
Linköping Studies in Science and Technology

Dissertation No. 1321

Temperature Aware and Defect-Probability Driven
Test Scheduling for System-on-Chip

by

Zhiyuan He

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2010

1

2

To Fang,

for her endless love, patience, and support

3

4

Abstract

The high complexity of modern electronic systems has resulted in a
substantial increase in the time-to-market as well as in the cost of
design, production, and testing. Recently, in order to reduce the design
cost, many electronic systems have employed a core-based system-on-
chip (SoC) implementation technique, which integrates pre-defined
and pre-verified intellectual property cores into a single silicon die.
Accordingly, the testing of manufactured SoCs adopts a modular
approach in which test patterns are generated for individual cores and
are applied to the corresponding cores separately. Among many
techniques that reduce the cost of modular SoC testing, test scheduling
is widely adopted to reduce the test application time. This thesis
addresses the problem of minimizing the test application time for
modular SoC tests with considerations on three critical issues: high
testing temperature, temperature-dependent failures, and defect
probabilities.

High temperature occurs in testing modern SoCs and it may cause
damages to the cores under test. We address the temperature-aware
test scheduling problem aiming to minimize the test application time
and to avoid the temperature of the cores under test exceeding a
certain limit. We have developed a test set partitioning and
interleaving technique and a set of test scheduling algorithms to solve
the addressed problem.

Complicated temperature dependences and defect-induced
parametric failures are more and more visible in SoCs manufactured

5

with nanometer technology. In order to detect the temperature-
dependent defects, a chip should be tested at different temperature
levels. We address the SoC multi-temperature testing issue where tests
are applied to a core only when the temperature of that core is within a
given temperature interval. We have developed test scheduling
algorithms for multi-temperature testing of SoCs.

Volume production tests often employ an abort-on-first-fail
(AOFF) approach which terminates the chip test as soon as the first
fault is detected. Defect probabilities of individual cores in SoCs can
be used to compute the expected test application time of modular SoC
tests using the AOFF approach. We address the defect-probability
driven SoC test scheduling problem aiming to minimize the expected
test application time with a power constraint. We have proposed
techniques which utilize the defect probability to generate efficient
test schedules.

Extensive experiments based on benchmark designs have been
performed to demonstrate the efficiency and applicability of the
developed techniques.

6

Acknowledgments

Over the years, many people have contributed to this thesis, and I
appreciate all their support. First and foremost, I would like to
sincerely thank my supervisors Professor Zebo Peng and Professor
Petru Eles, for their inspiration and guidance on my graduate study
and research. Many creative and insightful ideas have been generated
during the enlightening discussions. Special thanks to Zebo for the
chats about social values and to Petru for introducing me to operas.

I would also like to thank Professor Bashir M. Al-Hashimi for
hosting my stay at the University of Southampton, UK, in 2006, and
for the fruitful collaboration on the temperature-aware testing issue.

Many thanks to all present and former members of the Embedded
Systems Laboratory and colleagues in the Department of Computer
and Information Science at Linköping University, for their kind help.

I appreciate the financial support of the Swedish Foundation for
Strategic Research (SSF) via the Strategic Integrated Electronic
Systems Research (STRINGENT) program.

I am deeply grateful to my father and mother, who have always
been giving me their support, encouragement, and advices. Finally, I
would like to express my deepest gratitude to my beloved wife,
Huanfang, to whom this thesis is dedicated, for her endless love,
patience, and sharing my ups and downs all the time.

Zhiyuan He

Linköping, June 2010

7

8

vii

Contents

Abstract ... iii
Acknowledgments ..v
Contents ... vii
Chapter 1 Introduction ..1

1.1 Motivation ...1
1.2 Problem Formulation ..5
1.3 Contributions ..6
1.4 Thesis Organization ..9

Chapter 2 Background and Related Work .. 11
2.1 Generic Design Flow .. 11
2.2 Faults and Testing ... 14
2.3 Core-based SoC Testing ... 16
2.4 Test Scheduling ... 21
2.5 Power and Temperature Issues ... 22
2.6 Power Aware Testing .. 25
2.7 Temperature Aware Testing ... 27
2.8 Thermal Modeling .. 28
2.9 Multi-Temperature Testing ... 32

2.9.1 Temperature Effects in CMOS Circuits 33

9

viii

2.9.2 Subtle Defects and Parametric Failures 35
2.10 AOFF Test Approach ... 36

Chapter 3 Temperature Aware Test Scheduling 39
3.1 Test Set Partitioning and Interleaving 40
3.2 Motivational Example .. 44
3.3 Basic Test Architecture .. 46
3.4 System Model for SoC Testing .. 46
3.5 Problem Formulation .. 47
3.6 Overall Solution Strategy ... 49
3.7 CLP-based Approach with Regular TSP 51

3.7.1 Constraint Logic Programming 52
3.7.2 CLP Model ... 52
3.7.3 Experimental Results .. 55

3.8 Heuristic Approach with Irregular TSP 57
3.8.1 Motivational Example .. 57
3.8.2 Heuristic Algorithm for Test Scheduling 58
3.8.3 Experimental Results .. 68

3.9 Summary ... 72
Chapter 4 Test Scheduling with Lateral Thermal Influence 73

4.1 Lateral Thermal Influence .. 73
4.2 Stop-Cooling Temperature ... 76
4.3 Test Scheduling Approaches .. 78

4.3.1 Straight-Forward Approach .. 79
4.3.2 Simulation-Driven Scheduling Approach 80

4.4 Experimental Results .. 85
4.5 Summary ... 86

Chapter 5 Multi-Temperature Test Scheduling 87

10

ix

5.1 Problem Formulation .. 87
5.2 Test Scheduling within a Temperature Interval 89

5.2.1 Heating Sequence.. 89
5.2.2 FSM for Thermal Management in Test Scheduling 91
5.2.3 Test Scheduling Algorithm ... 93

5.3 Experimental Results .. 95
5.4 Summary ... 98

Chapter 6 Defect-Probability Driven Test Scheduling 99
6.1 Problem Formulation .. 99

6.1.1 Basic Definitions and Assumptions 99
6.1.2 Possible Test Termination Moment 102
6.1.3 Expected Test Application Time 104

6.2 Test Scheduling Approach .. 109
6.3 Experimental Results .. 113
6.4 Summary ... 115

Chapter 7 Power Constrained Defect-Probability Driven Test
Scheduling .. 117

7.1 Motivational Example ... 118
7.2 Problem Formulation .. 120
7.3 Test Scheduling Techniques ... 121

7.3.1 Test Set Partitioning .. 121
7.3.2 Test Pattern Reordering .. 122
7.3.3 Heuristic Algorithm for Test Set Partitioning 123
7.3.4 Heuristic Algorithm for Test Scheduling 124

7.4 Experimental Results .. 128
7.5 Summary ... 131

Chapter 8 Conclusions and Future Work .. 133

11

x

8.1 Conclusions .. 133
8.2 Future Work .. 134

List of Figures ... 137
List of Tables .. 141
List of Abbreviations .. 143
Appendix A Deduction of Equations (6.8) and (6.9) in Section 6.1.3
 .. 147
References .. 155

12

Chapter 1
Introduction

In order to assure correct circuit behavior, integrated circuits (ICs)
have to be tested after fabrication. Nowadays, manufacturing test has
become an essential part of IC production. Considered as a major
contributor to the testing cost, test time needs to be reduced for the
sake of cost reduction. Among various techniques, test scheduling is
an efficient approach to reduce the test time. This thesis deals with test
scheduling problems for systems-on-chip (SoCs) with specific
concerns on temperature and power related issues as well as the
consideration of defect probabilities. This chapter motivates our work
and summarizes the contributions and the organization of the thesis.

1.1 Motivation
The steadily decreasing feature size of electronic devices in ICs has
enabled higher integration density. Today’s ICs may consist of
billions of transistors manufactured with nanometer technology. As a
consequence, more functionality is added into the system and higher
performance is achieved, which results in substantially increased
complexity of the system. Challenges have arisen in design,
production and test of such highly complex electronic systems.

13

CHAPTER 1

2

ICs manufactured with very-large-scale integration (VLSI)
technology may have defects that are process-variation induced flaws
or physical imperfections. Defects may lead to faults which can cause
malfunction or system failure. Some faults can be detected by test
methods, while others may escape all applied tests and cause
reliability problems in the field. It is very important to capture as
many faults as possible with production tests at the chip level, because
escaping chip tests result in huge costs spent for testing, diagnosis and
maintenance at the printed-circuit-board (PCB) and system levels,
according to the rule of ten [Davis. 1994]. Therefore, effective test
methods have to he developed for production tests of modern ICs.

Testing is expensive. It has been reported that testing cost is about
50% to 60% of IC manufacturing cost [Bushnell, et al. 2000].
Although the cost of ICs has been decreasing with the advances in
technology, the percentage of the total cost attributed to testing has
increased [Bushnell, et al. 2000]. One of the major contributors of
testing cost is the test time, which increases along with the system
complexity and has a significant impact on the time-to-market of final
products.

While the semiconductor industry steadily follows Moore's law
[Moore. 1965], the time between technology nodes has been
significantly shortened, exacerbating the time-to-market pressure. In
order to improve the design productivity of highly complex electronic
systems within a shortened time period, a module-based design
methodology, referred to as the core-based system-on-chip, has been
widely adopted by the industry. The core-based SoC design
methodology integrates pre-designed and pre-verified intellectual
property (IP) blocks, referred to as cores, into a single silicon die.

Naturally, the testing of modern SoCs inherits the modular design
style, making the test of cores to be independent from each other.
Nonetheless, the modular SoC test becomes difficult and expensive,
due to inefficient test access mechanisms (TAMs), large volume of
test data, high power consumption, and high temperature. The long
test application time (TAT) is one of the major contributors to the total

14

INTRODUCTION

3

testing cost. Several techniques have been proposed to reduce the
TAT. Firstly, advanced automatic test-pattern generation (ATPG)
tools are used to generate more efficient test patterns. Secondly,
efficient test scheduling techniques which schedule tests in parallel are
employed to increase the test concurrency and to reduce the TAT.
Thirdly, design-for-test (DFT) techniques, such as built-in self-test
(BIST), are used to enhance the testability of circuits and reduce the
TAT via higher test speed.

Although the proposed techniques reduce the TAT effectively,
they increase the power consumption during test. Applying test
patterns to the circuits under test cause a substantial increase of
switching activity in the circuitry, especially in parallel testing or at-
speed testing. This leads to the fact that more power is dissipated in
circuits in testing mode than in normal functional mode. The
substantially increased power consumption during test poses several
problems, such as power supply noise, IR-drop and crosstalk which
cause test fails and loss of yield. High power consumption also leads
to high temperature which may damage the devices under test (DUTs).
Thus, power consumption has to be taken into account for test time
reduction and test scheduling methods.

As the process technology goes into the nanometer regime, the
power density further increases along with the integration density. In
the ICs manufactured with nanometer technology, taking the heat
away from the chip becomes more difficult. This makes the high
temperature problem more severe for the testing of the latest
generation of SoCs. Therefore, test scheduling for SoC should also
aim to avoid high operating temperature that may lead to permanent
damage to the DUTs. More exactly, the temperature of SoC cores has
to be strictly kept below a certain temperature limit and under such a
constraint the TAT should be minimized.

Furthermore, testing ICs at different temperatures becomes
necessary for current and future technologies. This is because the
occurrence of parametric failures arises rapidly due to widely
distributed process variations and the wide spectrum of subtle defects

15

CHAPTER 1

4

introduced by new manufacturing processes and materials [Segura, et
al. 2004].

The existence of complicated temperature dependences and
defect-induced parametric failures indicates that we need to test a chip
at multiple temperatures. Multi-temperature testing aims to screen the
chips having various defects that can only be efficiently sensitized at
certain temperatures. Different tests may be needed and applied at
different temperatures, and each test targets a particular type of defects
that can be detected at a certain temperature interval. Alternatively,
the same test can also be applied at different temperature intervals so
that outliers can be screened through a comparison of the test results.
A multi-temperature test needs substantially long TAT, since a uni-
temperature test is already time consuming. The long TAT problem is
further exacerbated when multi-temperature testing is combined with
modular SoC testing. Therefore, we need efficient test scheduling
methods to reduce the TAT of multi-temperature SoC tests.

In volume production tests, an IC is usually discarded as soon as a
fault is detected. This test approach is referred to as abort-on-first-fail
(AOFF). Using the AOFF test approach leads to a substantial decrease
in the TATs of volume production tests. In order to further reduce the
TAT, defect probabilities of individual cores can be utilized to
generate efficient test schedules for SoC tests using the AOFF
approach. The defect probabilities can be derived from the statistical
analysis of the production process or generated based on inductive
fault analysis.

To summarize, SoC testing is a difficult and challenging problem.
Many issues should be considered, such as test application time,
temperature, power consumption, and defect probabilities, which are
the topics of this thesis.

16

INTRODUCTION

5

1.2 Problem Formulation
In this thesis, we aim to minimize the TAT of core-based SoCs. We
address three test time minimization problems concerning different
trade-offs and constraints, and we use different test scheduling
techniques to solve these problems. The formulations of the addressed
problems are described as follows.

First, we address the test time minimization problem with
constraints on the temperatures of the CUTs and on the width of the
test-bus deployed for test-data transportation. In order to prevent the
core temperatures from exceeding the temperature limits, an entire test
set is divided into shorter test sequences between which cooling
periods are introduced. Furthermore, the test sequences for different
cores can be interleaved in order to improve the efficiency of the test
schedule. Thus, the test time minimization problem is formulated as
how to generate test schedules for the partitioned and interleaved test
sets such that the TAT is minimized while the temperature and test-
bus width constraints are satisfied.

Second, we address the test time minimization problem for multi-
temperature testing. In multi-temperature testing, an IC is tested at
different temperature levels in order to efficiently sensitize the
temperature-dependent defects. We divide the temperature range into
multiple intervals, and minimize the TAT within each temperature
interval. For each interval, a temperature upper limit and lower limit
are imposed. The test scheduling algorithm minimizes the TAT such
that test patterns are applied to a CUT only when the temperature of
the CUT remains in the temperature interval, and, at the same time,
the test-bus width limit is satisfied.

The third problem that we deal with is how to minimize the TAT
when an AOFF test approach is employed for core-based SoC testing.
Using the AOFF test approach, the test process is terminated as soon
as a fault is detected. The termination of the test process is considered
as a random event which occurs with a certain probability. Thus, for
volume production tests, we minimize the expected test application

17

CHAPTER 1

6

time (ETAT), which is the mathematical expectation of the TAT. The
ETAT is calculated according to a generated test schedule and the
given defect probabilities of individual cores. In particular, we employ
a hybrid BIST technique which combines both deterministic and
pseudorandom tests for each core in an SoC. The test time
minimization problem is formulated as follows. Given the defect
probabilities of cores and the test sets for the hybrid BISTs, generate a
test schedule such that the ETAT is minimized. A related problem is
the minimization of test time for volume production tests with a power
constraint. We formulate the problem as how to generate the test
schedule with minimal ETAT and the power constraint is satisfied.

1.3 Contributions
The main contributions of this thesis are as follows. First, we propose
a test set partitioning and interleaving (TSPI) technique for
temperature aware SoC test scheduling. This technique assumes that a
test bus is employed to transport test data. The limit of the test-bus
width and the limits of the core temperatures are given as constraints.
In order to avoid overheating the CUTs during test, a test set is
partitioned into multiple test sequences and cooling periods are
introduced between consecutive test sequences. The partitioned test
sets are further interleaved in order to reduce the TAT and to utilize
the test bus efficiently. We have proposed two approaches to solve the
constrained test scheduling problem. Both approaches employ the
TSPI technique. One approach assumes the lateral heat flow between
cores can be ignored. We develop a constraint logic programming
(CLP) model and a heuristic algorithm for test scheduling [He, et al.
2006b], [He, et al. 2007], [He. 2007], [He, et al. 2008b], [He, et al.
2010b]. The other approach assumes significant later thermal
influence between cores. We propose a thermal-simulation driven test
scheduling algorithm which performs thermal simulations to obtain
instantaneous temperature values of the CUTs and uses a finite-state

18

INTRODUCTION

7

machine (FSM) model to manage the temperatures of the CUTs in test
scheduling [He, et al. 2008a].

Second, we propose a SoC test scheduling technique for multi-
temperature testing. The proposed technique generates the shortest test
schedule for applying SoC tests in different temperature intervals.
This means that the test patterns should only be applied when the core
temperature is within a certain interval. We use the TSPI technique, a
FSM model, and heating sequences to manage the temperature of
CUTs in test scheduling. A heuristic algorithm is developed to
minimize the TAT [He, et al. 2010a].

Third, we propose a defect-probability driven SoC test scheduling
technique based on the AOFF test approach and hybrid BIST
architecture. In this technique, we use the ETAT as the cost function
and we develop a heuristic algorithm to generate the test schedule
with minimized ETAT [He, et al. 2004]. In order to avoid possible
damage, test failures, and yield loss caused by the high test power
consumption and high temperature, we propose a technique to
generate the shortest test schedules with a power constraint [He, et al.
2005], [He, et al. 2006a], [He. 2007], [He, et al. 2009].

The publications that are relevant in the context of this thesis are
listed as follows.

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2004. Hybrid BIST
Test Scheduling Based on Defect Probabilities. In Proceedings of the
13th IEEE Asian Test Symposium, Kenting, Taiwan, November 15 -
November 17, pp. 230-235.

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2005. Power-
Constrained Hybrid BIST Test Scheduling in an Abort-on-First-Fail
Test Environment. In Proceedings of the 8th Euromicro Conference
on Digital System Design, Porto, Portugal, August 30 - September 3,
pp. 83-86.

19

CHAPTER 1

8

HE, Z., PENG, Z. AND ELES, P. 2006a. Power Constrained and
Defect-Probability Driven SoC Test Scheduling with Test Set
Partitioning. In Proceedings of the 2006 Design, Automation and Test
in Europe Conference, Munich, Germany, March 6 - March 10, pp.
291-296.

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI,
B.M. 2006b. Thermal-Aware SoC Test Scheduling with Test Set
Partitioning and Interleaving. In Proceedings of the 21st IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, Arlington, Virginia, USA, October 4 - October 6, pp. 477-
485.

HE, Z. 2007. System-on-Chip Test Scheduling with Defect-
Probability and Temperature Considerations. Licentiate of
Engineering. Thesis No. 1313. Linköping Studies in Science and
Technology. Linköping University.

HE, Z., PENG, Z. AND ELES, P. 2007. A Heuristic for Thermal-Safe
SoC Test Scheduling. In Proceedings of the 2007 IEEE International
Test Conference, Santa Clara, California, USA, October 21 - October
26, pp. 1-10.

HE, Z., PENG, Z. AND ELES, P. 2008a. Simulation-Driven Thermal-
Safe Test Time Minimization for System-on-Chip. In Proceedings of
the 17th IEEE Asian Test Symposium, Sapporo, Japan, November 24 -
November 27, pp. 283-288.

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI,
B.M. 2008b. Thermal-Aware SoC Test Scheduling with Test Set
Partitioning and Interleaving. Journal of Electronic Testing: Theory
and Applications, 24(1-3), pp. 247-257.

HE, Z., PENG, Z. AND ELES, P. 2009. Thermal-Aware Test
Scheduling for Core-based SoC in an Abort-on-First-Fail Test
Environment. In Proceedings of the 12th Euromicro Conference on
Digital System Design, Patras, Greece, August 27 - August 29, pp.
239-246.

20

INTRODUCTION

9

HE, Z., PENG, Z. AND ELES, P. 2010a. Multi-Temperature Testing
for Core-based System-on-Chip. In Proceedings of the 2010 Design,
Automation and Test in Europe Conference, Dresden, Germany,
March 8 - March 12, pp. 208-213.

HE, Z., PENG, Z. AND ELES, P. 2010b. Thermal-Aware SoC Test
Scheduling. (Book Chapter) In Design and Test Technology for
Dependable System-on-Chip, R. UBAR, J. RAIK AND H.T.
VIERHAUS, Eds. IGI Global.

1.4 Thesis Organization
The rest of the thesis is organized as follows. Chapter 2 presents the
background and related work of core-based SoC testing. The generic
design flow of electronic systems and the basic concepts of defects
and testing are introduced. The SoC test architecture and test
scheduling techniques are described. Power and temperature issues in
SoC testing are discussed and related thermal modeling techniques are
presented. The multi-temperature testing and AOFF test approach are
also discussed.

Chapter 3 and Chapter 4 address the temperature aware SoC test
time minimization problem. Different test scheduling techniques are
proposed for two types of SoCs where the lateral thermal influence
between cores is either negligible or should be considered, respectively.

Chapter 5 addresses the test time minimization problem for multi-
temperature testing. A test scheduling technique is proposed to
generate the shortest test schedule such that the test patterns are
applied only when the temperature of each core is within an interval.

Chapter 6 and Chapter 7 address the test time minimization
problem for volume production tests using the AOFF test approach.
Defect-probability driven test scheduling techniques are proposed to
minimize the ETAT with a power constraint.

Chapter 8 concludes the thesis and discusses possible directions of
future work.

21

22

Chapter 2
Background and

Related Work

This chapter presents the basic concepts of electronic system design
and test, followed by a discussion on core-based SoC testing. The
background and related work on test scheduling, power and
temperature aware testing, multi-temperature testing, as well as the
AOFF test approach are described.

2.1 Generic Design Flow
In order to manage the system complexity, the design of electronic
systems has to be organized in a hierarchical approach which covers
several levels of abstraction. In general, there are four abstraction
levels, referred to as the system level, register-transfer (RT) level,
logic level, circuit level, in a top-down order. Figure 2.1, often
referred to as “Gajski and Kuhn’s Y-chart” [Gajski, et al. 1983],
illustrates a structured view on the electronic systems design space,
where the four levels of abstraction are categorized into three domains,
namely the behavioral, structural and physical (or geometry) domain.

23

CHAPTER 2

12

In the different domains, designers have a different perspective on
their design tasks, as listed in Table 2.1. A typical design flow is
depicted in Figure 2.2 [Devadas, et al. 1994].

Figure 2.1: Visualization of electronic systems design space

Table 2.1: Design tasks in different domains

Domains
Abs. Levels Behavioral Domain Structural Domain Physical/Geometry

Domain

System Level Algorithm, Process CPU, Memory, Bus Chip, Cluster,
Physical Partitions

RT level RT Specification ALU, Register Macro-Cell Layout

Logic Level Boolean Equation Gate, Flip-Flop Cell Layout

Circuit Level Transfer Function Transistor Transistor Layout

CPU, Memory, Bus

ALU, Register

Gate, Flip-Flop

Transistor

Structural
Domain

RT Level

Logic Level

Circuit Level

Transistor Layout

Macro-Cell Layout

Chip, Cluster, Physical Partitions

Physical / Geometry
Domain

Cell Layout

System Level

Algorithm, Process
Register-Transfer Spec.

Boolean Equation

Behavioral
Domain

Transfer Function

24

BACKGROUND AND RELATED WORK

13

Figure 2.2: A typical electronic systems design flow

Here, a synthesis step is referred to as a transformation of a design
from a higher level of abstraction into a lower level of abstraction, or
from one domain to another domain. Each step in the design flow is
explained as follows.

(1) System-Level Synthesis: The specification of a electronic
system is usually given as a description of the system functionality
and a set of design constraints. In this step, the system specification is
analyzed and a behavioral description is written in a hardware
description language or natural language.

(2) High-Level Synthesis: In this step, the system-level
specification is transformed into a description of RT-level (RTL)
components such as arithmetic logic units (ALUs) and registers. The
basic components in the RTL design implement the given system-
level specification. In order to obtain the RTL design, the high-level
synthesis usually consists of the following steps [Elliott. 1999]:

H
LS

La
yo

ut
 D

es
ig

n
Lo

gi
c

Sy
nt

he
si

s

25

CHAPTER 2

14

derivation of a control/data-flow graph (CDFG), operation scheduling,
resource allocation and binding, derivation of the RTL data-path
structure, and description of a controller such as a FSM.

(3) Logic Synthesis: In this step, a RTL design is first translated
into a set of logic functions. Thereafter, the translated RTL design is
optimized according to different requirements given by the designer.
The optimized design is then mapped to a netlist of logic gates, using
a technology library provided by a vendor.

(4) Circuit-Level Synthesis: In this step, the logic netlist is
transformed into the transistor implementation of the circuit.

(5) Layout Design: In this step, the circuits are mapped to the
silicon implementation with routing and placement design.

As illustrated in Figure 2.2, when the logic netlist has been
obtained, the testability improvement and test generation (TG) are
performed using design automation tools. After fabrication, each IC is
tested using the generated test patterns and the qualified parts are
delivered to customers.

2.2 Faults and Testing
In general, testing is a method to assure correct behavior of a system.
Usually, a test exercises the system with a set of stimuli and analyzes
the system responses to see if they are exactly the same as expected.
Electronic testing is an experimental approach in which an electronic
system is exercised with test stimuli and the system response is
analyzed and compared with the expected response in order to
ascertain the correctness of the system behavior.

In this thesis, an instance of incorrect system operation is referred
to as an error. According to different causes, errors can be further
categorized as design errors, fabrication errors, fabrication defects,
and physical failures [Abramovici, et al. 1994]. The different types of
error are defined as follows.

26

BACKGROUND AND RELATED WORK

15

Design errors can be incomplete or inconsistent specifications,
incorrect mapping between different levels of design, or violations of
design rules. Fabrication errors can be wrong components, incorrect
wiring, shorts caused by improper soldering, etc. Fabrication defects
are not directly attributed to human errors, but rather result from an
imperfect manufacturing process. Examples of fabrication defects are
shorts and opens in ICs, improper doping profiles, mask alignment
errors, and poor encapsulation. Physical failures occur during the
lifetime of a system due to component wear-out and/or environmental
factors. Examples of physical failures are metal connectors thinning
out with time, broken metal line due to electron migration or corrosion,
etc. Some environmental factors, such as temperature, humidity, and
vibrations, accelerate the aging of components. Other environmental
factors, such as cosmic radiation and particles, may induce failures in
ICs immediately [Abramovici, et al. 1994].

Fabrication errors, fabrication defects, and physical failures are
collectively referred to as physical faults. In the context of this thesis,
testing is referred to as a quality-assurance means that targets physical
faults. According to the stability in time, physical faults can be
categorized as (1) permanent faults, which are always present after
their occurrence; (2) intermittent faults, which only exist during some
time intervals; (3) transient faults, which are typically characterized by
one-time occurrence and are caused by a temporary change in
environmental factors or radiations [Abramovici, et al. 1994].

In general, a direct mathematical treatment of testing and
diagnosis is not applicable to physical faults. The solution is to deal
with logical faults, which are a convenient representation of the effect
of the physical faults on the operation of the system. A logic fault can
be detected by observing an error caused by it, which is usually
referred to as a fault effect. The basic assumptions regarding the
nature of logical faults are referred to as a fault model. Different fault
models are proposed and employed to deal with different types of
faults, such as static faults, delay faults, bridging faults, etc. A widely
used fault model is the stuck-at fault model which assumes that a

27

CHAPTER 2

16

single wire is permanently “stuck” at the logic one or logic zero value
[Abramovici, et al. 1994].

2.3 Core-based SoC Testing
Scaling of process technology has enabled a dramatic increase of the
integration density, which enables more and more functionality to be
integrated into a single chip. With the increasing system performance,
the design complexity has also been growing steadily. A critical
challenge to electronic engineers is that the shorter life cycle of an
electronic system has to compete with its longer design cycle.
Therefore, more efficient hierarchical design methodologies, such as
the core-based SoC design methodology [Murray, et al. 1996], [Zorian,
et al. 1999], have to be deployed in order to reduce the time-to-market.

A common approach to modern core-based SoC design reuses
pre-designed and pre-verified IP cores that are provided by different
vendors. IP cores are integrated into the system which is manufactured
on a single silicon die. An abstract example of an SoC design is
depicted in Figure 2.3. The SoC consists of several IP cores with
different functionality and a user-defined logic (UDL) module. In
general, IP cores of SoCs can be processors (e.g. microcontroller,
DSP), memory subsystems (e.g. RAM/ROM, Flash Memory), bus
infrastructure (e.g. system bus, peripheral bus), I/O subsystems (e.g.
USB, FireWire, Ethernet, DMA), analog and mixed-signal subsystems
(e.g. PWM, A/D-D/A, RF), and peripheral subsystems (e.g. audio,
video, graphic, display, camera). The UDL modules are usually used
to “glue” the IP cores for the intended system.

In order to test individual cores in an SoC, a test architecture
consisting of certain resources has to be available. The test
architecture for SoCs usually includes the test sources, test sinks, and
test access mechanisms (TAMs). Figure 2.4 illustrates an example of a
generic core-based SoC test architecture.

28

BACKGROUND AND RELATED WORK

17

Figure 2.3: An IP core-based SoC example

Figure 2.4: Generic core-based SoC test architecture

RF

Display

USB

RAM

Test
Sink

Test
Source

TAM
TAM

Wrapper
Core

Under
Test

Flash
MemoryDSP

29

CHAPTER 2

18

A test source is a test-pattern provider which can be either
external or on chip. A typical external test source is an automatic test
equipment (ATE) in which a local memory stores the generated test
patterns. An on-chip test source can be a ROM which stores already
generated test patterns, a counter, or a linear feedback shift register
(LFSR) used for test pattern generation in BIST.

A test sink is a test response/signature analyzer that detects faults
by comparing test responses/signatures with the expected ones. An
ATE can be an external test sink that analyzes the test
responses/signatures transported from the DUTs. A test sink can also
be on chip, such as single-input signature register (SISR) or multi-
input signature register (MISR) used for signature analysis in BIST.

A TAM is an infrastructure designed for test data transportation. It
is often used to transport test patterns from the test source to the CUTs
and to transport test responses/signatures from the CUTs to the test
sink. A TAM can be a bus infrastructure, such as a reusable functional
bus, e.g. advanced microprocessor bus architecture (AMBA) [Flynn.
1997], [Harrod. 1999], reuse of addressable system bus (RASBuS)
[Hwang, et al. 2001] etc, or a dedicated test bus, e.g. flexible-width
test bus architecture [Iyengar, et al. 2003]. A TAM can also be
dedicated wire connections, e.g. direct access test scheme (DATS)
[Immaneni, et al. 1990], multiplexing/DaisyChain/distributed test
architecture [Aerts, et al. 1998], TestRail [Marinissen, et al. 1998], etc.

In an SoC test architecture, a wrapper, which is a thin shell
surrounding a core, is usually designed to switch the CUT between
different modes, such as normal functional, internal test, and external
test modes [Marinissen, et al. 2000]. The TAM together with the
wrappers are usually referred to as test access infrastructure (TAI).

An example of the test architecture for external SoC tests is
depicted in Figure 2.5. In this example, an ATE consisting of a test
controller and a local memory serves as an external tester. The test
patterns and a test schedule are stored in the tester memory. When the
test starts, the test patterns are transported to the cores through a test
bus. After activating the test patterns, the captured test responses are

30

BACKGROUND AND RELATED WORK

19

transported to the ATE through the test bus. The ATE can be replaced
by an embedded tester integrated in the chip. Figure 2.6 depicts an
example of the test architecture with an embedded tester for external
tests.

Figure 2.5: Test architecture for external tests using an ATE

Figure 2.6: Test architecture for external tests using an embedded tester

31

CHAPTER 2

20

As the number of cores of an SoC has been increasing along with
the rapid advances of technology, the amount of required test data for
SoC testing is growing substantially. This demands a large size of
tester memory to be used for tests. Moreover, an external test is
usually applied at relatively low speed due to the limited TAM width,
and therefore results in a long TAT.

One of the solutions to this problem is to use built-in self-test,
which generates pseudorandom test patterns and compact test
responses into a signature inside the chip. The advantage of BIST is
that it can be applied at high speed. However, due to the existence of
random-pattern-resistant faults, BIST usually needs much more test
patterns in order to achieve the same level of fault coverage as an
external test using ATE.

In order to avoid the disadvantages of both external test and BIST,
a hybrid approach has been proposed as a complement of the two
types of tests, referred to as hybrid BIST [Hellebrand, et al. 1992],
[Touba, et al. 1995], [Sugihara, et al. 2000], [Jervan, et al. 2000]. In
hybrid BIST, a test set consists of both pseudorandom and
deterministic test patterns. Such a hybrid approach reduces the
memory requirements compared to the pure deterministic testing, and
it provides higher fault coverage and requires less test data compared
to the stand-alone BIST solution.

An example of the test architecture for hybrid BIST is depicted
in Figure 2.7. In this example, an embedded tester consisting of a test
controller and a local memory is integrated in the chip. The generated
deterministic test patterns and a test schedule are stored in the local
memory of the tester. When the test starts, the deterministic test
patterns are transported to the cores through a test bus. Each core has a
dedicated BIST circuit that can generate and apply pseudorandom test
patterns at speed. The test controller is supposed to control both the
deterministic and pseudorandom tests according to the test schedule.

In order to reduce the testing cost, a wide spectra of research has
been carried out on several challenging issues, including test
scheduling, power aware testing, temperature aware testing, AOFF

32

BACKGROUND AND RELATED WORK

21

test approach. The back ground and related work in these areas are
presented in the following sections of this chapter.

Figure 2.7: Test architecture for hybrid BIST

2.4 Test Scheduling
Test scheduling is a process of deciding the start times and durations
of tests as well as the means to utilize the resources for the tests.
Usually, test scheduling aims to reduce the TAT through efficiently
planning. In recent years, different test scheduling techniques have
been proposed.

Non-partitioned test scheduling is proposed in [Zorian. 1993] and
[Chou, et al. 1997]. This technique assumes that tests are scheduled
into different sessions, which is defined as an uninterrupted period of
time spent on testing. Tests have to be applied without interruption
and no new test can be started before all the tests scheduled in the
same test session are finished. Non-partitioned test scheduling results
in long TATs. Recently, partitioned test scheduling techniques have
been proposed in order to reduce the TAT.

33

CHAPTER 2

22

Partitioned test scheduling is proposed in [Muresan, et al. 2000]. It
can substantially improve the efficiency of the test schedules by
allowing tests to be started with no need to wait for other tests to
finish. This means that the concept of the test session no longer exists
in the partitioned test scheduling technique. In order to facilitate this
technique, a more complex test controller has to be designed in order
to enable a test to start at arbitrary time moments.

A generalized core-based SoC test scheduling problem was
addressed in [Chakrabarty. 2000a]. The problem is formulated as
follows. Given a set of test resources (TAMs, BIST circuits, etc.),
minimize the TAT by determining the start time of each partitioned
test. The author shows that the formulated problem is NP-complete
and provides a mixed-integer linear programming (MILP) model to
obtain the optimal schedule. For large SoC designs, the MILP model
needs a substantially long optimization time and may not be feasible
to obtain the optimal solution. Therefore, the author develops a
heuristic algorithm to generate efficient test schedules with low
computational cost.

Preemptive test scheduling is proposed in [Iyengar, et al. 2002].
Similar test scheduling technique is also proposed in [Larsson, et al.
2002]. This technique assumes that a test can be halted for a period of
time and then restarted later. The proposed preemptive test scheduling
technique generates shorter test schedules than non-preemptive test
scheduling. However, preemptive testing needs a complicated test
controller and an advanced TAM. Moreover, it cannot be adopted for
certain types of tests such as BIST.

2.5 Power and Temperature Issues
Scaling of the complementary metal-oxide-semiconductor (CMOS)
technology has enabled the industry to improve the speed and
performance of ICs. While all the physical dimensions of a transistor
are scaled down, the device area is reduced. At the same time,

34

BACKGROUND AND RELATED WORK

23

designers tend to add more functionality into chips and to build more
complex circuits, leading to increasing die area to accommodate more
transistors [Vassighi, et al. 2006]. It is shown in [Rabaey, et al. 2003]
that the die area sizes of Intel processors increase approximately 7%
per year, and the number of transistors are doubled per generation.
The latest microprocessors already integrate billions of transistors.

With technology scaling, the power consumption of high-
performance chips increases exponentially, especially for the chips
manufactured with deep-submicron technology. The main reason is
that the scaling of the threshold voltage VTH causes an increase in sub-
threshold leakage current [Rabaey, et al. 2003].

With technology scaling, not only the total power consumption
but also the power density of chips increases [Borkar. 1999], [Gunther,
et al. 2001]. The power density of a chip is defined as the power
dissipated by the chip per unit area under nominal frequency and
normal operating conditions. The reason for the increasing power
density is that the positive supply voltage VDD and the saturated drain
current IDSAT are scaling at a lower rate than the device area size
[Vassighi, et al. 2006].

The increasing power consumption and power density result in
higher junction temperature [Vassighi, et al. 2006], [Mahajan. 2002],
[Skadron, et al. 2004], especially in high-performance processors and
application-specific integrated circuits (ASICs). Junction temperature
is one of the key parameters of CMOS devices, as it affects the
performance, power consumption, and reliability of the ICs [Segura, et
al. 2004], [Vassighi, et al. 2006].

Carrier mobility decreases as temperature increases, because
carriers collide with the Si-crystal lattice more frequently at a higher
junction temperature. As a consequence, the driving currents of
transistors decrease with reduced carrier mobility, which causes a
degradation of the device performance. Similar effects occur in the
thin interconnect metal lines using aluminum or copper process. At a
higher temperature, the metal resistivity increases, leading to higher
interconnect resistance. Thus, circuit performance degradation is often

35

CHAPTER 2

24

encountered when operating temperature increases. The performance
degradation should be avoided for both normal functional and testing
conditions. In the normal functional mode, the performance of an IC
directly affects the system efficiency. In the testing mode, the
performance degradation due to high junction temperature may fail
the test and cause loss of yield.

The elevation of junction temperature results in an increase in
leakage current and higher device power consumption. The elevated
power consumption in turn increases the junction temperature
[Vassighi, et al. 2006]. The positive feedback between the leakage
current and junction temperature may lead a chip to thermal runaway
in extreme cases. When a chip is in a stress condition, such as a burn-
in test where chips are tested with purposely elevated power supply
voltage and junction temperature, the chance of thermal runaway is
much higher. For ICs manufactured with nanometer technology, the
situation of the positive feedback is exacerbated and thermal runaway
is more likely to happen.

Another issue related to junction temperature is the long-term
reliability of ICs. Many failure mechanisms, such as electron
migration, gate oxide breakdown, hot electron effects, negative bias
temperature instability, etc., are accelerated when junction
temperature is elevated [Segura, et al. 2004]. In order to maintain the
device reliability and the lifetime of ICs, it is very important to
efficiently and safely manage the transistor junction temperature and
operating temperature of other parts in ICs. It is reported that even a
small variation of junction temperature (10–15°C) may result in a
factor of two times reduction in device lifetime [Vassighi, et al. 2006].

According to the above discussion, one can see that it is critical to
develop efficient power and temperature analysis and management
techniques for the design and test of modern ICs.

36

BACKGROUND AND RELATED WORK

25

2.6 Power Aware Testing
Compared to the normal functional mode, ICs dissipate more power
during test [Zorian. 1993], [Pouya, et al. 2000], [Girard. 2000],
[Bushnell, et al. 2000], [Shi, et al. 2004]. It is reported in [Shi, et al.
2004] that the average power dissipated in scan-based testing can be 3
times as the power consumed during normal functional operations,
and the peak power consumption can be 30 times as that in normal
functional mode.

The high test power is because a larger amount of switching
activity occurs when applying test patterns to the circuit under test.
There are several explanations to the increase of power consumption
in the testing mode [Wang, et al. 2007]. First, ATPG tools tend to
generate test patterns with a higher toggle rate in order to reduce the
total number of test patterns and the TAT. This results in a much
higher switching activity in the testing mode. Second, in order to
reduce TATs, SoC tests often employ parallel testing which
substantially increase the power dissipation during test. Third, some
circuits, e.g. DTF circuitry, only work in the testing mode and only
contribute to the test power consumption. Fourth, the correlation
between consecutive test patterns is usually much lower than that
between successive functional input vectors [Wang, et al. 1997].
There is no definite correlation between successive deterministic test
patterns for scan-based tests or pseudorandom test patterns for BISTs
[Wang, et al. 2007]. The low correlation between consecutive input
vectors results in excessive higher switching activity and consequently
extra power dissipation. Last, when scan-based testing is employed,
the power dissipation is even higher because of the circuit is
excessively stimulated while the test patterns are shifted into the scan
cells [Bushnell, et al. 2000].

High power dissipation during test results in several critical
problems related to the reliability and safety of the circuit under test.
One significant issue is the increase of power supply noise, which is
proportional to the inductance of a power line and to the magnitude of

37

CHAPTER 2

26

the variation of the current flowing through the power line [Wang, et
al. 1997]. The excessive power supply noise can erroneously change
the logic state of circuit nodes, resulting in good dies failing the test
and consequently loss of yield. A similar type of noise, the voltage
glitch, also increases with switching activity and can change the logic
states of circuit nodes or flip-flops, leading to yield loss. Another
problem caused by high switching activity during test is the IR-drop,
which refers to the amount of decrease/increase in the power/ground
rail voltage [Wang, et al. 2007]. With high current in the circuit under
test, the voltages at gates may be reduced and will cause these gates to
exhibit higher delays, leading to fails in speed-related tests and yield
loss [Shi, et al. 2004]. A third problem caused by the high test power
consumption is the high junction temperature which has large impacts
on the ICs [Vassighi, et al. 2006].

In order to prevent high power consumption during test, some
techniques have been proposed. Low power test synthesis and DFT
targeting RTL structures is one of the solutions, for example, low-
power scan chain design [Gerstendörfer, et al. 2000], [Rosinger, et al.
2004], [Saxena, et al. 2001], scan cell and test pattern reordering
[Girard, et al. 1998], [Elliott. 1999], [Rosinger, et al. 2002]. Although
low power DFT can reduce the power consumption, this technique
usually adds extra hardware into the design and therefore it can
increase the circuit delay as well as the cost of every single chip.
Power-constrained test scheduling is another approach to tackle the
high test power consumption problem [Chou, et al. 1997],
[Chakrabarty. 2000b], [Muresan, et al. 2000], [Ravikumar, et al. 2000],
[Iyengar, et al. 2002], [Larsson, et al. 2006], [He, et al. 2006a]. The
proposed techniques minimize the TAT under a fixed power envelope
restriction. In general, the power constrained test scheduling problem
is related to bin-packing or two-dimensional (2D) rectangle packing
(RP) problem [Baker, et al. 1980], [Dyckhoff. 1990], [Dell'Amico, et
al. 1997], [Lesh, et al. 2004], [Lesh, et al. 2005], [Korf. 2003], [Korf.
2004], which is NP-complete. Heuristic algorithms are often proposed
to solve the power constrained test time minimization problems.

38

BACKGROUND AND RELATED WORK

27

2.7 Temperature Aware Testing
Although the power-aware test techniques are efficient to solve the
high power consumption problem, they cannot completely avoid the
overheating problem because of the complex thermal phenomenon
[Rosinger, et al. 2006] in modern electronic chips. Advanced cooling
techniques are effective to solve the high temperature problems.
However, they either substantially increase the system cost or usually
require large space. Other techniques such as lower frequency and
reduced speed do help to avoid unexpectedly high temperature during
test, but they result in excessively long TATs and are not applicable to
at-speed tests. In order to test new generations of SoCs safely and
efficiently, novel and advanced testing techniques are required.

Recently, temperature aware testing [Tadayon. 2000] has attracted
many research interests. Liu, Veeraraghavan, and Iyengar address the
problem of the high temperature during test, and propose a test
scheduling technique that considers temperature constraints [Liu, et al.
2005]. The proposed technique aims to generate thermal-safe test
schedules and to reduce the hot-spot temperature such that the heat is
more evenly distributed across the die. In this technique, the floor plan
of the chip is used to guide test scheduling.

In [Rosinger, et al. 2006], Rosinger, Al-Hashimi, and Chakrabarty
indicate that the non-uniform distribution of the heat results in hot
spots on the die and therefore the power constrained test scheduling
techniques cannot guarantee the thermal safety. The authors proposed
a simplified thermal-cost model and an approach using the core
adjacency information to guide test scheduling. The proposed
technique can generate the minimized thermal-safe test schedules.

Yu, Yoneda, Chakrabarty, and Fujiwara address the temperature
aware TAM/wrapper co-optimization problem in [Yu, et al. 2007].
The authors propose a test scheduling approach to generate efficient
test schedules which are also thermal safe. The proposed approach
uses a thermal-cost model improved from the one proposed in
[Rosinger, et al. 2006], and employs a bin-packing algorithm to

39

CHAPTER 2

28

minimize the TAT and at the same time to satisfy the temperature
constraints.

Although these proposed approaches generate efficient test
schedules, they make strong and simplifying assumption that a CUT is
never overheated during the application of a single test set. This
assumption may not be valid for testing of high performance SoCs in
which the temperature of CUTs may exceed the temperature limit
before a single test is completed. In this thesis, we assume that before
the completion of a single test, the temperature of a CUT may exceed
a temperature limit beyond which the core can be damaged.

2.8 Thermal Modeling
In order to obtain the temperature of an IC, thermal modeling
techniques are often used. Thermal modeling is a technique that
provides mathematical models to predict the temperature of objects. A
thermal model usually considers the thermal resistance and thermal
capacitance of the object to its surroundings, as well as the heat
generated in and removed from the object.

The relationship between the ambient temperature, the average
junction temperature, and the power dissipation of an IC is often
described as:

Tj = Ta + Pchip × Rja (2.1)
where Ta is the ambient temperature, Pchip is the total power
dissipation of the chip, and Rja is the junction-to-ambient thermal
resistance. Using a three-dimensional heat flow equation, the junction-
to-ambient thermal resistance of a metal-oxide-semiconductor field-
effect transistor (MOSFET) can be calculated according to the
geometrical parameters of the MOSFET, as shown in Equation (2.2)
[Rinaldi. 2000].

40

BACKGROUND AND RELATED WORK

29

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+

++
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+

++
=

WLW
WLW

WLLW
LLW

Lk
Rja 22

22

22

22

ln1ln1
2

1
π

(2.2)

where k is the thermal conductivity of silicon and its typical value is
1.5×10-4 W/mm°C [Rinaldi. 2001]. W and L are the channel width and
length, respectively.

In an IC, every physical component acts as a heat storage
capacitor with a certain thermal capacitance, denoted with Cth. At the
same time, a physical component also acts as a heat resistor with a
certain thermal resistance, denoted with Rth, transferring heat through
other components towards the ambient. Equation (2.3) models an one-
dimensional heat conduction in a homogeneous isotropic material.

x
yc

x
T

th ∂
∂
⋅

⋅
=

∂
∂

λ
ρ

2

2

 (2.3)

where λth is the heat conductance, c is the thermal capacitance, ρ is the
density of the material, T is the temperature, and x is the direction of
the heat flow in the material.

The thermal model described in Equation (2.3) is equivalent to the
electrical model, given in Equation (2.4), for the transmission of
electric-magnetic wave in a solid line [Vassighi, et al. 2006].

x
URC

x
U

∂
∂
⋅⋅=

∂
∂

2

2

 (2.4)

where C is the capacitance per unit area, R is the resistance per unit
area, and U is the voltage. It can be seen that there is a duality between
the electrical and thermal models. Therefore, the heat conduction
process can be modeled by a transmission-line-equivalent circuit
consisting of only resistors and capacitors, as illustrated in Figure 2.8
[Vassighi, et al. 2006]. Table 2.2 lists the equivalent parameters
between the electrical and thermal models [Vassighi, et al. 2006].

41

CHAPTER 2

30

Figure 2.8: An electro-thermal model

Table 2.2: Duality between the electrical and thermal models

Thermal Model Electrical Model

Temperature T (in K) Voltage U (in V)

Heat Flow P (in W) Current I (in A)

Thermal Resistance Rth (in K/W) Electrical Resistance R (in V/A)

Thermal Capacitance Cth (in Ws/K) Electrical Capacitance C (in As/V)

Accurate temperature models are needed at all abstraction levels,

since power consumption and performance are strongly dependent on
the thermal map of a specific implementation or architecture [Vassighi,
et al. 2006]. For the sake of shortening the time-to-market, early
design optimization at system level plays a very important role.
Compared to thermal models at lower abstraction levels, architectural-
level thermal models need less computation recourses in order to be
solved. At the same time, such models produce sufficiently accurate
results in the context of system-level design optimization [Huang, et al.
2004]. Before the computation of temperature values, architectural-
level thermal modeling [Huang, et al. 2006], [Yang, et al. 2007] needs

Zth Ti

T

Tamb

Cth,1 Cth,2 Cth,n

Rth,1 Rth,2 Rth,n Tc Ta

Heat sink and other cooling components

42

BACKGROUND AND RELATED WORK

31

the following two basic steps: (1) floor plan extraction; (2) thermal
resistance-capacitance (RC) modeling.

Skadron et al. have investigated architectural-level electro-thermal
modeling and have implemented a thermal simulator, HotSpot [Huang,
et al. 2006], to calculate transient as well as steady-state temperatures
of functional units at the architecture level. Similar work has also been
carried on by Li et al., and a thermal simulator, ISAC [Yang, et al.
2007], has been developed.

In architectural-level thermal modeling, a floor plan is modeled as
a set of blocks, each of which is further divided into a matrix of sub-
blocks. Every sub-block corresponds to a set of functional units such
as ALU, FPU, cache memory, etc. The floor plan is specified by
matrices of the adjacency of the sub-blocks. In SoC design and test, it
is common practice to consider each core as such a sub-block [Zorian,
et al. 1999], [Marinissen, et al. 2000].

When the floor plan is extracted, the thermal resistance Rth and
thermal capacitance Cth are calculated according to the following two
simplifying assumptions: (1) the thermal resistance is proportional to
the thickness of the material and inversely proportional to the size of
the cross-sectional area across which the heat is transferred; (2) the
thermal capacitance is proportional to the thickness of the material and
proportional to the size of the cross-sectional area. Thus, the thermal
resistance and thermal capacitance can be derived according to
Equations (2.5) and (2.6), respectively [Vassighi, et al. 2006].

Rth = t / (k × A) (2.5)

Cth = c ×t × A (2.6)
where t is the thickness of the material, A is the size of the cross-
sectional area of the material, k is the thermal conductivity of the
material per unit volume, and c is the thermal capacitance per unit
volume. Nominal values of k, at 85°C, are 100 W/m3K for silicon and
400 W/m3K for copper. Nominal values of c are 1.75×106 J/m3K for
silicon and 3.55×106 J/m3K for copper.

43

CHAPTER 2

32

Using the area size, thermal resistance and thermal capacitance of
each sub-block in the package, an equivalent electrical circuit is
derived to model the dynamic heat flows in the chip. The dissipated
power in each sub-block is given as an input to the thermal model in
every time step. Thereafter, the average temperature of each sub-block
over the time interval is calculated using numerical computation
methods.

In this thesis, we have used the architecture-level thermal
simulators, either HotSpot or ISAC, for temperature aware test
scheduling in different contexts. We assume nominal configurations
of modern IC dies and packages for thermal simulations. The thermal
simulator takes the floor plan of a chip and the power consumption of
every core as inputs, and computes the temperature of each core in
every simulation cycle.

2.9 Multi-Temperature Testing
Environment-sensitive defects often cause parametric failures that are
more and more observed in ICs manufactured with nanometer
technologies. These environmental parameters include power supply
voltage, clock frequency, temperature, radiation, etc. In recent years,
concerns regarding parametric failures increase rapidly due to widely
distributed process variations and the wide spectrum of subtle defects
introduced by new manufacturing processes and materials [Segura, et
al. 2004], [Needham, et al. 1998], [Nigh, et al. 1998], [Montanes, et al.
2002].

Some defects are sensitive to a certain temperature level. For
example, metal interconnect defects may pass a delay test at nominal
temperature but fail the same test at a high temperature. This indicates
that speed tests, such as maximum-frequency test, referred to as Fmax
test, and transition delay test, should usually be applied at a high
temperature in order to detect these temperature-dependent defects.

44

BACKGROUND AND RELATED WORK

33

In [Singer, et al. 2009], a closer investigation on the correlation
between the maximum frequency and temperature was performed for
ICs powered by ultra-low supply voltages. It shows that there exists a
turnaround temperature point above which the maximum frequency no
longer decreases but rather increases. This means that applying a
speed test at a high temperature may not screen the defective chips
because of the improper temperature setting for the test. Therefore, for
those types of ICs, Fmax tests or transition delay tests should be applied
at a critical temperature which can be obtained by characterization.

Parametric failures induced by subtle defects, such as resistive
vias/contacts and weak opens, are hard to detect even when the circuit
operates with the lowest performance under the worst environmental
condition. In these cases, a speed test needs to be applied at two
temperatures (hot/cold) and at a particular frequency [Needham, et al.
1998]. The defective chips can be screened as outliers by comparing
the test results at the two different temperatures.

The following sub-sections explain the temperature effects on
CMOS circuits as well as the cause of temperature-dependent defects
and parametric failures.

2.9.1 Temperature Effects in CMOS
Circuits
As one of the environmental parameters, operating temperature has a
large impact on the electrical properties of transistors and their
interconnects [Segura, et al. 2004]. Carrier mobility usually decreases
at high temperature since the carriers collide with the Si-crystal lattice
more frequently. Similar effects occur in the thin metal lines
connecting the transistors, increasing the interconnect resistance. Thus,
performance degradation is often encountered at a high operating
temperature, leading design and test efforts to focus on the high-
temperature scenarios. In practice, an IC is often tested at high
temperatures in order to guarantee the functionality at all temperatures
that may appear in the field.

45

CHAPTER 2

34

Another temperature-dependent parameter is the transistor
threshold voltage, which increases with rising temperature. The
increasing threshold voltage results in an elevated drain current, which
compensates for the degraded circuit performance due to the reduced
carrier mobility and interconnect resistance. The threshold voltage
dominates the performance after the operating temperature exceeds a
certain point, referred to as the CMOS zero-temperature-coefficient
(ZTC) point [Filanovsky, et al. 2001], meaning that the circuit
performance increases with further rising temperature. Thus, there
exist two temperature dependence regions [Filanovsky, et al. 2001],
[Calhoun, et al. 2006], [Wolpert, et al. 2009], a normal dependence
region in which the circuit delay increases with rising temperature,
and a reverse dependence region in which the circuit delay decreases
with rising temperature. Figure 6.1 illustrates circuit delay variation in
the normal and reverse dependence regions [Wolpert, et al. 2009].
This phenomenon is usually observed in low-power designs with
ultra-low supply voltage. It infers that, for those circuits in which
reverse temperature dependence is observed, a delay test should be
applied at the temperature point between the normal and reverse
regions where the circuit delay is the largest.

Figure 2.9: Normal and reverse temperature dependence regions

Delay

Temperature

Normal
Dependence

Region

Reverse
Dependence

Region

46

BACKGROUND AND RELATED WORK

35

2.9.2 Subtle Defects and Parametric Failures
ICs manufactured with nanometer technology, typically below 45nm,
encounter more reliability problems and parametric failures caused by
widely distributed variations and a wide spectrum of subtle defects.
Defect-induced parametric failure mechanisms include weak
interconnect opens, resistive vias and contacts, metal mouse bites and
metal slivers, with the first two as major causes [Segura, et al. 2004].
In [Montanes, et al. 2002], examples of a weak interconnect open and
a resistive via in a deep-submicron CMOS IC are given.

Although most parametric failures are speed related, some of them
are insensitive to a single test method such as IDDQ test, stuck-at test,
delay test, and functional test. Simply applying a single type of tests
may not be capable to identify the outliers from the normal parts,
resulting in either an increased amount of test escapes or unexpected
yield loss. In order to effectively screen the chips having subtle
defects, multiple parameters may need to be combined for a test
making the chip out of specification. Temperature, transition delay,
supply voltage, and clock frequency are important parameters to be
considered in multi-parameter testing [Segura, et al. 2004], [Needham,
et al. 1998], [Nigh, et al. 1998].

Operating at a certain given frequency, a chip with resistive vias
may fail a speed test such as Fmax test and delay test, but pass the test
at the same frequency when the operating temperature is elevated
[Needham, et al. 1998]. As explained in [Segura, et al. 2004] and
[Needham, et al. 1998], the root cause was the voids existing in vias.
When the temperature increases, the surrounding metal expands
inwardly, forcing the voids to shrink. As a consequence, the metal
resistance is reduced and the delay becomes shorter. Figure 2.10
illustrates that the shapes and sizes of two voids in a via vary at
different temperatures [Segura, et al. 2004]. This subtle-defect-
induced parametric failure infers that a combination of parameters (e.g.
frequency and temperature) is needed to sensitize the defects and a

47

CHAPTER 2

36

comparison of test results at different temperatures is needed for
screening the defective parts.

Figure 2.10: Via voids at different temperatures

2.10 AOFF Test Approach
Many proposed SoC test scheduling techniques assume that tests are
applied to their completion [Huss, et al. 1991], [Milor, et al. 1994],
[Koranne. 2002]. However, volume production tests often employ an
AOFF approach in which the test process is terminated as soon as a
fault is detected. The defective parts can be either discarded directly or
diagnosed in order to find out the cause of the faults. Using the AOFF
approach can lead to a substantial reduction in the TAT, since a test
needs not to be completed if any faults are detected. The test cost can
be reduced as a consequence of the decreased TAT. The AOFF test
approach is especially important to the early-stage production in
which defects are more likely to appear and the yield is relatively low.

When the AOFF test approach is employed, the defect probability
of cores can be used for test scheduling in order to generate efficient
test schedules [Jiang, et al. 2001], [Larsson, et al. 2004], [Ingelsson, et
al. 2005], [He, et al. 2004], [He, et al. 2005]. The defect probabilities
of IP cores can be derived from statistical analysis of production
processes or generated from inductive fault analysis.

(a) At room temperature

M3

M2

Via

M3

M2

Via Voids

(b) At a high temperature

48

BACKGROUND AND RELATED WORK

37

In [Jiang, et al. 2001], a defect-oriented test scheduling approach
was proposed to reduce the TAT. Based on the defined cost-
performance index, a heuristic algorithm was developed to obtain the
best testing order. In [Larsson, et al. 2004], a more accurate cost
function using defect probabilities of individual cores was proposed.
Based on the proposed cost function, a heuristic algorithm was also
proposed to minimize the expected test time. In this thesis, we propose
a method to calculated using the probability of the test process to be
terminated at any time moment when the test response/signature is
available and develop a heuristic algorithm to minimize the expected
test application time using the calculated probability.

49

50

Chapter 3
Temperature Aware

Test Scheduling

In this chapter, we address the test time minimization problem with
temperature concerns for the SoCs in which the lateral thermal
influence between cores is negligible. We propose a set of test
scheduling techniques to minimize the TAT such that the temperature
of each CUT does not exceed an imposed temperature limit and the
total amount of test-bus width required for concurrent tests does not
exceed the test-bus width limit. We propose a test set partitioning and
interleaving technique that avoids overheating the CUTs and keeps
high efficiency in utilizing the test bus for concurrent tests. Based on
the assumption of negligible lateral heat flow, we propose a CLP
model to obtain optimal solution to the test time minimization
problem. However, due to the high computational complexity, the
CLP model is infeasible to solve the problem for large SoC designs.
Therefore, we also propose a heuristic algorithm to find efficient
solutions to the temperature aware test time minimization problem.

51

CHAPTER 3

40

3.1 Test Set Partitioning and
Interleaving
When considering SoC testing in a thermal-safe context, a long test
applied to a core may lead to a high temperature even before the test is
completed. A CUT may be damaged if a test is not interrupted before
the temperature of the CUT exceeds a certain limit. In order to avoid
overheating the CUTs, we divide an entire test set into a number of
subsets, referred to as test sequences, and introduce a cooling period
between the applications of two consecutive test sequences. In this
thesis, we refer to cooling as passive cooling which represents a state
in which a core is inactive and does not dissipate dynamic power.
After a cooling period, the temperature of a CUT is supposed to
decrease to a lower level, and then the succeeding test sequence may
start. Figure 3.1 illustrates a scenario in which a test set is divided into
four test sequences, TS1, TS2, TS3, and TS4, which are separated by
three cooling periods. In this way, an entire test set is partitioned into
a number of test sequences separated by cooling periods. This
technique is referred to as test set partitioning (TSP) [He, et al. 2008a].
Using the TSP technique, we can effectively keep the temperature of a
CUT below an imposed temperature limit.

As we assume that a test bus is employed in the assumed test
access infrastructure, the limited width of the test bus becomes a
constraint to the test scheduling problem. When test set partitioning is
employed to avoid overheating, the efficiency of the test-bus
utilization should also be considered for test scheduling. In fact,
introducing cooling periods between test sequences increases the TAT
for an individual core, though it helps to avoid high temperature. On
the other hand, during a cooling period for a core, the test-bus width
allocated to this core is not utilized since no test data is required to be
transferred to/from the core. Thus, we can release the test-bus width
reserved for a core during its cooling periods, and allocate the released
test-bus width to other cores for their test-data transportations and test
applications. In this way, the test sets for different cores are

52

TEMPERATURE AWARE TEST SCHEDULING

41

interleaved. We refer to this technique as test set interleaving (TSI)
[He, et al. 2008a]. With the TSI technique, the test bus is utilized more
efficiently and the TAT can be reduced. Figure 3.2 illustrates a
scenario where two partitioned test sets are interleaved so that the
TAT time is reduced with no need for extra test-bus width.

Figure 3.1: Motivational example of test set partitioning

Figure 3.2: Motivational example of test set interleaving

Core 1
Core 2

Temperature

Time

Temp.
Limit

Completion Time

Cooling (Core 1)

Testing
(Core 2)

Temperature

Time

Temp.
Limit

Completion Time

TS1 TS2 TS3 TS4Cooling Cooling Cooling

53

CHAPTER 3

42

Figure 3.3 depicts plotted temperature profiles of two CUTs in an
SoC when the TSPI technique is employed for test scheduling. The
temperature values are obtained through a thermal simulation and the
imposed temperature limit is 90°C. This experimental result shows
that using the TSPI technique can generate an efficient test schedule
which satisfies both the test-bus width limit and the temperature limit.

Figure 3.3. Temperature profiles of two CUTs using TSPI

Interleaving test sequences for different cores can introduce time
overhead [Goel, et al. 2003], [He, et al. 2006a]. The time overhead
occurs when the test controller stops the test for one core and starts the
test for another core. The cause of the time overhead is explained as
follows.

In scan-based testing, the application of a test pattern includes
three consecutive operations: scan-in, capture, and scan-out. During
the scan-in phase, a test pattern is shifted into the scan chain. During
the scan-out phase, the test response is shifted out to the response
analyzer. Normally, the application of test patterns is organized as a

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

0.0E+00 1.0E-04 2.0E-04
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

TH

Core 1
Core 2

54

TEMPERATURE AWARE TEST SCHEDULING

43

pipeline of three stages corresponding to the three operations, with the
scan-out stage for one test pattern overlapping the scan-in stage for the
succeeding test pattern. Figure 3.4(a) illustrates the pipeline structure
for the application of four test patterns in scan-based testing. The time
duration of scan-in, capture, and scan-out is Li, 1, and Lo, respectively.

When tests are interleaved, two test sequences for the same core
are separated by test sequences for other cores. This means that
interrupts are introduced to the pipeline of test applications and
refilling the pipeline has to be done when a test is resumed. Figure
3.4(b) illustrates that the pipeline of test application is interrupted. The
test set is divided into two test sequences, each of which consists of
two test patterns. The test is interrupted between the second and third
test patterns. The TAT of the third test pattern is increased by Lo due
to refilling the pipeline with the scan-in operation. This example
shows that a time overhead is added when the test application is
interrupted and resumed later.

In general, when the TSPI technique is employed for test
scheduling, the time overhead has a large impact on the TAT.
Partitioning a test set into more test sequences may lead to a longer
TAT, since more time overheads are introduced into the test schedule.
In particular, in the context of temperature aware test scheduling, a
larger number of partitions leads to an even longer TAT, because
more cooling periods are added into the test schedule. However,
partitioning a test set into more test sequences results in a smaller
average length of the partitioned test sequences. This means that the
test sequences can be packed into a more compact test schedule with a
shorter TAT. In principle, this trade-off between different TSPI
schemes should be considered by the test scheduling algorithm. A
global optimization is needed in order to explore different test
schedules in which various TSPI schemes are adopted. The number
and length of test sequences, as well as the number and length of
cooling periods, if applicable, vary in different TSPI schemes, leading
to different test schedules with different TATs.

55

CHAPTER 3

44

Figure 3.4: Pipelined applications of test patterns in scan-based testing

3.2 Motivational Example
In this chapter, we aim to minimize the TAT by generating an
efficient test schedule such that the temperatures of the CUTs do not
exceed the temperature limits of individual cores and the test-bus
width constraint is satisfied. We consider each test sequence as a
rectangle, with its height representing the required test-bus width and
its width representing the TAT duration. Figure 3.5 shows a
motivational example for the test time minimization problem. Suppose

(a) Test application without interruption

(b) Test application with interruption

56

TEMPERATURE AWARE TEST SCHEDULING

45

that three test sets, TS1, TS2, and TS3, are partitioned into 5, 3, and 2
test sequences, respectively. Note that, for a partitioning scheme in
which the number and length of test sequences and cooling periods are
determined, we use HotSpot to perform a thermal simulation to ensure
that the temperature of each core does not violate the temperature
limit. Figure 3.5(a) depicts a test schedule with the regularity
restrictions (which is assumed in the CLP-based approach) on the
length of test sequences and cooling periods. Figure 3.5(b) depicts an
alternative test schedule where the regularity restrictions are removed.
This example shows the possibility to find a shorter test schedule by
exploring alternative solutions, which differs from each other in the
number, length, and regularity of test sequences and cooling periods,
as well as the way how the test sequences are interleaved.

Figure 3.5: Motivational example for temperature aware test scheduling

(a) Test schedule with regular partitioning scheme

(b) Test schedule with irregular partitioning scheme

57

CHAPTER 3

46

3.3 Basic Test Architecture
We assume that the tester employed for an SoC test is either an ATE
or an embedded tester in the chip. The tester consists of two major
components, a test controller and a memory. The memory stores a test
schedule and the generated test patterns. The test controller reads the
test schedule and controls the transportation of the test data to/from
the CUTs according to the test schedule. A test bus is used for the test
data transportation between the tester and the CUTs. Each core is
connected to the test bus through dedicated TAM wires. Through the
test bus and TAM wires, test patterns are sent to the CUTs and test
responses are sent back to the tester. The assumed test architectures
are depicted in Figure 2.5 and Figure 2.6, corresponding to using an
ATE and embedded tester as the test controller, respectively.

3.4 System Model for SoC Testing
We suppose that that a system-on-chip, denoted with S, consists of n
cores, denoted with C1, C2, ... , Cn, respectively. A set of physical
configurations F of the die and package including the floor plan of the
SoC is given. In order to test core Ci (1 ≤ i ≤ n), li test patterns are
generated and form a test set TSi. The test patterns/responses are
transported through the test bus to/from core Ci. Transporting the test
data for core Ci requires a certain amount of test-bus width Wi in bits.
The test bus can concurrently transport test data for different cores
under a width limit B (B ≥ Wi, i = 1, 2, ... , n) in bits, meaning that the
test bus can deliver at most B bits of test data to the CUTs in parallel.

58

TEMPERATURE AWARE TEST SCHEDULING

47

3.5 Problem Formulation
We assume that continuously applying test patterns to a core Ci
(1 ≤ i ≤ n) may cause the temperature of the core increase and exceed
a certain limit TH,i and consequently results in damages to the core.
We address the temperature aware test time minimization problem as
how to generate a test schedule for system S such that the TAT is
minimized, the test-bus width constraint is satisfied and the
temperature of every CUT remains below the temperature limit TH,i.
The formal formulation of the problem is given in Figure 3.6.

Figure 3.6: Problem formulation of temperature aware test scheduling

Problem 3.1: Minimization of TAT for temperature aware testing

Input:
An SoC design together with the physical configuration F of the die and
package as well as the floor plan of the SoC;
A set of test set for each core {TSi | i = 1, 2, ... , n};
A set of required test-bus width for each test {Wi | i = 1, 2, ... , n};
Test-bus width limit B;
A set of temperature limit for each core {TH,i | i = 1, 2, ... , n}.

Output:
A test schedule with the minimal test application time.

Constraints:
1. At any time moment t before all tests are completed, the total amount
of allocated test-bus width W(t) is less than or equal to the test-bus width
limit B, i.e. ∀t, W(t) ≤ B, where W(t) ::= ΣjWj(t);
2. At any time moment u before all tests are completed, the
instantaneous temperature Ti(u) of core Ci is less than the temperature
limit TH,i, i.e. ∀u, ∀i, Ti(u) < TH,i.

59

CHAPTER 3

48

The formulated problem is highly complex. When considering the
first constraint, the test time minimization problem can be mapped to a
2D rectangle packing (RP) problem in which a test sequence is
represented by a rectangle. The height of a rectangle represents the
test-bus width required by the test sequence and the width of a
rectangle represents the TAT of the test sequence (see Figure 3.5).
Since a 2D RP problem is NP-complete [Baker, et al. 1980], no
polynomial-time algorithm exists to obtain the optimal solution. In
this chapter, we provide two approaches to solve the temperature
aware test time minimization problem.

The first approach restricts the exploration space by introducing
the following two constraints: (1) all test sequences belonging to the
same test set, except the first and last one, must have an identical
length; (2) all cooling periods between the test sequences belonging to
the same test set must have an identical length. By adding these two
restrictions, the optimal solution to this restricted test time
minimization problem can be obtained by using a CLP model.

The CLP-based approach is infeasible for large SoC designs due
to the high computational complexity of the algorithm. Alternatively,
we propose a fast heuristic approach to solve the problem with no
restriction on the regularity of test sequences and cooling periods, i.e.
the test sequences and cooling periods can have flexible length. This
means that the test sequences can be repartitioned and the cooling
periods can be changed in test scheduling. In order to ensure the
thermal safety, we introduce the following two restrictions to the
heuristic approach: (1) the length of a repartitioned test sequence must
not be to be larger than the regular length of the initially partitioned
test sequences; (2) the length of a cooling period must not be smaller
than the regular length of the initially fixed cooling periods.

60

TEMPERATURE AWARE TEST SCHEDULING

49

3.6 Overall Solution Strategy
The overall solution strategy to solve the formulated problem is
illustrated in Figure 3.7. In the first step, we generate an initial
partitioning scheme for every test set through a thermal simulation
with the imposed temperature limits. In the second step, we use the
proposed test scheduling algorithm to explore alternative test
schedules with respect to different partitioning and interleaving
schemes for the test sets. The test scheduling algorithm squeeze test
sequences into the 2D plane, constrained by the test-bus width limit,
such that the TAT of the test schedule is minimized.

Figure 3.7: Overall solution strategy

In order to generate thermal-safe partitioning schemes, we have
used a temperature simulator, HotSpot, to obtain instantaneous
temperatures of individual cores. In this chapter, we assume that the
lateral thermal influences between cores are negligible for a certain
type of SoCs, as the heat transfer in the vertical direction is much
larger than that in the lateral direction.

Initial test set partitioning
using thermal simulation

Test scheduling with test set
re-partitioning and interleaving

Optimized test schedule

Initial partitioning schemes

Begin

End

Test sets {TSi}
Chip physical configuration F
Temperature limits {TH,i}

Test sets {TSi}
Required test-bus width {Wi}
Test-bus width limit B

61

CHAPTER 3

50

When generating the initial thermal-safe partitioning scheme, we
assume that a test set TSi is started when the core is at the ambient
temperature TA. Thereafter, we start the temperature simulation, and
record the time moment th1 when the temperature of core Ci reaches
the given temperature limit TH,i. Knowing the latest test pattern that
has been applied by the time moment th1, we can easily obtain the
length of the first thermal-safe test sequence TSi1 that should be
partitioned from the test set TSi. Then the temperature simulation
continues while the test process on core Ci has to be stopped until the
temperature goes down to a certain degree. Note that a relatively long
time is needed in order to cool down a core to a temperature close to
TA, as the temperature decreases slowly at a lower temperature level
(see the dashed curve in Figure 3.8). Thus, we let the temperature of
core Ci decreases until the slope of the temperature curve reaches a
given value k, at time moment tc1. The value of k can be
experimentally set by the designer. At this moment, we have obtained
the duration of the first cooling period di1 = tc1 – th1. Resuming the test
process from time moment tc1, we repeat this heating-and-cooling
cycle throughout the temperature simulation until all test patterns
belonging to TSi are applied. Thus, we have generated the initial
thermal-safe partitioning scheme, where test set TSi is partitioned into
m test sequences {TSij | j = 1, 2, ... , m} and between every two
consecutive test sequences, the duration of the cooling period is
{dij | j = 1, 2, ... , m-1}. Figure 3.8 depicts a motivational example of
partitioning a test set into four thermal-safe test sequences separated
by three cooling periods.

Once the initial thermal-safe partitioning scheme is obtained, we
focuses on the problem of generating the shortest test schedule such
that test-bus width constraint is satisfied. As mentioned earlier, the
problem can be mapped to a 2D RP problem. However, our test
scheduling problem is not a classical RP problem, due to the fact that
the number and length of test sequences and cooling periods are not
fixed. This makes our problem even more difficult to solve.

62

TEMPERATURE AWARE TEST SCHEDULING

51

Based on the overall solution strategy, we propose two approaches
to solve the test time minimization problem, a CLP-based approach
and a heuristic approach, which are presented in the following two
sections, respectively.

Figure 3.8: Motivational example of the initial partitioning scheme

3.7 CLP-based Approach with
Regular TSP
As demonstrated previously, in order to restrict the exploration space,
we assume that the test sequences belonging to the same test set have
identical length except the first and the last one. The first test
sequence is usually longer than the others in the same test set. This is
because the CUT is initially at the ambient temperature, and the first
test sequence is partitioned such that it is continuously applied until
the CUT reaches the temperature limit. Similar to the test partitions,
the cooling periods between two test sequences from the same test set
also have identical length.

Temperature

TH

Completion Time

k

Time

TA
TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

th1 tc1 th2 tc2 tc3th3 th4

63

CHAPTER 3

52

3.7.1 Constraint Logic Programming
Constraint logic programming is a programming framework which
merges two declarative programming paradigms, namely constraint
solving and logic programming [Jaffar, et al. 1987]. CLP defines the
relationships between entities as constraints, and incorporates
constraint solving methods into a logic-based programming language.
Some key features of CLP include: (1) constraints are employed to
describe the queries and answers which are the inputs and outputs of a
program; (2) new variables and constraints are dynamically generated
during execution of the program; (3) in each state of execution, all
constraints are globally tested for satisfiability, and the results of the
test are used to control the execution.

As a declarative programming language, CLP is flexible and
expressive. It allows programmers to focus on the formulation of
problems instead of being stuck in the implementation details.
Therefore, it has been widely used in many optimization techniques
for a variety of applications. Some CLP tools also provide solvers to
find the optimal solution using branch-and-bound or exhaustive search.
We use CHIP [Van Hentenryck. 1991] in our CLP-based approach to
solve the temperature aware test time minimization problem.

3.7.2 CLP Model
A partitioning scheme has three parameters, the number of partitions,
the time duration of the first test sequence, and the time duration of a
cooling period between two consecutive test sequences, which are
denoted with mi, li1, and di, respectively. The individual test for each
core starts at time moment ti, which is equal to the start time ti1 of the
first test sequence in the same test set.

()nitt ii ≤≤= 11 (3.1)

The number of partitions and the start time of every individual test
are decided during the optimization. The start time tij and finish time

64

TEMPERATURE AWARE TEST SCHEDULING

53

eij of test sequence TSij can be calculated as follows. Note that oi is the
time overhead.

()nimjodltt iiijijiij ≤≤≤≤+++= −− 1,21,1, (3.2)

()nimjlte iijijij ≤≤≤≤+= 1,1 (3.3)

The last test sequence in each test set is special since its finish
time is equal to the finish time of the individual test for the core. Thus,
the finish time ei of test set TSi is

imii ee ,= (3.4)

and the TAT for testing all cores is the maximum finish time of all
individual tests, given as follows.

{ }ini
eTAT

≤≤
=

1
max (3.5)

TAT is the cost function of our optimization problem, and our
objective is to find the optimal solution {(mi

*, ti
*) | i = 1, 2, ... , n} such

that TAT is minimized, subject to the following constraint: at any time
moment x before the completion of all individual tests, the total
amount of test-bus width used for the concurrent test sequences is less
than or equal to the test-bus width limit, i.e.

BWTATx
xp

k
k ≤≤∀ ∑

=1

, (3.6)

where px is the number of concurrent test sequences at the time
moment x;

As discussed in previous sections, we assume that when a test
starts, the CUT is at the ambient temperature TA. The test set has to be
partitioned into a number of test sequences if the CUT reaches its
temperature limit before the entire SoC test is completed. When
partitioning a test set into test sequences, the length of each test
sequence and the number of test sequences depend on the length of the
cooling period between two consecutive test sequences. A longer
cooling period leads to a lower temperature at which the succeeding

65

CHAPTER 3

54

test sequence will be started. Thus, with the partitioning schemes that
have longer cooling periods, a test set can be partitioned into fewer
number of test sequences but each test sequence is longer. It is
important to find a possible interval of the number of partitions for
each test set, since our optimization algorithm explores alternative
partitioning schemes in which the number of partitions varies between
the minimum and the maximum values in this interval. We denote the
interval of the number of partitions for a test set TSi with Ii (1 ≤ i ≤ n),
and Ii = [Ii,min, Ii,max].

As described in Section 3.6, we perform a thermal simulation to
obtain the initial thermal-safe partitioning scheme for each test set.
Based on the initial partitioning schemes, we can determine the
exploration interval Ii (1 ≤ i ≤ n) for each test set. We define the
number of partitions in the initial partitioning scheme as the minimum
value of Ii, denoted with Ii,min. In order to find the maximum value of Ii,
denoted with Ii,max, we have done experiments for different designs
and we have found out that the actual numbers of partitions in the
optimal solutions are close to the minimum values Ii,min. Thus, we
define the maximum value of the exploration interval as
Ii,max = K + Ii,min, where K is a constant value which can be fixed by the
designer. The exploration interval Ii = [Ii,min, Ii,max] (i = 1, 2, ... , n) for
each test set TSi is taken as an input to the optimization algorithm.

For each test set TSi (1 ≤ i ≤ n), two variables have to be decided
by the CLP solver. One is the number of partitions, denoted with mi,
and the other is the start time of the individual test, denoted with ti.
The finish time of an individual test is equal to its start time plus the
time durations of all its test sequences and all the cooling periods
added between two consecutive test sequences, given as follows.

()1
1

−×++= ∑
=

ii

m

j
iii mdlte

i

(3.7)

During optimization, the decision variables are instantiated and
test schedules that satisfy the constraints are explored. The CLP solver

66

TEMPERATURE AWARE TEST SCHEDULING

55

finds the optimal solution which has the minimal TAT of the SoC test.
The minimal TAT in the CLP model is formulated as:

}}{max{min
max,min,,01min iImILtni

eTAT
iiii ≤≤≤≤≤≤

= (3.8)

where L is a constant configured in the CLP model. Note that the
search of the optimal solution using the CLP model is related to the
second step (test scheduling with TSPI) in the overall solution strategy
depicted in Figure 3.7.

3.7.3 Experimental Results
We use the ISCAS’89 benchmark circuits as the cores of the SoC
designs for our experiments. Table 3.1 shows the experimental results
for five different SoC designs with the number of cores listed in
column 1. For each SoC design, test patterns are generated for every
core, and the switching activities are calculated for each test pattern.
The amount of power consumption of each test pattern is calculated
using a cycle-accurate power estimation method proposed in [Samii,
et al. 2006], which takes the amount of switching activity as an input
and calculates the power consumption in Watt. We use HotSpot for
the thermal simulation through which we obtain the initial partitioning
schemes. The total number of partitioning schemes for each SoC
design is listed in column 2. The imposed temperature limit is 90°C.

We used the CLP model to obtain the optimal test schedule by
exploring alternative numbers of partitions and start times for each test.
Column 3 in Table 3.1 shows the problem size for each SoC design,
defined as the product of the number of partitioning schemes and the
number of cores in the SoC. The TAT of the optimal test schedule and
the optimization time are listed in the columns 4 and 5.

When optimal test schedule is obtained, we perform a thermal
simulation according to the generated test schedule in order to check if
the temperature of any core exceeds the temperature limit. The
thermal simulation results confirm that the temperature of every core
is below the temperature limit.

67

CHAPTER 3

56

Table 3.1: TATs and execution times using the CLP model

of
Cores

of Partitioning
Schemes

Problem
Size

TAT (# of
Clock Cycles)

CPU Time
(s)

4 7 28 2775 2.141

12 8 96 8306 35.359

24 20 400 9789 47.500

36 20 720 10017 120.219

48 20 960 10941 881.766

We have also performed experiments to evaluate how the obtained

optimization result is affected by choosing different number of
partitioning schemes. Table 3.2 listed four different numbers of
partitioning schemes which are explored by the CLP solver. The
experiments are performed for an SoC design with 6 cores. The
optimal solution is the same in the three cases of 7, 10, and 15
partitioning schemes, as shown in the last three rows, respectively.
When the number of partitioning schemes is 5 (see the 1st row), the
TAT of the obtained test schedule is larger than the others, which
infers that the best solution does not correspond to any partitioning
scheme among the 5 alternative ones. If we introduce 2 more
alternative partitioning schemes, a better solution is found (see the 2nd
row). However, adding more alternatives partitioning schemes, up to
15, do not lead to a better solution (see the 3rd and 4th rows).

The reason for the shorter TAT with an increased number of
alternative partitioning schemes is explained as follows. When a test
set is partitioned into more test sequences, more time overheads and
cooling periods are added into the test schedule. However, the
individual test sequences and the cooling periods are shorter if the test
set is partitioned into more test sequences, and the scheduling
algorithm can generate more compact test schedules. This trade-off
between different partitioning schemes has been discussed in
Section 3.1. This experimental result infers that the optimal solution

68

TEMPERATURE AWARE TEST SCHEDULING

57

may not correspond to any partitioning scheme in the minimum set of
partitioning schemes.

Table 3.2: TSTs w.r.t. different number of partitioning schemes

of
Cores

of Partitioning
Schemes

Problem
Size

TAT (# of
Clock Cycles)

CPU Time
(s)

6

5 30 9574 10.156

7 42 9570 26.031

10 60 9570 31.875

15 90 9570 39.797

3.8 Heuristic Approach with Irregular
TSP
As demonstrated previously, although the CLP-based approach can
provide the optimal solution for the restricted problem, it is not
feasible to obtain the solutions for large SoC designs due to its high
computational cost. Alternatively, we propose a heuristic approach to
solve the original test time minimization problem with no restrictions
on the regularity of test sequences and cooling periods.

3.8.1 Motivational Example
The proposed heuristic algorithm for test scheduling also uses the
TSPI technique. Since the order in which the test sets are considered
for test scheduling has a large impact on the final test schedule, we
construct an iterative algorithm which obtains a good scheduling
consideration order (SCO) for all partitioned test sets. Thereafter, the
test sequences are scheduled according to the obtained SCO.

69

CHAPTER 3

58

Figure 3.9 shows a motivational example to illustrate the impact
of the SCO on the test schedule. In this example, each of the 3 test sets,
denoted with TS1, TS2, and TS3, is partitioned into 2 test
sequences. Figure 3.9(a) and Figure 3.9(b) depict the test schedules
when the test sets are considered for scheduling in the order of {TS1,
TS2, TS3} and {TS3, TS2, TS1}, respectively. It can be seen that using
the second SCO results in a shorter test schedule depicted in Figure
3.9(b). Note that, in this example, the test sets are scheduled to the
earliest available time moments (EATM).

In fact, the SCO reflects the precedence of the partitioned test sets
to be considered for scheduling. However, when algorithm considers a
test set for scheduling, it does not all the test sequences from the same
test set at the same time. Instead, it always take the first unscheduled
test sequence of the currently considered test set for scheduling, and
thereafter take the first unscheduled test sequence of the next test set
into account. Thus, in this example, the overall scheduling
consideration order (OSCO) for all test sequences of all test sets is
{TS11, TS21, TS31, TS12, TS22, TS32} and {TS31, TS21, TS11, TS32, TS22,
TS12}, for the case in Figure 3.9(a) and Figure 3.9(b), respectively.
The main concern of not scheduling all test sequences of one test set
at the same time is to avoid generating inefficient test schedules due to
unnecessarily long cooling periods, inappropriate partition length, and
inefficient test set interleaving.

3.8.2 Heuristic Algorithm for Test
Scheduling
The basic idea of the proposed heuristic algorithm for test scheduling
is to iteratively construct a queue that finally consists of all partitioned
test sets in a particular order. The heuristic algorithm is denoted with
Algorithm 3.1 and its pseudo-code is depicted in Figure 3.10. Note
that Algorithm 3.1 invokes a scheduler Algorithm 3.2.

70

TEMPERATURE AWARE TEST SCHEDULING

59

Figure 3.9: Motivational example of test schedules affected by the SCO

(a) Test schedule w.r.t. SCO {TS1, TS2, TS3}

(b) Test schedule w.r.t. SCO {TS3, TS2, TS1}

71

CHAPTER 3

60

Figure 3.10: Pseudo-code of the heuristic algorithm for test scheduling

Algorithm 3.1: Heuristic algorithm for temperature aware test
scheduling

01: Set of test sets :: U := {TSi | i = 1, 2, … , n};
02: Queue of test sets :: Q := ∅;
03: Queue of test sets sorted in the best SCO :: Qbest := ∅;
04: for (∀TS ∈ U) loop /* outer loop */
05: ηmax := 0;
06: Q := Qbest;
07: for (∀POS in Q) loop /* inner loop */
08: Insert(TS, Q, POS);
09: Schedcur = Schedule(Q);
10: η = CalcEfficiency(Schedcur);
11: if (η > ηmax) then
12: ηmax := η;
13: TSbest := TS;
14: Qbest := Q;
15: end if
16: Remove(TS, Q);
17: end for
18: Remove(TSbest, U);
19: end for
20: Schedule(Qbest);

72

TEMPERATURE AWARE TEST SCHEDULING

61

Given the set of all test sets U = {TSi | i = 1, 2, ... , n} (line 1), the
heuristic algorithm iteratively selects test sets and inserts them into a
queue Q (lines 2 through 19). The positions of the test sets in Q
represent the order in which the test sets are considered for test
scheduling (SCO). The precedence of the positions in Q is defined as
follows. A test set positioned closer to the queue head will be
considered earlier for test scheduling than those test sets positioned
further to the queue head.

The heuristic algorithm starts with an empty queue Q = Ø (line 2).
In each iteration step (lines 5 through 18), the objective is to select one
test set TSk from U, and insert it into Q at a certain position POS, such
that the (|Q| + 1) test sets are put in a good order while the precedence
between test sets excluding the newly inserted one remains unchanged.
The outer loop terminates when all test sets in U have been moved
into Q, and thereafter, the heuristic algorithm invokes the scheduler to
schedule the partitioned test sets according to the SCO presented in
Qbest (line 20).

For each iteration step, there are |U| alternative test sets for
selection, where |U| is the current number of test sets remaining in U.
For each selected test set, there are (|Q| + 1) alternative positions
which the selected test set can be inserted to, where |Q| is the current
number of test sets that have already been inserted into Q throughout
previous iteration steps. Thus, in one iteration step, there are
|U| × (|Q| + 1) alternative solutions, in which a selected test set is
associated with an insertion position in Q.

The example depicted in Figure 3.11 illustrates a scenario where 3
test sets (TS3, TS8, and TS6) have been inserted in Q and 5 other test
sets (TS1, TS2, TS4, TS5, and TS7) remain in U. For each test set in U,
there are 4 insertion positions, which are pointed by the arrows. In this
example, there are 20 alternative solutions. Note that each test set in
the example has already been partitioned into a number of test
sequences, and Algorithm 3.2 takes each test sequence for scheduling.

We evaluate the obtained SCO by the efficiency of the generated
partial test schedule, the higher efficiency, the better the SCO. The

73

CHAPTER 3

62

partial test schedule is generated (line 9) by Algorithm 3.2. The
efficiency of a test schedule (EOTS), denoted with η, is defined as
follows. Suppose x is the size of the area covered by all scheduled test
sequences, and y is the total area size constrained by the test-bus width
limit and the completion time moment of the test schedule. The
efficiency of the test schedule is (x / y). A larger value of η indicates a
better test schedule. Figure 3.12 depicts an example which illustrates
how the EOTS is calculated. In the example, a test schedule is
represented as the area covered by slashed lines. The size of the area
covered by the actual test schedule is x, and the size of the area
covered by the larger rectangle with thick border lines is y. Based on
the definition of EOTS, we explore alternative solutions and select the
best solution according to the efficiency of the generated partial test
schedules.

By calculating and comparing the efficiencies of the alternative
partial test schedules (line 10), the best solution that obtains the
maximum EOTS is chosen. The maximum TSE, the chosen test set,
and the entire queue, are recorded in ηmax, TSbest, Qbest, respectively
(lines 12 through 14). The iteration terminates when all test sets in U
have been moved into Q. The obtained Qbest consists of all test sets in
the best SCO, in which the test sets will be considered for scheduling
(line 20).

Algorithm 3.2 schedules a queue of test sets and its pseudo-code is
depicted in Figure 3.14. Given a queue Q of test sets, the scheduler
takes the first unscheduled test sequence from every test set for
scheduling, in a round-robin fashion. More concretely, the strategy of
the scheduling algorithm is explained as follows. According to the
SCO given in Q, the scheduler considers one test set for scheduling at
a time. When considering each test set, the scheduler only schedules
the first unscheduled test sequence, and thereafter turns to consider the
next test set in Q. When one round is finished for all the test sets in Q,
the scheduler takes the next round to consider scheduling the test
sequences of all the test sets in the same SCO. This procedure repeats
until all test sequences are scheduled.

74

TEMPERATURE AWARE TEST SCHEDULING

63

Figure 3.11: Example of alternative solutions

Figure 3.12: Efficiency of a test schedule

Figure 3.13 depicts an example which illustrates how the
scheduler works. In the example, three test sets, TS2, TS1, and TS3, are
sorted in the SCO of {TS2, TS1, TS3} in Q. The test set TS2 has been
initially partitioned into three test sequences, TS21, TS22, and TS23. The
other two test sets, TS1 and TS3, are both partitioned into four test
sequences. The OSCO of all test sequences is {TS21, TS11, TS31, TS22,
TS12, TS32, TS23, TS13, TS33, TS14, TS34}, as indicated by the dashed
arrows.

Q

U

TS3 TS8 TS6

TS1 TS2 TS5 TS7TS4

75

CHAPTER 3

64

Figure 3.13: Illustration of the scheduling algorithm

In the pseudo-code of Algorithm 3.2 depicted in Figure 3.14, the
scheduling algorithm is constructed with two nested loops. The outer
loop (lines 21 through 34) selects the first unscheduled test sequence
for the current test set, while the inner loop (lines 22 through 33)
selects a test set for scheduling according its position in Q. The
algorithm terminates when all the test sequences have been scheduled.
Note that the function GetNumOfPar(TS) in line 21 takes a test set TS
as an input, and returns the number of test sequences that the test set
has been partitioned into.

When schedules a test sequence TSq,j (the j-th test sequence of the
q-th test set in Q, see line 23 through 27), the scheduler tries to
schedule it to the earliest available time moment tq,j (line 27). The
earliest time moment that a test sequence can be scheduled to is the
time moment when the required minimum cooling period succeeding
the precedent test sequence has finished. The minimum cooling period
dq,j is given by the initial partitioning scheme for the test set TSq (line
27).

Q

TS1 TS11 TS12 TS13 TS14

TS2 TS21 TS22 TS23

TS3 TS31 TS32 TS33 TS34

Queue
Head

Queue
Tail

SC
O

76

TEMPERATURE AWARE TEST SCHEDULING

65

Figure 3.14: Pseudo-code of the scheduling algorithm

The scheduler tries to schedule every test sequence to the earliest
available time moment, but there may not be sufficient space in the
2D plan to squeeze in the test sequence at the desired EATM. Figure
3.15 depicts such an example. It is not possible to squeeze the test
sequence TSq,j to the EATM tq,j, due to the space between the test-bus
width limit B and the area (in slashed lines) occupied by the scheduled
test sequences. Actually, in this example, the earliest time moment
that TSq,j can be scheduled to is tp.

Algorithm 3.2: Schedule(Queue of test sets :: Q)

21: for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop /* outer loop */
22: for (q = 1 to |Q|) loop /* inner loop */
23: Choose the q-th test set TSq in Q for scheduling;
24: if (TSq = ∅) then
25: Skip TSq and continue with the next test set;
26: else
27: Schedule the first unscheduled test sequence TSq,j
 to the earliest available time moment
 tq,j := GetFinishingTime(TSq,j-1) + dq,j
 where dq := InitialCoolingSpan(TSq);
28: if (Failed to schedule TSq,j to tq,j) then
29: Estimate the completion time te of the entire test set TSq
 by either postponing TSq,j or repartitioning all the
 unscheduled test sequences in TSq;
30: Choose the solution that has a smaller te and
 schedule the first unscheduled test sequence;
31: end if
32: end if-then-else
33: end for
34: end for

77

CHAPTER 3

66

Figure 3.15: A scheduling constraint example

When such scheduling constraints are encountered, two alternative
solutions are proposed. One solution is to postpone the entire test
sequence to a time moment that it can be successfully scheduled to.
The other solution is to split the test sequence into smaller pieces such
that the first piece can be squeezed into the available area. Figure 3.16
illustrates both solutions for the same example given in Figure 3.15,
where the entire test sequence TSq,j cannot be scheduled to the time
moment tq,j. In Figure 3.16(a), the solution is to postpone the entire
test sequence TSq,j to time moment tp, which means squeezing TSq,j
into the dark grey rectangular area A1 that the dashed arrow points
to. Figure 3.16(b) illustrates the other solution, where TSq,j is split into
two pieces which can fit into the dark grey rectangular areas S1 and S2,
respectively.

Both solutions can result in long test schedules. The first solution,
which postpones the entire test sequence, also delays the succeeding
test sequences. This can results in delaying the completion of the
entire test set. As illustrated in Figure 3.16(a), the succeeding test
sequence TSq,j+1 is delayed and finishes at time moment te. The second
solution, which splits the test sequence into smaller pieces, generates
more partitions and introduces more time overheads. In order to avoid
these drawbacks, we repartition all the unscheduled test sequences
from the same test set, such that the total number of test sequences
will not increase dramatically due to the splitting. This is illustrated
in Figure 3.16(b). After splitting TSq,j into two pieces which fits in S1

78

TEMPERATURE AWARE TEST SCHEDULING

67

and S2 respectively, we also repartition the succeeding test sequence
TSq,j+1 such that its two pieces fit into S3 and S4. Note that due to the
splitting of TSq,j and TSq,j+1, time overheads (denoted with TO) are
added between the repartitioned test sequences.

As demonstrated above, both solutions can be adopted when
scheduling a test sequence. In order to decide which solution should
be employed, we estimate the completion time te for the entire test set
(line 29), by assuming that all the unscheduled test sequences of this
test set can be scheduled to their earliest available time moments. The
solution that results in an earlier estimated completion time is chosen
(line 30). In the example given in Figure 3.16, the second solution
should be chosen, since it leads to a smaller te. The scheduling
algorithm terminates when all test sequences of all test sets in Q have
been scheduled (line 34).

Figure 3.16: Two alternative solutions to deal with scheduling constraint

(a) Postponing the entire test sequence

(b) Splitting the test sequence into smaller pieces

79

CHAPTER 3

68

3.8.3 Experimental Results
ISCAS’89 benchmark circuits are used as the cores in the SoC designs
for our experiments. The number of cores in the SoC designs varies
from 12 to 78.

The first group of experiments shows the impact of relaxing the
regularity of test sequences and cooling periods on the TAT of the
generated test schedules. The results of the first group of experiments
are shown in Table 3.3.

Table 3.3: FLSA vs. ESLA and 2PSA

of
Cores

ELSA 2PSA FLSA TAT Reduction

TAT CPU
Time(s) TAT CPU

Time(s) TAT CPU
Time(s)

from
ELSA

from
2PSA

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6%

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3%

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1%

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7%

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6%

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9%

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2%

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6%

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8%

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9%

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9%

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2%

AVG 4920.75 0.15 4294.67 0.15 3486.67 268.24 30.6% 20.5%

We compare our heuristic algorithm with two other scheduling

algorithms. The first algorithm employs a fixed SCO in which all the
test sets are sorted decreasingly according to the length of test sets in

80

TEMPERATURE AWARE TEST SCHEDULING

69

their initial partitioning schemes. Then it schedules the entire test set
to the earliest available time moment, according to the obtained SCO.
When scheduling the test sequences of a test set, it keeps the
regularity of the partitions and cooling periods given by the initial
partitioning scheme. For convenience, we call this algorithm “equal-
length scheduling algorithm” (ELSA).

The second algorithm also employs the fixed SCO according to
the lengths of partitioned test sets (longest first). However, different
from the ELSA, it schedules a test set in two phases. In the first phase,
it schedules only the first partition of all test sets, according to the
obtained SCO. This is due to the fact that the first test sequence is
usually much longer than the other ones from the same test set in the
initial partitioning scheme (see Figure 3.8). In the second phase, it
schedules all the remaining test sequences of every test set, according
to the same SCO. Similar to the ELSA, it schedules test sequences to
the earliest available time moment. When scheduling the test
sequences in the second phase, it keeps the regularity of all test
partitions and cooling periods given in the initial partitioning scheme.
Moreover, the first cooling period succeeding the first test sequence
may not be shorter than that in the initial partitioning scheme. This
means that by separating the scheduling of a test set into two phases,
the restriction on partitioning regularity is slightly relaxed, thus this
algorithm has a higher flexibility on test set partitioning schemes than
the ELSA. For convenience, we call the second scheduling algorithm
“two-phase scheduling algorithm” (2PSA).

Compared to the ELSA and 2PSA, the proposed heuristic
algorithm has the highest flexibility on test set partitioning schemes,
since it allows repartitioning of test sets and allows arbitrarily
increasing lengths of cooling periods in test scheduling. For
convenience, we call the proposed heuristic algorithm “flexible-length
scheduling algorithm” (FLSA).

In Table 3.3, column 1 lists the number of cores used in the SoC
designs. Columns 2, 4, and 6 list the TATs of the test schedules
generated for the corresponding SoC designs, by using the ELSA,

81

CHAPTER 3

70

2PSA, and FLSA, respectively. Columns 3, 5, and 7 list the CPU
times for executing the corresponding algorithms. Columns 8 and 9
show the percentage of the TAT reduction by using the FLSA versus
the ELSA and 2PSA, respectively. It can be seen that by eliminating
restrictions on the regularity of partitioning schemes, the TAT is in
average 30.6% and 20.5% shorter than that from the ELSA and 2PSA,
respectively.

The second group of experiments evaluates the efficiency of test
schedules generated by the proposed heuristic algorithm FLSA. In this
group of experiments, we compare the FLSA with two other heuristic
algorithms, a straight-forward algorithm (SFA) and a simulated-
annealing-based algorithm (SABA). For this group of experiments, we
assume the same flexibility for all the three algorithms, i.e. all of them
employ flexible partitioning of test sets and arbitrary increasing length
of cooling periods.

All the three algorithms employ Algorithm 3.2 as the scheduler.
The only difference between them is how they generate the SCO for
the test sets. The SFA sorts all test sets decreasingly by the lengths of
the entire test sets with the initial partitioning schemes. According to
the obtained SCO, the scheduler chooses each test set and schedules
the first unscheduled test sequences to the earliest available time
moment, until all test sequences of every test set are scheduled.

The SABA employs Algorithm 3.2 to schedule the test sequences,
while the SCO of the test sets is generated based on a simulated-
annealing strategy. When a randomly generated SCO is obtained, the
scheduler is invoked to schedule the test sequences according to the
current SCO. During iterations, the best SCO that leads to the shortest
test schedule is recorded and the algorithm returns this recorded
solution when the stopping criterion is met.

The results of the second group of experiments are shown in Table
3.4. Column 1 lists the number of cores used in the SoC designs.
Column 2 lists the TAT of the test schedule generated by SFA is
employed, and column 3 lists the execution time to obtain the test
schedules. Similarly, columns 4 and 5 are the TAT and execution time

82

TEMPERATURE AWARE TEST SCHEDULING

71

for the FLSA, respectively. Columns 6 and 7 list the TAT and
execution time for the SABA. In columns 7 and 8, the percentage of
TAT reduction by using the FLSA is listed, compared to the TAT by
using the SFA and SABA, respectively.

It can be seen that, when using the FLSA, the TAT is in average
13.4% shorter than that from the SFA. The TAT from FLSA is in
average 2.9% longer than that from the SABA which is suppose to
obtain the solution as close to the optimum as possible but requires
much longer optimization times.

Table 3.4: FLSA vs. SFA and SABA

of
Cores

SFA FLSA SABA TAT Reduction

TAT CPU
Time(s) TAT CPU

Time(s) TAT CPU
Time(s)

from
SFA

from
SABA

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6%

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5%

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8%

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5%

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8%

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3%

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7%

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9%

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3%

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1%

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3%

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2%

AVG 4006.33 0.01 3486.67 268.24 3391.25 1128.18 13.4% -2.9%

83

CHAPTER 3

72

3.9 Summary
In this chapter, we have presented optimization approaches to
minimize the TAT for core-based systems with temperature limits for
each CUT and a test-bus width limit. Based on the proposed TSPI
technique, we use a CLP model to obtain the optimal solution to the
test time minimization problem. Nevertheless, the optimization time
of the CLP-based approach is excessively long for large SoC designs.
Therefore, we propose a fast heuristic approach to solve the same
problem. Based on the initial partitioning scheme, the proposed
heuristic algorithm utilizes the flexibility of repartitioning the test
sequences and enlarging the cooling periods between test sequences,
and generates efficient test schedules. Experimental results have
shown the efficiency of the proposed approaches.

84

Chapter 4
Test Scheduling with

Lateral Thermal Influence

This chapter addresses the temperature aware test time minimization
problem for the SoCs in which the lateral thermal influence between
cores is significant and therefore cannot be ignored. We employ a fast
and accurate thermal simulator, ISAC, to obtain instantaneous
temperature values of the cores, which are further used to guide the
test scheduling algorithm to generated the shortest thermal-safe test
schedules.

4.1 Lateral Thermal Influence
In Chapter 3, it is assumed that lateral heat flows between cores can be
neglected. This assumption fits a category of SoCs that have relatively
large area size and small thickness of the silicon die. However, when
the technology scales, the area size decreases while the die thickness
is not reduced in the same order of magnitude. This leads to a
relatively large contact area between cores. The mismatch of the
decreasing rate in geometrical size at the horizontal and vertical

85

CHAPTER 4

74

dimensions causes the lateral heat flow taking a higher proportion in
the overall heat flow, and therefore cannot be ignored. In this chapter,
we take into account the thermal influences between cores and
develop a new test scheduling technique in order to guarantee the
thermal safety in this new context.

Figure 4.1 depicts a result of thermal simulation performed for an
SoC with its die thickness equal to 200 micrometers. The SoC consists
of two adjacent cores, both of which have an equal area size. In this
experiment, core 1 is tested for a period of 400 microseconds while
core 2 remains inactive. It can be seen that core 2 is passively heated
by core 1 and the temperature of core 2 increases by 19 degrees. This
experimental result illustrates the phenomenon that the temperature of
an inactive core is elevated by the active cores in the neighborhood. It
indicates that the lateral thermal influence between neighborhood
cores should be taken into account when generating a thermal-safe test
schedule for this type of SoCs.

As shown in Figure 4.1, due to the significant lateral thermal
influence, an inactive core at a lower temperature can be passively
heated by those neighbors that have higher temperatures and therefore
the temperature of the inactive core is elevated. The degree of the
temperature elevation on the inactive core depends on the floor plan,
the number of active cores in the neighborhood, and how long the
tests last for the active cores in the neighborhood. The temperature
elevation on an inactive core is larger, if the active cores are closer to
the inactive core, or there are more active cores in the neighborhood,
or the tests last longer on the active cores in the neighborhood.

When taking into account the lateral thermal influence and the
resulted temperature elevation effect for test scheduling, the spatial
distribution of cores and their temperatures, as well as the temporal
relations between individual test applications are critically important.
They make the thermal-safe test scheduling problem highly complex.

86

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

75

Figure 4.1: Thermal simulation result showing significant lateral
thermal influence between two adjacent cores of an SoC design

In Chapter 3, we propose Algorithm 3.1 which determines the
initial test set partitioning schemes according to the thermal
simulation results of individual cores, and generates the test schedule
with minimized TAT. However, Algorithm 3.1 cannot be directly used
to solve the temperature aware test time minimization problem when
the lateral thermal influence cannot be ignored. Figure 4.2 depicts
thermal simulation results for a test schedule generated by Algorithm
3.1. It can be seen that the temperature profiles of the CUTs exceed
the temperature limit at several points. This example illustrates that
Algorithm 3.1 no longer guarantees the thermal safety in the new
context where the lateral thermal influence becomes significant.

 35
 45
 55
 65
 75
 85
 95

 105
 115
 125
 135
 145
 155

0.0E+00 2.0E-04 4.0E-04
 35
 45
 55
 65
 75
 85
 95
 105
 115
 125
 135
 145
 155

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

Core 1
Core 2

87

CHAPTER 4

76

Figure 4.2: Test schedule generated by Algorithm 3.1 leads to violation
of the temperature limit due to the significant lateral thermal influence

4.2 Stop-Cooling Temperature
As shown in Figure 3.3, when TSPI technique is used for temperature
aware SoC testing, the testing and cooling periods alternate for every
core. The testing periods are interrupted at the temperature limit TH,
while the cooling periods are stopped at a relatively lower temperature
level. In the thesis, we referred to such a lower temperature level at
which the cooling periods are stopped as the stop-cooling temperature
(SCT), denoted with TC. Normally, the temperature curve of a CUT
oscillates between TC and TH. The gap between TC and TH has a large
impact on the length of both the cooling periods and the test
sequences. Figure 4.3 illustrates a scenario where the test schedule for
one of the cores in an SoC varies with respect to different TC used for
test scheduling. Note that, in Chapter 3, we use a different technique
rather than the STC to generate the initial partitioning schemes.

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

0.0E+00 1.5E-04 3.0E-04
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

TH

Core 1
Core 2
Core 3
Core 4

88

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

77

Figure 4.3: Alternative test schedules w.r.t. various SCTs

In Figure 4.3, three different test schedules are depicted, which are
denoted with SCH1, SCH2, and SCH3, respectively. The corresponding
TC and TATs are denoted with TC,1 , TC,2, TC,3 and TAT1, TAT2, TAT3,
respectively. Comparing the temperature profiles of SCH2 and SCH3,
we find out that SCH3 uses a higher SCT and has a longer TAT than
SCH2. The main reason why a higher SCT can lead to a longer test
schedule is the time overhead introduced when the test controller stops
one test and start or resume another test. The detailed reason for the
time overhead is explained in Section 3.1. It can be seen that SCH3 has
shorter but more test sequences than SCH2, indicating that SCH3 has a
larger amount of time overhead.

On the other hand, when comparing the temperature profiles of
SCH1 and SCH2, we can see that SCH1 uses a lower SCT and also has
a longer TAT than SCH2. This means that a decreased SCT may not
lead to a shorter TAT, although the amount of time overhead is
reduced due to the decreased number of test sequences. This is

 45

 75
 80
 85
 90

0.0E+00 1.0E-04 2.0E-04

 45

 75
 80
 85
 90

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

TAT1 = 2.4897E-4
TAT2 = 1.9513E-4
TAT3 = 2.0216E-4

TAT2 TAT3 TAT1

TH
SCH1 w.r.t. TC,1
SCH2 w.r.t. TC,2
SCH3 w.r.t. TC,3

89

CHAPTER 4

78

because the temperature of a core decreases much more slowly at
lower temperature levels, and therefore the cooling periods are much
longer when a lower SCT is used. If the increase in the length of
cooling periods is larger than the decrease in the amount of time
overhead, a longer TAT is expected. Thus, in order to generate
efficient test schedules, we should use different SCTs to explore
alternative TSPI schemes.

4.3 Test Scheduling Approaches
In this chapter, we aim to minimize TATs by generating efficient test
schedules with temperature and test-bus width limits. The temperature
aware test time minimization problem in the context of this chapter is
exactly the same as Problem 3.1 defined in Section 3.2. The test
architecture and system model are the same as those presented in
Section 3.3 and Section 3.4, respectively. In order to avoid
overheating the CUTs during test, the TSPI technique described in
Section 3.1 is employed.

We first propose a straight-forward approach (SFA) based on
Algorithm 3.1. We also propose a more efficient technique, a thermal-
simulation driven test scheduling approach (SDSA), to solve the
addressed test time minimization problem. Due to the temporal and
spatial thermal interdependencies [Skadron, et al. 2004], [Huang, et al.
2004], coarse grained thermal models cannot provide accurate results
for the ICs which has significant lateral thermal influence between
cores. In this chapter, in order to obtain accurate instantaneous
temperature values with relatively low computational cost, we employ
a fast and accurate thermal simulator, ISAC which considers the
lateral thermal influences between cores. In the SDSA, a FSM model
is developed to control the partitioning and interleaving process, based
on which a heuristic algorithm is developed to generate the shortest
thermal-safe test schedule. The heuristic algorithm explores
alternative test schedules with respect to different SCTs.

90

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

79

4.3.1 Straight-Forward Approach
In order to solve the temperature aware minimization problem with
consideration of the lateral thermal influence between cores, we first
propose a straight-forward approach (SFA) which is based on
Algorithm 3.1. As demonstrated in Section 4.1, Algorithm 3.1 does
not generate thermal-safe test schedules for the SoCs with significant
lateral thermal influence. However, if we reduce the originally
imposed temperature limit to sufficiently lower value and use it in
Algorithm 3.1, the generated test schedule can be thermal safe.

We denote the originally imposed temperature limit with TH,orig,
the new temperature limit with TH,new, and the maximum temperature
occurred in the thermal simulation result with Tmax. The difference
between the new temperature limit and the originally imposed
temperature limit, denoted with d, is defined as

d = Tmax – TH,orig (4.1)
and the new temperature limit is given by

TH,new = TH,orig – d (4.2)
In the SFA, Algorithm 3.1 is invoked with TH,new and a new test

schedule is generated. A thermal simulation is performed again to
check if the new test schedule is thermal safe. This procedure is
repeated until the first thermal-safe test schedule is generated.

The test schedule generated in this way can be excessively long
because the adjusted temperature limit may be lower than needed. In
order to further reduce the TAT, we use the same procedure to
increase the imposed temperature limit until Tmax is sufficiently close
to but smaller than TH,orig. The flowchart of the SFA is depicted
in Figure 4.4, where D (D > 0) denotes a given threshold for d, m
denotes the number of iteration steps, and M denotes a given threshold
for the total number of iteration steps.

91

CHAPTER 4

80

Figure 4.4: Straight-forward approach

4.3.2 Simulation-Driven Scheduling
Approach
Although the SFA can generate thermal-safe test schedules, it is not
efficient due to the long TAT of the generated test schedules as well
as the long execution time of the algorithm. Therefore, we propose a
simulation-driven scheduling approach (SDSA) which generates
thermal-safe test schedules with short TAT. The SDSA performs
thermal simulation to obtain instantaneous temperature values which
are further used in a FSM model to guide the TSPI and test scheduling.
The developed FSM model is depicted in Figure 4.5.

Begin

m := 1 ; TH,new := TH,orig

Invoke Algorithm 3.1 with TH,new

Thermal simulation and obtain Tmax

TH,new := TH,new – d

d � 0 ?

m := m + 1

|d| � D or m > M ?

Output thermal-safe test schedule

End

N

N
Y

Y

d := Tmax – TH,new

92

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

81

Figure 4.5: FSM model for the SDSA

There are three states defined for a core, namely inactive, active,
and finished, corresponding to the status that the core is not tested, the
core is tested, and the test for the core is finished, respectively. When
test scheduling starts, we assume that all cores are at the inactive state
and their temperatures are equal to the ambient temperature. When a
core is selected (see Algorithm 4.1 in Figure 4.7) for test and the
required test-bus width is allocated for the test, a flag start_test is set
to 1 and the state of the core moves from inactive to active. While test
patterns are applied to the core, the temperature of the core, denoted
with TEM, increases, and the state of the core remains active until the
temperature reaches the temperature limit TH or the test is finished. As
soon as the test is finished, the state of the core moves from active to
finished. Otherwise, when the core temperature reaches TH, the core
state moves from active to inactive and remains unchanged until the
core temperature decreases to the stop-cooling temperature TC, from
which the core state moves repeatedly between active and inactive
until the test is finished. The test scheduling algorithm terminates
when all cores are at the finished state. Figure 4.6 shows a plotted
thermal simulation result of a test schedule generated by using the
FSM model for an SoC with 4 cores.

activeinactive

finished

TEM = TH

TEM <= TC &
start_test = 1

TEM <= TH

test completed

TEM >= TC ||
start_test = 0

93

CHAPTER 4

82

Figure 4.6: Thermal-safe test schedule for an SoC consisting of 4 cores

Using the FSM to guide the test scheduling can guarantee the
thermal safety for the generated test schedules. However, the
scheduling of test sequences should also take into account the test-bus
width limit and the TAT. This is solved by using a heuristic algorithm,
denoted with Algorithm 4.1. Its pseudo-code is depicted in Figure 4.7.

Algorithm 4.1 takes a queue of all inactive cores ready for test as
an input. It allocates the required test-bus width to some of the cores
and changes their states to active. The algorithm first sorts the queue
decreasingly according to the number of remaining test patterns
divided by the current core temperature (line 2). This means that a
higher priority is given to a core which has a larger number of
remaining test patterns and a lower temperature. In this way, the
physical parameters including the sizes of cores and the distances
between cores have been taken into account, because the temperature
values of the cores are given by the thermal simulator which considers
the lateral thermal influence. Then the heuristic algorithm allocates the
required test-bus width to the cores according to their priorities until
there is no sufficient test-bus width to allocate or all cores have been
activated for test. (lines 3 through 13).

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

0.0E+00 1.0E-04 2.0E-04
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

Te
m

pe
ra

tu
re

 (C
)

Test Application Time (sec)

Temperature Profiles

TH

Core 1
Core 2
Core 3
Core 4

94

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

83

Figure 4.7: Pseudo-code of heuristic algorithm activating cores for test

The overall strategy of the SDSA is illustrated in Figure 4.8. The
test scheduling algorithm iteratively explores alternative solutions by
using different SCTs. In every iteration step, a thermal-safe test
schedule is generated by invoking Algorithm 4.1 with a new SCT,
denoted with TC,new. A counter k is used to count the number of
consecutive iteration steps in which the reduction of TAT is not larger
than a given threshold ε (ε > 0). If the TAT of the newly generated test
schedule is less than the minimal TAT of the best solution obtained
throughout the previous iteration steps, the current solution is recorded
as the best solution. Further, if the reduction of TAT is greater than ε,
counter k is reset to 0. In the cases that the current TAT is larger than
the minimal TAT or the reduction of TAT is less than ε, counter k is
incremented by 1. This procedure repeats until k is larger than a given
threshold K. Thereafter the optimized test schedule is output and the
test scheduling process terminates.

Algorithm 4.1: Activate(Queue of inactive cores ready for test :: Q)

01: if (IsNotEmpty(Q)) then
02: Sort Q decreasingly according to
 (#_of_rem_test_patt × core_defect_prob / curr_tem);
03: while (GetRemainingBandwidth() > 0 & IsNotEmpty(Q)) loop
04: CurrentCore = GetFirstElement(Q);
05: ReqBwd = GetBandwidthRequirement(CurrentCore);
06: if (ReqBwd <= GetRemainingBandwidth()) then
07: Move the state of CurrentCore to active;
08: SubtractBandwidthRemainder(ReqBwd);
09: Remove(CurrentCore, Q);
10: else
11: break loop;
12: end if-then-else
13: end while
14: end if

95

CHAPTER 4

84

Figure 4.8: Overall solution strategy of the SDSA

By checking the temperature value of each core at every
simulation cycle, the test scheduling algorithm restricts the core
temperature between TC and TH, after the core temperature is raised
from the ambient temperature to TC. With respect to different SCTs,
alternative test schedules based on various TSPI schemes are
explored. Figure 4.9 depicts the TATs with respect to different SCTs
for an SoC consisting of four cores. The best TC found by the heuristic
algorithm is 84.065°C and the corresponding TAT is 2.4629×10-4
seconds.

Begin

Set a new SCT TC,new

TATcurr < TATmin ?

k := k + 1

k > K ?

Output test schedule

End

Thermal-simulation driven test scheduling

Record current solution as the best solution

TATmin � TATcurr > � ?

k := 0

N

Y

Y

Y

N

N

96

TEST SCHEDULING WITH LATERAL THERMAL INFLUENCE

85

Figure 4.9: TAT vs. SCT

4.4 Experimental Results
ISCAS’89 benchmark circuits are used as cores of the SoC designs for
our experiments. The numbers of cores in the SoC designs varies from
4 to 36. The power consumption of a test is obtained through the same
method mentioned in Section 3.7.3. With the obtained power
consumption values, the thermal simulator ISAC is used to obtain
instantaneous temperatures in test scheduling. The imposed
temperature limit is 90°C, and the assumed frequency of test
application is 100MHz.

We compare the SDSA with the SFA. The experimental results
are shown in Table 4.1. Column 1 lists the number of cores used in the
SoC designs. Columns 2 and 4 list the TATs of test schedules
generated for the corresponding SoC designs, using the SFA and

2.2E-04

2.3E-04

2.4E-04

2.5E-04

2.6E-04

2.7E-04

2.8E-04

2.9E-04

3.0E-04

3.1E-04

3.2E-04

 72 74 76 78 80 82 84 86 88 90 92

Te
st

 A
pp

lic
at

io
n

Ti
m

e
(s

ec
)

Stop-Cooling Temperature (C)

TAT vs. SCT

OPTIMUM
(84.065, 2.4629E-04)

Alternatives
Optimum

97

CHAPTER 4

86

SDSA, respectively. Columns 3 and 5 list the execution times of
corresponding algorithms. Column 6 shows the percentage of the TAT
reduction by using the SDSA versus SFA. It can be seen that by using
the SDSA, the TAT is reduced by about 25% to 61% for different SoC
designs. The execution times of the SDSA are usually shorter than
those of the SFA. This is because, in the SFA, each time when
Algorithm 3.1 is invoked, a thermal simulation is performed for every
core in order to generate the initial partitioning schemes according to
the new temperature limit.

Table 4.1: SDSA vs. SFA

of Cores
SFA SDSA

TAT
Reduction TAT (s) CPU Time

(s) TAT (s) CPU Time
(s)

6 3.9129E-4 1078 2.1013E-4 1118 46.298%

8 3.2827E-4 4122 2.4474E-4 1222 25.446%

12 4.4911E-4 3118 2.3117E-4 1265 48.527%

18 3.6927E-4 7458 2.0832E-4 1193 43.586%

24 4.5970E-4 6681 2.1004E-4 1259 54.309%

30 5.4901E-4 12705 2.2601E-4 1357 58.833%

36 5.7715E-4 11760 2.2360E-4 1400 61.258%

4.5 Summary
This chapter presents a thermal-safe test scheduling technique to
minimize the TAT of SoC with significant lateral thermal influence.
The test scheduling algorithm uses a FSM model and the
instantaneous temperature values obtained from thermal simulations
to partition, interleave, and schedule the test sets. The TAT is
minimized such that the temperature limit and the test-bus width limit
are satisfied.

98

Chapter 5
Multi-Temperature

Test Scheduling

This chapter addresses the multi-temperature test scheduling issue.
We propose a test scheduling technique that generates the shortest test
schedules such that the tests are applied only when the temperature of
CUT is within a given interval and the test-bus width limit is satisfied.
We employ the TSPI technique and the heating patterns in order to
ensure the temperature of a CUT is within the given interval whenever
the test is applied. In test scheduling, a thermal simulator ISAC is used
to obtain instantaneous temperatures of the CUTs and a FSM model is
used to manage the temperatures of the cores.

5.1 Problem Formulation
We assume the same test architecture as the one described in
Section 3.3. The system model is the same as that in Section 3.4. In
order to sensitize temperature-dependent defects, we need to apply
tests to an SoC at different temperature spectra. Each temperature
spectrum is specified as a given temperature interval I = (TL, TH),

99

CHAPTER 5

88

where TL and TH are the temperature lower limit and upper limit,
respectively. In this chapter, it is assumed that a test should be applied
only when the temperature of core Ci (i = 1, 2, ... , n), denoted with Ti,
is within the temperature interval I.

The problem we address in this chapter is to minimize the TAT by
generating an efficient SoC test schedule such that the following two
constraints are satisfied: (1) the amount of test-bus width required by
the concurrent tests is less than or equal to the test-bus width limit; (2)
a test has to be applied when and only when the temperature of the
core is within the given temperature interval. The problem formulation
is given in Figure 5.1. A multi-temperature testing problem can be
further formulated as a set of such test scheduling problems associated
with different temperature intervals.

Figure 5.1: Problem formulation of multi-temperature test scheduling

Problem 5.1: Minimization of TAT for a given temperature interval

Input:
An SoC together with the physical configuration F of the die and
package as well as the floor plan of the SoC;
A set of test set for each core {TSi | i = 1, 2, ... , n};
A set of required test-bus width for each test {Wi | i = 1, 2, ... , n};
Test-bus width limit B;
Temperature upper limit TH and temperature lower limit TL.

Output:
A test schedule with the minimal test application time.

Constraints:
1. At any time moment t before all tests are completed, the total amount
of allocated test-bus width W(t) is less than or equal to test-bus width
limit B, i.e. ∀t, W(t) ≤ B, where W(t) ::= ΣjWj(t);
2. At any time moment u when a test is applied to core Ci, the
instantaneous temperature Ti(u) of the core Ci is less than the
temperature upper limit TH, and greater than the temperature lower limit
TL, i.e. TL < Ti(u) < TH.

100

MULTI-TEMPERATURE TEST SCHEDULING

89

5.2 Test Scheduling within a
Temperature Interval
In order to sensitize faults at a certain temperature level, a test should
be applied to the core only when its temperature is within a
temperature interval between an upper limit and a lower limit.
Whenever the temperature of a core exceeds the upper limit, the test
should be stopped and the core is turned into an idle state in which no
dynamic power is dissipated and the core temperature decreases.
When the temperature of the core decreases to a certain level, the test
can be resumed if the test bus has sufficient width to transport the test
data for the core. Thus, we use the TSPI technique presented in
Section 3.1 for the multi-temperature SoC test scheduling.

5.2.1 Heating Sequence
Ideally, we expect that the temperature of a core is always maintained
within the given temperature interval whenever a test is applied.
However, this condition does not always hold in reality. Sometimes,
the core temperature may decrease below the lower limit of the
temperature interval. One reason for the decrease in the temperature of
a core is that the test patterns consume insufficient power and the
amount of heat generated by applying the test patterns is less than the
amount of heat dissipated by the physical cooling system. Another
reason is that no sufficient test-bus width is available for a test and it
has to be postponed until the test-bus width requirement is satisfied.

If the problem of temperature decrease is not properly addressed
in test scheduling, it can cause invalid test schedules where tests may
be applied at temperatures below the lower limit and cannot screen the
targeted defects. In order to solve this problem, we apply a sequence
of dummy patterns that consume sufficiently high power and raise the
core temperature towards the lower limit TL. We refer to such a high-
power test pattern as a heating pattern (HP) and a sequence of heating

101

CHAPTER 5

90

patterns as a heating sequence (HS). It should be noted that
transporting a heating pattern through the test bus requires the same
amount of test-bus width as what transporting a test pattern requires.

The minimal length of a heating sequence (denoted with Lmin)
preceding a test sequence is the number of heating patterns needed to
raise the core temperature to TL. If the test sequence following a
heating sequence does not consume sufficiently high power and
causes the core temperature to decrease, the required length of the
heating sequence (denoted with Lreq) should be larger than Lmin. The
actual value of Lreq depends on the temperature profile of the
succeeding test sequence. Figure 5.2 shows the temperature profiles of
a core stimulated with a heating sequence and a test sequence
consecutively, depicted with doted and solid curves, respectively. The
core temperature is Ts when the HS starts. Three lengths are chosen
for the HS, namely L1, L2, and L3, while the length of the succeeding
test sequence is M. The HS is too short in Figure 5.2(a) and too long
in Figure 5.2(b), causing the core temperature going out of the interval
(TL, TH) during the test application period. The HS is given a proper
length in Figure 5.2(c) such that the core temperature reaches a
medium value (denoted with TM) between TL and TH before the test
starts and remains inside the interval during the test application period.

Figure 5.2: The impact of heating sequence length

(a) (b) (c)

Temperature

L3

TH

TL

Time

TM

ML1 M L2 M
TS

102

MULTI-TEMPERATURE TEST SCHEDULING

91

In order to avoid frequently violating the temperature limits due to
improperly determining the lengths of heating sequences, we propose
a preprocessing approach for each test set S, before we perform the
test scheduling algorithm. We define an observation frame (OF) for
each test pattern of a test set, and the OF contains D consecutive test
patterns. For each OF, we calculate the average power consumption
POF of all test patterns in the OF. We categorize an observation frame
to be a low-power frame (LPF) if its POF is smaller than a threshold
power value PTHD, or a high-power frame (HPF) if otherwise. PTHD is
defined as a power consumption value that ultimately causes the core
temperature to reach a steady-state at TM. We perform a series of
steady-state temperature analysis to find PTHD.

Before scheduling a test sequence, we must determine the required
length Lreq of its preceding HS. If the OF associated with the first test
pattern of the test sequence is a LPF, Lreq should be equal to the
number of heating patterns that heats the core to TM. Otherwise, Lreq
should be equal to Lmin.

5.2.2 FSM for Thermal Management in Test
Scheduling
As a part of the test scheduling algorithm, we develop a finite state
machine to control the states of cores. A core has the following states:
heating, testing, cooling, waiting, and complete, defined as follows.

Testing: the core is tested within the temperature interval (TL, TH).
Cooling: the core is passively cooled down without any test

pattern applied, and its temperature is decreasing from TH towards TL.
Heating: the core is actively heated by heating patterns and its

temperature is increasing.
Waiting: the core is waiting for allocation of sufficient amount of

test-bus width for its test and the temperature of the core is usually
below TL.

Complete: the core has finished its test.

103

CHAPTER 5

92

Figure 5.3 depicts the temperature profile of a core and illustrates
the relation of core state and temperature. When the test scheduling
process starts, we assume that all cores are at the waiting state and
their temperatures are equal to the ambient temperature TA (TA < TL).
Each core is associated with a dedicated flag start, indicating that the
core is chosen for test if it is equal to 1, or is not chosen for test if
otherwise. A core remains within the waiting state until it is selected
for test. From the waiting state, a core can move to the heating state if
its temperature T is below TL, or to the testing state if T is already
within the imposed temperature interval. In the heating state, a core is
applied with heating patterns and its temperature increases to TL or TM,
depending on whether the observation frame of the succeeding test
pattern is an HPF or LPF, respectively. As soon as the core
temperature T exceeds TL or TM, the state of the core is changed to the
testing state. The core stays in the testing state as long as its
temperature T remains inside the temperature interval if the test is not
finished. Otherwise, the core moves to the cooling state when T
exceeds TH, or the waiting state when T falls below TL, or the complete
state when the test is finished. In the cooling state, a core is supposed
to be cooled down until T reaches to a stop-cooling temperature TC
(TC ≥ TL), after which the core moves to the testing state if it is
selected for test, or remains in the cooling state until it is moved to the
waiting state if it is not selected for test. The entire SoC test finishes
after all cores reach the complete state. Figure 5.4 illustrates the five
states and the transitions between the states.

It should be noted that a cooling period ends at the stop-cooling
temperature TC where TC ≥ TL. The purpose of introducing TC is to
further reduce the TAT, especially when cooling a core to TL needs
substantially long time. We have developed a heuristic algorithm, to
search for the best TC between TL and TH. The heuristic algorithm is an
iterative algorithm that sets a new TC for each iteration step and
invokes the proposed test scheduling algorithm to calculate the TAT
with respect to the current TC. The heuristic algorithm returns the TC
with which the TAT is the shortest among all iterations.

104

MULTI-TEMPERATURE TEST SCHEDULING

93

Figure 5.3: Core states w.r.t. changes of temperatures

Figure 5.4: FSM model for multi-temperature test scheduling

5.2.3 Test Scheduling Algorithm
We propose a test scheduling algorithm to generate a test schedule
that meets the temperature and test-bus width requirements. The test
scheduling approach employs the thermal simulator ISAC to obtain
instantaneous temperature values which are used by the proposed

cooling

waiting heating

testing

complete

T ≥ TH

start = 1 & T ≤ TL

start = 0 &
T > TL

start = 0 & T ≤ TL

start = 1 & T < TH &
TL < T (HPF) or
TM < T (LPF)

start = 0

start = 1 & TC < T < TH

start = 1 &
T ≤ TL (HPF) or
T ≤ TM (LPF)

Finished

start = 1 &
TL < T < TH

T ≤ TL

start = 1 &
TL < T < TH

Temperature

heat

test

cool

test

cool

wait
heat

test

cool

wait

test

TH

TL

complete

Time

TM
TC

105

CHAPTER 5

94

finite state machine to control state transitions for every core. The test
scheduling algorithm uses the FSM model to update the state of every
core at every simulation cycle, and maintains a queue of cores in the
waiting state in order to activate some cores for test, if available. The
test scheduling algorithm stops when all cores reach the complete state.

We develop an algorithm, denoted with Algorithm 5.1, to activate
cores for test, and its pseudo-code is depicted in Figure 5.5. The
algorithm takes the queue (Q) of all cores in the waiting state as an
input. According to the ratio r of the number of remaining test patterns
to the current temperature of each core (line 1), Algorithm 5.1 selects
as many cores as possible to start/resume their tests, if their test-bus
width requirements can be met. A core that has a relatively larger
number of remaining test patterns and is relatively colder gets a higher
value of r and hence is given higher priority to be scheduled for test.
As such, the scheduling algorithm takes into account the impact of the
distance between cores on the temperature, since a core located further
away from a hot core is more likely to have a lower temperature than
the direct neighbors of the hot core. By allocating the required test-bus
width to the selected cores (line 5) and changing their states to testing
(line 6), the algorithm activates as many cores as possible for test.

Figure 5.5: Pseudo-code of the algorithm activating cores for test

Algorithm 5.1: Activate(Queue of cores in the waiting state :: Q)

01: Sort Q decreasingly according to r
 where r ::= # of remaining test patterns / core temperature
02: C = GetFrontElement(Q);
03: while (RemainingBusWidth() > 0 & IsNotEmpty(Q)) loop
04: if (RequiredBusWidth(C) ≤ RemainingBusWidth()) then
05: AcquireBusWidth(C);
06: ChangeState(C, testing);
07: RemoveElement(C, Q);
08: end if
09: C = GetNextElement(Q);
10: end while

106

MULTI-TEMPERATURE TEST SCHEDULING

95

5.3 Experimental Results
We select ISCAS’89 benchmark circuits as cores of 6 different SoCs.
The number of cores in these SoCs varies from 4 to 42. The cores
have different physical sizes, depending on their complexity. We use
the same power estimation method as the one used for experiments
presented in Section 3.7.3 to calculate the power consumption (in
Watt) of a core. Taking the floor plan of an SoC and the power
consumption profiles of individual cores as inputs, the thermal
simulator calculates instantaneous temperatures of all individual cores
at every cycle of the test process. The assumed scan frequency is
100MHz.

We employ the proposed test scheduling technique to generate test
schedules for the SoCs. Two groups of experiments are performed to
generate different test schedules for each SoC with respect to different
temperature intervals (at low, medium, and high temperature levels) as
well as to different test-bus width limits (low, marginal, and high),
respectively.

Table 5.1 shows the impact of the temperature interval on the
TAT. The first column lists the numbers of cores in the SoC designs.
Columns 2, 4, and 6 list the TATs (in number of cycles) of the
generated test schedules with respect to different temperature intervals.
Columns 3, 5, and 7 list the CPU times (in seconds) for the generation
of the corresponding test schedules. The test-bus width limit for the
experiments in this group is 60 bits. The experimental results show
that the test schedule length decreases along with increasing
temperature level at which the tests should be applied. This is because
it takes a longer time to cool down a core when a test is applied at a
lower temperature level.

Table 5.2 shows the impact of the test-bus width on the TAT. The
first column lists the number of cores in the SoC designs. Columns 2,
4, and 6 list the TATs (in number of cycles) of the generated test
schedules with respect to different test-bus width limits. Columns 3, 5,
and 7 list the corresponding CPU times (in seconds) the generation of

107

CHAPTER 5

96

the corresponding test schedules. The imposed temperature interval
for the experiments in this group is 85-100°C. It can be seen that the
length of test schedule decreases with increasing test-bus width limit.

Table 5.1: TATs with different temperature intervals (B=60)

of Cores
TL=65C, TH=80C TL=85C, TH=100C TL=105C, TH=120C

TAT CPU
Time (s) TAT CPU

Time (s) TAT CPU
Time (s)

4 59887 347 29651 171 19562 115

8 61014 404 30256 180 20194 124

16 64658 411 31023 195 21055 138

25 71913 433 35785 214 24798 152

36 74886 477 37249 221 26402 168

42 76102 490 37989 243 27031 174

Table 5.2: TATs with different test-bus width (TL=85°C, TH=100°C)

of Cores
B=40 B=60 B=80

TAT CPU
Time (s) TAT CPU

Time (s) TAT CPU
Time (s)

4 29821 145 29651 171 29648 177

8 30261 182 30256 180 29752 197

16 31623 210 31023 195 34613 218

25 38391 252 35785 214 35415 230

36 38568 267 37249 221 35936 245

42 39785 264 37989 243 36430 251

108

MULTI-TEMPERATURE TEST SCHEDULING

97

The third group of experiments compares the TATs of test
schedules generated using different SCTs, either TC found by the
heuristic algorithm or the given lower limit TL. Table 5.3 shows the
impact of the SCT on the TAT. The fist column lists the number of
cores in the designs. Columns 2 and 4 list the TATs of test schedules
using TL and TC as the SCT, respectively. Columns 3 and 5 show the
CPU times (in seconds) for test scheduling. The TAT reduction (in
percentage) is listed in Column 6. The experiments in this group are
performed with a temperature interval 85-100°C and a test-bus width
limit of 60 bits. It is seen that using the TC found by the heuristic
algorithm reduce the TAT by up to about 9% rather than using TL.
Similar results are shown in Table 5.4 where the temperature interval
is 65-80°C and the test-bus width limit is 60 bits. With this
temperature interval, the TAT reduction is up to about 20%.

The third group of experimental results indicates that using TC
rather than TL for test scheduling leads to a greater reduction on the
TAT when the temperature interval is imposed at a lower temperature
level. On the other hand, the CPU time for test scheduling becomes
substantially longer because of the increased time for determining TC.

Table 5.3: TATs with/without TC (B=60, TL =85°C, TH =100°C)

of Cores
Use TL (85°C) as TC Use TC found by HA

TAT
Reduction TAT CPU Time

(s) TAT CPU Time
(s)

4 29651 171 28711 1265 3.17%

8 30256 180 29142 1327 3.68%

16 31023 195 29779 1402 4.01%

25 35785 214 33654 1511 5.96%

36 37249 221 34372 1776 7.72%

42 37989 243 34627 1843 8.85%

109

CHAPTER 5

98

Table 5.4: TATs with/without TC (B=60, TL =65°C, TH =80°C)

of Cores
Use TL (65°C) as TC Use TC found by HA

TAT
Reduction TAT CPU Time

(s) TAT CPU Time
(s)

4 59887 347 52691 2340 12.02%

8 61014 404 52746 2366 13.55%

16 64658 411 55376 2587 14.36%

25 71913 433 59162 2830 17.73%

36 74886 477 60701 2865 18.94%

42 76102 490 60935 2884 19.93%

5.4 Summary
In this chapter, we address the problem of long test application time
when applying multi-temperature testing to systems-on-chip. We
propose a test scheduling approach to minimize the TAT such that a
test is applied only when the core temperature is within a given
interval and the test-bus width limit is satisfied. The proposed test
scheduling technique employs a thermal simulator to partition and
interleave test sets on-the-fly and uses a FSM model to manage the
state transitions for all cores. Experimental results show that, in
general, the TAT is longer when a test is applied at a lower
temperature level and/or with a lower test-bus width limit. Moreover,
the TAT can be further reduced by stopping the cooling periods at an
explored temperature rather than at the imposed temperature lower
limit, especially for the tests applied at a low temperature level.

110

Chapter 6
Defect-Probability

Driven Test Scheduling

In this chapter, we address the test time minimization problem for
volume-production SoC tests using the AOFF approach. We employ
an hybrid BIST, in which a test set is composed of both
pseudorandom and deterministic test patterns, for core-based SoCs. In
order to minimize the expected test application time, we take into
account the defect probabilities of individual cores in test scheduling.
A heuristic algorithm is proposed for test scheduling.

6.1 Problem Formulation

6.1.1 Basic Definitions and Assumptions
In this chapter, we employ the test architecture depicted in Figure 2.7
for hybrid BIST. In the test architecture, every core has its dedicated
BIST circuit. Moreover, a single test bus is used to transport
deterministic test data between the CUTs and the embedded tester. In
order to test a core, a set of test patterns are generated. A test set may

111

CHAPTER 6

100

consist of both deterministic test patterns (DTPs) and pseudorandom
test patterns (PTPs). A subset of the DTPs in the test set is referred to
as a deterministic test sequence (DTS), and a subset of PTPs in the test
set is referred to as a pseudorandom test sequence (PTS).

Due to the use of BIST circuits for every core and the single test
bus for deterministic tests, we assume that PTPs for different cores
can be concurrently applied, while the DTPs can only be applied
sequentially. Figure 6.1 depicts a hybrid BIST test schedule for a
system consisting of 5 cores, where TSi denotes the test set for core Ci
(i = 1, 2, ... ,5). The white and grey rectangles represent the DTSs and
the PTSs, respectively. In this example, DTPs are scheduled to be
applied sequentially, while PTPs for different cores are scheduled to
be applied in parallel.

Figure 6.1: A hybrid BIST schedule example

In this chapter, the test set, the deterministic test sequence, and the
pseudorandom test sequence for core Ci (1 ≤ i ≤ n) are denoted with
TSi, DTSi, and PTSi, respectively. In the cases that more than one
deterministic test sequence or pseudorandom test sequence is
partitioned from the original test set, DTSiv and PTSiw denote the v-th
deterministic test sequence and the w-th pseudorandom test sequence
in test set TSi, respectively. Suppose that the number of deterministic

112

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

101

test patterns and pseudorandom test patterns in test set TSi are di and ri,
respectively. The j-th (1 ≤ j ≤ di) deterministic test pattern of DTSi is
denoted with DTij. The k-th (1 ≤ k ≤ ri) pseudorandom test pattern of
PTSi is denoted with PRik.

In this thesis, the defect probability of a core, in short, core defect
probability (CDP), is defined as the probability of a core having
defects. We denote the defect probability of core Ci (1 ≤ i ≤ n) with
CDPi. Similarly, the defect probability of an SoC, in short, system
defect probability (SDP), is defined as the probability of an SoC
having defects, meaning that some cores are defective.

We assume that the defect probabilities of different cores in an
SoC are independent. Then, the SDP is given by

()∏ =
−−=

n

i iCDPSDP
1

11 (6.1)

We suppose that a test process can be terminated with a certain
probability. The probability of a test process being terminated at a
certain time moment depends on the following two probabilities: (1)
the probability of an individual test being terminated due to detection
of faults, referred to as individual-test failure-probability (ITFP); (2)
the probability of an individual test being passed with no faults
detected, referred to as individual-test success-probability (ITSP).

We assume that the failure probabilities of individual tests for the
cores in an SoC are independent, meaning that the probability of
detecting faults in a core does not depend on that in another core. We
also assume that the success probabilities of individual tests for the
cores in an SoC are independent, meaning that the probability of
detecting no faults in a core does not depend on that in another core.

In this chapter, we assume that a deterministic test cannot be
interrupted by the pseudorandom test for the same core. On the other
hand, we assume that a pseudorandom test can be interrupted by the
deterministic test for the same core. More concretely, this means that
the following scenario can occur: a pseudorandom test is stopped at a
certain moment, and, after the application of the entire deterministic
test set for the same core, the pseudorandom test resumes until the

113

CHAPTER 6

102

completion. We make this assumption due to the following concerns.
The signature of a pseudorandom test is available only when the test is
completed while the TAT of a pseudorandom test is usually very long.
If we are allowed to interrupt a pseudorandom test and analyze the
signature more frequently, we can terminate the test earlier if faults
are detected and hence can shorten the TAT. However, frequently
switching deterministic and pseudorandom tests for a core introduces
time overheads [Goel, et al. 2003]. Thus, we assume that a
pseudorandom test can be interrupted at most once. Under such
assumption, the time overhead is substantially small and therefore can
be ignored.

Furthermore, in this chapter, we assume the deterministic tests for
different cores are scheduled sequentially and consecutively, due to
the following concerns. First, deterministic test patterns are considered
more efficient since usually a deterministic test pattern can cover more
faults than a pseudorandom test pattern. Second, the test responses of
deterministic test patterns can be obtained at each test application
cycle, and therefore a deterministic test can be terminated at the end of
any test application cycle if faults are detected. This also infers that
we do not need to delay a deterministic test in order to insert a long
pseudorandom test.

6.1.2 Possible Test Termination Moment
When the AOFF approach is employed for a hybrid BIST, there are
two possible scenarios regarding the termination of the test process.
During the application of a deterministic test sequence, the test
response is captured as soon as a test pattern has been applied. By
analyzing the test response, the test can be aborted immediately, if
faults are detected. On the other hand, during the application of a
pseudorandom test sequence, the signature is not available until all the
pseudorandom test patterns in the test sequence have been applied. By
analyzing the obtained signature, the test can be aborted, if faults are
detected. Thus, using the AOFF approach, the test process is possible

114

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

103

to be terminated at the end of every test application cycle of the
deterministic test patterns, or at the end of every application period of
a pseudorandom test sequence. This discussion leads to the notion of
possible test termination moment (PTTM).

A PTTM is a time moment when the test process can be
terminated due to detection of faults. According to the discussion on
the termination of the test process, a PTTM is the time moment
immediately after a deterministic test pattern or a pseudorandom test
sequence has been applied and the test response or the signature has
been analyzed.

For a given test schedule, all PTTMs are known. Figure 6.2
illustrates the PTTMs in a test schedule for an SoC with 5 cores. In
this example, the DTPs are depicted with white rectangles and the
PTSs are depicted with grey rectangles. The grey solid lines indicate
the PTTMs at which a DTP has been applied, e.g. PTTMs 1, 2, 3, 4, 5,
6, 7, 8, 9, and 10. The black dotted lines indicate the PTTMs at which
a PTS has been finished, e.g. PTTMs 4, 5, 7, 9, 10, 12, and 13. Note
that some of the PTTMs are considered identical, since they overlap at
the same time moment, e.g. PTTMs 4, 5, 7, 9, 10, and 12.

Figure 6.2: Possible test termination moments in a test schedule

115

CHAPTER 6

104

From this discussion, we can see that a pseudorandom test
sequence can be treated as a single test pattern, since they have the
same effect on test termination. It should be noted that a test
application cycle of a test pattern differs in combinatorial-circuit
testing and the scan-based testing. In combinatorial-circuit testing,
applying a test pattern needs one clock cycle, whereas in scan-based
testing, a test application cycle of test patterns includes three stages,
scan-in, capture, and scan-out, as explained in Section 3.1.

6.1.3 Expected Test Application Time
We consider the termination of the test process at a certain moment as
a random event which happens with a certain probability. Thus, the
TAT is a random variable, and its mathematical expectation, referred
to as the expected test application time (ETAT), is the expected value
of the actual TATs.

Let Ax be the random event that the test process is aborted at
PTTM x, and let T be the random event that the test process is passed
on completion. Then, the ETAT is given by

[]() []TpLAptETAT
Xx

xx ×+×= ∑
∈∀

(6.2)

where x is a PTTM, X is the set of all PTTMs, tx is the TAT by the
moment x, L is the TAT by the completion moment, p[Ax] is the
probability of event Ax, and p[T] is the probability of event T.

In Equation (6.2), the ETAT is presented as a sum of two literals.
The first literal corresponds to the case in which the test process can
be terminated at different PTTMs because at least one individual test
has detected faults. The second literal corresponds to the case in which
the test process is passed on completion without detection of any
faults. Indeed, Equation (6.2) interprets the ETAT as the sum of the
probabilistic TATs at different PTTMs.

It should be noted that two different events Ax and Ay (x ≠ y) are
exclusive, i.e. ∀x, y ∈ X, x ≠ y, Ax ∩ Ay = ∅. Events Ax and T are also

116

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

105

exclusive, i.e. ∀x ∈ X, Ax ∩ T = ∅. The reason is that, if the test
process is terminated at a certain moment x (x ∈ X), it must have
passed all the moments earlier than x and it will never go through any
moments later than x. In another word, if Ax (x ∈ X) happens, any
other event Ay (∀y ∈ X, y ≠ x) as well as T cannot happen.

In order to know whether the test process is aborted or not at any
PTTM x, we have to check every individual test to see if they have
detected faults by the moment x. The test process is aborted at PTTM
x, if and only if both of the following two conditions are satisfied: (1)
at least one of the tests that are stopped at PTTM x to analyze test
responses/signatures detects faults; (2) all the other tests that are not
able to be stopped at PTTM x had not detect any faults until their
latest passed PTTMs before x. Therefore, Ax is equivalent to the
intersection of the following two events: one event is that at least one
of those tests which are just stopped at PTTM x detect faults; and the
other event is that those tests which are not able to be stopped at the
moment x had not detected any faults until the latest PTTMs when
they were stopped for a check.

Let Yx be the set of all individual tests that are stopped at PTTM x,
let Zx be the set of all individual tests that are not able to be stopped at
PTTM x, let Fx(y) be the event that the individual test y detects at least
one fault at PTTM x, and let Px(z) be the event that the individual test
z had not detected any faults until the latest PTTM before x when z
was stopped to for a check. Then, event Ax is given by

() ()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∈∀∈∀
IU I

xx Zz
x

Yy
xx zPyFA (6.3)

Figure 6.3 shows an example where the test process is aborted at
PTTM 7. This means that, at PTTM 7, at least one of the two partial
tests TS3 and TS4 has detected faults, and the other partial tests TS1,
TS2, and TS5 had not detect any faults until the latest moments when
they were stopped for a check. More specifically, TS1 had not detected
any faults until PTTM 4, TS2 had not detect any faults since it has

117

CHAPTER 6

106

never stopped until the current PTTM, and TS5 had not detected any
faults until PTTM 6.

Figure 6.3: Example of the test process aborted at PTTM 7

Let E be the set of all tests that are completed without detection of
faults, and let P(e) be the event that the test e has not detected faults
until completion. Then, event T is given by

()I
Ee

ePT
∈∀

= (6.4)

According to the definition of PTTM, at PTTM x, Yx should not be
empty and at least one test belonging to Yx should detect faults,
otherwise the test process would have not been aborted at PTTM x.
Moreover, for a test y ∈ Yx, it should be the currently checked DTP or
PTS that detects the faults, and the DPT(s) and PTS(s) that were
finished before x should not detect any faults, otherwise the test had
already been aborted earlier. On the other hand, at PTTM x, all the
tests in Zx should have not detected any faults so far, otherwise the test
process would have been aborted earlier and would not have reached
PTTM x. Table 6.1 lists the sets Yx and Zx at every PTTM x in the

0 1312111098654321 7

TS1 PTS11

TS2

TS3

TS4

TS5

PTS21

PTS31

PTS41

PTS51 PTS52

PTS42

PTS22

DT51 DT52

DT31

DT41 DT42

DT21

DT11 DT12 DT13 DT14

Possible Test Termination Moments (PTTMs)

t

DTij PTSijDTP (not applied) PTS (not applied/unfinished)

DTij PTSijDTP (just finished) PTS (just finished)

DTij DTP (passed) PTSij PTS (passed)k

k

k

Past PTTM

Present PTTM

Future PTTM

118

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

107

example depicted in Figure 6.2. The set E includes all the individual
tests. For the example in Figure 6.2, E = {TS1, TS2, TS3, TS4, TS5}.

Table 6.1: Yx and Zx at each PTTM x in Figure 6.2

x Yx Zx

1 {TS1} ∅

2 {TS1} ∅

3 {TS1} ∅

4 {TS1, TS5} ∅

5 {TS3, TS5} {TS1}

6 {TS5} {TS1, TS3}

7 {TS3, TS4} {TS1, TS5}

8 {TS4} {TS1, TS3, TS5}

9 {TS2, TS4} {TS1, TS3, TS5}

10 {TS1, TS2} {TS3, TS4, TS5}

12 {TS4, TS5} {TS1, TS2, TS3}

13 {TS2} {TS1, TS3, TS4, TS5}

We have assumed that the failure probabilities of individual tests

are independent, and that the success probabilities of individual tests
are independent. Thus, p[Ax], namely the probability of the test
process being terminated at a PTTM x, is given by

[] () ()[]

()[]() ()[]∏∏

∏

∈∀∈∀

∈∀∈∀

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

×⎥
⎦

⎤
⎢
⎣

⎡
=

xx

xx

Zz
x

Yy
x

Zz
x

Yy
xx

zPpyFp

zPpyFpAp

11

U
(6.5)

and p[T], namely the probability of the test process being passed on
completion without detecting any faults, is given by

119

CHAPTER 6

108

[] () ()∏
=∈∀

−=⎥
⎦

⎤
⎢
⎣

⎡
=

n

i
i

Ee

CDPePpTp
1

1I (6.6)

Substitute p[Ax] and p[T] in Equation (6.2) with Equations (6.5)
and (6.6), the ETAT is given by

()[]() ()[]

()∏

∑ ∏∏

=

∈∀ ∈∀∈∀

−×+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=

n

i
i

Xx Zz
x

Yy
xx

CDPL

zPpyFptETAT
xx

1

1

11

(6.7)

where x is a PTTM, X is the set of all PTTMs, tx is the TAT by the
moment x, L is the TAT by the completion moment, Yx is the set of all
individual tests that are stopped at PTTM x, Zx is the set of all
individual tests that are not able to be stopped at PTTM x, p[Fx(y)] is
the probability of the individual test y detecting at least one fault at
PTTM x, p[Px(z)] is the probability of individual test z detecting no
faults until the latest PTTM before x when z was stopped for a check,
and CDPi is the defect probability of core Ci.

In this thesis, we define the incremental fault coverage (IFC) of a
DTP/PTS as the percentage of the faults that are only detected by this
DTP/PTS and have not been detected by any previously applied test
patterns from the same test set.

Let y be individual test which detects faults at PTTM x, let v be
the DTP/PTS which belongs to y and is finished exactly at PTTM x,
and let IFC(v) be the incremental fault coverage of v. Then, p[Fx(y)] is
given by

()[] () ix CDPvIFCyFp ×= (6.8)

Let z be the individual test that is not able to be stopped at PTTM
x, let CDPi be the defect probability of core Ci which test z is applied
to, let w (0 < w < x) be the latest PTTM when test z was checked for
test effects, let m (0 ≤ m ≤ di + ri) be the number of test patterns

120

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

109

(deterministic or pseudorandom) that had been applied by PTTM w,
and let vj be the j-th test pattern of test z. Then, p[Px(z)] is given by

()[] ()∑
=

×−=
m

j
jix vIFCCDPzPp

1

1 (6.9)

The deduction of Equations (6.8) and (6.9) are presented in
Appendix A. Thus, the ETAT has been completely formulated.

In this chapter, our objective is to minimize the ETAT. We
propose a heuristic algorithm that uses the ETAT as the cost function
and generates test schedules with the minimized ETATs.

6.2 Test Scheduling Approach
The heuristic algorithm for test scheduling is a defect-probability
driven scheduling approach which generate test schedules with
minimized ETATs. As demonstrated earlier, in the context of hybrid
BIST and AOFF test approach, it is essential to schedule deterministic
test sequences efficiently, as they have high fault-coverage and can be
terminated at every test application cycle if faults are detected.

The incremental fault coverage of test patterns, the failed sets and
the passed sets vary with different schedule of the DTSs. Therefore,
the failing probabilities, the passing probabilities, and the ETAT also
vary with different test schedules.

It is natural to schedule the DTSs for the cores with higher defect
probabilities earlier. However, such a solution does not necessarily
lead to the minimal ETAT. In addition to the defect probabilities of
cores, other factors such as the efficiency of test patterns and the
length of individual test sequences have to be taken into account.

The proposed heuristic algorithm iteratively constructs two sets of
DTSs, namely a scheduled set S and an unscheduled set U. The
scheduled set S is an ordered set and it is supposed to include all the
DTSs when the algorithm is terminated. The DTSs in S are associated
with a particular order O according to which the DTSs should be

121

CHAPTER 6

110

considered for scheduling so that the ETAT of the generated test
schedule is the minimum. The unscheduled set U is a complement set
of S, related to the complete set of all DTSs. This means that U always
includes the unscheduled DTSs during any iteration step.

S is initialized with an empty set, while U is initialized with the
complete set of all DTSs. In each iteration step, all DTSs in U are
considered as candidates while only one of them is selected and
inserted into S, at a position between the already scheduled DTSs.
Note that the original order of the scheduled DTSs remains unchanged.

Suppose that in one iteration step, S consists of m (0 ≤ m < n)
scheduled DTSs. The objective in this iteration step is to select one
DTS from U and insert it into S. Since there are (n − m) DTSs in U for
selection and (m + 1) alternative positions in S for insertion, there are
in total (n − m) × (m + 1) different solutions to explore.

How to explore and decide on the alternative solutions is
illustrated through an example depicted in Figure 6.4. In this example,
there are five hybrid test sets (n = 5) and two of them have been
temporarily scheduled in previous iteration steps (m = 2). The
depicted partial test schedule shows that S = [DTS1, DTS4] and
U = {DTS2, DTS3, DTS5}. There are three different positions for a
candidate to be inserted in S, namely INSPOS1, INSPOS2, and
INSPOS3, pointed by the three short arrows. The heuristic algorithm
explores all the nine alternative solutions each of which is identified
by the pair (DTSi, INSPOSj) which means that DTSi is selected from U
and inserted into S at the position INSPOSj. Thereafter, all the DTSs in
S are scheduled sequentially according the fixed order, and their
corresponding PTSs are scheduled to the earliest available times. If
the TAT of a PTS is longer than the reserved period before the start
time of the scheduled DTS for the same core, this PTS has to be split
into two partitions such that the TAT of the first partition fits the
reserved period and the second partition is scheduled right after the
DTS is finished. For each explored partial test schedule, the expected
partial test application time (EPTAT) is calculated. When all solutions
have been explored, the solution with the minimal EPTAT is

122

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

111

selected. Figure 6.5 shows a partial test schedule where solution (DTS3,
INSPOS2) is selected as the best solution. Thus, the updated S is [DTS1,
DTS3, DTS4] and the updated U is {DTS2, DTS5}. This example also
shows the range for calculating the EPTAT of a partial test schedule.

Figure 6.4: Alternative solutions

Figure 6.5: Partial test schedule for the best solution

The pseudo-code of the heuristic algorithm is given in Figure 6.6.
Line 1 initializes S with an empty set and line 2 initializes U with the
complete test set. The outer loop (lines 3 through 19) moves one
unscheduled DTS from U and inserts it into S (lines 17 and 18). The
DTS to be moved from U is decided within the middle loop (lines 6

DTS3

0 98654321 7

TS1 PTS11

TS2

TS3

TS4

TS5

PTS2

PTS31

PTS41

PTS5

PTS42

DTS5

DTS4

DTS2

DTS1

t

U

Partial Test Completion

EPTAT calculation range

PTSijPTSij PTS (scheduled)DTSi DTS (scheduled) DTSi DTS (unscheduled) PTS (unscheduled)

123

CHAPTER 6

112

through 15) which explores all alternative solutions. For each
candidate in U (line 6), each possible position that a candidate in U
can be inserted into S is explored within the inner loop (lines 7
through 15). For each alternative solution (line 7), the partial test
schedule is generated (line 8) and the EPTAT of the generated partial
test schedule is calculated (line 9). Thereafter, the current EPTAT is
compared to the minimal EPTAT obtained so far (line 10) and the best
solution is updated if the current EPTAT is smaller (lines 11 through
14). The algorithm returns the generated test schedule with the
minimal ETAT (line 20), when all the DTSs in U have been moved
into S. The computational time complexity of the proposed heuristic
algorithm is O (kn4), where n is the number of cores and k is the
average number of deterministic test patterns generated for a core.

Figure 6.6: Pseudo-code of the heuristic algorithm for test scheduling

Algorithm 6.1: Heuristic algorithm for test scheduling

01: S := ∅;
02: U := {DTS1, DTS2, ... , DTSn};
03: while (U ≠ ∅) loop /* outer loop */
04: Reset(EPTATmin);
05: IPS := GetInsPosSet(S);
06: for (∀ DTS ∈ U) loop /* middle loop */
07: for (∀ InsPos ∈ IPS) loop /* inner loop */
08: PartSchedcur := GenPartSched(S, DTS, InsPos);
09: EPTATcur := CalcETAT(PartSchedcur);
10: if (EPTATcur < EPTATmin) then
11: EPTATmin := EPTATcur;
12: DTSsel := DTS;
13: InsPossel := InsPos;
14: end if
15: end for
16: end for
17: Insert(S, DTSsel, InsPossel);
18: Remove(U, DTSsel);
19: end while
20: Return(GenFullSched(S));

124

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

113

6.3 Experimental Results
The cores of the SoC designs for our experiments are selected from
the ISCAS’85 benchmark circuits. For each SoC design, five different
hybrid test sets are generated. Various hybrid test sets have different
numbers of DTPs and PTPs. The defect probabilities of individual
cores are randomly generated such that the system defect probability
is 0.6 (meaning that the yield is 40%). The experimental results are
listed in Table 6.2. Each value in the table is the average value of five
different experiments for each SoC design.

Table 6.2: Comparison of different scheduling algorithms

of
cores

Random
Scheduling

Our Heuristic
Algorithm

Simulated
Annealing

Exhaustive
Search

ETAT CPU
Time(s) ETAT CPU

Time(s) ETAT CPU
Time(s) ETAT CPU

Time(s)

5 248.97 1.1 228.85 0.6 228.70 1144.2 228.70 1.2

7 261.38 64.4 232.04 1.4 231.51 1278.5 231.51 80.0

10 366.39 311.8 312.13 6.6 311.68 3727.6 311.68 112592.6

12 415.89 346.8 353.02 12.2 352.10 4266.8 n/a n/a

15 427.34 371.6 383.40 25.2 381.46 5109.2 n/a n/a

17 544.37 466.6 494.57 43.6 493.93 6323.8 n/a n/a

20 566.13 555.4 517.02 85.4 516.89 7504.4 n/a n/a

30 782.88 822.4 738.74 380.4 736.51 11642.4 n/a n/a

50 1369.54 1378.0 1326.40 3185.0 1324.44 21308.8 n/a n/a

In order to evaluate the efficiency of the proposed heuristic
algorithm, we compare it with a random scheduling algorithm. The
ETATs of the generated test schedules by using the random
scheduling and our heuristic algorithm are listed in columns 2 and 4,
respectively. It is shown that the ETATs of the test schedules

125

CHAPTER 6

114

generated by our heuristic algorithm are 5% to 15% shorter than those
produced by the random scheduling algorithm.

In order to evaluate the accuracy of the proposed heuristic
algorithm, we compare it with two other scheduling algorithms which
are based on a simulated-annealing strategy and an exhaustive search,
respectively. The ETATs of the generated test schedules by using the
simulated-annealing algorithm and the exhaustive search are listed in
columns 6 and 8, respectively. The CPU times of the four approaches
are listed in columns 3, 5, 7, and 9. The experimental results show that
the ETATs from the proposed heuristic algorithm are very close to
those from the algorithms based on simulated-annealing strategy and
exhaustive search. Moreover, the execution time of our heuristic
algorithm is substantially shorter. These ETATs and CPU times are
also plotted in Figure 6.7 and Figure 6.8, respectively.

Figure 6.7: ETATs with different approaches

0

200

400

600

800

1000

1200

1400

5 7 10 12 15 17 20 30 50
Number of Cores

E
xp

ec
te

d
Te

st
 A

pp
lic

at
io

n
Ti

m
es

Random Scheduling Our Heuristic Simulated Annealing Exhaustive Search

126

DEFECT-PROBABILITY DRIVEN TEST SCHEDULING

115

Figure 6.8: Execution times of different scheduling approaches

6.4 Summary
This chapter presents a defect-probability driven test scheduling
technique for hybrid BIST using the AOFF test approach. In this
technique, the defect probabilities of individual cores are utilized. We
propose a method to compute the ETAT which reflects the test
application time of volume production tests. We also propose a
heuristic algorithm to generate efficient test schedules with minimal
ETAT. Experimental results have shown the efficiency of the
proposed technique.

6.6 12.2 25.2 43.6 85.4 380.4

3185.0

1144.2 1278.5

3727.6 4266.8
5109.2

6323.8

21308.8

1.40.6

11642.4

7504.4

0

5000

10000

15000

20000

25000

5 7 10 12 15 17 20 30 50
Number of Cores

C
P

U
 T

im
es

 (s
)

Our Heuristic Simulated Annealing

127

128

Chapter 7
Power Constrained
Defect-Probability

Driven Test Scheduling

In Chapter 6, we develop a defect-probability driven test scheduling
approach which minimizes the ETAT for volume production tests
using the AOFF test approach. The proposed technique assumes the
BISTs for all cores can be applied concurrently. However, testing
large number of core in parallel can result in power and thermal
related problems. In this chapter, we present a power constrained
defect-probability driven test scheduling technique. In order to
improve the efficiency of test schedules, we employ the test set
partitioning and test pattern reordering techniques. We develop a
heuristic algorithm to find efficient test set partitioning scheme and
further to minimize the ETAT of generated test schedules.

129

CHAPTER 7

118

7.1 Motivational Example
We assume that the power consumption in the circuit by applying a
test pattern is proportional to the total number of transitions between
this test pattern and the preceding test pattern, occurring at all the
primary inputs, primary outputs, and internal nodes. The peak-power
consumption by applying a test sequence is defined as the maximum
power consumed by applying each of the test patterns belonging to the
test sequence (see Figure 7.4).

Figure 7.1 shows an example of a power-constrained test schedule
for five DTSs and five PTSs, illustrated with white and grey
rectangles, respectively. Each test sequence is represented as a
rectangle with its height and width corresponding to the peak-power
consumption and the time duration of the test sequence, respectively.
The area size of a rectangle is equal to the peak-power consumption
multiplied by the time duration. The constraint on the peak-power
consumption is denoted with POWC. It should be noted that test
sequences belonging to the same core, such as DTS1 and PTS1, cannot
be scheduled in parallel due to the test conflict.

Comparing the size of the effective scheduled area occupied by all
test sequences to the size of the overall schedulable area confined by
the line of peak-power constraint and the line of test completion time,
one can find out that the efficiency of the test schedule in Figure 7.1(a)
is low since a large area is wasted. One solution to improve the
efficiency of the test schedule is to employ test set partitioning TSP to
decrease the sizes of test sequences. As shown in Figure 7.1(b), PTS1,
is partitioned into PTS11 and PTS12, PTS3 is partitioned into PTS31 and
PTS32, and PTS5 is partitioned into PTS51 and PTS52. The partitioned
test sequences have a shorter time duration and/or a smaller peak-
power consumption than the non-partitioned ones, and therefore can
be scheduled at those time moments which are not possible for the
non-partitioned test sequences. From this example, it can be observed
that using TSP can substantially reduce the TAT.

130

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

119

Figure 7.1: Power-constrained test schedule without/with TSP

(a) A test schedule without TSP

(b) A test schedule with TSP

PTS1

PTS2
PTS3

DTS4

PTS4

DTS2

DTS5

DTS1
DTS3

PTS5

Test CompletionPower POWC

0 Time

PTSij Pseudorandom test seq.DTSij Deterministic test seq.

PTS32

PTS4
PTS52

PR31

PTS51 PTS11

PTS2

PTS12

DTS4
DTS2

DTS5

DTS1
DTS3

Test CompletionPower POWC

0 Time

PTSij Pseudorandom test seq.DTSij Deterministic test seq.

131

CHAPTER 7

120

7.2 Problem Formulation
In this chapter, we use the same definitions given in Section 6.1.1 and
the hybrid BIST architecture depicted in Figure 2.7. We assume that a
deterministic test set is partitioned into ai (0 ≤ ai ≤ di, 1 ≤ i ≤ n) DTSs,
and a pseudo-random test set is partitioned into bi (0 ≤ bi ≤ ri, 1 ≤ i ≤ n)
PTSs, where ai + bi > 0. Figure 7.2 depicts the PTTMs in a power-
constrained test schedule, where the dotted lines indicate the finish
time moments of DTPs, and the dashed lines indicate the finish time
moments of PTSs. Overlapped time moments are treated as identical
PTTMs.

In order to minimize the ETAT, we use TSP in test scheduling.
The power constrained test time minimization problem is similar to
the classical 2D RP problem and is formulated as follows. Given the
power constraint, the pseudorandom test sets and deterministic test
sets, minimize the ETAT of generated test schedule for all partitioned
PTS and DTS. We develop a heuristic approach to explore alternative
TSP schemes and generate efficient test schedules.

Figure 7.2: PTTMs in a power-constrained test schedule

PTS21
PTS3

DTS4

PTS11

PTS4

DTS2

DTS3

PTS22

PTS5

PTS12

DTS5

Possible Test Termination Moments (PTTMs)

Power
POWC

Time

DTS1

0

132

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

121

7.3 Test Scheduling Techniques

7.3.1 Test Set Partitioning
The size of a test sequences has a large impact on the test schedule
length. Dividing test sequences into smaller partitions with shorter
time duration and lower individual peak-power consumptions leads to
more efficient test schedule. This is because the partitioned test
sequences have smaller area sizes and can be packed more tightly into
the power constrained 2D plane. Figure 7.3(a) shows a non-partitioned
deterministic test set for core Ci. Figure 7.3(b) shows three test
sequences, DTSi1, DTSi2, and DTSi3, partitioned from the original test
set depicted in Figure 7.3(a). In Figure 7.3(b), the individual peak-
power consumptions of the first two partitions, DTSi1 and DTSi2, are
lower than that of the non-partitioned test sequence in Figure 7.3(a).
The grey rectangles with dashed boarder lines illustrate the reduced
area sizes due to partitioning.

Figure 7.3: Test set partitioning and time overhead

(c)

DTSi1

(b)

(a)

PTSi1 DTSi2

PTSi2 DTSi3

133

CHAPTER 7

122

Although test set partitioning can lead to smaller partitions, it
introduces time overheads for the partitioned test sequences in scan-
based testing. This phenomenon occurs when DTSs and PTSs
belonging to the same core are interleaved, as in the example depicted
in Figure 7.3. There, the three partitioned deterministic test sequences
(DTSi1, DTSi2, and DTSi3) are interleaved with two partitioned
pseudorandom test sequences (PTSi1 and PTSi2) for the same core Ci.
The time overheads are indicated by the rectangles filled with slashed
lines and situated at the left of PTSi1, DTSi2, PTSi2, and DTSi3. The
reason for the time overheads is explained in details in Section 3.1.

7.3.2 Test Pattern Reordering
Reordering test patterns can reduce power consumption and make the
power profile of a test sequence relatively smoother and easier to be
manipulated in test scheduling [Rosinger, et al. 2002]. Thus, for all
deterministic tests, we use test pattern reordering (TSR) as a pre-
processing step for test set partitioning. In Figure 7.4(a), the original
power profile of a DTS is depicted. As a comparison, the power
profile after reordering the test patterns is shown in Figure 7.4(b). It is
shown that after reordering the test patterns, the power profile is much
smoother and the peak-power consumption is reduced by 39%.

Figure 7.4: Motivational example of test set reordering

(a) Power profile before TSR (b) Power profile after TSR

0

320

0

194

320

134

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

123

7.3.3 Heuristic Algorithm for Test Set
Partitioning
We propose a heuristic algorithm for test set partitioning of
deterministic test sets. The algorithm starts with the original test set.
In each iteration step, one of the existing partitions is divided into two
test sequences. The algorithm stops when partitions cannot be further
divided, i.e. every partitioned test sequence consist of one test pattern.
Here the cost function is defined as the sum of the area sizes of all the
partitioned test sequences, and the objective is to find a partitioning
scheme which has the lowest cost among all explored solutions.

In each iteration step, we have to decide which existing partition
should be selected to be split into two test sequences, and at which
position (test pattern) the selected partition should be divided. Using
an exhaustive search among all possible solutions within an iteration
step, we obtain the local optimal partitioning scheme which has the
lowest cost and add one more partition. Among all the local optimal
partitioning schemes with different number of partitions, the one
having the minimum cost is acquired and accepted as the best
solution. Figure 7.5 illustrates how the sum of the area sizes of all
partitions distributes with the numbers of partitions. Usually the best
partitioning scheme has a relatively small number of partitions in
relation to the total number of test patterns in the test set. For example,
in Figure 7.5, a test set with 149 test patterns should be divided into 21
partitions such that the sum of their area sizes is minimized.

When a PTS is divided into two partitions, two signatures are
needed in order to obtain the test results at the end of both partitions,
which means that an additional signature should be generated. Thus,
extra memory is also needed to store this additional expected signature,
and an extra time slot is needed to analyze the additional signature. In
this chapter, we assumed that there exists sufficient memory in a tester
to store the signature. We ignore the extra time slots for analyzing the
additional signatures, since it is very short, compared to the time
duration of the PTS.

135

CHAPTER 7

124

Figure 7.5: Sum of area sizes w.r.t. number of partitions

7.3.4 Heuristic Algorithm for Test
Scheduling
Before the heuristic algorithm for test scheduling is presented, some
basic principles for test set partitioning and test scheduling are
summarized as follows.

(1) Test sequences belonging to the same core cannot be
scheduled in parallel.

(2) DTSs are scheduled sequentially since a single test bus is used,
while PTSs are scheduled in parallel subject to the peak-power
constraint.

(3) The scheduling of DTSs is performed before the scheduling of
PTSs, meaning that DTSs have higher scheduling priorities than PTSs.
This is because of the assumptions (described in Section 6.1.1) that
deterministic tests can be stopped after every test pattern, while
pseudorandom tests can only be terminated at the end of the test
sequences, when the signatures are available. Moreover, DTPs are
usually more efficient in detecting faults than PTPs.

555000

580000

605000

630000

655000

680000

705000

730000

755000

780000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of partitions

Su
m

 o
f t

he
 a

re
a

si
ze

s
of

 a
ll

pa
rt

iti
on

s

(21, 566326)

136

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

125

(4) PTSs are first sorted in a decreasing order according to some
parameters such as the defect probability of a core, the peak-power
consumption, and the time duration of a test sequence. Thereafter,
PTSs are scheduled to the earliest available time moment. DTSs,
however, are scheduled according to the order obtained by a defect-
probability driven heuristic algorithm.

The TSP is integrated into the test scheduling approach in the
following way. By using the approach proposed in Section 7.3.3,
deterministic test sets are partitioned statically, meaning that they are
partitioned before they are scheduled. Pseudorandom test sets, on the
other hand, are partitioned during the test scheduling. When it is not
possible to schedule a PTS to the earliest time moment due to its large
area size, the test sequence is divided into two partitions such that the
first one can be scheduled as expected, and the scheduling of the
second one is performed later.

Based on the basic principles described above, a heuristic
algorithm is developed to find an efficient test schedule for all test
sequences in an iterative way. One iteration step of the heuristic
algorithm is illustrated through an example in Figure 7.6. Suppose that
we have five DTSs (DTS1, DTS21, DTS22, DTS31, and DTS32), and three
PTSs (PTS1, PTS2, and PTS3). Two DTSs (DTS31 and DTS1) have
already been scheduled. In this iteration step, we have to decide which
one out of the three unscheduled DTSs (DTS21, DTS22, and DTS32)
should be scheduled to which time moment among A, B, and C, as
illustrated in Figure 7.6. After a DTS is scheduled to a time moment,
the three PTSs (PTS1, PTS2, and PTS3) are scheduled to the remaining
space. Test set partitioning may be needed at this step. The expected
partial test application time is then calculated within the range of the
scheduled DTSs (see Figure 7.7). When all the possible nine solutions
in the current iteration step have been explored, the solution with the
smallest EPTAT is accepted and the three scheduled DTSs are taken
as a base for the next iteration step. The heuristic algorithm stops
when no more unscheduled DTSs are left, and then the final test
schedule is obtained. Note that when a test sequence is scheduled, the

137

CHAPTER 7

126

order of the already scheduled test sequences should remain
unchanged.

Figure 7.6: One iteration step of the heuristic algorithm

Figure 7.7 shows a solution in which DTS22 is scheduled to time
moment B. During the scheduling of PTSs, PTS2 is partitioned into
two test sequences (PTS21 and PTS22). The EPTAT calculation range is
from the beginning of DTS31 to the end of DTS1. The gap between
PTS3 and PTS22 is due to the fact that DTS22 and PTS22 cannot be
scheduled concurrently due to the test conflict.

A formal description of the heuristic algorithm for test scheduling
is presented as follows. Suppose that we have N DTSs altogether, and
m (0 ≤ m < N) of them have already been scheduled in a certain
iteration step. We need to schedule one more DTS selected from the
set of (N − m) unscheduled DTSs to an appropriate time moment,
without changing the order of the scheduled test sequences. When a
selected DTS has been scheduled to a time moment, all the PTSs are
then scheduled into the remaining space, with dynamic test set
partitioning, if needed. The EPTAT of this solution is then calculated
within the time range of the (m + 1) scheduled DTSs. When all the

138

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

127

(N − m) × (m + 1) possible solutions have been explored, the solution
with the minimum EPTAT value is accepted. The new list of
scheduled DTSs is then used as a base for the next iteration step.
Repeating this procedure from the initial state (where m = 0) until all
the DTSs and PTSs are scheduled (when m = N), we get the final
optimized schedule.

Figure 7.7: Illustration of one solution in the iteration step

The pseudo-code of the heuristic algorithm is depicted in Figure
7.8. The algorithm has three major nested loops. The outer loop (lines
1 through 19) increments the number of scheduled DTSs, the middle
loop (lines 4 through 17) selects every unscheduled DTS, and the
inner loop (lines 5 through 16) explores every possible time moment
for scheduling. Inside the inner loop, after the selected DTS is
scheduled (line 6), pseudorandom test sets are partitioned, if needed,
and then scheduled (lines 7 through 10). The EPTAT of the present
schedule is calculated (line 11) and compared to the minimum EPTAT
for a decision (lines 12 through 15). The final test schedule is returned
in the end (line 20).

139

CHAPTER 7

128

Figure 7.8: Pseudo-code of the heuristic algorithm for test scheduling

7.4 Experimental Results
ISCAS’89 benchmark circuits are used as cores in the SoC designs for
our experiments. All cores are redesigned to insert one single scan
chain, and the STUMPS architecture is used for BIST.

In the first group of experiments, the proposed test set partitioning
and test scheduling technique is employed. We perform experiments

Algorithm 7.1: Heuristic algorithm for test scheduling

01: for (#_Sched_DTS := 0 to N-1) loop /* outer loop */
02: Reset(EPTATmin);
03: m := #_Sched_DTS;
04: for (∀UnschedDTSij) loop /* middle loop */
05: for (∀PTTM Tx) loop /* inner loop */
06: Schedule(UnschedDTSij, Tx);
07: for (∀ pseudorandom test set PTSk) loop
08: Partition(PTSk) if needed;
09: Schedule(PTSk);
10: end for;
11: EPTATcur := CalcEPTAT();
12: if (EPTATcur < EPTATmin) then
13: EPTATmin := EPTATcur;
14: Solutionbest := Solutioncur;
15: end if;
16: end for;
17: end for;
18: Apply(Solutionbest);
19: end for;
20: Return(TestSchedulefinal);

140

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

129

for 5 groups of SoC designs. Each group has 5 different SoC designs
which have the same number of cores of different types, and the cores
are assigned with different defect probabilities. The numbers of cores
in the SoC designs are 5, 10, 20, 30, and 50 for each group,
respectively. For each SoC design we impose three different peak-
power constraints. The experimental results presented in Table 7.1 are
average values from 15 experiments (5 different designs with the same
number of cores multiplied by 3 different peak-power constraints).
The defect probabilities of individual cores are randomly generated,
such that the system defect probability is 0.6, i.e. 40% system yield.

In order to evaluate the efficiency of our heuristic algorithm, a
classical bottom-left-decreasing (BLD) scheduling algorithm [Lesh, et
al. 2005] is taken for comparison. The BLD algorithm sorts DTSs and
PTSs decreasingly according to their area sizes (the peak-power
consumption multiplied by the time duration), and then schedules
them using the bottom-left strategy. As shown in Table 7.1, by
employing our heuristic algorithm, the ETAT is reduced about 20% to
29% compared to the BLD scheduling algorithm, with an acceptable
increase in execution time. On the other hand, in order to evaluate the
accuracy of our heuristic algorithm to find a near-optimal test
schedule, we compared our heuristic algorithm with a simulated
annealing (SA) algorithm. For small designs with 5 and 10 cores, the
SA algorithm reaches the imposed termination condition in an
acceptable time and is supposed to return a solution as close to the
optimal solution as possible. For large SoC designs with 20, 30, and
50 cores, the SA algorithm takes unacceptably long time to reach the
termination condition. Thus, for these experiments, we let the SA
algorithm run for a time equal to that needed by our heuristic
algorithm. From Table 7.1, it is shown that in small designs, the SA
algorithm works just slightly better than our heuristic algorithm (2%
to 3% lower ETAT), but has up to two orders of magnitude longer
execution time than our heuristic algorithm. For the large SoC designs,
our heuristic algorithm found better solutions with 4% to 7% lower

141

CHAPTER 7

130

ETAT than what the SA algorithm produces in the same amount of
execution time.

In the second group of experiments where the same SoC designs
are used, we evaluate the effect of test set partitioning. As a
comparison, we used a defect-probability driven test scheduling
heuristic algorithm which does not allow test set partitioning. For the
sake of fairness, both the partitioned and non-partitioned heuristic
algorithm use test pattern reordering to reduce peak-power
consumption. The experimental results are listed in Table 7.2. As
shown in the table, using test set partitioning can reduce the ETAT by
16% to 30%. This experimental result is also plotted in Figure 7.9.

Table 7.1: Comparison of different scheduling approaches using TSP

of Cores
BLD Our Heuristic SA

ETAT CPU
Time (s) ETAT CPU

Time (s) ETAT CPU
Time (s)

5 7783 0.01 6247 2.5 6126 276.0

10 10590 0.02 7983 26.9 7732 568.7

20 20081 0.04 14239 293.9 14808 301.5

30 28578 0.06 21117 493.4 22290 503.9

50 50562 0.11 37463 4372.9 40074 4409.3

Table 7.2: Comparison of scheduling approaches using/not using TSP

of Cores
Without TSP With TSP

ETAT CPU Time (s) ETAT CPU Time (s)

5 8269 0.09 6247 2.5

10 11357 0.86 7983 26.9

20 18016 14.2 14239 293.9

30 26710 68.6 21117 493.4

50 44713 589.1 37463 4372.9

142

POWER CONSTRAINED DEFECT-PROBABILITY DRIVEN SCHEDULING

131

Figure 7.9: Comparison of scheduling approaches using/not using TSP

7.5 Summary
This chapter presents a power constrained defect-probability driven
test scheduling approach for volume production test using the AOFF
test approach. Defect probabilities of individual cores are utilized to
guide test scheduling which employs test set reordering and test set
partitioning techniques. Heuristic algorithms for test set partitioning
and test scheduling are proposed to generate efficient test schedules.
Experimental results have shown that the proposed method is efficient
to minimize the ETAT.

8269
11357

18016

26710

44713

14239

21117

7983
6247

37463

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5 10 20 30 50
Number of Cores

Ex
pe

ct
ed

 T
ot

al
 T

es
t T

im
e

(E
TT

T) NON-Partitioned
Partitioned

143

144

Chapter 8
Conclusions and

Future Work

This chapter concludes the thesis and discusses possible directions for
future work.

8.1 Conclusions
The aim of the work presented in this thesis is to reduce the cost of
electronic testing. The major contribution of this thesis is that it
proposes a set of test scheduling techniques to minimize the test
application time with different considerations, including temperature,
power consumption, and defect probability.

The first proposed technique is temperature aware test scheduling
based on test set partitioning and interleaving. This technique aims to
generate efficient test schedules and avoid high temperature during
test. The presented test scheduling technique generates the shortest
test schedule for core-based SoCs such that the imposed temperature
limit and test-bus width limit are satisfied. The test set partitioning
technique aims to avoid overheating the cores under test by dividing a

145

CHAPTER 8

134

test set into shorter test sequences and inserting cooling periods
between the partitioned test sequences. The test set interleaving
technique aims to improve the efficiency of the test schedules by
utilizing the cooling periods of one core to test other cores. Based on
the test set partitioning and interleaving technique, we propose two
different solutions to the test time minimization problem with the
temperature and test-bus width constraints. The first solution targets
the SoCs with negligible lateral thermal influence. A CLP-based
approach and a heuristic approach are proposed for test scheduling.
The second solution targets the SoCs with significant lateral thermal
influence, and a thermal-simulation driven approach is proposed for
test scheduling.

The second proposed technique is multi-temperature testing which
aims to test SoCs at different temperature intervals so that the
temperature-dependent defects can be efficiently sensitized. A
thermal-simulation driven test scheduling approach is proposed to
minimize the test application time such that a test is applied to a core
under test only when the temperature of the core is within a given
interval and the test-bus width constraint is satisfied.

The third proposed technique is defect-probability driven test
scheduling based on the AOFF test approach. This technique aims to
minimize the expected test application time for volume production
tests. In order to avoid the power and temperature related problems
during test, we propose a power constrained test scheduling approach
for hybrid BIST.

Extensive experiments have been performed and the experimental
results have shown the efficiency of the proposed techniques.

8.2 Future Work
Recently, a three-dimensional (3D) integration technique has emerged
in IC designs. This technique stacks the silicon die in the vertical
dimension and the dies on different layers are connected by the

146

CONCLUSIONS AND FUTURE WORK

135

through-silicon vias (TSVs). The advantages of 3D-stacked ICs
include reduced number and length of wires, decreased
interconnection delay, increased integration density, and improved
performance. Moving from the 2D integration technique, the 3D-
stacked ICs encounter a greater challenge in thermal-related issues.
High temperature occurs in 3D-stacked ICs as the active silicon layer
heat each other while no efficient cooling solutions exist to take away
the heat. When testing 3D-stacked ICs, the thermal issues have to be
addressed since the testing power dissipation is much higher.
Temperature aware testing for 3D-stacked ICs is an interesting topic
for our future work. A possible research direction is the 3D
temperature aware test scheduling which minimizes the test
application time while keeps the temperature of the CUTs below a
given limit for 3D-stacked SoCs. New techniques based on the test
scheduling approaches proposed in this thesis can be developed for 3D
temperature aware test scheduling.

Process variation related testing is another possible direction for
future work. When the CMOS process moves into deep-nanometer
regime, the reliability of ICs becomes a great challenge due to process
variation. Traditional temperature aware testing techniques may not be
applicable since variation in physical parameters appears between or
within silicon dies. Combining the offline test scheduling techniques
using thermal simulation and online test scheduling techniques using
temperature sensors for temperature aware testing can be an
interesting research direction in the future.

147

148

List of Figures

Figure 2.1: Visualization of electronic systems design space 12
Figure 2.2: A typical electronic systems design flow 13
Figure 2.3: An IP core-based SoC example .. 17
Figure 2.4: Generic core-based SoC test architecture 17
Figure 2.5: Test architecture for external tests using an ATE 19
Figure 2.6: Test architecture for external tests using an embedded
tester .. 19
Figure 2.7: Test architecture for hybrid BIST..................................... 21
Figure 2.8: An electro-thermal model ... 30
Figure 2.9: Normal and reverse temperature dependence regions 34
Figure 2.10: Via voids at different temperatures 36
Figure 3.1: Motivational example of test set partitioning 41
Figure 3.2: Motivational example of test set interleaving 41
Figure 3.3. Temperature profiles of two CUTs using TSPI 42
Figure 3.4: Pipelined applications of test patterns in scan-based testing
 .. 44
Figure 3.5: Motivational example for temperature aware test
scheduling ... 45
Figure 3.6: Problem formulation of temperature aware test scheduling
 .. 47
Figure 3.7: Overall solution strategy .. 49
Figure 3.8: Motivational example of the initial partitioning scheme .. 51
Figure 3.9: Motivational example of test schedules affected by the
SCO ... 59
Figure 3.10: Pseudo-code of the heuristic algorithm for test scheduling
 .. 60

149

LIST OF FIGURES

138

Figure 3.11: Example of alternative solutions 63
Figure 3.12: Efficiency of a test schedule .. 63
Figure 3.13: Illustration of the scheduling algorithm 64
Figure 3.14: Pseudo-code of the scheduling algorithm 65
Figure 3.15: A scheduling constraint example 66
Figure 3.16: Two alternative solutions to deal with scheduling
constraint .. 67
Figure 4.1: Thermal simulation result showing significant lateral
thermal influence between two adjacent cores of an SoC design 75
Figure 4.2: Test schedule generated by Algorithm 3.1 leads to
violation of the temperature limit due to the significant lateral thermal
influence ... 76
Figure 4.3: Alternative test schedules w.r.t. various SCTs 77
Figure 4.4: Straight-forward approach ... 80
Figure 4.5: FSM model for the SDSA .. 81
Figure 4.6: Thermal-safe test schedule for an SoC consisting of 4
cores .. 82
Figure 4.7: Pseudo-code of heuristic algorithm activating cores for test
 .. 83
Figure 4.8: Overall solution strategy of the SDSA 84
Figure 4.9: TAT vs. SCT .. 85
Figure 5.1: Problem formulation of multi-temperature test scheduling
 .. 88
Figure 5.2: The impact of heating sequence length 90
Figure 5.3: Core states w.r.t. changes of temperatures 93
Figure 5.4: FSM model for multi-temperature test scheduling 93
Figure 5.5: Pseudo-code of the algorithm activating cores for test 94
Figure 6.1: A hybrid BIST schedule example 100
Figure 6.2: Possible test termination moments in a test schedule 103
Figure 6.3: Example of the test process aborted at PTTM 7 106
Figure 6.4: Alternative solutions .. 111
Figure 6.5: Partial test schedule for the best solution 111
Figure 6.6: Pseudo-code of the heuristic algorithm for test scheduling
 .. 112
Figure 6.7: ETATs with different approaches 114
Figure 6.8: Execution times of different scheduling approaches...... 115
Figure 7.1: Power-constrained test schedule without/with TSP 119
Figure 7.2: PTTMs in a power-constrained test schedule 120

150

LIST OF FIGURES

139

Figure 7.3: Test set partitioning and time overhead 121
Figure 7.4: Motivational example of test set reordering 122
Figure 7.5: Sum of area sizes w.r.t. number of partitions 124
Figure 7.6: One iteration step of the heuristic algorithm 126
Figure 7.7: Illustration of one solution at the iteration step 127
Figure 7.8: Pseudo-code of the heuristic algorithm for test scheduling
 .. 128
Figure 7.9: Comparison of scheduling approaches using/not using TSP
 .. 131

151

152

List of Tables

Table 2.1: Design tasks in different domains 12
Table 2.2: Duality between the electrical and thermal models 30
Table 3.1: TATs and execution times using the CLP model 56
Table 3.2: TSTs w.r.t. different number of partitioning schemes 57
Table 3.3: FLSA vs. ESLA and 2PSA .. 68
Table 3.4: FLSA vs. SFA and SABA ... 71
Table 4.1: SDSA vs. SFA ... 86
Table 5.1: TATs with different temperature intervals (B=60) 96
Table 5.2: TATs with different test-bus width (TL=85°C, TH=100°C)96
Table 5.3: TATs with/without TC (B=60, TL =85°C, TH =100°C) 97
Table 5.4: TATs with/without TC (B=60, TL =65°C, TH =80°C) 98
Table 6.1: Yx and Zx at each PTTM x w.r.t. Figure 6.2 107
Table 6.2: Comparison of different scheduling algorithms 113
Table 7.1: Comparison of different scheduling approaches using TSP
 .. 130
Table 7.2: Comparison of scheduling approaches using/not using TSP
 .. 130

153

154

List of Abbreviations

2D Two-Dimensional

2PSA Two-Phase Scheduling Algorithm

3D Three-Dimensional

ALU Arithmetic Logic Unit

AMBA Advanced Microprocessor Bus Architecture

AOFF Abort-on-First-Fail

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

BIST Built-In Self-Test

BLD Bottom-Left Decreasing

CDFG Control/Data-Flow Graph

CDP Core Defect Probability

CLP Constraint Logic Programming

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CUT Core Under Test

DATS Direct Access Test Scheme

DFT Design for Test

DMA Direct Memory Access

155

LIST OF ABBREVIATIONS

144

DSP Digital Signal Processor

DTP Deterministic Test Pattern

DTS Deterministic Test Sequence

DUT Device Under Test

EATM Earliest Available Time Moment

ELSA Equal-Length Scheduling Algorithm

EPATA Expected Partial Test Application Time

ETAT Expected Test Application Time

FLSA Flexible-Length Scheduling Algorithm

FPU Floating-Point Unit

FSM Finite-State Machine

HP Heating Pattern

HPF High-Power Frame

HS Heating Sequence

IFC Incremental Fault Coverage

IC Integrated Circuit

ILP Integer Linear Programming

IP Intellectual Property

ISCAS International Symposium on Circuits and Systems

ITFP Individual Test Failure Probability

ITSP Individual Test Success Probability

LFSR Linear Feedback Shift Register

LPF Low-Power Frame

MCM Multi-Chip Module

MILP Mixed-Integer Linear Programming

MISR Multi-Input Signature Register

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

OF Observation Frame

156

LIST OF ABBREVIATIONS

145

OSCO Overall Scheduling Consideration Order

PCB Printed-Circuit Board

PTAT Partial Test Application Time

PTP Pseudorandom Test Pattern

PTS Pseudorandom Test Sequence

PTTM Possible Test Termination Moment

PWM Pulse-Width Modulation

RAM Random-Access Memory

RASBuS Reuse of Addressable System Bus

RF Radio Frequency

ROM Read-Only Memory

RC Resistance-Capacitance

RP Rectangle Packing

RT Register-Transfer

RTL Register-Transfer Level

SA Simulated Annealing

SABA Simulated-Annealing-Based Algorithm

SCO Scheduling Consideration Order

SCT Stop-Cooling Temperature

SDP System Defect Probability

SDSA Simulation-Driven Scheduling Algorithm/Approach

SFA Straight-Forward Algorithm/Approach

SISR Single-Input Signature Register

SoC System-on-Chip

STUMPS Self-Testing Using MISR and Parallel SRSG

TAI Test Access Infrastructure

TAM Test Access Mechanism

TAT Test Application Time

157

LIST OF ABBREVIATIONS

146

TFP Test Failing Probability

TG Test Generation

TP Test Pattern

TPP Test Passing Probability

TS Test Set

TSE Test Schedule Efficiency

TSI Test Set Interleaving

TSP Test Set Partitioning

TSPI Test Set Partitioning and Interleaving

UDL User Defined Logic

USB Universal Serial Bus

VLSI Very-Large-Scale Integration

ZTC Zero-Temperature Coefficient

158

Appendix A
Deduction of Equations (6.8)

and (6.9) in Section 6.1.3

This appendix explains how Equations (6.8) and (6.9) in Section 6.1.3
are deducted.

Definition 1: test set and test patterns.
Suppose that a test set consists of m test patterns, which can be

deterministic test patterns or pseudorandom test patterns. We denote a
test set with TS, and the j-th test pattern in TS with vj.

{ } { }mjj vvvvmjvTS ,,,,,1 21 LL=≤≤= (A.1)

Definition 2: incremental fault coverage of a test pattern.
The incremental fault coverage of a test pattern v, denoted with

IFC(v), is the ratio of the faults that can be detected by the test pattern
v but cannot be detected by any preceding test patterns in the same test
set, to the total number of faults that can be detected by the entire test
set. Suppose that a test set TS can detect N faults in total, and the j-th
test pattern vj in TS can detect nj faults that cannot be detected by any
of the preceding test patterns {v1, v2, ... , vj–1} in TS. Let nj be the
number of faults that can be detected by the j-th test pattern vj in TS
but cannot not be detected by any preceding test patterns in TS, and let

159

APPENDIX A

148

N be the number of faults that can be detected by the test patterns in
TS. The IFC of vj is defined as

() ()mjNn
N
n

vIFC j
j

j ≤≤<≤= 1,0 (A.2)

Definition 3: fail and pass a single pattern test.
We define two random events regarding a test by applying a

single test pattern: fail a single pattern test and pass a single pattern
test. Fail a single pattern test is an event Fj that a test by applying j-th
(1 ≤ j ≤ m) test pattern vj is failed due to detection of at least one fault.
This infers that the entire test process is aborted immediately. Pass a
single pattern test is an event ¬Fj that a test by applying the j-th
(1 ≤ j ≤ m) test pattern vj is passed due to no detection of any faults.
This infers that the entire test process continues and the next test
pattern is going to be applied. Fail a single pattern test and pass a
single pattern test are complement events. Let D be the random event
that a core under test is defective. The defect probability of a core is
DP = p[D].

Definition 4: conditional probability of fail a currently applied
pattern test.

Suppose that the j-th test pattern can detect nj incremental faults
(1 ≤ j ≤ m). The following equation shows how to calculate the
conditional probability that the j-th test pattern vj detects at least one
fault provided that the preceding test patterns in the same test set did
not detect any faults while the core is actually defective.

[]

∑
−

=

−

=

−−

−−

−
=⎥

⎦

⎤
⎢
⎣

⎡
∩¬

−−−−
=

∩¬∩∩¬∩¬

1

1

1

1

121

121

|..

|

j

k
k

j
j

k
kj

jj

j

jjj

nN

n
DFFpei

nnnN
n

DFFFFp

I

L

L

(A.3)

160

DEDUCTION OF EQUATIONS (6.8) AND (6.9)

149

It should be noted that only incremental faults are counted in this
probability calculation. This is because those faults which are covered
by both vj and any preceding test patterns have no chance to be
detected by vj in the actual test process. According to the condition
given in the formula, those faults should have been detected by the
preceding test patterns before they are detected by vj.

Definition 5: terminate and pass a partial test.
Terminate a partial test after applying the j-th test pattern is an

random event Aj that the test is terminated immediately after the j-th
test pattern vj detects at least one fault. Pass a partial test after
applying the j-th test pattern is a random event Pj that the partial test is
passed after the j-th test pattern vj is applied without detecting any
faults and that the test process continues to apply the next test pattern.

According to the definitions, Aj is equivalent to the intersection of
the following three events: (1) the j-th test pattern detects at least one
fault; (2) the preceding test patterns did not detect any faults; (3) the
core is actually defective. Similarly, Pj is equivalent to the intersection
of the following two events: (1) the conjunction of such events that all
the j applied test patterns did not detect any faults and the core is
actually defective; (2) the core is actually not defective. Thus, Aj and
Pj are given by

DFFAei

DFFFFA
j

k
kjj

jjjj

∩¬∩=

∩¬∩∩¬∩¬∩=
−

=

−−

I

L

1

1

121

..
(A.4)

()

DDFPei

DDFFFFP
j

k
kj

jjjj

¬∪⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩¬=

¬∪∩¬∩∩¬∩¬∩¬=

=

−−

I

L

1

121

..
(A.5)

Definition 6: suppose that a test employs the AOFF test approach
and the test can only be terminated when a test pattern has been
applied and the test response or signature has been analyzed. Let p[Aj]
be the probability of the test being aborted at a certain test pattern and

161

APPENDIX A

150

let p[Pj] be the probability of the test succeeding at a certain test
pattern. Then, p[Aj] and p[Pj] are given by the following two equations
respectively.

[] () DPvIFCAp jj ×= (A.6)

[] ()∑
=

×−=
j

k
kj vIFCDPPp

1

1 (A.7)

Equations (A.6) and (A.7) can be proved using a mathematical
induction. The proof is given as follows.

Step 1: (observations)

[] [] [] []
() DPvIFC

DP
N
nDpDFpDFpAp

×=

×=×=∩=

1

1
111 |

[] [] [] []() []

DP
N
n

DpDFpDpDFpDFp

×⎟
⎠
⎞

⎜
⎝
⎛ −=

×−=×¬=∩¬

1

111

1

|1|

[] ()[] [] []

()

() DPvIFC

DP
N
nDPDP

N
n

DpDFpDDFpPp

×−=

×−=−+×⎟
⎠
⎞

⎜
⎝
⎛ −=

¬+∩¬=¬∪∩¬=

1

11

111

1

111

Step 2: (observations)

[] [] [] []

() DPvIFCDP
N
nDP

N
n

nN
n

DFpDFFpDFFpAp

×=×=×⎟
⎠
⎞

⎜
⎝
⎛ −×

−
=

∩¬×∩¬=∩¬∩=

2
21

1

2

112122

1

|

162

DEDUCTION OF EQUATIONS (6.8) AND (6.9)

151

[] [] []
[]() []

DP
N
n

N
nDP

N
n

nN
n

DFpDFFp
DFpDFFpDFFp

×⎟
⎠
⎞

⎜
⎝
⎛ −−=×⎟

⎠
⎞

⎜
⎝
⎛ −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=

∩¬×∩¬−=
∩¬×∩¬¬=∩¬∩¬

121

1

2

112

11212

111

|1
|

[] ()[]
[] []

()

() ()() DPvIFCvIFC

DP
N
n

N
nDPDP

N
n

N
n

DpDFFp
DDFFpPp

×+−=

×⎟
⎠
⎞

⎜
⎝
⎛ +−=−+×⎟

⎠
⎞

⎜
⎝
⎛ −−=

¬+∩¬∩¬=
¬∪∩¬∩¬=

12

1212

12

122

1

111

Step 3: (observations)

[] []
[] []

() DPvIFC

DP
N
nDP

N
n

N
n

nnN
n

DFFpDFFFp
DFFFpAp

×=

×=×⎟
⎠
⎞

⎜
⎝
⎛ −−×

−−
=

∩¬∩¬×∩¬∩¬=
∩¬∩¬∩=

3

312

12

3

12123

1233

1

|

[]
[] []

[]() []

DP
N
n

N
n

N
n

DP
N
n

N
n

nnN
n

DFFpDFFFp
DFFpDFFFp

DFFFp

×⎟
⎠
⎞

⎜
⎝
⎛ −−−=

×⎟
⎠
⎞

⎜
⎝
⎛ −−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−=

∩¬∩¬×∩¬∩¬−=
∩¬∩¬×∩¬∩¬¬=

∩¬∩¬∩¬

123

12

12

3

12123

12123

123

1

11

|1
|

163

APPENDIX A

152

[] ()[]
[] []

()

() () ()() DPvIFCvIFCvIFC

DP
N
n

N
n

N
n

DPDP
N
n

N
n

N
n

DpDFFFp
DDFFFpPp

×++−=

×⎟
⎠
⎞

⎜
⎝
⎛ ++−=

−+×⎟
⎠
⎞

⎜
⎝
⎛ −−−=

¬+∩¬∩¬∩¬=
¬∪∩¬∩¬∩¬=

123

123

123

123

1233

1

1

11

Step (j – 1): assume that

[] DP
N

n
Ap j

j ×= −
−

1
1

DP
N
nDFp

j

k

k
j

k
k ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎥

⎦

⎤
⎢
⎣

⎡
∩¬ ∑

−

=

−

=

1

1

1

1

1I

[] ∑
−

=
− ×−=

1

1
1 1

j

k

k
j N

nDPPp

Step j: according to the assumptions given in Step (j – 1), we have

[]

() DPvIFCDP
N
n

DP
N
n

nN

n

DFpDFFp

DFFpAp

j
j

j

k

k
j

k
k

j

j

k
k

j

k
kj

j

k
kjj

×=×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

−
=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎥

⎦

⎤
⎢
⎣

⎡
∩¬=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬∩=

∑
∑

−

=
−

=

−

=

−

=

−

=

1

1
1

1

1

1

1

1

1

1

1

| II

I

164

DEDUCTION OF EQUATIONS (6.8) AND (6.9)

153

DP
N
nDP

N
n

nN

n

DFpDFFp

DFpDFFpDFp

j

k

k
j

k

k
j

k
k

j

j

k
k

j

k
kj

j

k
k

j

k
kj

j

k
k

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∩¬−=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎥

⎦

⎤
⎢
⎣

⎡
∩¬¬=⎥

⎦

⎤
⎢
⎣

⎡
∩¬

∑∑
∑ =

−

=
−

=

−

=

−

=

−

=

−

==

1

1

1
1

1

1

1

1

1

1

1

1

11

111

|1

|

II

III

[]

[] ()

()∑∑

∑

==

==

=

×−=×−=

−+×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=¬+⎥

⎦

⎤
⎢
⎣

⎡
∩¬=

⎥
⎦

⎤
⎢
⎣

⎡
¬∪⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∩¬=

j

k
k

j

k

k

j

k

k
j

k
k

j

k
kj

vIFCDP
N
nDP

DPDP
N
nDpDFp

DDFpPp

11

11

1

11

11I

I

□

165

166

References

ABRAMOVICI, M., BREUER, M.A. AND FRIEDMAN, A.D. 1994.
Digital Systems Testing and Testable Design. Wiley-IEEE Press.

AERTS, J. AND MARINISSEN, E.J. 1998. Scan Chain Design for
Test Time Reduction in Core-Based ICs. In Proceedings of the 1998
IEEE International Test Conference, Washington, DC, USA, October
18 - October 23, pp. 448-457.

BAKER, B.S., COFFMAN, E.G. AND RIVEST, R.L. 1980.
Orthogonal Packings in Two Dimensions. SIAM Journal on
Computing, 9(4), pp. 846-855.

BORKAR, S. 1999. Design Challenges of Technology Scaling. IEEE
Micro, 19(4), pp. 23-29.

BUSHNELL, M.L. AND AGRAWAL, V.D. 2000. Essentials of
Electronic Testing for Digital, Memory, and Mixed-Signal VLSI
Circuits. Springer.

CALHOUN, B.H. AND CHANDRAKASAN, A.P. 2006. Ultra-
Dynamic Voltage Scaling (UDVS) Using Sub-Threshold Operation
and Local Voltage Dithering. IEEE Journal of Solid-State Circuits,
41(1), pp. 238-245.

167

REFERENCES

156

CHAKRABARTY, K. 2000a. Test Scheduling for Core-Based
Systems Using Mixed-Integer Linear Programming. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(10), pp. 1163-1174.

CHAKRABARTY, K. 2000b. Design of System-on-a-Chip Test
Access Architectures Under Place-and-Route and Power Constraints.
In Proceedings of the 37th Design Automation Conference, Los
Angeles, California, United States, June 5 - June 9, pp. 432-437.

CHOU, R.M., SALUJA, K.K. AND AGRAWAL, V.D. 1997.
Scheduling Tests for VLSI Systems Under Power Constraints. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 5(2),
pp. 175-185.

DAVIS, B. 1994. The Economics of Automatic Testing. McGraw-
Hill.

DELL'AMICO, M., MAFFIOLI, F. AND MARTELLO, S., Eds.
1997. Annotated Bibliographies in Combinatorial Optimization. John
Wiley & Sons.

DEVADAS, S., GHOSH, A. AND KEUTZER, K. 1994. Logic
Synthesis. McGraw-Hill, Inc.

DYCKHOFF, H. 1990. A Typology of Cutting and Packing Problems.
European Journal of Operational Research, 44(2), pp. 145-159.

ELLIOTT, J.P. 1999. Understanding Behavioral Synthesis: A
Practical Guide to High-Level Design. Kluwer Academic Publishers.

FILANOVSKY, I.M. AND ALLAM, A. 2001. Mutual Compensation
of Mobility and Threshold Voltage Temperature Effects with
Applications in CMOS Circuits. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 48(7), pp. 876-884.

FLYNN, D. 1997. AMBA: Enabling Reusable On-Chip Designs.
IEEE Micro, 17(4), pp. 20-27.

168

REFERENCES

157

GAJSKI, D.D. AND KUHN, R.H. 1983. Guest Editors' Introduction:
New VLSI Tools. IEEE Computer, 16(12), pp. 11-14.

GERSTENDÖRFER, S. AND WUNDERLICH, H. 2000. Minimized
Power Consumption for Scan-Based BIST. Journal of Electronic
Testing: Theory and Applications, 16(3), pp. 203-212.

GIRARD, P., LANDRAULT, C., PRAVOSSOUDOVITCH, S. AND
SEVERAC, D. 1998. Reducing Power Consumption During Test
Application by Test Vector Ordering. In Proceedings of the 1998
IEEE International Symposium on Circuits and Systems, Monterey,
CA, USA, May 31 - June 3, pp. 296-299.

GIRARD, P. 2000. Low Power Testing of VLSI Circuits: Problems
and Solutions. In Proceedings of the 1st IEEE International
Symposium on Quality Electronic Design, San Jose, CA , USA, March
20 - March 22, pp. 173-179.

GOEL, S.K. AND MARINISSEN, E.J. 2003. Control-Aware Test
Architecture Design for Modular SOC Testing. In Proceedings of the
8th IEEE European Test Workshop, Maastricht, The Netherlands,
May 25 - May 28, pp. 57-62.

GUNTHER, S.H., BINNS, F., CARMEAN, D.M. AND HALL, J.C.
2001. Managing the Impact of Increasing Microprocessor Power
Consumption. Intel Technology Journal, 5(1), pp. 1-9.

HARROD, P. 1999. Testing Reusable IP - A Case Study. In
Proceedings of the 1999 IEEE International Test Conference, Atlantic
City, NJ, USA, September 28 - September 30, pp. 493-498.

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2004. Hybrid BIST
Test Scheduling Based on Defect Probabilities. In Proceedings of the
13th IEEE Asian Test Symposium, Kenting, Taiwan, November 15 -
November 17, pp. 230-235.

169

REFERENCES

158

HE, Z., JERVAN, G., PENG, Z. AND ELES, P. 2005. Power-
Constrained Hybrid BIST Test Scheduling in an Abort-on-First-Fail
Test Environment. In Proceedings of the 8th Euromicro Conference
on Digital System Design, Porto, Portugal, August 30 - September 3,
pp. 83-86.

HE, Z., PENG, Z. AND ELES, P. 2006a. Power Constrained and
Defect-Probability Driven SoC Test Scheduling with Test Set
Partitioning. In Proceedings of the 2006 Design, Automation and Test
in Europe Conference, Munich, Germany, March 6 - March 10, pp.
291-296.

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI,
B.M. 2006b. Thermal-Aware SoC Test Scheduling with Test Set
Partitioning and Interleaving. In Proceedings of the 21st IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, Arlington, Virginia, USA, October 4 - October 6, pp. 477-
485.

HE, Z. 2007. System-on-Chip Test Scheduling with Defect-
Probability and Temperature Considerations. Licentiate of
Engineering. Thesis No. 1313. Linköping Studies in Science and
Technology. Linköping University.

HE, Z., PENG, Z. AND ELES, P. 2007. A Heuristic for Thermal-Safe
SoC Test Scheduling. In Proceedings of the 2007 IEEE International
Test Conference, Santa Clara, California, USA, October 21 - October
26, pp. 1-10.

HE, Z., PENG, Z. AND ELES, P. 2008a. Simulation-Driven Thermal-
Safe Test Time Minimization for System-on-Chip. In Proceedings of
the 17th IEEE Asian Test Symposium, Sapporo, Japan, November 24 -
November 27, pp. 283-288.

HE, Z., PENG, Z., ELES, P., ROSINGER, P. AND AL-HASHIMI,
B.M. 2008b. Thermal-Aware SoC Test Scheduling with Test Set
Partitioning and Interleaving. Journal of Electronic Testing: Theory
and Applications, 24(1-3), pp. 247-257.

170

REFERENCES

159

HE, Z., PENG, Z. AND ELES, P. 2009. Thermal-Aware Test
Scheduling for Core-based SoC in an Abort-on-First-Fail Test
Environment. In Proceedings of the 12th Euromicro Conference on
Digital System Design, Patras, Greece, August 27 - August 29, pp.
239-246.

HE, Z., PENG, Z. AND ELES, P. 2010a. Multi-Temperature Testing
for Core-based System-on-Chip. In Proceedings of the 2010 Design,
Automation and Test in Europe Conference, Dresden, Germany,
March 8 - March 12, pp. 208-213.

HE, Z., PENG, Z. AND ELES, P. 2010b. Thermal-Aware SoC Test
Scheduling. (Book Chapter) In Design and Test Technology for
Dependable System-on-Chip, R. UBAR, J. RAIK AND H.T.
VIERHAUS, Eds. IGI Global.

HELLEBRAND, S., TARNICK, S., COURTOIS, B. AND RAJSKI, J.
1992. Generation of Vector Patterns Through Reseeding of Multipe-
Polynominal Linear Feedback Shift Registers. In Proceedings of the
1992 IEEE International Test Conference, Baltimore, Maryland,
USA, September 20 - September 24, pp. 120-129.

HUANG, W., STAN, M.R., SKADRON, K.,
SANKARANARAYANAN, K., GHOSH, S. AND VELUSAM, S.
2004. Compact Thermal Modeling for Temperature-Aware Design. In
Proceedings of the 41st Design Automation Conference, San Diego,
CA, USA, June 7 - June 11, pp. 878-883.

HUANG, W., GHOSH, S., VELUSAMY, S.,
SANKARANARAYANAN, K., SKADRON, K. AND STAN, M.R.
2006. HotSpot: A Compact Thermal Modeling Methodology for
Early-Stage VLSI Design. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(5), pp. 501-513.

HUSS, S.D. AND GYURCSIK, R.S. 1991. Optimal Ordering of
Analog Integrated Circuit Tests to Minimize Test Time. In
Proceedings of the 28th ACM/IEEE Design Automation Conference,
San Francisco, CA, USA, June 17 - June 21, pp. 494-499.

171

REFERENCES

160

HWANG, S. AND ABRAHAM, J.A. 2001. Reuse of Addressable
System Bus for SOC Testing. In Proceedings of the 14th Annual IEEE
International ASIC/SOC Conference, Arlington, VA, USA, September
12 - September 15, pp. 215-219.

IMMANENI, V. AND RAMAN, S. 1990. Direct Access Test
Scheme-Design of Block and Core Cells for Embedded ASICs. In
Proceedings of the 1990 IEEE International Test Conference,
Washington, DC, USA, September 10 - September 14, pp. 488-492.

INGELSSON, U., GOEL, S.K., LARSSON, E. AND MARINISSEN,
E.J. 2005. Test Scheduling for Modular SOCs in an Abort-on-Fail
Environment. In Proceedings of the 10th IEEE European Test
Symposiumpp. 8-13.

IYENGAR, V. AND CHAKRABARTY, K. 2002. System-on-a-Chip
Test Scheduling With Precedence Relationships, Preemption, and
Power Constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(9), pp. 1088-1094.

IYENGAR, V., CHAKRABARTY, K. AND MARINISSEN, E.J.
2003. Test Access Mechanism Optimization, Test Scheduling, and
Tester Data Volume Reduction for System-on-Chip. IEEE
Transactions on Computers, 52(12), pp. 1619-1632.

JAFFAR, J. AND LASSEZ, J. 1987. Constraint Logic Programming.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, Munich, West Germany, pp.
111-119.

JERVAN, G., PENG, Z. AND UBAR, R. 2000. Test Cost
Minimization for Hybrid BIST. In Proceedings of the 2000 IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, Yamanashi, Japan, October 25 - October 27, pp. 283-291.

JIANG, W. AND VINNAKOTA, B. 2001. Defect-Oriented Test
Scheduling. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 9(3), pp. 427-438.

172

REFERENCES

161

KORANNE, S. 2002. On Test Scheduling for Core-Based SOCs. In
Proceedings of the 2002 Asia and South Pacific Design Automation
Conference, Bangalore, India, pp. 505-510.

KORF, R.E. 2003. Optimal Rectangle Packing: Initial Results. In
Proceedings of the 13th International Conference on Automated
Planning and Scheduling, Trento, Italy, June 9 - June 13, pp. 287-295.

KORF, R.E. 2004. Optimal Rectangle Packing: New Results. In
Proceedings of the 14th International Conference on Automated
Planning and Scheduling, Whistler, British Columbia, Canada, June 3
- June 7, pp. 142-149.

LARSSON, E. AND PENG, Z. 2002. An Integrated Framework for
the Design and Optimization of SOC Test Solutions. Journal of
Electronic Testing: Theory and Applications, 18(4-5), pp. 385-400.

LARSSON, E., POUGET, J. AND PENG, Z. 2004. Defect-Aware
SOC Test Scheduling. In , Napa Valley, CA, USA, April 25 - April
29, pp. 359-364.

LARSSON, E. AND PENG, Z. 2006. Power-Aware Test Planning in
the Early System-on-Chip Design Exploration Process. IEEE
Transactions on Computers, 55(2), pp. 227-239.

LESH, N., MARKS, J., MCMAHON, A. AND MITZENMACHER,
M. 2004. Exhaustive Approaches to 2D Rectangular Perfect Packings.
Information Processing Letters, 90(1), pp. 7-14.

LESH, N., MARKS, J., MCMAHON, A. AND MITZENMACHER,
M. 2005. New Heuristic and Interactive Approaches to 2D
Rectangular Strip Packing. Journal of Experimental Algorithmics,
10(1.2), pp. 1-18.

173

REFERENCES

162

LIU, C., VEERARAGHAVAN, K. AND IYENGAR, V. 2005.
Thermal-Aware Test Scheduling and Hot Spot Temperature
Minimization for Core-Based Systems. In Proceedings of the 20th
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, Monterey, California, USA, October 3 - October 5, pp.
552-560.

MAHAJAN, R. 2002. Thermal Management of CPUs: A Perspective
on Trends, Needs and Opportunities. In Proceedings of the 8th
International Workshop on THERMal INvestigations of ICs and
Systems (Keynote), Madrid, Spain, October 1 - October 4, .

MARINISSEN, E.J., ARENDSEN, R.G.J., BOS, G., DINGEMANSE,
H., LOUSBERG, M. AND WOUTERS, C. 1998. A Structured and
Scalable Mechanism for Test Access to Embedded Reusable Cores. In
Proceedings of International Test Conference (1998), Washington,
DC, USA, October 18 - October 23, pp. 284-293.

MARINISSEN, E.J., GOEL, S.K. AND LOUSBERG, M. 2000.
Wrapper Design for Embedded Core Test. In Proceedings of
International Test Conference (2000), Atlantic City, NJ, USA,
October 3 - October 5, pp. 911-920.

MILOR, L. AND SANGIOVANNI-VINCENTELLI, A.L. 1994.
Minimizing Production Test Time to Detect Faults in Analog Circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(6), pp. 796-813.

MONTANES, R.R., VOLF, P. AND GYVEZ, J.P.D. 2002. Resistance
Characterization for Weak Open Defects. IEEE Design and Test of
Computers, 19(5), pp. 18-26.

MOORE, G.E. 1965. Cramming More Components onto Integrated
Circuits. Electronics, 38(8), pp. 114-117.

174

REFERENCES

163

MURESAN, V., WANG, X., MURESAN, V. AND VLADUTIU, M.
2000. A Comparison of Classical Scheduling Approaches in Power-
Constrained Block-Test Scheduling. In Proceedings of International
Test Conference (2000), Atlantic City, NJ, USA, October 3 - October
5, pp. 882-891.

MURRAY, B.T. AND HAYES, J.P. 1996. Testing ICs: Getting to the
Core of the Problem. IEEE Computer, 29(11), pp. 32-38.

NEEDHAM, W., PRUNTY, C. AND YEOH, E.H. 1998. High
Voltage Microprocessor Test Escapes An Analysis of Defects Our
Tests are Missing. In Proceedings of the 1998 IEEE International Test
Conference, Washington, DC, USA, October 18 - October 23, pp. 25-
34.

NIGH, P., VALLETT, D.P., PATEL, A. AND WRIGHT, J. 1998.
Failure Analysis of Timing and IDDq-only Failures from the
SEMATECH Test Methods Experiment. In Proceedings of the 1998
IEEE International Test Conference, Washington, DC, USA, October
18 - October 23, pp. 43-52.

POUYA, B. AND CROUCH, A.L. 2000. Optimization Trade-offs for
Vector Volume and Test Power. In Proceedings of the 2000 IEEE
International Test Conference, Atlantic City, NJ, USA, October 3 -
October 5, pp. 873-881.

RABAEY, J.M., CHANDRAKASAN, A. AND NIKOLIC, B. 2003.
Digital Integrated Circuits. Prentice Hall.

RAVIKUMAR, C.P., CHANDRA, G. AND VERMA, A. 2000.
Simultaneous Module Selection and Scheduling for Power-
Constrained Testing of Core Based Systems. In Proceedings of the
13th International Conference on VLSI Design, Calcutta, India,
January 4 - January 7, pp. 462-467.

RINALDI, N.F. 2000. Thermal Analysis of Solid-State Devices and
Circuits: An Analytical Approach. Solid-State Electronics, 44(10), pp.
1789-1798.

175

REFERENCES

164

RINALDI, N.F. 2001. On the Modeling of the Transient Thermal
Behavior of Semiconductor Devices. IEEE Transactions on Electron
Devices, 48(12), pp. 279-2802.

ROSINGER, P.M., AL-HASHIMI, B.M. AND NICOLICI, N. 2002.
Power Profile Manipulation: A New Approach for Reducing Test
Application Time Under Power Constraints. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 21(10),
pp. 1217-1225.

ROSINGER, P.M., AL-HASHIMI, B.M. AND NICOLICI, N. 2004.
Scan Architecture With Mutually Exclusive Scan Segment Activation
for Shift- and Capture-Power Reduction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23(7), pp.
1142-1153.

ROSINGER, P.M., AL-HASHIMI, B.M. AND CHAKRABARTY, K.
2006. Thermal-Safe Test Scheduling for Core-Based System-on-Chip
Integrated Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(11), pp. 2502-2512.

SAMII, S., LARSSON, E., CHAKRABARTY, K. AND PENG, Z.
2006. Cycle-Accurate Test Power Modeling and its Application to
SoC Test Scheduling. In Proceedings of the 2006 IEEE International
Test Conference, Santa Clara, CA, USA, October 24 - October 26, pp.
1-10.

SAXENA, J., BUTLER, K.M. AND WHETSEL, L. 2001. An analysis
of power reduction techniques in scan testing. In Proceedings of the
2001 IEEE International Test Conference, Baltimore, Maryland,
USA, October 30 - November 1, pp. 670-677.

SEGURA, J. AND HAWKINS, C.F. 2004. CMOS Electronics: How
It Works, How It Fails. Wiley-IEEE Press.

SHI, C. AND KAPUR, R. 2004. How Power-Aware Test Improves
Reliability and Yield. 2009, 4. .

176

REFERENCES

165

SINGER, G., GALIVANCHE, R., PATIL, S. AND TRIPP, M. 2009.
The Challenges of Nanotechnology and Gigacomplexity. IEEE Design
and Test of Computers, 26(1), pp. 88-93.

SKADRON, K., STAN, M.R., SANKARANARAYANAN, K.,
HUANG, W., VELUSAMY, S. AND TARJAN, D. 2004.
Temperature-Aware Microarchitecture: Modeling and
Implementation. ACM Transactions on Architecture and Code
Optimization, 1(1), pp. 94-125.

SUGIHARA, M. AND YASUURA, H. 2000. Analysis and
Minimization of Test Time in a Combined BIST and External Test
Approach. In Proceedings of the 2000 Design, Automation and Test in
Europe Conference, Paris, France, March 27 - March 30, pp. 134-140.

TADAYON, P. 2000. Thermal Challenges During Microprocessor
Testing. Intel Technology Journal, 4(3), pp. 1-8.

TOUBA, N.A. AND MCCLUSKEY, E.J. 1995. Synthesis of Mapping
Logic for Generating Transformed Pseudo-Random Patterns for BIST.
In Proceedings of the 1995 IEEE International Test Conference,
Washington, DC, USA, October 21 - October 25, pp. 674-682.

VAN HENTENRYCK, P. 1991. The CLP Language CHIP: Constraint
Solving and Applications. In Compcon Spring '91. Digest of Papers,
San Francisco, CA, USA, February 25 - March 1, pp. 382-387.

VASSIGHI, A. AND SACHDEV, M., Eds. 2006. Thermal and Power
Management of Integrated Circuits. Springer.

WANG, L., STROUD, C. AND TOUBA, N.A., Eds. 2007. System-
on-Chip Test Architectures: Nanometer Design for Testability.
Morgan Kaufmann.

WANG, S. AND GUPTA, S.K. 1997. DS-LFSR: A New BIST TPG
for Low Heat Dissipation. In Proceedings of the 1997 IEEE
International Test Conference, Washington, DC, USA, November 1 -
November 6, pp. 848-857.

177

REFERENCES

166

WOLPERT, D. AND AMPADU, P. 2009. A Sensor to Detect Normal
or Reverse Temperature Dependence in Nanoscale CMOS Circuits. In
Proceedings of the 24th IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, Chicago, IL, USA, October 7 -
October 9, pp. 193-201.

YANG, Y., GU, Z., ZHU, C., DICK, R.P. AND SHANG, L. 2007.
ISAC: Integrated Space-and-Time-Adaptive Chip-Package Thermal
Analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26(1), pp. 86-99.

YU, T.E., YONEDA, T., CHAKRABARTY, K. AND FUJIWARA,
H. 2007. Thermal-Safe Test Access Mechanism and Wrapper Co-
optimization for System-on-Chip. In Proceedings of the 16th Asian
Test Symposium, Beijing, China, October 8 - October 11, pp. 187-192.

ZORIAN, Y. 1993. A Distributed BIST Control Scheme for Complex
VLSI Devices. In Proceedings of the 11th VLSI Test Symposium,
Atlantic City, NJ, USA, April 6 - April 8, pp. 4-9.

ZORIAN, Y., MARINISSEN, E.J. AND DEY, S. 1999. Testing
Embedded-Core-Based System Chips. IEEE Computer, 32(6), pp. 52-
60.

178

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN 91-
7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-2

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

179

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

180

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91
7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91
7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

181

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and
Comprehensible Data Mining Models - An
Evolutionary Approach, 2007, ISBN 978-91-85715-34-
3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

182

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

Linköping Studies in Arts and Sciences
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

No 11 Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

183

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av
komponentbaserade informationssystem, 2006, ISBN
91-85643-22-X.

184

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090225115229
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 681
 272
 None
 Down
 79.3701
 85.0394

 Both
 405
 AllDoc
 410

 CurrentAVDoc

 Uniform
 63.7795
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 177
 184
 183
 184

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 184
 183
 184

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 184
 183
 184

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 11.0 point
 Origin: bottom centre
 Offset: horizontal 0.00 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 1
 TR
 1
 0
 730
 362
 0
 11.0000

 Both
 184
 1
 AllDoc

 CurrentAVDoc

 0.0000
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 184
 183
 184

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090225115229
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 681
 272

 None
 Down
 79.3701
 85.0394

 Both
 405
 AllDoc
 410

 CurrentAVDoc

 Uniform
 63.7795
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 184
 183
 184

 1

 HistoryList_V1
 qi2base

