PWM Pulse-Width Modulation 

RAM Random-Access Memory 

RASBuS Reuse of Addressable System Bus 

RF Radio Frequency 

ROM Read-Only Memory 

RC Resistance-Capacitance 

RP Rectangle Packing 

RT Register-Transfer 

RTL Register-Transfer Level 

SA Simulated Annealing 

SABA Simulated-Annealing-Based Algorithm 

SCO Scheduling Consideration Order 

SCT Stop-Cooling Temperature 

SDP System Defect Probability 

SDSA Simulation-Driven Scheduling Algorithm/Approach 

SFA Straight-Forward Algorithm/Approach 

SISR Single-Input Signature Register 

SoC System-on-Chip 

STUMPS Self-Testing Using MISR and Parallel SRSG 

TAI Test Access Infrastructure 

TAM Test Access Mechanism 

TAT Test Application Time 

157



LIST OF ABBREVIATIONS 

146 

TFP Test Failing Probability 

TG Test Generation 

TP Test Pattern 

TPP Test Passing Probability 

TS Test Set 

TSE Test Schedule Efficiency 

TSI Test Set Interleaving 

TSP Test Set Partitioning 

TSPI Test Set Partitioning and Interleaving 

UDL User Defined Logic 

USB Universal Serial Bus 

VLSI Very-Large-Scale Integration 

ZTC Zero-Temperature Coefficient 
 
 

158



 

 

Appendix A 
Deduction of Equations (6.8) 

and (6.9) in Section 6.1.3 

This appendix explains how Equations (6.8) and (6.9)  in Section 6.1.3 
are deducted. 

Definition 1: test set and test patterns. 
Suppose that a test set consists of m test patterns, which can be 

deterministic test patterns or pseudorandom test patterns. We denote a 
test set with TS, and the j-th test pattern in TS with vj. 

{ } { }mjj vvvvmjvTS ,,,,,1 21 LL=≤≤= (A.1) 

Definition 2: incremental fault coverage of a test pattern. 
The incremental fault coverage of a test pattern v, denoted with 

IFC(v), is the ratio of the faults that can be detected by the test pattern 
v but cannot be detected by any preceding test patterns in the same test 
set, to the total number of faults that can be detected by the entire test 
set. Suppose that a test set TS can detect N faults in total, and the j-th 
test pattern vj in TS can detect nj faults that cannot be detected by any 
of the preceding test patterns {v1, v2, ... , vj–1} in TS. Let nj be the 
number of faults that can be detected by the j-th test pattern vj in TS 
but cannot not be detected by any preceding test patterns in TS, and let 
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N be the number of faults that can be detected by the test patterns in 
TS. The IFC of vj is defined as 

( ) ( )mjNn
N
n

vIFC j
j

j ≤≤<≤= 1,0 (A.2) 

Definition 3: fail and pass a single pattern test. 
We define two random events regarding a test by applying a 

single test pattern: fail a single pattern test and pass a single pattern 
test. Fail a single pattern test is an event Fj that a test by applying j-th 
(1 ≤ j ≤ m) test pattern vj is failed due to detection of at least one fault. 
This infers that the entire test process is aborted immediately. Pass a 
single pattern test is an event ¬Fj that a test by applying the j-th 
(1 ≤ j ≤ m) test pattern vj is passed due to no detection of any faults. 
This infers that the entire test process continues and the next test 
pattern is going to be applied. Fail a single pattern test and pass a 
single pattern test are complement events. Let D be the random event 
that a core under test is defective. The defect probability of a core is 
DP = p[D]. 

Definition 4: conditional probability of fail a currently applied  
pattern test. 

Suppose that the j-th test pattern can detect nj incremental faults 
(1 ≤ j ≤ m). The following equation shows how to calculate the 
conditional probability that the j-th test pattern vj detects at least one 
fault provided that the preceding test patterns in the same test set did 
not detect any faults while the core is actually defective.  
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It should be noted that only incremental faults are counted in this 
probability calculation. This is because those faults which are covered 
by both vj and any preceding test patterns have no chance to be 
detected by vj in the actual test process. According to the condition 
given in the formula, those faults should have been detected by the 
preceding test patterns before they are detected by vj. 

Definition 5: terminate and pass a partial test. 
Terminate a partial test after applying the j-th test pattern is an 

random event Aj that the test is terminated immediately after the j-th 
test pattern vj detects at least one fault. Pass a partial test after 
applying the j-th test pattern is a random event Pj that the partial test is 
passed after the j-th test pattern vj is applied without detecting any 
faults and that the test process continues to apply the next test pattern.  

According to the definitions, Aj is equivalent to the intersection of 
the following three events: (1) the j-th test pattern detects at least one 
fault; (2) the preceding test patterns did not detect any faults; (3) the 
core is actually defective. Similarly, Pj is equivalent to the intersection 
of the following two events: (1) the conjunction of such events that all 
the j applied test patterns did not detect any faults and the core is 
actually defective; (2) the core is actually not defective. Thus, Aj and 
Pj are given by 
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Definition 6: suppose that a test employs the AOFF test approach 
and the test can only be terminated when a test pattern has been 
applied and the test response or signature has been analyzed. Let p[Aj] 
be the probability of the test being aborted at a certain test pattern and 

161



APPENDIX A 

150 

let p[Pj] be the probability of the test succeeding at a certain test 
pattern. Then, p[Aj] and p[Pj] are given by the following two equations 
respectively. 

[ ] ( ) DPvIFCAp jj ×= (A.6) 

[ ] ( )∑
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Equations (A.6) and (A.7) can be proved using a mathematical 
induction. The proof is given as follows. 
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