
Linköping Studies in Science and Technology

Thesis No. 1313

System-on-Chip Test Scheduling with
Defect-Probability and Temperature Considerations

by

Zhiyuan He

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2007

ISBN 978-91-85831-81-4 ISSN 0280-7971
Printed by LiU-Tryck

Linköping, Sweden 2007

Copyright © 2007 Zhiyuan He

Abstract

Electronic systems have become highly complex, which results in a
dramatic increase of both design and production cost. Recently a
core-based system-on-chip (SoC) design methodology has been
employed in order to reduce these costs. However, testing of SoCs
has been facing challenges such as long test application time and
high temperature during test. In this thesis, we address the problem
of minimizing test application time for SoCs and propose three
techniques to generate efficient test schedules.

First, a defect-probability driven test scheduling technique is
presented for production test, in which an abort-on-first-fail (AOFF)
test approach is employed and a hybrid built-in self-test architecture
is assumed. Using an AOFF test approach, the test process can be
aborted as soon as the first fault is detected. Given the defect
probabilities of individual cores, a method is proposed to calculate
the expected test application time (ETAT). A heuristic is then
proposed to generate test schedules with minimized ETATs.

Second, a power-constrained test scheduling approach using test
set partitioning is proposed. It assumes that, during the test, the
total amount of power consumed by the cores being tested in parallel
has to be lower than a given limit. A heuristic is proposed to
minimize the test application time, in which a test set partitioning
technique is employed to generate more efficient test schedules.

Third, a thermal-aware test scheduling approach is presented, in
which test set partitioning and interleaving are employed. A

 I

constraint logic programming (CLP) approach is deployed to find the
optimal solution. Moreover, a heuristic is also developed to generate
near-optimal test schedules especially for large designs to which the
CLP-based algorithm is inapplicable.

Experiments based on benchmark designs have been carried out to
demonstrate the applicability and efficiency of the proposed
techniques.

II

Acknowledgments

It has been a great pleasure for me to work on this thesis. Many
people have contributed to it. I appreciate this and I wish to take the
opportunity to thank them all.

First of all, I would like to sincerely thank my supervisors
Professor Zebo Peng and Professor Petru Eles, for their great
support. It is their guidance and encouragement that have been
leading me on my study and research throughout all these years.
Many of their creative thoughts generated in the enlightening
discussions have become the most important essences of this thesis.

Many thanks to my colleagues at the Department of Computer and
Information Science in Linköping University, and, in particular, to
present and former members of the Embedded Systems Laboratory
(ESLAB), for their kind help and the joy shared with me.

I acknowledge the support of the Swedish Foundation for Strategic
Research (SSF) via the Strategic Integrated Electronic Systems
Research (STRINGENT) program, and I appreciate the feedback and
ideas obtained from many well organized workshops.

I am grateful to my parents, who have been great support all the
time. Last, but not the least, I would like to express my deepest
gratitude to my beloved wife, Huanfang, for her endless love,
patience, and encouragement.

Zhiyuan He
Linköping, June 2007

 III

Contents

Abstract ... I
Acknowledgments.. III
Chapter 1 Introduction..1

1.1 Motivation ... 1
1.2 Problem Formulation.. 3
1.3 Contributions .. 4
1.4 Thesis Overview.. 5

Chapter 2 Background and Related Work7
2.1 Electronic Systems Design ... 7
2.2 Electronic Systems Test ... 10
2.3 Core-based SoC Design and Test ... 12
2.4 Hybrid Built-In Self-Test.. 15
2.5 Abort-on-First-Fail Test ... 17
2.6 Power- and Thermal-Aware Test ... 18

Chapter 3 Defect-Probability Driven SoC Test Scheduling
...21

3.1 Introduction... 21
3.2 Definitions and Problem Formulation 22

3.2.1 Basic Definitions.. 22
3.2.2 Basic Assumptions... 24
3.2.3 Possible Test Termination Moment 25

 V

3.2.4 Expected Test Application Time....................................26
3.2.5 Problem Formulation...31

3.3 Proposed Heuristic ..31
3.4 Experimental Results ...36
3.5 Conclusions..37

Chapter 4 Power-Constrained SoC Test Scheduling 39
4.1 Introduction...39
4.2 Motivational Example...40
4.3 Problem Formulation..42
4.4 Test Set Partitioning...43
4.5 Proposed Heuristic ..48
4.6 Experimental Results ...53
4.7 Conclusions..55

Chapter 5 Thermal-Aware SoC Test Scheduling 57
5.1 Introduction...57
5.2 Motivational Example...58
5.3 Problem Formulation..61
5.4 Overall Solution Strategy ...63
5.5 CLP-based Approach...66

5.5.1 Concepts of CLP...67
5.5.2 CLP Model..67
5.5.3 Experimental Results ..70

5.6 Heuristic-based Approach...72
5.6.1 Motivational Example..73
5.6.2 Heuristic ...74
5.6.3 Experimental Results ..82

5.7 Conclusions..87
Chapter 6 Conclusions and Future Work 89

6.1 Conclusions..89
6.2 Future Work ..90

References.. 93

VI

Appendix A Abbreviations ..103
Appendix B Explanations..105

 VII

Chapter 1
 Introduction

This thesis deals with testing of core-based systems-on-chip (SoCs).
The main purpose of this work is to reduce the test application time
(TAT) and consequently reduce the testing cost. In this thesis, three
techniques for core-based SoC test scheduling are presented. We first
propose an SoC test scheduling technique which utilizes the defect
probabilities of individual cores to guide the test scheduling. Second,
we propose a power constrained SoC test scheduling technique in
order to minimize the TAT and at the same time avoid high power
consumption during tests. Third, we propose a thermal-aware SoC
test scheduling approach which minimizes the TAT as well as avoid
high temperature during tests.

In this chapter, we present the motivation of our work and
formulate the problems. Thereafter, we summarize the main
contributions of our work and give an overview of the thesis
structure.

1.1 Motivation
The rapid advances of microelectronic technologies have enabled the
design and manufacturing of highly complex systems. However, this
evolution potentially leads to a dramatic increase of the system cost

 1

due to high design complexity, long time-to-market, and high
production costs.

In recent years, a core-based SoC design methodology has been
employed to reduce the design and production costs by integrating
pre-designed and pre-verified intellectual property (IP) cores on a
single silicon die. Although the cost of designing and manufacturing
SoCs is reduced, the testing cost rises because of inefficient test
access mechanism (TAM), large amount of test data, and long test
application times. Therefore, how to efficiently generate, transport
and apply test data for core-based SoCs becomes a major challenge to
test engineers.

One solution to reduce the testing cost is to reduce the TAT. With
advanced design for test (DFT) techniques such as TAM and wrapper
designs, the tests for individual IP cores can be applied concurrently
and thus the TAT can be substantially reduced. However, reducing
the TAT can be affected by power and temperature related problems.

During test, more power is dissipated than in the normal
functional mode because of a substantial increase of switching
activity in the circuit. The test concurrency has to be restricted due
to a limited power supply. Thus, the trade-off between the TAT and
the power consumption has to be taken into account. Further, high
power consumption during test can cause a high level of noises
occurring in the circuits and this can potentially damage the devices
under test (DUTs). Moreover, high power consumption can also
result in excessive heat dissipation and high temperature which also
potentially damages the chips. The power and thermal issues are
even more severe to the design and test of new generations of
integrated circuit (ICs) which employ deep sub-micrometer
technology.

Thus, advanced test scheduling techniques which reduce the TATs
and at the same time take into account the power and thermal issues
are strongly required for core-based SoC testing.

2

1.2 Problem Formulation
In this thesis, we aim to minimize the TAT of core-based SoCs and
we address three test scheduling problems concerning different
trade-offs and constraints. The formulations of the three problems
are as follows.

The first problem that we deal with is how to minimize the TATs
for high-volume production tests. More specifically, this problem is
discussed in a context of testing core-based SoCs by using an abort-
on-first-fail (AOFF) test approach, which means that the test process
is terminated as soon as a fault has been detected. Based on the
AOFF test approach, the termination of the test process is considered
as a random event which happens with a certain probability. Thus,
in order to minimize the TAT for a high-volume production test, we
need to minimize the expected test application time (ETAT), which is
calculated according to a generated test schedule and the given
defect probabilities of individual cores. In particular, we employ a
hybrid built-in self-test (BIST) which combines both deterministic
and pseudorandom tests for an IP core. Thus, the problem is
formulated as the following: given the defect probabilities of IP cores
and the test sets for the hybrid BISTs, generate a test schedule such
that the ETAT is minimized.

As demonstrated in the previous section, in order to shorten the
TAT, concurrent testing can be employed, but the aggregate amount
of power consumption has to be restricted. Thus, we address the
second problem as the SoC test scheduling for the hybrid BIST in
order to minimize the ETAT while keeping the aggregate amount of
power consumption below a power constraint. In order to generate
efficient test schedules, a test set can be partitioned into shorter sub-
test sequences. In this thesis, this method is referred to as the test
set partitioning (TSP). Thus, the test scheduling problem is
formulated as how to generate the test schedule for all test sub-
sequences such that the ETAT is minimized and the power
constraint is hold.

 3

The third problem that we tackle in this thesis is the test
scheduling with limits on the temperatures of the CUTs and a limit
on the bandwidth of the test-bus used for transporting test data. In
order to avoid overheating the CUTs, an entire test set is partitioned
into shorter test sub-sequences and cooling periods are introduced
between test sub-sequences. Furthermore, the test sub-sequences
partitioned from different test sets are interleaved in order to
improve the efficiency of the test schedule. Thus, the test scheduling
problem is formulated as how to generate test schedules for the
partitioned and interleaved test sub-sequences such that the TAT is
minimized while the temperature and bandwidth constraints are not
violated.

1.3 Contributions
The main contributions of this thesis are as follows. First, we have
proposed a defect probability driven SoC test scheduling technique
based on the AOFF test approach. For this technique, we have
defined the expected test application time (ETAT) as the cost
function and we have proposed a heuristic to generate the test
schedule with minimized ETAT. This approach assumes a test
architecture designed for hybrid BISTs and the proposed technique is
applicable to the testing of both combinational circuits and
sequential circuits.

Second, we have proposed a power-constrained SoC test scheduling
technique using test set partitioning. In order to minimize the ETAT,
we have proposed heuristics for test set partitioning and test
scheduling under the power constraint. The proposed technique
minimizes the ETAT and also avoids the power and thermal related
problems. It is applicable to both BISTs and external tests.

Third, we have proposed a thermal-aware SoC test scheduling
technique using test set partitioning and interleaving. This
technique assumes that a test bus is employed to transport test data,
and the limit on the bandwidth of the test bus and the limits on the

4

temperatures of individual cores are given as constraints. In order to
avoid overheating during tests, a test set is into test sub-sequences
and cooling periods are introduced between consecutive test sub-
sequences. The partitioned test sets are further interleaved in order
to reduce the TAT and to utilize the test bus efficiently. We have
proposed two approaches to solve the constrained test scheduling
problem. One approach is based on the constraint logic programming
(CLP) and the other approach employs a heuristic.

1.4 Thesis Overview
The rest of the thesis is constructed as follows. Chapter 2 illustrates
the background and related work in the area of core-based SoC
testing and design for test. The principles of electronic systems
design and test, core-based SoC design and test, hybrid BIST, AOFF
test, as well as power- and thermal-aware test are demonstrated.

Chapter 3 presents the first test scheduling technique, which
utilizes the defect probabilities of individual cores for production test.
The chapter starts with an introduction to the related work on
defect-oriented test scheduling. Thereafter, the concept of the ETAT
is presented and the approach to calculate the ETAT is illustrated.
Based on the definition of the ETAT, a heuristic for test scheduling is
presented. The chapter is concluded with experimental results
demonstrating the efficiency of the proposed technique.

In Chapter 4, we present the power constrained SoC test
scheduling technique. The chapter starts with an short introduction
to related work followed by a motivational example which
demonstrates the importance of the addressed power-constrained
test scheduling problem. Thereafter, the test set partitioning
technique is presented and the proposed heuristics for test set
partitioning and test scheduling are illustrated. Finally,
experimental results are given in order to demonstrate the feasibility
and efficiency of the proposed technique.

 5

Chapter 5 presents the thermal-aware SoC test scheduling
technique. An introduction to related work is given at the beginning
of the chapter and thereafter a motivational example is given to
demonstrate the significance of the thermal-thermal test scheduling
problem. The proposed CLP-based approach and heuristic-based
approach are then illustrated in details and finally the chapter is
concluded with experimental results.

The thesis is concluded in Chapter 6 where possible directions of
future work are also discussed.

6

Chapter 2
 Background and

Related Work

In this chapter, the basic concepts of electronic systems design and
test are presented, followed by a discussion on core-based SoC design
and test. Thereafter, the background and related work on hybrid
BIST, AOFF test, and power- and thermal-aware test are
demonstrated.

2.1 Electronic Systems Design
In order to manage the design complexity of modern electronic
systems, the electronic systems design has to be organized in a
hierarchical approach which covers several levels of abstraction.
Usually, the abstraction levels are referred to as system level,
register-transfer (RT) level, logic level, circuit level, and physical
level, from higher to lower levels respectively. Figure 2.1 illustrates
the generic structure of the electronic systems design space, where
the five hierarchical abstraction levels are categorized into three
domains [Gaj83].

 7

CPU, Memory, Bus

ALU, Register, Multiplexer

Gate, Flip-Flop

Transistor

Structural
Domain

RT Level

Logic Level

Circuit Level

Transistor Layout

Macro-Cell, Chip

Board, MCM

Physical
Domain

Standard-Cell/Sub-cell

System Level

Physical
Level

Algorithm, Process

Register-Transfer Specification

Boolean Equation

Behavioral
Domain

Transistor Function 4

5

3

2
1

Behavioral
Specification

Figure 2.1: Design space of electronic systems [Gaj83]

In principle, the design space can be classified into three different
domains, according to the perspective from which different designers
look on their design tasks. As depicted in Figure 2.1, the three design
domains are the behavioral domain, the structural domain, and the
physical domain. In different domains, designers look at their design
tasks in different perspective, as listed in Table 2.1. A design flow
[Dev94] of electronic systems is also depicted in Figure 2.1 (see the
arrows marked with numbers) and it is extended with details in
Figure 2.2.

Table 2.1: Design tasks from different perspective
Abs. Level Behavioral Domain Structural Domain Physical Domain

System Level Algorithm, Process CPU, Memory, Bus Board, MCM, SoC

RT level RT Specification ALU, Register, MUX Macro-Cell, Chip

Logic Level Boolean Equation Gate, Flip-Flop Standard-Cell/Sub-Cell

Circuit Level Transistor Function Transistor Transistor Layout

8

System Level

Behavioral
Specification

Behavioral
Synthesis RTL Description

Translation Non-optimized
Logic Description

Routing

Layout

Manufacturing Testing

RT Level

Gate Level

Circuit Level

Optimized
Logic Description

Placement

Silicon Die/IC

Silicon Level

Behavioral
Modeling

Library
Testability Improvement

& Test Generation

Logic Optimization

Technology
Mapping

H
L

Sy
n.

Fa
br

ic
.

La
yo

ut
 D

es
ig

n
Lo

gi
c

Sy
nt

he
si

s

Figure 2.2: Generic design flow of electronic systems [Dev94]

Here, a synthesis step is referred to as a transformation of a design
from a higher level of abstraction into a lower level of abstraction, or
from the behavioral domain to the structural domain. Each step in
the design flow is explained as follows, where the bullet numbers
correspond to the numbers marked on the arrows in Figure 2.1
[Gaj83].

(1) Behavioral Modeling: Also called system-level specification. The
specification of a system is usually given as a description to the
functionality of the system and a set of design constrains. In this
phase, the system specification is analyzed and a behavioral
description is written in a hardware description language or natural
language.

(2) High-Level Synthesis: Also called behavioral synthesis [Ell99].
In this phase the system-level specification is transformed into a

 9

description of RT-level (RTL) components such as ALUs, registers,
and multiplexers. The basic components in an RTL design usually
correspond to operations in a behavioral specification. In order to
obtain the RTL design, the high-level synthesis usually consists of
the following steps [Ell99]: derivation of control/data-flow graph
(CDFG), operation scheduling, resource allocation and binding,
derivation of RTL data-path structure, and description of a controller
which can be a finite state machine (FSM).

(3) Logic Synthesis [Dev94]: Also called gate-level synthesis. In
this phase, an RTL design is translated into a set of logic functions.
Thereafter, the translated RTL design is optimized according to
different requirements given by the designer and then mapped into a
netlist of logic gates, using a technology library provided by a vendor.

(4) Circuit Design: This step takes the optimized logic description
as an input, and generates the transistor implementations of the
circuit.

(5) Layout Design: In this phase, the circuits are mapped onto the
silicon implementation with a certain layout and placement design.

As illustrated in Figure 2.2 [Dev94], when the logic netlist has
been obtained, the testability improvement and test generation are
done by a set of tools. However, the testability improvement and test
generation at higher abstraction levels can be realized by using the
state-of-the-art DFT and test generation (TG) techniques. After the
chips are manufactured, they have to be tested by applying the
acquired test package. After test, only the qualified products are
delivered to customers.

2.2 Electronic Systems Test
Testing of a electronic system is an experiment in which the system
is exercised and its resulting response is analyzed to ascertain
whether it behaved correctly [Abr94]. In this thesis, an instance of an
incorrect operation of the system being tested is referred to as an
error [Abr94]. The errors can be further classified as design errors,

10

fabrication errors, fabrication defects, and physical failures,
according the causes of the errors. In this thesis, testing targets
fabrication defects. The different types of error are defined as follows
[Abr94].

Design errors are usually incomplete or inconsistent specifications,
incorrect mapping between different levels of design, violations of
design rules, etc. Fabrication errors include wrong components,
incorrect writing, shorts caused by improper soldering, etc.
Fabrication defects are not directly attributed to human errors,
rather, they result from an imperfect manufacturing process.
Examples of common fabrication defects are shorts and opens in
MOS ICs, improper doping profiles, mask alignment errors, and poor
encapsulation. Physical failures occur during the lifetime of a system
due to component wear-out and/or environmental factors. For
example, aluminum connectors inside an IC package thin out with
time and may break because of electron migration or corrosion.
Environmental factors, such as temperature, humidity, and
vibrations, accelerate the aging of components. Cosmic radiation and
particles may induce failures in chips containing high-density
random-access memories (RAMs). Some physical failures, referred to
as “infancy failures”, appear early after fabrication.

Fabrication errors, fabrication defects, and physical failures are
collectively referred to as physical faults [Abr94]. According to their
stability in time, physical faults can be classified as follows: (1)
permanent faults, which are always present after their occurrence;
(2) intermittent faults, which only exist during some time intervals;
(3) transient faults, which are typically characterized by “one-time
occurrence” and are caused by a temporary change in some
environmental factor.

In general, a direct mathematical treatment of testing and
diagnosis is not applicable to physical faults [Abr94]. The solution is
to deal with logical faults, which are a convenient representation of
the effect of the physical faults on the operation of the system
[Abr94]. A logic fault can be detected by observing an error caused by

 11

it, which is usually referred to as a fault effect. The basic
assumptions regarding the nature of logical faults are referred to as
a fault model. Different fault models are proposed and employed to
deal with different types of faults, such as static faults, delay faults,
bridging faults, etc. A widely used fault model is the stuck-at fault
model which represents that a single wire being permanently “stuck”
at the logic one or logic zero.

2.3 Core-based SoC Design and Test
Design and manufacturing of integrated circuits have moved into the
deep submicron technology regime. Scaling of process technology has
enabled a dramatic increase of the integration density, which enables
more and more functionalities to be integrated into a single chip.
With the improving system performance, the design complexity has
also been increasing steadily. A critical challenge to electronic
engineers is that the shorter life cycle of an electronic system has to
compete with its longer design cycle. Therefore, more efficient
hierarchical design methodologies, such as the core-based SoC design
[Mur96], [Zor98], have to be deployed in order to reduce the time-to-
market.

A common approach to modern core-based SoC design reuses pre-
designed and pre-verified intellectual property (IP) cores that are
provided by different vendors. It integrates the IP cores into the
system and manufactures the system on a single silicon die. An
example of an SoC design is shown in Figure 2.3. It consists of
several cores with different functionalities and a user-defined logic
(UDL), which are represented by rectangular blocks. The cores are
usually processors (Microcontroller, DSP, etc.), memory blocks (ROM,
RAM, EEPROM, Flash Memory, etc.), bus structure, peripherals
interfaces (USB, FireWire, Ethernet, DMA, etc.), analog circuits
(PWM, A/D-D/A, RF, etc.), and so on. The UDL components are used
to glue the cores for the intended system.

12

DRAM CPU

ROM
ANALOG

SRAM

RF

UDL

DSP

FPU

Figure 2.3: An example of core-based SoC design

In order to test individual cores in a SoC [Mur96], [Zor98], a test
architecture consisting of certain resources has to be available. The
test architecture for SoCs usually includes a test source, a test sink,
and a test access mechanism (TAM). Figure 2.4 shows a typical
example of an SoC test architecture.

DRAM

CPU

ROM

SRAM

DSP
UDL

Test
Sink

Test
Source

TAM
TAM

Wrapper

Core
Under
Test

Figure 2.4. An example of SoC test architecture

A test source is a test-pattern provider which can be either
external or on-chip. A typical external test source is an automated

 13

test equipment (ATE) which generates test patterns and stores them
in its local memory. An on-chip test source can be a linear feedback
shift register (LFSR), a counter, or a ROM/RAM which stores already
generated test patterns.

A test sink is a test response/signature analyzer that detects faults
by comparing test responses/signatures with the correct ones. An
ATE can be an external test sink that analyzes the test
responses/signatures transported from the cores under test (CUTs).
The test sink can also be integrated on the chip so that the test
responses/signatures can be analyzed on-the-fly.

A TAM is an infrastructure designed for test data transportation.
It is often used to transport test patterns from the test source to
CUTs and to transport test responses/signatures from CUTs to the
test sink. A common design of the TAM can be a reusable functional
bus infrastructure [Har99], such as the advanced microprocessor bus
architecture (AMBA) [Fly97], or a dedicated test bus. A wrapper
[Mar00] is a thin shell which surrounds a CUT in order to enable the
switching between different test modes such as functional, internal,
external test modes, etc. The TAM and the wrappers comprise a test
access infrastructure for the CUTs of an SoC.

An example of test architecture for external SoC test is depicted in
Figure 2.5. In this example, a system of four cores is to be tested. An
ATE consisting of a test controller and a local memory serves as an
external tester. The generated test patterns and a test schedule are
stored in the tester memory. When the test starts, the test patterns
are transported to the cores through a test bus. When test patterns
have been activated, the captured test responses are also transported
to the ATE through the test bus. The external ATE can be replaced
by an embedded tester which is integrated on the chip. The same test
architecture is applicable for the system using an embedded tester,
as illustrated in Figure 2.6.

14

SoCATE

Core 1 Core 2

Core 3 Core 4

Test Bus

Test
Controller

Tester
Memory

Figure 2.5: An example of test architecture

for external test using an ATE

SoC
Embedded

Tester Core 1 Core 2

Core 3 Core 4

Test Bus

Test
Controller

Tester
Memory

Figure 2.6: An example of test architecture
for external test using an embedded tester

2.4 Hybrid Built-In Self-Test
As the number of cores on a chip has been increasing along with the
rapid advances of technology, the amount of required test data for
SoC testing is growing dramatically. This demands a large quantity
of memory to be used in an ATE, if an external test is employed.

 15

Moreover, an external test is usually applied at relatively low speed
due to the limited bandwidth of the bus used to transport the test
data. Thus, a long test application time is required.

One of the solutions to this problem is to use built-in self-test
(B

ST,
a

ple of a test architecture for hybrid BIST is depicted in
Fi

IST), which generates pseudorandom test patterns and compact
test responses within the chip. Although BIST can be applied at high
speed, it is considered less efficient than external test, regarding the
fault coverage and test-sequence length. Due to the existence of
random-pattern-resistant faults, BIST usually needs larger amount
of test patterns in order to reach a certain level of fault coverage.

In order to avoid the disadvantages of both external test and BI
hybrid approach has been proposed as a complement of the two

types of tests, referred to as hybrid BIST [Hel92], [Tou95], [Sug00],
[Jer00], [Jer03]. In hybrid BIST, a test set consists of both
pseudorandom and deterministic test patterns. Such a hybrid
approach reduces the memory requirements compared to the pure
deterministic testing, while providing higher fault coverage and
requires less amount of test data compared to the stand-alone BIST
solution.

An exam
gure 2.7. In this example, a system consisting of four cores is to be

tested. An embedded tester consisting of a test controller and a local
memory is integrated in the chip. The generated deterministic test
patterns and a test schedule are stored in the local memory of the
tester. When the test starts, the deterministic test patterns are
transported to the cores through a test bus. Each core has a
dedicated BIST logic that can generate and apply pseudorandom test
patterns on-the-fly. We assume that the test controller is capable of
controlling the process of both deterministic and pseudorandom tests
according to the test schedule, meaning that it controls the times
when the tests should be started, stopped, restarted, and terminated.

16

SoC
Embedded

Tester Core 1 Core 2

Core 3 Core 4

Test Bus

Test
Controller

Tester
Memory

BIST BIST

BIST BIST

Figure 2.7. An example of test architecture for hybrid BIST

In order to reduce the testing cost, core-based SoC test has
received a wide variety of research interests [Mur96], [Cho97],
[Aer98], [Var98], [Zor98], [Cha00], [Mur00], [Nic00], [Rav00],
[Hua01], [Iye01], [Cot02], [Iye02], [Lar02], [Goe03], [Iye03], [Lar04b],
[He06a] concerning advanced test architecture design , test resource
allocation, and test scheduling.

2.5 Abort-on-First-Fail Test
Many proposed SoC test scheduling techniques assume that tests are
applied to the completion [Hus91], [Mil94], [Kor02]. However, high-
volume production testing often employs an AOFF approach in which
the test process is aborted as soon as a fault has been detected. The
defected devices can be discarded directly or further diagnosed in
order to find out the cause of the faults. Using the AOFF approach
can lead to a substantial reduction of TAT, since a test does not have
to be completed if faults are detected. The test cost can be reduced in
terms of the reduced TAT. AOFF test is important to the early-stage
of a production in which defects are more likely to appear and the
yield is relatively low. When the AOFF test approach is employed,
the defect probability of IP cores can be used for test scheduling in

 17

order to generate efficient test schedules [Jia01], [Lar04a]. The
defect probabilities of IP cores can be derived from statistical
analysis of production processes or generated from inductive fault
analysis.

2.6 Power- and Thermal-Aware Test
Production of integrated circuits has moved into the deep submicron
technology regime. Scaling of process technology has enabled
dramatically increasing the number of transistors, and therefore
improving the performance of electronic chips. However, the rapid
growth of integration density has posed critical challenges to the
design and test of electronic systems, one of which is the power and
thermal issue [Bor99], [Gun01], [Mah02], [Ska04].

It is known that more power is consumed during testing than in
normal functional mode [Zor93], [Pou00], [Shi04] and the circuits are
therefore more stressed from the power consumption perspective.
This is due to a larger amounts of switching activity caused by
applying test patterns. High power dissipation results in several
critical problems, one of which is the insufficient driving current due
to a limited power supply. As a consequence, the circuit can become
unreliable. Excessive power dissipation can cause ground noises
which can damage the DUT. High power dissipation may also lead to
high junction temperature which has large impacts on the integrated
circuits [Vas06].

The performance of the integrated circuits is proportional to the
driving current of CMOS transistors, which is a function of the
carrier mobility. Increasing junction temperature decreases the
carrier mobility and the driving current of the CMOS transistors,
which consequently degrades the performance of circuits.

In higher junction temperature, the leakage power increases. The
increased leakage power in turn contributes to an increase of
junction temperature. This positive feedback between leakage power

18

and junction temperature may result in thermal runaway and
destroy the chip due to an excessive heat dissipation.

The long term reliability and lifespan of integrated circuits also
strongly depends on junction temperature. Failure mechanisms in
CMOS integrated circuits, such as gate oxide breakdown and electro-
migration, are accelerated in high junction temperature. This may
results in a drop of the long term reliability and lifespan of circuits.

In order to prevent excessive power during test, some techniques
have been explored. Low power test synthesis and design for test
targeting RTL structures is one of the solutions, for example, low-
power scan chain design [Ger99], [Ros04], [Sax01], scan cell and test
pattern reordering [Flo99], [Gir98], [Ros02]. Although low power
DFT can reduce the power consumption, this technique usually adds
extra hardware into the design and therefore it can increase the
delay and the cost of every single chip. Power-constrained test
scheduling which targets system-level DFT is another approach to
tackle the problem [Cho97], [Cha00], [Iye02], [Lar04b], [Mur00],
[Nic00], [Rav00]. It reduces the test application time while keeping
the power consumption below a given power constraint so that the
circuits can work in a common condition.

Advanced cooling system can be one solution to the high
temperature problems. However, the cost of the entire system has to
face a substantial rise, and the size of the system is inevitably large.
In order to test new generations of SoCs safely and efficiently, novel
and advanced power and thermal management techniques are
required.

 19

Chapter 3
 Defect-Probability Driven

SoC Test Scheduling

In this chapter, a test scheduling technique based on the AOFF
approach is proposed for hybrid BIST. Defect probabilities of
individual cores are used to calculate ETAT and a heuristic is
proposed to minimize the ETAT.

3.1 Introduction
In [Jia01], a defect-oriented test scheduling approach was proposed
to reduce the test times. Based on the defined cost-performance
index, a sorting heuristic was developed to obtain the best testing
order. In [Lar04a], a more accurate cost function using defect
probabilities of individual cores was proposed. Based on the proposed
cost function, a heuristic was also proposed to minimize the ETAT.

In this chapter, we propose an approach to calculate the
probability of a test process to be aborted at a certain moment when
a test pattern has been applied and the test response/signature has
been available [He04], [He05]. A heuristic [He04] is also proposed to
minimize the ETAT.

 21

3.2 Definitions and Problem Formulation

3.2.1 Basic Definitions

In this chapter, we employ the test architecture (see Figure 2.7) for
hybrid BIST, in which all cores have their dedicated BIST logic and a
test bus is used to transport deterministic test data from/to the
embedded tester. Based on this test architecture, we assume that the
pseudorandom test patterns for different cores can be concurrently
applied, while the deterministic test patterns can only be applied
sequentially. Figure 3.1 depicts a hybrid BIST test schedule for a
system consisting of five cores, where TSi denotes the test set (TS)
for core Ci (i = 1, 2, ... , 5). The white and grey rectangles represent
the deterministic test sub-sequences (DTSs) and the pseudorandom
test sub-sequences (PTSs), respectively. As illustrated in this
example, deterministic test patterns are applied sequentially, while
pseudorandom test patterns for different cores are applied in
parallel. The test application time is 390, which is the longest test
time among the five.

45TS1 345

30 275

40 255

60 205

50 135

45

75

115

175

0 50 100 150 200 250 300 350

Deterministic test sub-sequence (DTS)
Pseudorandom test sub-seuqnce (PTS)

400

Test Application Time = 390

TS2

TS3

TS4

TS5

Figure 3.1: A test schedule of a hybrid BIST for five cores

22

Suppose that a system S, composed of n cores, C1, C2, ... , Cn

employs a test architecture illustrated in Figure 2.7. In order to test
a core, a set of test patterns are generated, usually referred to as test
set or test sequence (TS). A test set can consist of deterministic test
patterns (DTPs) and pseudorandom test patterns (PTPs). A subset of
deterministic test patterns is referred to as a deterministic test sub-
sequence (DTS), and a subset of pseudorandom test patterns is
referred to as a pseudorandom test sub-sequence (PTS). For each
individual core Ci (1 ≤ i ≤ n), the generated test set/test sequence, the
deterministic test sub-sequence, and the pseudorandom test sub-
sequence are denoted with TSi, DTSi, and PTSi, respectively. In the
cases that more than one deterministic test sub-sequence or
pseudorandom test sub-sequence is partitioned from the original test
set, DTSiv and PTSiw respectively denotes the v-th deterministic test
sub-sequence and the w-th pseudorandom test sub-sequence of TSi.
Suppose that the number of deterministic test patterns and
pseudorandom test patterns in TSi is di and ri, respectively. The j-th
(1 ≤ j ≤ di) deterministic test pattern of DTSi is denoted with DTij.
The k-th (1 ≤ k ≤ ri) pseudorandom test pattern of PTSi is denoted
with PRik.

In this thesis, the defect probability of a core, in short, core defect
probability (CDP), is defined as the probability of the core having
defects. We denote the defect probability of core Ci (1 ≤ i ≤ n) with
CDPi. Similarly, the defect probability of a SoC, in short, system
defect probability (SDP), is defined as the probability of the SoC
having defects, meaning that some cores are defected. We assume
that the defect probabilities of different cores in a SoC are
independent. Then, the SDP is given by

()∏ =
−−=

n

i iCDPSDP
1

11 (3.1)

We suppose that a test process can be terminated with a certain
probability. The probability of the test process being aborted at a
certain moment depends on the probability of an individual test
being aborted due to the detection of faults, referred to as the

 23

individual test failure probability (ITFP), and the probability of an
individual test being passed with no faults detected, referred to as
the individual test success probability (ITSP).

3.2.2 Basic Assumptions

We assume that the failure probabilities of individual tests (ITFPs)
for IP cores in an SoC are independent, meaning that the probability
of detecting faults in a core does not depend on that in another core.
We also assume that the success probability of individual tests
(ITSPs) for IP cores in an SoC are independent, meaning that the
probability of detecting no faults in a core does not depend on that in
another core.

In this chapter, we assume that a deterministic test is
contiguously applied. This means that such a scenario will not
appear that a deterministic test is stopped at a certain moment and
is restarted after the application of a pseudorandom test sub-
sequence for the same core.

On the other hand, we assume that the application of a
pseudorandom test can be stopped and restarted later when the
deterministic test for the same core has been finished. This is
because that pseudorandom tests are usually very long while
dividing it into shorter test sub-sequences allows analyzing
signatures more frequently. However, frequent switching between
deterministic and pseudorandom tests for a core introduces
overheads [Goe03]. Since we only stop a pseudorandom test at most
once, very few overheads will be introduced and therefore are
ignored.

Further more, in this chapter, we schedule the deterministic tests
for different cores sequentially and consecutively, due to the
following concerns. First, deterministic test patterns are considered
more efficient since usually a deterministic test pattern can cover
more faults than a pseudorandom test pattern. Second, test effects
can be observed at each test application cycle, which provides higher
frequency on checking possibilities of test termination and thus can

24

shorten the test application time. Thus, it does not need to delay any
deterministic test in order to insert a pseudorandom test.

3.2.3 Possible Test Termination Moment

When the AOFF approach is employed for a hybrid BIST, there are
two possible scenarios regarding the termination of the test process.
During the application of a deterministic test sub-sequence, the test
response is captured as soon as a test pattern has been applied. By
analyzing the obtained test response, the test can be aborted
immediately, if faults are detected. On the other hand, during the
application of a pseudorandom test sub-sequence, the signature is
not available until all the pseudorandom test patterns in the sub-
sequence have been applied. By analyzing the obtained signature,
the test can be aborted, if faults are detected. Therefore, using the
AOFF approach, a test is possible to be terminated at every cycle of
deterministic test applications, or at the end of contiguous
pseudorandom test applications. This analysis leads to the notion of
possible termination moment (PTTM).

A PTTM is a time moment when the test process can be
terminated due to a detection of faults. As demonstrated previously,
a PTTM is the time moment immediately after a deterministic test
pattern/pseudorandom test sub-sequence has been applied and the
test response/signature has been analyzed.

For a given test schedule, all PTTMs are fixed and easy to obtain.
Figure 3.2 gives an example to illustrate PTTMs in a test schedule
for a SoC with five cores. In this example, deterministic test patterns
are depicted with white rectangles and pseudorandom test sub-
sequences are depicted with grey rectangles. The dashed lines in
gray indicate the PTTMs when each DTP has been applied, e.g.
PTTMs 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The dotted lines in black
indicate the PTTMs when each PTS has been finished, e.g. PTTMs 4,
5, 7, 9, 10, 12, and 13. Note that some of the PTTMs are considered
identical, since they overlap at the same time moment, e.g. PTTMs 4,
5, 7, 9, 10, and 12.

 25

0 119 10 12 1387654321

TS1 PTS11

TS2

TS3

TS4

TS5

PTS21

PTS31

PTS41

PTS51 PTS52

PTS42

PTS22

DT51 DT52

DT31

DT41 DT42

DT21

DT11 DT12 DT13 DT14

Possible Test Termination Moments (PTTMs)

t

DTij PTSijDeterministic test pattern Pseudorandom test sub-sequencek PTTM

Figure 3.2: Possible test termination moments (PTTMs)

From this discussion, we can see that a pseudorandom test sub-
sequence can be treated as a single test pattern, since they have the
same effect on test termination. It should be noted that an
application cycle of a test pattern differs in combinatorial circuits
and sequential circuits. In a combinatorial circuit, applying a test
pattern needs one clock cycle, whereas in sequential circuits, an
application cycle of test patterns includes three phases, scan-in,
application, and scan-out.

3.2.4 Expected Test Application Time

We consider the termination of the test process at a certain moment
as a random event which happens with a certain probability.
Therefore, the test application time (TAT) is a random variable, and
its mathematical expectation, referred to as the expected test
application time (ETAT), is the expected value of the actual TATs.

Let Ax be the random event that the test process is aborted at
PTTM x, and let T be the random event that the test process is
passed at completion. Then, the ETAT is given by

26

[]() []TpLAptETAT
Xx

xx ×+×= ∑
∈∀

 (3.2)

where x is a PTTM, X is the set of all PTTMs, tx is the test
application time by the moment x, L is the test application time by
the completion moment, p[Ax] is the probability of the event Ax, and
p[T] is the probability of the event T.

In Equation (3.2), the ETAT is presented as a sum of two literals.
The first literal corresponds to the situations in which the test
process can be terminated at different PTTMs because at least one
individual test has detected faults. The second literal corresponds to
the case in which the test process is passed at completion without
detection of any faults. Indeed, Equation (3.2) interprets the ETAT
as the sum of the probabilistic TATs at different PTTMs.

It should be noted that two different events Ax and Ay are
exclusive, i.e. ∀x, y ∈ X, x≠ y, Ax ∩ Ay = ∅. Events Ax and T are also
exclusive, i.e. ∀x ∈ X, Ax ∩ T = ∅. The reason is that, if the test
process is terminated at a certain moment x (x ∈ X), it must have
passed all the moments earlier than x and it will never go through
any moments later than x. In another word, if Ax (x ∈ X) happens,
any other event Ay (∀y ∈ X, y ≠ x) as well as T cannot happen.

In order to know whether the test process is aborted or not at any
PTTM x, we have to check every individual test to see if they have
detected faults by the moment x. The test process is aborted at the
PTTM x, if and only if both of the following two conditions are
satisfied: (1) at least one of the tests that are stopped at PTTM x to
analyze test responses/signatures detects faults, and (2) all the other
tests that are not able to be stopped at PTTM x had not detect any
faults until their latest passed PTTMs before x. Therefore, Ax is
equivalent to the intersection of the following two events: one event
is that at least one of those tests which are just stopped at PTTM x
detect faults; and the other event is that those tests which are not
able to be stopped at the moment x had not detected any faults until
the latest PTTMs when they were stopped for a check.

 27

Let Yx be the set of all individual tests that are stopped at PTTM x,
let Zx be the set of all individual tests that are not able to be stopped
at PTTM x, let Fx(y) be the event that the individual test y detects at
least one fault at PTTM x, and let Px(z) be the event that the
individual test z had not detected any faults until the latest PTTM
before x when z was stopped to for a check. Then, event Ax is given by

() ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈∀∈∀
IU I

xx Zz
x

Yy
xx zPyFA (3.3)

Figure 3.3 gives a example to explain the situation when the test
process is aborted at PTTM 7. This means that, at the PTTM 7, at
least one of the two partial tests TS3 and TS4 has detected faults,
and the other partial tests TS1, TS2, and TS5 had not detect any
faults until the latest moments when they were stopped for a check.
More specifically, TS1 had not detected any faults until PTTM 4, TS2
had not detect any faults since it has never stopped until the current
PTTM, and TS5 had not detected any faults until PTTM 6.

Let E be the set of all tests that are completed without detection of
faults, and let P(e) be the event that the test e has not detected faults
until completion. Then, event T is given by

()I
Ee

ePT
∈∀

= (3.4)

According to the definition of PTTM, at PTTM x, Yx should not be
empty and at least one element in Yx should detect faults, otherwise
the test process would have not been aborted at PTTM x. Moreover,
for a test y ∈ Yx, it should be the currently checked DTP or PTS that
detects the faults, and the DPT(s) and PTS(s) that were finished
before x should not detect any faults, otherwise the test had already
been aborted earlier. On the other hand, at PTTM x, all the tests in
Zx should have not detect any faults so far, otherwise the test process
would have been aborted earlier and would not have reached PTTM
x. Table 3.1 lists the sets Yx and Zx at every PTTM x with respect to
the example depicted in Figure 3.2.

28

0 1312111098654321 7

TS1 PTS11

TS2

TS3

TS4

TS5

PTS21

PTS31

PTS41

PTS51 PTS52

PTS42

PTS22

DT51 DT52

DT31

DT41 DT42

DT21

DT11 DT12 DT13 DT14

Possible Test Termination Moments (PTTMs)

t

DTij PTSijDT test patt. (not applied) PR test sub-seq.
(not applied/unfinished)

DTij PTSijDT test patt. (just finished) PR test sub-seq. (just finished)

DTij DT test patt. (passed) PTSij PR test sub-seq. (passed)k

k

k

Past PTTM

Present PTTM

Future PTTM

Figure 3.3: An example illustrating the situation
when the test process is aborted at PTTM 7

Table 3.1: Yx and Zx at each PTTM x w.r.t. Figure 3.2
x Yx Zx
1 {TS1} ∅
2 {TS1} ∅
3 {TS1} ∅
4 {TS1, TS5} ∅
5 {TS3, TS5} {TS1}
6 {TS5} {TS1, TS3}
7 {TS3, TS4} {TS1, TS5}
8 {TS4} {TS1, TS3, TS5}
9 {TS2, TS4} {TS1, TS3, TS5}

10 {TS1, TS2} {TS3, TS4, TS5}
12 {TS4, TS5} {TS1, TS2, TS3}
13 {TS2} {TS1, TS3, TS4, TS5}

The set E includes all the individual tests. For the example

depicted in Figure 3.2, E = {TS1, TS2, TS3, TS4, TS5}.

 29

We have assumed that the failure probabilities of individual tests
are independent, and that the success probabilities of individual
tests are independent. Thus, p[Ax], namely the probability of the test
process being terminated at a PTTM x, is given by

[] () ()[]

()[]() []∏∏

∏

∈∀∈∀

∈∀∈∀

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

×⎥
⎦

⎤
⎢
⎣

⎡
=

xx

xx

Zz
x

Yy
x

Zz
x

Yy
xx

zPpyFp

zPpyFpAp

11

U

()

()

 (3.5)

and p[T], namely the probability of the test process being passed at
completion without detecting any faults, is given by

[] () ()∏
=∈∀

−=⎥
⎦

⎤
⎢
⎣

⎡
=

n

i
i

Ee

CDPePpTp
1

1I (3.6)

Thus, the ETAT is represented as

()[]() []

()∏

∑ ∏∏

=

∈∀ ∈∀∈∀

−×+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=

n

i
i

Xx Zz
x

Yy
xx

CDPL

zPpyFptETAT
xx

1

1

11
 (3.7)

where x is a PTTM, X is the set of all PTTMs, tx is the test
application time by the moment x, L is the test application time by
the completion moment, Yx is the set of all individual tests that are
stopped at PTTM x, Zx is the set of all individual tests that are not
able to be stopped at PTTM x, p[Fx(y)] is the probability of the
individual test y detecting at least one fault at PTTM x, p[Px(z)] is
the probability of individual test z detecting no faults until the latest
PTTM before x when z was stopped for a check, and CDPi is the
defect probability of core Ci.

In this thesis, we define the incremental fault coverage (IFC) of a
DTP/PTS as the percentage of the faults that are only detected by

30

this DTP/PTS and have not been detected by any previously applied
test patterns from the same test set.

Let y be individual test which detects faults at PTTM x, let v be the
DTP/PTS which belongs to y and is finished exactly at PTTM x, and
let IFC(v) be the incremental fault coverage of v. Then, p[Fx(y)] is
given by

()[] () ix CDPvIFCyFp ×= (3.8)

Let z be the individual test that is not able to be stopped at PTTM
x, let CDPi be the defect probability of core Ci which test z is applied
to, let w (0 < w < x) be the latest PTTM when test z was checked for
test effects, let m (0 ≤ m ≤ di + ri) be the number of test patterns
(deterministic or pseudorandom) that had been applied by PTTM w,
and let vj be the j-th test pattern of test z. Then, p[Px(z)] is given by

()[] ()∑
=

×−=
m

j
jix vIFCCDPzPp

1

1 (3.9)

More details on how Equation (3.8) and Equation (3.9) are
obtained can be found in Appendix B.

3.2.5 Problem Formulation

Thus, the ETAT has been completely formulated. Out objective is to
generate an efficient test schedule with the minimized ETAT. We
have proposed a heuristic that employs ETAT as the cost function to
find a near-optimal solution, as presented in the following section.

3.3 Proposed Heuristic
The proposed heuristic is an iterative algorithm that generates a test
schedule with a minimized ETAT. As demonstrated earlier, the test
scheduling problem in the hybrid BIST and the AOFF context is
essentially to schedule deterministic test sub-sequences efficiently,

 31

as they are more efficient from both the test termination and the
fault coverage perspectives.

By changing the schedule of deterministic test sub-sequences, the
incremental fault coverage of test patterns, the failed sets and the
passed sets are also changed, and therefore the failing probabilities,
the passing probabilities, and ultimately the ETAT alternate.

It is natural to give an order to the deterministic test sub-
sequences such that the cores with higher defect probabilities are
scheduled for deterministic test earlier. However, such a solution
does not necessarily lead to the minimal ETAT. In addition to the
defect probabilities of cores, more factors such as the efficiency of test
patterns and the length of individual test sub-sequences have to be
taken into account. We address the ETAT minimization problem as a
combinatorial problem. Due to the problem complexity, we propose a
heuristic in order to solve it efficiently.

The proposed heuristic is an iterative algorithm. We construct two
sets of deterministic test sub-sequences (DTSs) in the heuristic,
namely the scheduled set S and the unscheduled set U. The
scheduled set S is an ordered set which is supposed to include all
DTSs when the algorithm is terminated. The DTSs in S are
associated with a particular order O according to which the DTSs
should be scheduled so that the ETAT of the generated test schedule
is the minimum. The unscheduled set U is a complement set of S,
with regard to the complete set of all DTSs, meaning that U always
include the still unscheduled DTSs during any iteration of the
heuristic.

S is initialized as an empty set, while U is initialized with a
complete set of all DTSs. At each iteration step, all DTSs in U are
considered as candidates and only one of them is selected and
inserted into S. The newly scheduled DTS is inserted at a selected
position between the already scheduled DTSs in S, while the original
order of the scheduled DTSs is kept unchanged.

Suppose that at one iteration step, S consists of m (0 ≤ m < n)
scheduled DTSs. The objective at this iteration step is to schedule

32

one more DTS from U to S, so that is S enlarged to (m + 1) DTSs.
Since there are (n − m) candidate DTSs in U for selection and there
are (m + 1) alternative position in S for insertion, there are in total
(n − m) × (m + 1) different solutions for exploration.

In order to illustrate how to explore and decide on alternative
solutions, an example is given in Figure 3.4. In this example, we
assume that there are five hybrid test sets in total (n = 5) and two
have been temporarily scheduled through previous iteration steps
(m = 2). From the depicted partial test schedule at this iteration step,
we can see that S = [DTS1, DTS4] and U = {DTS2, DTS3, DTS5}.
There are three different positions for a candidate to be inserted in S,
namely INSPOS1, INSPOS2, and INSPOS3, indicated by the three
short arrows. The heuristic explores all the nine alternative solutions
each of which is identified by the pair (DTSi, INSPOSj). With each
solution, the currently unscheduled DTS selected from U is inserted
into S at the position INSPOSj. Thereafter all the DTSs in S are
scheduled sequentially according the fixed order, and their
corresponding PTSs are scheduled to the earliest available time. If a
PTS is longer than the period reserved before the scheduled DTS for
the same core starts, this PTS has to be stopped right before the DTS
starts and restarted right after the DTS has been finished. For each
explored partial test schedule, the expected partial test application
time (EPTAT) is calculated. When all solutions have been explored,
the solution with the minimal EPTAT is selected.

 33

0 98654321 7

TS1

TS2

TS3

TS4

TS5

PTS2

PTS3

PTS41

PTS5

PTS42

DTS5

DTS3

DTS4

DTS2

DTS1

t

PTSij

PTSij PR test sub-seq. (scheduled)DTSi DT test sub-seq. (scheduled)

DTSi DT test sub-seq. (unscheduled)

U

PR test sub-seq. (unscheduled)

PTS11

INSPOS1 INSPOS2 INSPOS3

Figure 3.4: Alternative solutions

Figure 3.5 shows a test schedule assuming (DTS3, INSPOS2) has
been selected as the best solution. Thus the updated S is [DTS1,
DTS3, DTS4] and the updated U is {DTS2, DTS5}. This example also
shows the range for calculating the EPTAT of a partial test schedule.

DTS3

0 98654321 7

TS1 PTS11

TS2

TS3

TS4

TS5

PTS2

PTS31

PTS41

PTS5

PTS42

DTS5

DTS4

DTS2

DTS1

t

PTSij

PTSij PR test sub-seq. (scheduled)DTSi DT test sub-seq. (scheduled)

DTSi DT test sub-seq. (unscheduled)

U

PR test sub-seq. (unscheduled)

Partial Test Completion

EPTAT calculation range

Figure 3.5: Partial test schedule for the best solution

The pseudo-code of the heuristic is given in Figure 3.6. Line 1
initializes S with an empty set and line 2 initializes U with the

34

complete test set. Lines 3 to 19 are three nested loops that generate
the test schedule. The outer loop (lines 3 to 19) moves one
unscheduled DTS from U and inserts it into S (lines 17 to 18). The
DTS to be moved from U is decided within the middle loop (lines 6 to
15) which explores all alternative solutions. For each candidate in U
(line 6), each possible position that a candidate in U can be inserted
into S is explored within the inner loop (lines 7 to 15). For each
alternative solution (line 7), the partial test schedule is generated
(line 8) and the EPTAT of the generated partial test schedule is
calculated (line 9). Thereafter, the current EPTAT is compared to the
minimal EPTAT obtained so far (line 10) and the best solution is
updated if the current EPTAT is smaller (lines 11 to 14). The
algorithm returns the generated test schedule with the minimal
ETAT (line 20), when all the DTS in U have been moved into S.

1: S := ∅;
2: U := {DTS1, DTS2, ... , DTSn};
3: while (U ≠ ∅) loop /* outer loop */
4: Reset(EPTATmin);
5: IPS := GetInsPosSet(S);
6: for (∀ DTS ∈ U) loop /* middle loop */
7: for (∀ InsPos ∈ IPS) loop /* inner loop */
8: PartSchedcur := GenPartSched(S, DTS, InsPos);
9: EPTATcur := CalcETAT(PartSchedcur);
10: if (EPTATcur < EPTATmin) then
11: EPTATmin := EPTATcur;
12: DTSsel := DTS;
13: InsPossel := InsPos;
14: end if
15: end for
16: end for
17: Insert(S, DTSsel, InsPossel);
18: Remove(U, DTSsel);
19: end while
20: Return(GenFullSched(S));

Figure 3.6: Pseudo-code of the proposed heuristic

 35

The proposed heuristic has a polynomial time complexity of O(kn4),
where n is the number of cores and k is the average number of
deterministic test patterns generated for a core.

3.4 Experimental Results
We have done experiments for different designs of various numbers
of cores. Designs with 5, 7, 10, 12, 15, 17, 20, 30, and 50 cores
selected from the ISCAS’85 benchmark are used for our experiments.
For each design of a particular number of cores, five different hybrid
test sets are generated in order to test the chip. The hybrid test sets
for a design are different in terms of different numbers of generated
deterministic test patterns and pseudorandom test patterns
consisting of the test sets. The defect probabilities of individual cores
are randomly generated and allocated such that the defect
probability of the SoC equals 0.6 (40% system yield). The
experimental results are listed in Table 3.2, which lists the average
values of five different experiments for each design.

Table 3.2: Experimental results
Random

Scheduling
Our

Heuristic
Simulated
Annealing

Exhaustive
Search

#cores
ETAT CPU

Time (s) ETAT CPU
Time (s) ETAT CPU

Time (s) ETAT CPU
Time (s)

5 248.97 1.1 228.85 0.6 228.70 1144.2 228.70 1.2

7 261.38 64.4 232.04 1.4 231.51 1278.5 231.51 80.0

10 366.39 311.8 312.13 6.6 311.68 3727.6 311.68 112592.6

12 415.89 346.8 353.02 12.2 352.10 4266.8 n/a n/a

15 427.34 371.6 383.40 25.2 381.46 5109.2 n/a n/a

17 544.37 466.6 494.57 43.6 493.93 6323.8 n/a n/a

20 566.13 555.4 517.02 85.4 516.89 7504.4 n/a n/a

30 782.88 822.4 738.74 380.4 736.51 11642.4 n/a n/a

50 1369.54 1378.0 1326.40 3185.0 1324.44 21308.8 n/a n/a

36

In order to demonstrate the efficiency of the proposed test

scheduling technique on the reduction of the ETAT, we have done
another set of experiments for comparison, in which a random
scheduling algorithm is employed. The ETATs of the generated test
schedules by using the random scheduling and our heuristic are
listed in columns 2 and 4, respectively. It can be seen that the ETATs
of the test schedules generated by our heuristic are 5% to 15%
shorter than those produced by the random scheduling.

As our heuristic can produce only a near optimal solution,
experiments for estimating the accuracy of our solutions have also
been performed. For this purpose, scheduling algorithms based on a
simulated annealing strategy and exhaustive search are employed
for comparison, if available. The ETATs of the generated test
schedules by using the simulated annealing algorithm and
exhaustive search are listed in columns 6 and 8, respectively. The
CPU times of all the four approaches are listed in columns 3, 5, 7,
and 9. By comparing the experimental results, it is clear that our
heuristic is able to generate test schedules with ETATs very close to
those produced by the simulated annealing algorithm and exhaustive
search, while at the same time our heuristic has substantially
shorter computation times. These comparisons on ETATs and CPU
times are also illustrated in Figure 3.7 and Figure 3.8.

3.5 Conclusions
In this chapter, a test scheduling technique in the context of a hybrid
BIST has been presented. In this technique, the AOFF approach is
employed and the defect probabilities of individual cores are taken
into account. A method to estimating the test application time is
proposed, and based on the proposed method a heuristic is developed
to minimize the expected test application times by generating
efficient test schedules. Experimental results have shown the
efficiency of the proposed technique.

 37

0

200

400

600

800

1000

1200

1400

5 7 10 12 15 17 20 30 50
Number of Cores

E
xp

ec
te

d
Te

st
 A

pp
lic

at
io

n
Ti

m
es

Random Scheduling Our Heuristic Simulated Annealing Exhaustive Search

Figure 3.7: Comparison of ETATs of different approaches

6.6 12.2 25.2 43.6 85.4 380.4

3185.0

1144.2 1278.5

3727.6 4266.8
5109.2

6323.8

21308.8

1.40.6

11642.4

7504.4

0

5000

10000

15000

20000

25000

5 7 10 12 15 17 20 30 50
Number of Cores

C
P

U
 T

im
es

 (s
)

Our Heuristic Simulated Annealing

Figure 3.8: Comparison of CPU times of different approaches

38

Chapter 4
 Power-Constrained

SoC Test Scheduling

In the previous chapter, we employ the AOFF-based defect-
probability driven test scheduling approach to minimize the ETAT.
In that approach, the BISTs of all the IP cores can be applied
concurrently. However, testing large number of core in parallel can
result in power and thermal related problems. Thus, in this chapter,
we present a power constrained SoC test scheduling approach which
employs the test set partitioning to minimize the ETAT.

4.1 Introduction
The power-constrained test scheduling problem can be considered as
a two-dimensional rectangular packing (RP) problem [Bak80],
[Dyc90], [Dyc97], [Les04], [Les05], [Kor03], [Kor04] which is NP-
complete. In this thesis, a test sub-sequence composed of test
patterns is considered as a rectangle, with the height corresponding
to the maximum power consumption of the test patterns and the
width the time duration of the test sub-sequence.

In this chapter, we present a power constrained and defect-
probability driven test scheduling approach to minimize the TAT.
The probability of a test termination is calculated according to the
results of fault simulation and the given defect probabilities of the

 39

CUTs. A test set partitioning technique which divides a test set into
shorter test sub-sequences integrated in the test scheduling
heuristic, in order to improve the efficiency of the test scheduling
algorithm.

The definitions in Chapter 3.2 and test architecture depicted in
Figure 2.7 are also used for this chapter. We suppose that a
deterministic test set is partitioned into ai (0 ≤ ai ≤ di, 1 ≤ i ≤ n)
deterministic test sub-sequences, and a pseudo-random test set is
partitioned into bi (0 ≤ bi ≤ ri, 1 ≤ i ≤ n) pseudorandom test sub-
sequences, where ai + bi > 0. Note that a test set is also a test sub-
sequence which originally has one partition (ai = di = 1 and/or
bi = ri = 1). Thus, the term “test sub-sequence” is used to represent a
test set as well, if not mentioned otherwise.

We also employ a test pattern reordering technique proposed in
[Ros02] as a pre-processing step for the test set partitioning. Test
pattern reordering can reduce the power consumption of test
patterns and make the power profiles smoother. For the test set
partitioning, we have developed a heuristic to find an appropriate
number of partitions such that the sum of the area sizes (the peak-
power consumption multiplied by the time duration) of all the
partitions is as small as possible.

4.2 Motivational Example
We assume that the power consumption in the circuit by applying a
test pattern is proportional to the total number of transitions
between this test pattern and the preceding test pattern, occurring at
all the primary inputs, primary outputs, and internal nodes. The
peak-power consumption by applying a test sub-sequence is defined
as the maximum power consumed by applying each of the test
patterns belonging to the test sub-sequence (see Figure 4.4).

Different test schedules can have a variety of test application
times. Figure 4.1(a) shows an example of a power-constrained test
schedule for five deterministic test sub-sequences (DTS) and five

40

pseudorandom test sub-sequences (PTS), which are illustrated with
white and grey rectangles, respectively. Each test sub-sequence is
depicted as a rectangle with a height and a width corresponding to
the peak-power consumption and the time duration of the test sub-
sequence, respectively. The area size of a test sub-sequence is then
equal to its peak-power consumption multiplied by the time duration.
The constraint on the peak-power consumption is denoted with
POWc. It should be noted that test sub-sequences belonging to the
same core, such as DTS1 and PTS1, cannot be scheduled in parallel
due to the test conflict.

PTS1

PTS2
PTS3

DTS4

PTS4

DTS2

DTS5

DTS1
DTS3

PTS5

Test Completion
Power

POWC

0 Time

PTSij PR test sub-seq.DTSij DT test sub-seq.

(a) A test schedule without test set partitioning

PTS32

PTS4 PTS52

PR31

PTS51 PTS11

PTS2

PTS12

Test Completion
Power

POWC

0 Time

PTSij PR test sub-seq.DT test sub-seq.

DTS4 DTS2

DTS5

DTS1
DTS3

DTSij

(b) A test schedule with test set portioning

Figure 4.1: Power-constrained test schedule w/o vs. with TSP

 41

Comparing the size of the effective scheduled area occupied by all
test sub-sequences to the size of the overall schedulable area
confined by the line of peak-power constraint and the line of test
completion time, one can find that the efficiency of the test schedule
in Figure 4.1(a) is low since much of the space is wasted. One
solution to improve the efficiency of the test schedule is to employ
test set partitioning to decrease the granularities of test sub-
sequences. As shown in Figure 4.1(b), PTS1, PTS3, and PTS5 are
partitioned into PTS11 and PTS12, PTS31 and PTS32, and PTS51 and
PTS52, respectively. The partitioned test sub-sequences have a
shorter time duration and/or a smaller peak-power consumption than
the non-partitioned ones, thus can be scheduled at time moments
which were not possible for the non-partitioned test sub-sequence
due to its large area size. From this example, it can be observed that
using test set partitioning can significantly improve the efficiency of
the test schedule and shorten the test application time.

4.3 Problem Formulation
We use the same definitions as given in chapter 3.2. Figure 4.2
depicts all the PTTMs in a power-constrained test schedule, where
the dotted lines indicate the ending moments of single deterministic
test patterns, and the dashed lines indicate the ending moments of
pseudorandom test sub-sequences. Overlapped time moments are
treated as identical PTTMs.

In order to minimize the test application time in production tests,
we need to minimize the ETAT through efficient test scheduling
integrated with test set partitioning. Taking into account the peak-
power constraint, the test scheduling problem is similar to the
classical two-dimensional rectangular packing problem. Our
objective is to develop heuristics to find an efficient partitioning
scheme and generate an efficient test schedule for all partitioned
deterministic and pseudorandom test sub-sequences, so that the
ETAT is minimized while the power constraint is satisfied.

42

PTS21
PTS3

DTS4

PTS11

PTS4

DTS2

DTS3

PTS22

PTS5

PTS12

DTS5

Possible Test Termination Moments (PTTMs)

Power

POWC

Time

PTSij PR test sub-seq.DT test sub-seq.DTSij

DTS1

0

Figure 4.2: PTTMs in a power-constrained test schedule

4.4 Test Set Partitioning
As in a rectangular packing problem, the sizes of test sub-sequences
have a large impact on the final schedule. To divide test sub-
sequences into smaller partitions with shorter time duration and
lower individual peak-power consumptions will lead to more efficient
test scheduling, since the partitioned test sub-sequences have
smaller granularities in terms of their area sizes and can be packed
more tightly. Figure 4.3(a) shows a non-partitioned deterministic test
sub-sequence for core Ci and Figure 4.3(b) shows its three partitions
(DTSi1, DTSi2, and DTSi3). In Figure 4.3(b), the individual peak-
power consumptions of the first two partitions (DTSi1 and DTSi2) are
lower than that of the non-partitioned test sub-sequence in Figure
4.3(a). The grey rectangles with dashed line edges illustrate the
reduced area sizes due to the partitioning.

 43

(c)

DTSi1

(b)

(a)

PTSi1 DTSi2

PTSi2 DTSi3

Figure 4.3: Test set partitioning and the time overheads

Reordering test patterns is useful in order to reduce power
consumption and can make the power profile of a test sub-sequence
relatively smooth and easy to manipulate [Ros02]. Thus, for all
deterministic tests, we have used test pattern reordering as a pre-
processing step for the test set partitioning. In Figure 4.4(a), the
original power profile of a deterministic test sub-sequence is given.
As a comparison, the power profile after the test pattern reordering
is shown in Figure 4.4(b). It can be seen that, through reordering of
the test patterns, the power profile is much smoother and the peak-
power consumption is reduced (39% lower for this example).

44

0

320

(a) Power profile before reordering test patterns

0

194

320

(b) Power profile after reordering test patterns

Figure 4.4: Power profile before/after reordering test patterns

Although test set partitioning can lead to smaller partitions, it
introduces time overheads for the partitioned test sub-sequences
when a test-per-scan approach is employed. This phenomenon occurs
when deterministic test sub-sequences and pseudorandom test sub-
sequences belonging to the same core are interleaved, as in the
example depicted in Figure 4.3. There, the three partitioned
deterministic test sub-sequences (DTSi1, DTSi2, and DTSi3) are
interleaved with two partitioned pseudorandom test sub-sequences
(PTSi1 and PTSi2) for the same core Ci. The time overheads are
indicated by the rectangles filled with slashed lines and situated at
the left of PTSi1, DTSi2, PTSi2, and DTSi3.

 45

The time overheads are due to the following fact. When a
deterministic (pseudorandom) test is stopped and resumed later after
a pseudorandom (deterministic) test has been applied, the pipeline
consisting of three operations (scan-in, application, and scan-out, see
Figure 4.5(a)) is interrupted and has to be refilled at the beginning of
the latter partition (see Figure 4.5(b)). Thus, the time overhead
added to the latter partition is equal to the time duration of the scan-
out operation, denoted with Lo in Figure 4.5.

In Figure 4.3(b), the grey rectangles are the areas reduced from
the non-partitioned test sub-sequence, while the rectangles filled
with slashed lines are the areas added. Thus, we proposed a heuristic
to find an appropriate number of partitions for a deterministic test
set, such that the sum of the area sizes of all partitions is minimized.

3rd Test Pattern2nd Test Pattern1st Test Pattern

Li+1+Lo Li+1

4th Test Pattern

Scan in Scan outApp.

Scan in Scan outApp.

1st Test
Pattern

2nd Test
Pattern

3rd Test
Pattern

Li Lo1

1

4th Test
Pattern

Li Lo

Scan in Scan outApp.

1Li Lo

Scan in Scan outApp.

1Li Lo

Li+1 Li+1
(a)

3rd Test Pattern2nd Test Pattern1st Test Pattern 4th Test Pattern...

Scan in Scan outApp.

Scan in Scan outApp.

1st Test
Pattern

2nd Test
Pattern

Li Lo1

1Li Lo

3rd Test
Pattern

4th Test
Pattern

Scan in Scan outApp.

1Li Lo

Scan in Scan outApp.

1Li Lo

Li+1 Li+1Li+1+Lo Li+1+Lo
(b)

Figure 4.5: Pipeline in a test-per-scan approach

46

The heuristic for deterministic test set partitioning starts with the

original non-partitioned test sub-sequence. Within each iteration
step, one of the existing partitions is divided into two test sub-
sequences. The heuristic stops when no more partitions can be
added, which means that every partitioned test sub-sequence has one
and only one test pattern. Here the cost function is defined as the
sum of the area sizes of all the partitioned test sub-sequences, and
the objective is to find a partitioning scheme which has the lowest
cost among all the explored solutions.

At every iteration step, we have to decide which existing partition
should be selected to be split into two test sub-sequences, and at
which position (test pattern) the selected partition should be divided.
With an exhaustive search among all possible solutions within this
iteration step, the local optimal partitioning scheme with the lowest
cost is obtained and one more partition is added. In the global range,
among all the local optimal partitioning schemes with different
number of partitions, the one with the lowest cost is acquired and
accepted as the best solution. Figure 4.6 illustrates how the sum of
the area sizes of all partitions distributed with different numbers of
partitions. Usually the best partitioning scheme has a relatively
small number of partitions in relation to the total number of test
patterns in the test set. For example, in Figure 4.6, a test set with
149 test patterns should be divided into 21 partitions such that the
sum of their area sizes is minimized.

When a pseudorandom test sub-sequence is divided into two
partitions, two signatures are needed in order to obtain the test
results at the end of both partitions, which means that an additional
signature should be generated. Thus, extra memory is also needed to
store this additional fault-free signature, and an extra time slot is
needed to analyze the additionally generated signature. In this
chapter, we have assumed that there exists sufficient memory to
store the signatures and we ignore the extra time slots for the
analysis of the additional signatures, since this time is very short,
compared to the time duration of the pseudorandom test sub-

 47

sequence. We do not consider the impact of the increased complexity
of the test controller either in this chapter.

555000

580000

605000

630000

655000

680000

705000

730000

755000

780000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of partitions

Su
m

 o
f t

he
 a

re
a

si
ze

s
of

 a
ll

pa
rt

iti
on

s

(21, 566326)

Figure 4.6: Sum of area sizes w.r.t. number of partitions

4.5 Proposed Heuristic
Before the heuristic for test scheduling is presented, some basic
principles for test set partitioning and test scheduling are
summarized as follows.

(1) Test sub-sequences belonging to the same core cannot be
scheduled in parallel.

(2) Deterministic test sub-sequences are scheduled sequentially
since a single test bus is used, while pseudorandom test sub-
sequences are scheduled in parallel under the peak-power constraint.

(3) The scheduling of deterministic test sub-sequences is performed
before the scheduling of pseudorandom test sub-sequences, which
means that deterministic test sub-sequences have higher scheduling
priorities. This is because deterministic tests can be stopped after
every test pattern, while pseudorandom tests can only be terminated
at the end of the test sub-sequences, when the signatures are ready.

48

Additionally, deterministic test patterns are usually more efficient in
detecting faults than pseudorandom test patterns.

(4) Pseudorandom test sub-sequences are first sorted in a
decreasing order of certain parameters like the defect probability of a
core, the peak-power consumption and time duration of a test sub-
sequence. Thereafter, they are scheduled to the earliest possible time
moment. Deterministic test sub-sequences, however, are scheduled
in the order obtained by a defect-probability driven heuristic.

Test set partitioning is integrated into the test scheduling
approach in the following way. Deterministic test sets are partitioned
statically, meaning that they are partitioned before being scheduled,
according to the principles presented in the previous section.
Pseudorandom test sets, on the other hand, are partitioned during
the test scheduling. When it is impossible to schedule a
pseudorandom test sub-sequence to the earliest time moment due to
its large area size, the test sub-sequence is divided into two
partitions such that the first one can be scheduled as expected, and
the scheduling of the second one is performed later.

Based on the basic principles described above, a heuristic has been
developed to find an efficient test schedule for all test sub-sequences
in an iterative way. One iteration step of the heuristic is illustrated
with the example in Figure 4.7. Suppose that we have five
deterministic test sub-sequences DTS1, DTS21, DTS22, DTS31, and
DTS32, and three pseudorandom test sub-sequences PTS1, PTS2, and
PTS3. Two deterministic test sub-sequences DTS31 and DTS1 have
already been scheduled. In this iteration step, we have to decide
which one out of the three unscheduled deterministic test sub-
sequences DTS21, DTS22, and DTS32 should be scheduled to which
time moment among A, B, and C, as illustrated in Figure 4.7. After a
deterministic test sub-sequence is scheduled to a time moment, the
three pseudorandom test sub-sequences PTS1, PTS2, and PTS3 are
scheduled to the rest of the space. Test set partitioning may be
needed at this step. Thereafter, the expected partial test application
time (EPTAT) is calculated within the range of the scheduled

 49

deterministic test sub-sequences (see Figure 4.8). When all the
possible nine solutions within the current iteration step have been
explored, the solution with the smallest EPTAT is accepted and the
three scheduled deterministic test sub-sequences are taken as a base
for the next iteration step. The heuristic stops when no more
unscheduled deterministic test sub-sequences are left, and the final
test schedule is then obtained. Note that when a test sub-sequence is
scheduled, the order of the already scheduled test sub-sequences
should remain unchanged.

DTS31

DTS1

DTS22

DTS21

DTS32

PTS2

PTS1

PTS3

0

1

2

3

Sorted list of
unscheduled PTSs

A B C
Power

Time

PTSij PR test sub-seq. (unscheduled)

DT test sub-seq. (scheduled)DTSijDTSij DT test sub-seq. (unscheduled)

POWC

Figure 4.7: Illustration of one iteration step of the heuristic

Figure 4.8 shows a solution in which DTS22 is scheduled to time
moment B. During the scheduling of pseudorandom test sub-
sequences, PTS2 is partitioned into two test sub-sequences PTS21 and
PTS22. The EPTAT calculation range is from the beginning of DTS31
till the end of DTS1. The gap between PTS3 and PTS22 is due to the
fact that DTS22 and PTS22 cannot be scheduled concurrently due to
the test conflict.

50

DTS1

PTS3

PTS1

DTS31

EPTAT calculation range

DTS22

DTS21

DTS32

PTS21

PTSij
PR test sub-seq. (scheduled &
NOT contributing to EPTAT)

DT test sub-seq. (scheduled)DTSijDTSij DT test sub-seq. (unscheduled)

PTSij
PR test sub-seq. (scheduled &
contributing to EPTAT)

0

Power

Time

POWC

PTS22

PTS1

PTS3

PTSij PR test sub-seq. (unscheduled)

Figure 4.8: Illustration of one solution at the iteration step

Formally, suppose that we have N deterministic test sub-
sequences altogether, and m (0 ≤ m < N) of them have already been
scheduled at a certain iteration step. We need to schedule one more
deterministic test sub-sequence selected from the set of (N − m)
unscheduled deterministic test sub-sequences to an appropriate time
moment, without disturbing the order of the scheduled test sub-
sequences. When a selected deterministic test sub-sequence has been
scheduled to a time moment, all the pseudorandom test sub-
sequences are then scheduled into the rest of the space, with
application of dynamic partitioning, if needed. The EPTAT of this
solution is then calculated within the time range of the (m + 1)
scheduled deterministic test sub-sequences. When all the
(N − m) × (m + 1) possible solutions have been explored, the solution
with the minimum EPTAT value is accepted. The new list of
scheduled deterministic test sub-sequences is then used as a base for
the next iteration step. Repeating this procedure from the initial
state when m = 0 until all the deterministic and pseudorandom test
sub-sequences are scheduled when m = N, we get the final optimized
schedule.

 51

The pseudo-code of the heuristic, given in Figure 4.9, has three
major embedded loops. The outer loop (lines 1 to 19) increments the
number of scheduled deterministic test sub-sequences, the middle
loop (lines 4 to 17) selects every unscheduled deterministic test sub-
sequence, and the inner loop (lines 5 to 16) explores every possible
time moment for scheduling. Inside the inner loop, the selected
deterministic test sub-sequence is scheduled (line 6), thereafter
pseudorandom test sets are partitioned if needed and then scheduled
(lines 7 to 10). The EPTAT of the present schedule is then calculated
(line 11) and compared to the minimum EPTAT for an acceptance
decision (lines 12 to 15). The final test schedule is returned in the
end (line 20).

1: for (#SchedDTS := 0 to N-1) loop
2: Reset(EPTATmin);
3: m := #SchedDTS;
4: for (∀UnschedDTSij) loop
5: for (∀PTTM Tx) loop
6: Schedule(UnschedDTSij, Tx);
7: for (∀ pseudorandom test set PTSk) loop
8: Partition(PTSk) if needed;
9: Schedule(PTSk);
10: end for;
11: EPTATcur := CalcEPTAT();
12: if (EPTATcur < EPTATmin) then
13: EPTATmin := EPTATcur;
14: Solutionbest := Solutioncur;
15: end if;
16: end for;
17: end for;
18: Apply(Solutionbest);
19: end for;
20: Return(TestSchedulefinal);

Figure 4.9: Pseudo-code of the heuristic for test scheduling

52

4.6 Experimental Results
For the experiments, ISCAS’89 benchmarks were used and the test-
per-scan approach was utilized. All cores were redesigned to insert
one single scan chain, and the STUMPS architecture is used for
BIST.

In the first set of experiments, the proposed test set partitioning
and test scheduling technique was employed. We did experiments for
5 groups of designs. Each group had five different designs which had
the same number of cores of different types, but the cores were
assigned with different defect probabilities. The numbers of cores
were 5, 10, 20, 30, and 50 for each group, respectively. For each
design we used three different levels of peak-power constraints. The
experimental results in Table 4.1 represent the average values from
15 experiments (5 different designs with the same number of cores
multiplied by 3 different peak-power constraints). The defect
probabilities of individual cores were generated randomly, while
keeping the system defect probability at the value 0.6, i.e. 40%
system yield.

Table 4.1: Different approaches using test set partitioning
BLD Our Heuristic SA

Cores
ETAT CPU Time

(s) ETAT CPU Time
(s) ETAT CPU Time

(s)

5 7783 0.01 6247 2.5 6126 276.0

10 10590 0.02 7983 26.9 7732 568.7

20 20081 0.04 14239 293.9 14808 301.5

30 28578 0.06 21117 493.4 22290 503.9

50 50562 0.11 37463 4372.9 40074 4409.3

In order to show the efficiency of our heuristic, a classical bottom-
left-decreasing (BLD) scheduling algorithm [Les05] is taken for
comparison. It sorts deterministic and pseudorandom test sub-
sequences decreasingly by their area sizes (the peak-power
consumption multiplied by the time duration), and then schedules

 53

them using the bottom-left strategy. As shown in Table 4.1, by
employing our heuristic, the ETAT can be reduced around 20% to
29% compared to the BLD scheduling algorithm, with an acceptable
increase of execution time. On the other hand, in order to show the
accuracy of our heuristic to find a near-optimal test schedule, we also
compared our heuristic with a simulated annealing (SA) algorithm.
For small designs with 5 and 10 cores, the SA algorithm reached the
imposed termination condition in an acceptable time and is supposed
to return a solution close to the optimal solution. For large designs
with 20, 30, and 50 cores, the SA algorithm took unacceptably long
time to reach the termination condition. Thus, for these experiments,
we let the SA algorithm run for a time equal to that needed by our
heuristic. From Table 4.1, one can see that in small designs, the SA
algorithm works just slightly better than our heuristic (2% to 3%
lower ETAT), but has up to two orders of magnitude longer execution
time than our heuristic. For the large designs, our heuristic found
better solutions with 4% to 7% lower ETAT values, than the SA
algorithm produced in the same amount of time.

In the second set of experiments where the same designs were
used, we intended to show the effect of test set partitioning. As a
comparison, we used a defect-probability driven test scheduling
heuristic which did not allow test set partitioning. For the sake of
fairness, both the partitioned and non-partitioned heuristic used test
pattern reordering, thus the advantage of the peak-power reduction
by reordering test patterns did not play any role in this comparison.
The experimental results are given in Table 4.2. As shown in the
table, using test set partitioning can reduce the ETAT with amounts
between 16% and 30%. The results are also illustrated in Figure
4.10.

54

Table 4.2: Our heuristic (without/with test set partitioning)
Without Test Set Partitioning With Test Set Partitioning

Cores
ETAT CPU Time (s) ETAT CPU Time (s)

5 8269 0.09 6247 2.5

10 11357 0.86 7983 26.9

20 18016 14.2 14239 293.9

30 26710 68.6 21117 493.4

50 44713 589.1 37463 4372.9

8269
11357

18016

26710

44713

14239

21117

7983
6247

37463

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5 10 20 30 50
Number of Cores

Ex
pe

ct
ed

 T
ot

al
 T

es
t T

im
e

(E
TT

T) NON-Partitioned
Partitioned

Figure 4.10: Our heuristic (without/with test set partitioning)

4.7 Conclusions
In this chapter, a power-constrained SoC test scheduling approach is
presented in a production test environment. Different from other
approaches, the defect probabilities of individual cores are utilized to
drive the test scheduling and a test set partitioning approach is

 55

employed. Based on the calculation of the ETAT, a heuristic for test
set partitioning and test time minimization is used to generate
efficient test schedules. Experimental results have shown that the
proposed method is effective to shorten the test application time.

56

Chapter 5
 Thermal-Aware

SoC Test Scheduling

In this chapter, we assume that a continuous test will increase the
temperature of a core towards a limit beyond which the core may be
damaged. We also assume a test architecture which employs a test
bus to transport test data. Thus, we address the TAT minimization
problem as how to generate the shortest test schedule such that the
temperature limits of individual cores and the limit on the test-bus
bandwidth are satisfied.

5.1 Introduction
Recently, thermal-aware testing [Tad00] has attracted many
research interests. Liu et al. proposed a technique [Liu05] to evenly
distribute the generated heat across the chip during tests, and
therefore avoid high temperature. Rosinger et al. proposed an
approach [Ros06] to generate thermal-safe test schedules with
minimized test time by utilizing the core adjacency information to
drive the test scheduling and reduce the temperature stress between
cores. In this chapter, we propose a thermal-aware test scheduling
technique [He06b], [He07] which employs test set partitioning and
interleaving.

 57

In order to avoid overheating during tests, we partition the entire

test set into shorter test sub-sequences and introduce a cooling
period between two consecutive test sub-sequences, such that
continuously applying a test sub-sequence will not drive the core
temperature going beyond the limit. As the TAT substantially
increases when long and/or many cooling periods are introduced, we
interleave the test sub-sequences from different test sets in such a
manner that a cooling period reserved for one core is utilized for the
test transportation and application of another core.

We provide two approaches to generate thermal-safe test schedules
with minimized TAT: a CLP-based approach [He06b] and a heuristic-
based approach [He07]. The CLP-based approach generates the
optimal test schedules in terms of the TAT, assuming regular
partition length as well as regular cooling periods. The heuristic-
based approach explores alternative test set partitioning and
interleaving schemes in which partitions and cooling periods have
arbitrary length.

5.2 Motivational Example
When a long sequence of test patterns is continuously applied to a
core, the temperature of this core may increase towards a certain
limit beyond which the core will be damaged. Therefore, a test has to
be stopped when the core temperature reaches the limit, and the test
can be restarted later when the core has been cooled down. Thus, by
partitioning a test set into shorter test sub-sequences and
introducing cooling periods between them, we can avoid the
overheating during test. Figure 5.1 illustrates a situation in which
the entire test set is partitioned into four test sub-sequences, TS1,
TS2, TS3, and TS4, and cooling periods are introduced between them.
In this way, the temperature of the core remains under the imposed
temperature limit.

58

Temperature

Time

Temp.
Limit

Completion Time

TS1 TS2 TS3 TS4Cooling Cooling Cooling

Figure 5.1: An example of test set partitioning

As we have assumed that a test bus is employed in the test
architecture, the limit on the test-bus bandwidth becomes a
constraint to the scheduling of the test sub-sequences. It is obvious
that introducing long cooling periods between test sub-sequences can
substantially increase the TAT. Intuitively, we can reduce the TAT
by interleaving the partitioned test sets such that the cooling periods
reserved for a core Ci are utilized to transport test data for another
core Cj (j ≠ i), and thereafter to test the core Cj. By interleaving the
partitioned test sets belonging to different cores, the test-bus
bandwidth is more efficiently utilized. Figure 5.2 gives an example
where two partitioned test sets are interleaved so that the test time
is reduced with no need for extra bus bandwidth.

 59

Core 1
Core 2

Temperature

Time

Temp.
Limit

Completion Time

Cooling (Core 1)

Testing
(Core 2)

Figure 5.2: An example of test set interleaving

In this chapter, we aim to minimize the TAT by generating an
efficient test schedule which avoids violating the temperature limits
of individual cores, and at the same time satisfies the test-bus
bandwidth constraint. We consider each test sub-sequence as a
rectangle, with its height representing the required test-bus
bandwidth and its width representing the test time. Figure 5.3 gives
a motivational example for our test time minimization problem.
Suppose that three test sets, TS1, TS2, and TS3, are partitioned into
5, 3, and 2 test sub-sequences, respectively. Note that the
partitioning scheme which determines the length of test sub-
sequences and cooling periods has ensured that the temperature of
each core will not violate the temperature limit, by using a
temperature simulation. Figure 5.3(a) shows a feasible test schedule
while Figure 5.3(b) depicts an alternative test schedule where a
different partitioning and interleaving scheme is adopted. This
example shows the possibility to find a shorter test schedule by
exploring alternative solutions, where the number and length of test
sub-sequences, the length of cooling periods, and the way that the
test sub-sequences are interleaved are different.

60

Bandwidth

0 Time

Bandwidth Limit

TS32TS31

Test Completion

TS11 TS12 TS13 TS14 TS15

TS22TS21 TS23

(a) A feasible test schedule with regular partitioning scheme

Bandwidth

0 Time

Bandwidth Limit

TS23TS21 TS22 TS24

TS11 TS12 TS13 TS14

Test Completion

TS31 TS32 TS33

(b) An alternative test schedule with irregular partitioning scheme

Figure 5.3: A motivational example

5.3 Problem Formulation
Suppose that a system S, consisting of n cores C1, C2, ... , Cn, employs
the test architecture for external test using an ATE, as depicted in
Figure 2.5. In order to test core Ci, a test set TSi consisting of li
generated test patterns is transported through the test bus and the
dedicated TAM wires to/from core Ci, utilizing a bus bandwidth Wi.
The test bus is designed to allow transporting several test sets in
parallel but has a bandwidth limit BL (∀I, BL ≥ Wi). We assume that

 61

continuously applying test patterns belonging to TSi may cause the
temperature of core Ci go beyond a certain limit TLi so that the core
can be damaged. In order to prevent overheating during tests, we
allow partitioning a test set into a number of test sub-sequences and
introducing a cooling period between two partitioned test sub-
sequences, such that no test sub-sequence drives the core
temperature higher than the limit and the core temperature is kept
within a safe rage. The problem that we address is how to generate a
test schedule for system S such that the TAT is minimized while the
bus bandwidth constraint is satisfied and the temperatures of all
cores during tests remains below the corresponding temperature
limits. The formal problem formulation is given in Figure 5.4.

Input:
{TSi | i = 1, 2, ... , n},
{Wi | i = 1, 2, ... , n},
Test-bus bandwidth limit BL,
Temperature limit of each individual core {TLi | i = 1, 2, ... , n}

Output:
Test schedule with the minimized test application time (TAT)

Subject to the following two constraints:
1. At any time moment t before the test completion, the total amount of
utilized test-bus bandwidth BW(t) is less than or equal to the bandwidth
limit BL, i.e. BW(t) := ΣBWi(t) ≤ BL.
2. At any time moment t before the test completion, the temperature
TMi(t) of every individual core Ci is less than or equal to the corresponding
temperature limit TLi, i.e. ∀i, TMi(t) ≤ TLi.

Figure 5.4: Problem formulation

The formulated problem has high complexity. In order to reduce
the optimization time so that optimal solutions can be found in an
reasonable time even for large designs, we can restrict the
exploration space. Thus we restrict the length of the test sub-
sequences belonging to the same test set to be identical. Moreover,
we restrict the length of the cooling periods between the test sub-

62

sequences from the same test set to be identical. By adding these
restrictions, the complexity of the test controller can be reduced since
less states of the test schedule are needed to store in a memory.
Thus, the test scheduling problem can be modeled and solved by
using CLP.

Although formulating the test scheduling problem as a CLP model
by restricting the exploration space have the advantages
demonstrated above, it also leads to trade-offs. The restrictions on
the regularity of test sub-sequence and cooling periods can result in
less efficient test schedules and, as a consequence, longer TATs. We
provide an alternative way to reduce the long optimization time due
to the high problem complexity. We assumes that the test sub-
sequences and cooling periods can have arbitrary length and we
propose a low-complexity heuristic to find near-optimal solutions
under the less restricted and more realistic assumptions. Due to the
high complexity of the formulated problem, the CLP-based approach
is not applicable.

5.4 Overall Solution Strategy
We propose a strategy to solve the formulated problem in two major
steps, as illustrated in Figure 5.5. First, we generate an initial
partitioning scheme for every test set by using temperature
simulation and the given temperature limits. Second, the test
scheduling algorithm explores test schedules by selecting alternative
partitioning schemes, interleaving test sub-sequences, and squeezing
them into a two-dimensional space, constrained by the test-bus
bandwidth.

 63

Temperature Limits {TLi}

Test Sets {TSi}

Figure 5.5: The overall solution strategy

In order to generate thermal-safe partitioning schemes, we have
used a temperature simulator HotSpot [Ska04], [Hua04], [Hua07] to
simulate instantaneous temperatures of individual cores during
tests. HotSpot assumes a circuit packaging configuration widely used
in modern IC designs, and it computes a compact thermal model
[Hua04] based on the analysis of three major heat flow paths existing
in the assumed packaging configuration [Hua04]. Given the floorplan
of the chip and the power consumption profiles of the cores, HotSpot
calculates the instantaneous temperatures and estimates the steady-
state temperatures for each unit. In this thesis, we assume that the
temperature influences between cores are negligible since the heat
transfer in the vertical direction dominates the transferring of
dissipated heat. This assumption has been validated by examining
simulations with HotSpot.

When generating the initial thermal-safe partitioning scheme, we
have assumed that a test set TSi is started when the core is at the
ambient temperature TMamb. Then we start the temperature
simulation, and record the time moment th1 when the temperature of
core Ci reaches the given temperature limit TLi. Knowing the latest

Chip Floorplan FLP Temperature Simulation

Test Scheduling with Test-Set
Repartitioning & Interleaving

Test-Bus Bandwidth
Requirements {Wi}

Test-Bus Bandwidth
Limit BL

Initial Thermal-Safe
Partitioning Schemes {PSi0}

Optimized Test Schedule

64

test pattern that has been applied by the time moment th1, we can
easily obtain the length of the first thermal-safe test sub-sequence
TSi1 that should be partitioned from the test set TSi. Then the
temperature simulation continues while the test process on core Ci
has to be stopped until the temperature goes down to a certain
degree. It is obvious that a relatively long time is needed in order to
cool down a core to the ambient temperature, as the temperature
decreases slowly at a lower temperature level (see the dashed curve
in Figure 5.6). Thus, we let the temperature of core Ci go down only
until the slope of the temperature curve reaches a given value k, at
time moment tc1. Note that the value of k can be experimentally set
by the designer. At this moment, we have obtained the duration of
the first cooling period di1 = tc1 – th1. Restarting the test process from
time moment tc1, we repeat this heating-and-cooling procedure
throughout the temperature simulation until all test patterns
belonging to TSi are applied. Thus we have generated the initial
thermal-safe partitioning scheme, where test set TSi is partitioned
into m test sub-sequences {TSij | j = 1, 2, ... , m} and between every
two consecutive test sub-sequences, the duration of the cooling period
is {dij | j = 1, 2, ... , m-1}, respectively. Figure 5.6 depicts an example
of partitioning a test set into four thermal-safe test sub-sequences
with three cooling periods added in between.

Temperature

Time

TLi

TMamb

Test Completion

TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

k

th1 tc1 th2 tc2 tc3th3 th4

Figure 5.6: An example of initial partitioning scheme

 65

On , we

fo

5.5 CLP-based Approach
er to restrict the exploration space

ce the initial thermal-safe partitioning scheme is obtained
cuses on the problem of how to schedule all the test sub-sequences

such that the TAT is minimized under the constraint on the test-bus
bandwidth. Since we consider each test sub-sequence as a rectangle,
the problem of generating a test schedule with minimized TAT while
satisfying the constraint on the test-bus bandwidth can be
formulated as a rectangular packing problem. However, our test
scheduling problem is not a classical RP problem, due to the fact that
the number of test sub-sequences, the length of the sub-sequences,
and the cooling periods are not constant. This makes our problem
even more difficult to be solved.

Interleaving test sub-sequences belonging to different test sets can
introduce time overheads [Goe03], [He06a] when the test controller
stops one test and switches to another test. Therefore, partitioning a
test set into more test sub-sequences may lead to a longer TAT, since
more time overheads and more cooling periods are introduced into
the test schedule. On the other hand, partitioning a test set into
more test sub-sequences results in a shorter average length of the
individual test sub-sequences, which in principle can be packed in a
more compact way and thus lead to shorter TATs. Thus, we need a
global optimization algorithm, in which different numbers and
lengths of test sub-sequences as well as different cooling periods are
explored. We have proposed a heuristic to generate optimized test
schedules by scheduling test sub-sequences with test set
repartitioning and interleaving.

Based on the overall solution strategy, we propose two approaches
to solve the test scheduling, a CLP-based approach and a heuristic-
based approach.

As demonstrated previously, in ord
as well as to reduce the complexity of the test controller, we assume
that the test partitions in the same test set have identical time

66

durations except the first and the last test sequence. Why first test
sub-sequence is usually longer than the other in the same test set is
because that we assumed that the CUT is at the ambient
temperature when the first test sequence starts, and that the first
test sequence is partitioned such that it can be continuously applied
until the core temperature reaches the temperature limit. For the
same reason, the cooling spans between two consecutive test
sequences from the same test set also have identical length.

5.5.1 Concepts of CLP

s framework which merges two declarative

clarative programming language, CLP is flexible and
ex

5.5.2 CLP Model

p scheme has three parameters, the number of

CLP i a programming
programming paradigms, constraint solving and logic programming
[Jaf87]. CLP defines the relationships between entities as
constraints, and incorporates constraint solving methods into a logic
based language. Some key features of CLP include: (1) constraints
are employed to describe the queries and answers which are the
inputs and outputs of a program; (2) new variables and constraints
are dynamically generated during execution of the program; (3) in
each state of execution, all constraints are globally tested for
satisfiability, and the results of the test are used to control the
execution.

As a de
pressive. It allows programmers focusing on the formulation of

problems, instead of being stuck in the implementation details.
Therefore, it has been widely used in many optimization techniques
for a large variety of applications. Some CLP tools also provide
solvers to find the optimal solution using branch and bound or
exhaustive search. We use CHIP [Hen91] for our CLP-based
approach to solve the thermal-safe test scheduling problem.

Each artitioning
partitions mi, the time duration of the first test sequence li1, and the
cooling span di between two consecutive test sequences. Each test

 67

starts at time ti which is equal to the starting time of the first
partition in the same test set.

()nitt ii ≤≤= 11 (5.1)

The number of partitions and the test start time is decided during
the optimization. The start time tij and finishing time eij of the test
sub-sequence TSij can be calculated as follows. Note that oi is the
time overhead.

()nimjodltt iiijijiij ≤≤≤≤+++ −− 1,21,1, (5.2) =

()nimjlte iijijij ≤≤≤≤+= 1,1 (5.3)

The last test sub-sequence in each test set is special since its
fin

,

ishing time is the end of the whole test set. Thus the finishing
time ei of the test set TSi is

e
imii e= (5.4)

and the TAT for testing all cores is the maximum finishing time of all
single tests.

{ }ini
eTAT

≤≤
=

1
max (5.5)

TAT is the cost function of our optimization problem, and our
ob

(5.6)

where px is the number of concurrent test sequences at the time

jective is to find the optimal solution {(mi*, ti*) | i = 1, 2, ... , n} such
that the TAT is minimized, subject to the following two constraints:
(1) at any time moment x, the total amount of test bus bandwidth
used by the concurrent test sequences is less than the bandwidth
limit, i.e.

BLWTATx
xp

k
k ≤≤∀ ∑

=1

,

moment x;

68

(2) at any time moment x, the temperature of each core should be
less than the temperature limit, i.e.

ixi TLTM ≤, (5.7)

where TMi,x is the temperature of core Ci at the time moment x, and
TLi is the temperature limit of core Ci.

We assume that when a test starts, the CUT is at the ambient
temperature, denoted with TA. The test set has to be partitioned into
a number of test sequences if the CUT reaches its temperature limit
before the entire test is completed. When partitioning a test set into
test sequences, the length of each test sequence and the number of
test sub-sequences depend on the length of the cooling span between
two consecutive test sequences. This is because of the following facts.
A longer cooling span leads to a lower temperature at which the
succeeding test sequence will be started. Thus, with the partitioning
schemes that have longer cooling spans, a test set can be partitioned
into fewer number of test sequences but each test sequence is longer.
It is important to find a possible interval of the number of partitions
for each test set, since our optimization algorithm explores
alternative partitioning schemes in which the number of partitions
varies between the minimum and the maximum values in this
interval. We denote the interval of the number of partitions for a test
set TSi with Ii (1 ≤ i ≤ n), and Ii = [Ii,min, Ii,max].

As demonstrated in the previous section, we use the temperature
simulation to find the interval Ii (1 ≤ i ≤ n) for each test set. We
define the number of partitions obtained by using this approach as
the minimum value of the exploration interval Ii, denoted with Ii,min.
In order to find the maximum value of the exploration interval Ii,
denoted with Ii,max, we have done experiments for different designs
and we have found out that the actual numbers of partitions in the
optimal solutions are close to the minimum values Ii,min. Thus we
consider the maximum value Ii,max = K + Ii,min, where K is a constant
fixed by the designer. Thereafter, the obtained exploration interval

 69

Ii = [Ii,min, Ii,max] (i = 1, 2, ... , n) for TSi is taken as an input to the
optimization algorithm.

For each test set TSi (1 ≤ i ≤ n), two variables have to be decided by
the CLP solver: one is the number of partitions, denoted with mi, and
the other is the starting time of the test, denoted with ti. The two sets
of variables for all test sets compromise the decision variables of our
optimization problem. The finishing time of a test is equal to its
starting time plus the durations of all its test sequences and all the
cooling spans between two consecutive test sequences, given as
follows.

()1
1

−×++= ∑
=

ii

m

j
iii mdlte

i

 (5.8)

During the optimization, the decision variables are instantiated
and test schedules that satisfy the constraints are explored. The
solver finds the optimal solution which has the minimal total test
application time. The minimal TAT formulated in the CLP model is

}}{max{min
max,min,,01min iImILtni
eTAT

iiii ≤≤≤≤≤≤
= (5.9)

where L is a constant configured in the CLP model.

5.5.3 Experimental Results

We have used the ISCAS’89 benchmarks as cores for the SoC designs
to our experiments. Table 5.1 shows the experimental results for five
different SoC designs. The number of cores composing each
generated SoC is listed in the first column of Table 5.1. For each SoC
design, test patterns are generated for all cores in the design, and
the switching activities are calculated for each test pattern. We used
the approach in [Sam06] to obtain the power consumption values,
taking the switching activities of test patterns as inputs. HotSpot is
used to find the total number of partitioning schemes for each SoC
design, which are listed in the second column of Table 5.1. The
imposed temperature limit is 90°C.

70

We used the developed CLP formulation to generate the optimal

test schedule by selecting the number of partitions and the start time
for each test. The third column of Table 5.1 is the problem size of
each design, which is the number of partitioning schemes multiplied
by the number of cores. The total test time of the optimal solution for
each design is shown in the fourth column and the optimization time
is listed in the fifth column.

When the test schedule for a design has been generated, we run
the HotSpot temperature simulator for the generated test schedules
to check if the temperatures of the cores go over the upper limit. The
simulation results confirm that the temperatures of cores are below
the upper limit.

Table 5.1: Experimental results for five different designs

Cores # Partitioning
Schemes Problem Size TAT

(# Clock Cycles) CPU Time (s)

4 7 28 2775 2.141

12 8 96 8306 35.359

24 20 400 9789 47.500

36 20 720 10017 120.219

48 20 960 10941 881.766

We also did experiments to see how the optimization result is
impacted by the given total number of partitioning schemes. In Table
5.2, four different number of partitioning schemes have been given to
the optimization algorithm for the same design consisting of 6 cores.
The optimal solution is the same in the three cases where the total
number of partitioning schemes is 7, 10, and 15, respectively. In the
case that the number of partitioning schemes is only 5, the total test
time of the obtained solution is larger than those in the other three
cases. This experiment shows that, for this design, the best solution
does not correspond to the partitioning scheme found among the five
alternative partitioning schemes, as indicated in the first line in

 71

Table 5.2. If we introduce 2 additional alternative partitioning
schemes (see the second row of Table 5.2), a better solution is found.
However, more additional alternatives, up to 15, do not lead to better
solutions. The reason why a larger TAT can occur with a partitioning
scheme that has less number of partitions is interpreted as follows.
When a test set is partitioned into more test sub-sequences, the test
sub-sequences as well as the cooling periods are shorter. Although
the time overhead in this case is larger, the entire TAT a test can be
still shorter. During test scheduling, various partitioning schemes
are explored and the optimal solution does not necessarily
correspond to the partitioning schemes with minimal number of
partitions.

Table 5.2: Experimental results for one design
with different number of partitioning schemes

Cores # Partitioning
Schemes Problem Size TAT

(# Clock Cycles) CPU Time (s)

5 30 9574 10.156

7 42 9570 26.031

10 60 9570 31.875
6

15 90 9570 39.797

5.6 Heuristic-based Approach
As demonstrated previously, although using the CLP-based approach
can provide the optimal solution and also can reduce the complexity
of the test controller, the efficiency of the test schedules are limited
due to the restrictions on the regularity of test sub-sequences and
cooling periods. Alternatively, we assume the test sub-sequences and
cooling periods can have arbitrary length and propose a heuristic-
based approach to solve the thermal-aware test schedule problem.

72

5.6.1 Motivational Example

We have proposed a heuristic to do the test scheduling with test set
repartitioning and interleaving. Since the order in which the test
sets are considered for test scheduling has a large impact on the final
test schedule, we construct an iterative algorithm to obtain a good
scheduling consideration order (SCO) for all partitioned test sets,
and thereafter schedule the test sub-sequences according to the
obtained SCO.

Figure 5.7 shows a simple example illustrating the impact of the
scheduling consideration order on the test schedule of three test sets,
TS1, TS2, and TS3, each of which is partitioned into two test sub-
sequences. Figure 5.7(a) and Figure 5.7(b) depict the test schedules
when the test sets are considered for scheduling in the order of {TS1,
TS2, TS3} and {TS3, TS2, TS1} respectively. It is obvious that using
the second SCO results in a shorter test schedule. Note that in this
example the test sets are scheduled to the earliest available time
moments.

It should also be noted that the scheduling consideration order
refers to the precedence of partitioned test sets to be considered for
scheduling. However, when a test set is taken into account for
scheduling, we do not schedule all the test sub-sequences of this test
set at one time. Instead, we always take the first unscheduled test
sub-sequence of the currently considered test set for scheduling, and
thereafter take the first unscheduled test sub-sequence of the next
test set into account. Thus, in this example, the overall scheduling
consideration order (OSCO) for all test sub-sequences of all test sets
is {TS11, TS21, TS31, TS12, TS22, TS32} and {TS31, TS21, TS11, TS32,
TS22, TS12}, for the case of Figure 5.7(a) and Figure 5.7(b)
respectively. The main concern of not scheduling all test sub-
sequences of one test set at one time is to avoid generating low
efficient test schedules due to unnecessarily long cooling periods,
inappropriate partition length, and inefficient test-set interleaving.

 73

TS11
TS21

TS31

BL

BW

0 T

Test Completion

TS12

TS22

TS32

ime

(a) Test schedule with the SCO {TS1, TS2, TS3}

BL

BW

0 T

Test Completion

TS11 TS12

TS31 TS32

TS21 TS22

ime

(b) Test schedule with the SCO {TS3, TS2, TS1}

Figure 5.7: Illustration of SCO affecting test schedule length

5.6.2 Heuristic

The basic idea of the proposed heuristic is to iteratively construct a
queue that finally consists of all partitioned test sets in a particular
order. The pseudo-code of the proposed heuristic (ALG. 5.1) is
depicted in Figure 5.8, denoted with. Note that, inside the heuristic,
a scheduling algorithm (ALG. 5.2) is invoked, and its pseudo-code is
given in Figure 5.11.

74

ALG. 5.1: HEURISTIC for test scheduling
1: Set of test sets :: U := {TSi | i = 1, 2, … , n};
2: Queue of test sets :: Q := ∅;
3: Queue of test sets :: Qbest := ∅;
4: for (∀TS ∈ U) loop /* outer loop */
5: ηmax := 0;
6: Q := Qbest;
7: for (∀POS in Q) loop /* inner loop */
8: Insert(TS, Q, POS);
9: Schedcur = SCHEDULE(Q);
10: η = CalcEfficiency(Schedcur);
11: if (η > ηmax) then
12: ηmax := η;
13: TSbest := TS;
14: Qbest := Q;
15: end if
16: Remove(TS, Q);
17: end for
18: Remove(TSbest, U);
19: end for
20: SCHEDULE(Qbest);

Figure 5.8: Pseudo-code of the heuristic for test scheduling

Given the set of all test sets U = {TSi | i = 1, 2, ... , n} (line 1), the
heuristic iteratively selects test sets and inserts them into a queue Q
(lines 2 to 19). The positions of the test sets in Q represent the order
in which the test sets are considered for test scheduling (SCO). The
closer to the queue head, the earlier to be considered.

The heuristic starts with an empty queue Q = Ø (line 2). At each
iteration step (lines 5 to 18), the objective is to select one test set TSk
from U, and insert it into Q at a certain position POS, such that the
|Q| + 1 test sets are put in a good order while the precedence
between test sets excluding the newly inserted one remains
unchanged. The algorithm terminates when all test sets in U have
been moved into Q, and thereafter it schedules the partitioned test
sets according to the SCO obtained in Qbest (line 20).

 75

For each iteration step, there are |U| alternative test sets for

selection, where |U| is the current number of test sets remaining in
U. For each selected test set, there are |Q| + 1 alternative positions
which the selected test set can be inserted to, where |Q| is the
current number of test sets that have already been inserted into Q
throughout previous iteration steps. Thus, at one iteration step,
there are |U| × (|Q| + 1) alternative solutions, in which a selected
test set is associated with an insertion position in Q.

The example depicted in Figure 5.9 illustrates a situation in which
3 test sets have been inserted in Q (TS3, TS8, and TS6) and 5 test
sets remain in U (TS1, TS2, TS4, TS5, and TS7). For each test set in
U, there are 4 positions for insertion, which the arrows point to. In
this example, there are 20 alternative solutions for consideration.
Note that each test set in the example has already been partitioned
into a number of test sub-sequences, and the scheduling algorithm
takes every individual test sub-sequence for scheduling (see ALG.
5.2).

Q

U

TS3 TS8 TS6

TS1 TS2 TS5 TS7TS4

Figure 5.9: An example illustrating alternative solutions

We evaluate the obtained scheduling consideration order by the
efficiency of the generated partial test schedule, the higher efficiency,
the better the SCO. The partial test schedule is generated (line 9) by
the scheduling algorithm ALG. 5.2. Based on the test-schedule

76

efficiency defined below, we explore different solutions and make
decisions according to the efficiency of the generated partial test
schedules.

We define the efficiency of a test schedule, denoted with η, as
follows. Suppose x is the size of the area covered by all scheduled test
sub-sequences, and y is the total area size constrained by the bus
bandwidth limit and the completion time moment of the test
schedule. The efficiency of the test schedule is the value of x / y. A
larger value of η indicates a better test schedule.

Figure 5.10 illustrates how the efficiency of a test schedule is
calculated. In the example, a test schedule is given as the area
covered by slashed lines. x is the size of the area covered by the
actual test schedule, and y is the size of the area covered by the large
rectangle surrounded by thick lines.

By calculating and comparing the efficiencies of the alternative
partial test schedules (line 10), the best solution that obtains the
maximum efficiency is chosen. The maximum efficiency, the chosen
test set, and the entire queue, are recorded in ηmax, TSbest, Qbest,
respectively (lines 12 to 14). The iteration terminates when all test
sets in U have been moved into Q. The obtained Qbest consists of all
test sets in the best SCO, in which the test sets will be considered for
scheduling (line 20).

BL

BW

0 Ti

Test Completion Time Moment

me

Figure 5.10: Calculation of test schedule efficiency

The algorithm (ALG. 5.2) that schedules a queue of test sets is
depicted in Figure 5.11, from lines 21 to 34. Given a queue Q of test

 77

sets, the scheduling algorithm takes the first unscheduled test sub-
sequence from every test set for scheduling, in a round-robin fashion.
More concretely, the strategy of the scheduling algorithm is
explained as follows. According to the SCO given in Q, the scheduler
considers one test set at a time for scheduling. When considering
each test set, the scheduler only schedules the first unscheduled test
sub-sequence, and thereafter turns to consider the next test set.
When one round is finished for all the test sets in Q, the scheduler
takes the next round for consideration of scheduling test sub-
sequences of all the test sets, in the same SCO. This procedure
repeats until all test sub-sequences are scheduled.

ALG. 5.2: SCHEDULE(Queue of test sets :: Q)
21: for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop /* outer loop */
22: for (q = 1 to |Q|) loop /* inner loop */
23: Choose the q-th test set TSq in Q for scheduling;
24: if (TSq = ∅) then
25: Skip TSq and continue with the next test set;
26: else
27: Schedule the first unscheduled test sub-sequence TSq,j
 to the earliest available time moment
 tq,j := GetFinishingTime(TSq,j-1) + dq,j
 where dq := InitialCoolingSpan(TSq);
28: if (Failed to schedule TSq,j to tq,j) then
29: Estimate the completion time te of the entire test set TSq by
 either postponing TSq,j or repartitioning all the unscheduled
 test sub-sequences in TSq;
30: Choose the solution that has a smaller te and schedule the
 first unscheduled test sub-sequence;
31: end if
32: end if-then-else
33: end for
34: end for

Figure 5.11: Pseudo-code of the scheduling algorithm

Figure 5.12 illustrates how the scheduling algorithm works with
an example of three test sets, TS2, TS1, and TS3, sorted with the SCO
of {TS2, TS1, TS3} in Q. The test set TS2 has been initially partitioned

78

into three test sub-sequences, TS21, TS22, and TS23. The rest two test
sets, TS1 and TS3, are both partitioned into four test sub-sequences.
The OSCO of all test sub-sequences is {TS21, TS11, TS31, TS22, TS12,
TS32, TS23, TS13, TS33, TS14, TS34}, as indicated by the dashed
arrows.

Q

TS1 TS11 TS12 TS13 TS14

TS2 TS21 TS22 TS23

TS3 TS31 TS32 TS33 TS34

Queue
Head

Queue
Tail

SC
O

Figure 5.12: Illustration of the scheduling algorithm ALG. 5.2

In the given pseudo-code depicted in Figure 5.11, the scheduling
algorithm is constructed with two nested loops. The outer loop (lines
21 to 34) selects the first unscheduled test sub-sequence for the
current test set, while the inner loop (lines 22 to 33) selects a test set
for scheduling according the its position in Q. The algorithm
terminates when all the test sub-sequences have been scheduled.
Note that the function GetNumOfPar(TS) in line 21 takes a test set
TS as an input, and returns the number of test sub-sequences that
the test set has been partitioned into.

When scheduling a test sub-sequence TSq,j (the j-th test sub-
sequence of the q-th test set in Q, see line 23 to 27), the scheduler
tries to schedule it to the earliest available time moment tq,j (line 27).
The earliest time moment that a test sub-sequence can be scheduled
to is the time moment when the required minimum cooling span
succeeding the precedent test sub-sequence has finished. The

 79

minimum cooling span dq,j is given by the initial partitioning scheme
for the test set TSq (line 27).

Although we would like to schedule a test sub-sequence to the
earliest available time moment, there can be constraints that make
this impossible. Such a constraint is the availability of test-bus
bandwidth to be allocated for the required time duration in order to
complete the entire test sub-sequence. In Figure 5.13, for example, it
is impossible to schedule the test sub-sequence TSq,j at time moment
tq,j, due to the insufficient space between the bandwidth limit BL and
the area occupied by scheduled test sub-sequences (depicted with
slashed lines). Actually, in this example, the earliest available time
moment that TSq,j can be scheduled at is tp.

BL

BW

0 Timetq,j

TSq,j

tp

Figure 5.13: An example of scheduling constraints

When encountering such scheduling constraints, two alternatives
can be considered. One is to postpone the entire test sub-sequence to
a time moment that it can be successfully scheduled to. The other
alternative is to split the test sub-sequence into smaller pieces such
that the first piece can be squeezed into the available area. Figure
5.14 illustrates both solutions for the same example given in Figure
5.13, where the entire test sub-sequence TSq,j cannot be scheduled at
time moment tq,j. In Figure 5.14(a), the solution is to postpone the
entire test sub-sequence TSq,j to time moment tp, which means
squeezing TSq,j into the dark grey rectangular area A1 that the
dashed arrow points to. Figure 5.14(b) illustrates the alternative
solution, where TSq,j is split into two pieces which can fit the dark
grey rectangular areas S1 and S2, respectively.

80

BL

BW

0 Timetq,j

TSq,j

A1

tp te

TSq,j+1

A2
Cooling+TO

(a) Postponing the entire test sub-sequence

S1
BL

BW

0 Timetq,j

TSq,j

S2 S3

tp te

Cooling+TO

TSq,j+1

S4
Cooling+TO

(b) Splitting the test sub-sequence into smaller pieces

Figure 5.14: Two solutions to schedule a test sub-sequence

Both solutions can result in long test schedules. The first solution,
which postpones the entire test sub-sequence, also delays the
succeeding test sub-sequences. This can results in delaying the
completion of the entire test set. As illustrated in Figure 5.14(a), the
succeeding test sub-sequence TSq,j+1 is delayed and finishes at time
moment te. The second solution, which splits the test sub-sequence
into smaller pieces, also generates more partitions and introduces
more time overheads (TO). In order to avoid these drawbacks, we
repartition all the unscheduled test sub-sequences from the same
test set, such that the total number of test sub-sequences will not
increase dramatically due to the splitting. This is explained in Figure
5.14(b). After splitting TSq,j into two pieces which fits in S1 and S2
respectively, we also repartition the succeeding test sub-sequence
TSq,j+1 such that its two pieces fit into S3 and S4. Note that due to the

 81

splitting of TSq,j and TSq,j+1, time overheads (denoted with TO) are
added between the repartitioned test sub-sequences.

As demonstrated above, both solutions can be adopted when
scheduling a test sub-sequence. In order to decide which solution
should be employed, we estimate the completion time te for the entire
test set (line 29), by assuming that all the unscheduled test sub-
sequences of this test set can be scheduled to their earliest available
time moments. The solution that results in an earlier estimated
completion time is chosen (line 30). In the example given in Figure
5.14, the second solution should be chosen, since it leads to a smaller
te. The scheduling algorithm terminates when all test sub-sequences
of all test sets in Q have been scheduled (line 34).

It should be noted that by scheduling test sub-sequences in the
demonstrated manner, the test sets have been interleaved and the
temperatures of cores under test will not be higher than the
temperature limit. This is because that the test sub-sequences are
not longer than those in the initial partitioning schemes, and the
cooling periods are not shorter than those in the initial partitioning
schemes.

5.6.3 Experimental Results

We have done experiments using SoC designs with randomly
selected cores in the ISCAS’89 benchmarks. The designs for our
experiments have 12 to 78 cores. With the first group of experiments,
we demonstrate the impact on the TAT due to various degrees of
flexibility of test set partitioning schemes.

We compare our heuristic with other two scheduling algorithms.
The first algorithm employs a fixed order in which all the test sets
are sorted decreasingly according to the length of test sets in their
initial partitioning schemes. Then it schedules the entire test set to
the earliest available time moment, according to the obtained SCO.
When scheduling the test sub-sequences of a test set, it keeps the
regularity of the partitions and cooling periods given by the initial

82

partitioning scheme. For the sake of convenience, we call the first
algorithm “equal-length scheduling algorithm”.

The second algorithm also employs the fixed order according to the
lengths of partitioned test sets (longest first). However, different
from the equal-length scheduling algorithm, it schedules a test set in
two phases. In the first phase, it schedules only the first partition of
all test sets, according to the obtained SCO. This is due to the fact
that the first test sub-sequence is usually much longer than the other
ones of the same test set in the initial partitioning scheme (see
Figure 5.6). Then, in the second phase, it schedules all the remaining
test sub-sequences of every test set, according to the same SCO.
Similar to the first algorithm, it schedules test sets to the earliest
available time moment. When scheduling the test sub-sequences in
the second phase, it keeps the regularity of all test partitions and
cooling periods given by the initial partitioning scheme, and the first
cooling period after the first test sub-sequence may not be shorter
than that in the initial partitioning scheme. It can be seen that by
separating the scheduling of a test set into two phases, the
restriction on partitioning regularity is slightly relaxed, thus this
algorithm has higher flexibility on test set partitioning schemes than
the equal-length partitioning algorithm. We call the second
scheduling algorithm “two-phase scheduling algorithm”.

Compared to the equal-length scheduling and two-phase
scheduling algorithm, our heuristic has the highest flexibility on test
set partitioning schemes, since it allows repartitioning test sets and
allows arbitrarily increasing cooling periods during the scheduling.

Experimental results regarding the first group of experiments are
shown in Table 5.3. The first column in the table lists the number of
cores used in the designs. Columns 2, 4, and 6 show the test
application times of the generated test schedules for the
corresponding designs, by using the equal-length scheduling
algorithm, the two-phase scheduling algorithm, and our heuristic,
respectively. Columns 3, 5, and 7 list the CPU times for executing
the corresponding algorithms. Columns 8 and 9 show the percentage

 83

of TAT reduction by using our heuristic, against using the equal-
length scheduling algorithm and the two-phase scheduling
algorithm, respectively. It can be seen that by eliminating
restrictions on the regularity of partitioning schemes, the TAT is in
average 30.6% and 20.5% shorter than that of the equal-length
scheduling algorithm and the two-phase scheduling algorithm,
respectively.

Table 5.3: Our heuristic vs. equal-length scheduling algorithm,
and vs. two-phase scheduling algorithm (to demonstrate the

impact of eliminating the regularity restrictions)

Equal-Length Two-Phase Our Heuristic TAT Gain (%)

Cores
TAT CPU

Time (s) TAT CPU
Time (s) TAT CPU

Time (s)

from
Equal-
Length

from
Two-
Phase

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6%

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3%

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1%

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7%

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6%

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9%

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2%

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6%

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8%

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9%

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9%

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2%

AVG n/a n/a n/a n/a n/a n/a 30.6% 20.5%

84

The second group of experiments has been set up in order to see

how efficient the test schedules are, which are generated by our
heuristic. We compare our heuristic with other two algorithms, a
straight forward algorithm (SF) and the simulated annealing based
algorithm (SA). In this group of experiments, we assume the same
flexibility for all the three algorithms, i.e. all of them employ flexible
partitioning of test sets and arbitrary length of cooling periods.

All the three algorithms employ the same scheduling algorithm
(ALG. 5.2). The only difference between them is how they generate
the SCO for all test sets. The straight forward algorithm sorts all test
sets decreasingly by the lengths of the entire test sets with the initial
partitioning schemes. According to the obtained SCO, the scheduler
chooses each test set and schedules the first unscheduled test sub-
sequences to the earliest available time moment, until all test sub-
sequences of every test set are scheduled.

The simulated annealing algorithm employs the same scheduling
algorithm ALG. 2 to schedule the test sub-sequences, while the SCO
of test sets is generated based on a simulated annealing strategy.
When a randomly generated SCO is obtained, the scheduler is
invoked to schedule the test sub-sequences according to the current
SCO. During iterations, the best SCO that leads to the shortest test
schedule is recorded and the algorithm returns this recorded solution
when the stopping criterion is met.

The experimental results are listed in Table 5.4. Column 1 lists the
number of cores used in the designs for experiments. Column 2
shows the TAT of the generated test schedule when the straight
forward algorithm is employed, and column 3 lists the corresponding
CPU times to obtain the test schedules. Similarly, columns 4 and 5
are the TAT and CPU times for our heuristic, respectively (which are
the same as the columns 6 and 7 in Table 5.3). Columns 6 and 7 list
the TAT and execution times for the simulated annealing algorithm.
In columns 7 and 8, the percentages of reduced TAT of the test
schedules generated by our heuristic are listed, compared to those

 85

generated by the straight forward algorithm and the simulated
annealing algorithm, respectively.

Table 5.4: Our heuristic vs. straight-forward algorithm, and
vs. simulated annealing algorithm (to demonstrate the
efficiency of test schedules generated by our heuristic)

SF Our Heuristic SA TAT Gain (%)
Cores

TAT CPU
Time (s) TAT CPU

Time (s) TAT CPU
Time (s) from SF from SA

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6%

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5%

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8%

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5%

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8%

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3%

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7%

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9%

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3%

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1%

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3%

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2%

AVG n/a n/a n/a n/a n/a n/a 13.4% -2.9%

The comparison between our heuristic and the straight forward
algorithm aims to show how much TAT can be reduced by a more
advanced test scheduling technique. On the other hand, the
comparison between our heuristic and the simulated annealing
algorithm is to find out how close the generated test schedule is to a
solution which is assumed to be close to the optimal one. In order to

86

generate a close-to-optimal solution, the SA algorithm has been run
for very long optimization times.

It can be seen that, when using our heuristic, the TAT is in
average 13.4% shorter than those using the straight forward
algorithm. The TAT is in average 2.9% longer than those using the
simulated annealing algorithm which however needs much longer
optimization times.

5.7 Conclusions
In this chapter, we have presented optimization approaches to
minimize the total test time for core-based systems which have a
temperature upper limit and a bus bandwidth limit. Based on the
proposed test set partitioning and interleaving technique, we used
constraint logic programming to solve the optimization problem and
obtained the optimal solution. Nevertheless, the optimization times
for large designs are excessively long. Therefore, a heuristic
approach is also proposed.

The proposed heuristic generates thermal-safe test schedules and
minimizes the test application time. Based on the initial partitioning
scheme generated by a temperature simulation guided procedure,
the heuristic utilizes the flexibility of changing the length of test sub-
sequences and the cooling periods between test sub-sequences, and
interleaves them to generate efficient test schedules. Experimental
results have shown the efficiency of the presented approaches.

 87

Chapter 6
 Conclusions and

Future Work

This chapter concludes the thesis and discusses possible directions
for future work.

6.1 Conclusions
The aim of the work presented in this thesis is to reduce the
electronic testing cost. The major contribution of this thesis is that it
proposes three test scheduling approaches to minimize the TAT with
different considerations, including defect probability, power
consumption, and temperature.

The first approach we have proposed is the defect-probability
driven test scheduling technique. It employs the AOFF approach and
solves the test time minimization problem in a high-volume
production test environment. A hybrid BIST technique and its
corresponding test architecture have also been assumed. We have
considered the TAT of such a test process as a random variable and
have defined the ETAT as the mathematical expectation of the TAT.
The proposed heuristic to minimize the ETAT.

The second technique proposed in this thesis is a power-
constrained test scheduling approach. The main purpose of

 89

introducing a power constraint at test scheduling is to prevent power
and thermal related problems during test. We have considered the
test scheduling problem under a given power constraint as a
rectangle packing problem. In order to improve the efficiency of test
schedules, we have introduced test set partitioning in the test
scheduling approach.

Finally we have prepared a test scheduling approach with
temperature considerations. The presented approach has assumed
that limits on temperature of individual cores and a limit on the test-
bus bandwidth are given. A test partitioning technique has been
proposed in order to prevent overheating the cores by keeping tests
periodically on and off with cooling periods inserted in between.
Further, a test set interleaving technique has been proposed to
improve the efficiency of the test schedules. Based on the test set
partitioning and interleaving techniques, a CLP-based solution and a
heuristic algorithm have been proposed to solve the test time
minimization problem under the given temperature and bandwidth
constraints.

6.2 Future Work
In the third approach, we have assumed that the heat transfer
between the adjacent cores is negligible and therefore we ignore the
temperature influences between the adjacent cores. However, this
assumption has strongly dependency on the packaging configuration
and the technology used in the manufacturing process. New process
technologies and packaging configuration can change the situation of
lateral heat flow in new generations of integrated circuits. Thus, we
can extend our work on the thermal-aware test scheduling by
considering the variation of the temperature dependencies between
cores.

In a long term, the test problems related to the process variation
can be a possible direction for future work. When the CMOS process
moves into sub-40 nanometer regime, the unreliability of the circuits

90

becomes large and unavoidable, and the testing of such circuits
becomes very difficult since many fault models are not applicable any
more. Power- and temperature-aware testing concerning the effects
of process variation are very interesting topics for future work.

 91

References

[Abr94] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital
systems testing and testable design,” IEEE Press, Sep.
1994.

[Aer98] J. Aerts and E. J. Marinissen, “Scan chain design for test
time reduction in core-based ICs,” in Proc. IEEE
International Test Conference, 1998, pp. 448–457.

[Bak80] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest,
“Orthogonal packings in two dimensions,” SIAM Journal
of Computing, vol. 9, no 4, pp. 846–855, Nov. 1980.

[Bor99] S. Borkar, “Design challenges of technology scaling,” IEEE
Micro, vol. 19, no. 4, pp. 23–29, Jul. 1999.

[Bus00] M. L. Bushnell and V. D. Agrawal, “Essentials of
electronic testing for digital, memory and mixed-signal
VLSI circuits,” Kluwer Academic Publishers, Jan. 2000.

[Cha00] K. Chakrabarty, “Design of system-on-a-chip test access
architectures under place-and-route and power
constraints,” in Proc. IEEE/ACM Design Automation
Conference, 2000, pp. 432–437.

[Cho97] R. Chou, K. Saluja, and V. Agrawal, “Scheduling tests for
VLSI systems under power constraints,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 5, no. 2, pp.
175–184, Jun. 1997.

 93

[Cot02] E. Cota, L. Carro, A. Orailoglu, and M. Lubaszewski, “Test
planning and design space exploration in a core-based
environment,” in Proc. IEEE Design, Automation and Test
in Europe, 2002, pp. 478–485.

[Dev94] S. Devadas, A. Ghosh, and K. Keutzer, “Logic synthesis,”
McGraw-Hill, Jun. 1994.

[Dyc90] H. Dyckhoff, “A typology of cutting and packing problems,”
European Journal of Operational Research, vol. 44, no. 2,
pp. 145–159. 1990.

[Dyc97] H. Dyckhoff, G. Scheithauer, and J. Terno, “Cutting and
packing”, in: M. Dell’Amico, F. Maffioli, S. Martello (Eds.),
Annotated Bibliographies in Combinatorial Optimization,
Wiley, Chichester, 1997, pp. 393–412.

[Ell99] J. P. Elliott, “Understanding behavioral synthesis: A
practical guide to high-level design,” Kluwer Academic
Publishers, Dec. 1999.

[Flo99] P. Flores, J. Costa, H. Neto, J. Monteiro, and J. Marques-
Silva, “Assignment and reordering of incompletely
specified pattern sequences targeting minimum power
dissipation,” in Proc. International Conference on VLSI
Design, 1999, pp. 37–41.

[Fly97] D. Flynn, “AMBA: Enabling reusable on-chip designs,”
IEEE Micro, vol. 17, no. 4, pp. 20-27, Jul./Aug. 1997

[Gaj83] D. D. Gajski and R. H. Kuhn, “Guest editor’s introduction:
New VLSI tools,” IEEE Computer, vol. 16, no. 12, pp. 11–
16, Dec. 1983.

[Ger99] S. Gerstendörfer and H. J. Wunderlich. “Minimized power
consumption for scan-based BIST,” in Proc. IEEE
International Test Conference, 1999, pp. 77–84.

[Ger99] S. Gerstendorfer, and H. J. Wunderlich. “Minimized power
consumption for scan-based BIST,” in Proc. IEEE
International Test Conference, 1999, pp. 77–84.

94

[Gir98] P. Girard, C. Landrault, S. Pravossoudovitch, and D.
Severac, “Reducing power consumption during test
application by test vector ordering,” in Proc. IEEE
International Symposium on Circuits and Systems, 1998,
pp. 296–299.

[Goe03] S. K. Goel and E. J. Marinissen, “Control-aware test
architecture design for modular SoC testing,” in Proc.
IEEE European Test Workshop, 2003, pp. 57–62.

[Gun01] S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall,
“Managing the impact of increasing microprocessor power
consumption,” Intel Technology Journal, vol. 5, no. 1, Feb.
2001. [Online]. Available: ftp://download.intel.com/
technology/itj/q12001/pdf/art_4.pdf

[Har99] P. Harrod, “Testing reusable IP – a case study,” in Proc.
IEEE International Test Conference, 1999, pp. 493–498.

[He04] Z. He, G. Jervan, Z. Peng, and P. Eles, “Hybrid BIST test
scheduling based on defect probabilities,” in Proc. IEEE
Asian Test Symposium, 2004, pp. 230–235.

[He05] Z. He, G. Jervan, Z. Peng, and P. Eles, “Power-constrained
hybrid BIST test scheduling in an abort-on-first-fail test
environment,” in Proc. Euromicro Conference on Digital
System Design, 2005, pp. 83–86.

[He06a] Z. He, Z. Peng, and P. Eles, “Power constrained and defect-
probability driven SoC test scheduling with test set
partitioning,” in Proc. IEEE Design, Automation and Test
in Europe, 2006, pp. 291–296.

[He06b] Z. He, Z. Peng, P. Eles, P. Rosinger, and B. M. Al-Hashimi,
“Thermal-aware SoC test scheduling with test set
partitioning and interleaving,” in Proc. IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, 2006, pp. 477–485.

 95

[He07] Z. He, Z. Peng, and P. Eles, “A heuristic for thermal-safe
SoC test scheduling,” submitted to IEEE International
Test Conference (2007) for review.

[Hel92] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois,
“Generation of vector patterns through reseeding of
multiple-polynomial linear feedback shift registers,” in
Proc. IEEE International Test Conference, 1992, pp. 120–
129.

[Hen91] P. Van Hentenryck, “The CLP language CHIP: constraint
solving and applications,” in Proc. IEEE Computer Society
International Conference, 1991, pp. 382–387.

[Hua01] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O.
Samman, Y. Zaidan, and S.M. Reddy, “Resource allocation
and test scheduling for concurrent test of core-based SoC
design,” in Proc. IEEE Asian Test Symposium, 2001, pp.
265–270.

[Hua04] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan,
S. Ghosh, and S. Velusamy, “Compact thermal modeling
for temperature-aware design,” in Proc. ACM/IEEE
Design Automation Conference, 2004, pp. 878–883.

[Hua07] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron,
and M. R. Stan. “HotSpot: Thermal modeling for CMOS
VLSI systems,” submitted to IEEE Trans. Very Large
Scale Integration (VLSI) Systems for review.

[Hus91] S. D. Huss and R. S. Gyurcsik, “Optimal ordering of analog
integrated circuit tests to minimize test time,” in Proc.
ACM/IEEE Design Automation Conference, 1991, pp. 494–
499.

[Iye01] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test
wrapper and test access mechanism co-optimization for
system-on-chip,” in Proc. IEEE International Test
Conference, 2001, pp. 1023–1032.

96

[Iye02] V. Iyengar and K. Chakrabarty, “System-on-a-chip test
with precedence relationships, preemption and power
constraints,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 9, pp. 1088–
1094, Sep. 2002.

[Iye03] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test
access mechanism optimization, test scheduling, and test
data volume reduction for system-on-chip,” IEEE Trans.
Computers, vol. 52, no. 12, pp. 1619–1632, Dec. 2003.

[Jaf87] J. Jaffar and J.-L. Lassez, “Constraint logic
programming,” in Proc. ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages,
1987, pp. 111–119.

[Jer00] G. Jervan, Z. Peng, and R. Ubar, “Test cost minimization
for hybrid BIST,” in Proc. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, 2000, pp.
283–291.

[Jer03] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin,
“Test time minimization for hybrid BIST of core-based
systems,” in Proc. IEEE Asian Test Symposium, 2003, pp.
318–323.

[Jia01] W. Jiang and B. Vinnakota, “Defect-oriented test
scheduling,” IEEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 3, pp. 427–438, Jun. 2001.

[Kor02] S. Koranne, “On test scheduling for core-based SoCs”, in
Proc. IEEE International Conference on VLSI Design,
2002, pp. 505–510.

[Kor03] R. E. Korf, “Optimal rectangle packing: Initial results,” in
Proc. International Conference on Automated Planning
and Scheduling, 2003, pp. 287–295.

[Kor04] R. E. Korf, “Optimal rectangle packing: New results,” in
Proc. International Conference on Automated Planning
and Scheduling, 2004, pp. 142–149.

 97

[Lar02] E. Larsson and Z. Peng, “An integrated framework for the
design and optimization of SoC test solutions,” Journal of
Electronic Testing: Theory and Applications, vol. 18, no.
4/5, pp. 385–400, Aug. 2002.

[Lar04a] E. Larsson, J. Pouget, and Z. Peng, “Defect-aware SoC test
scheduling,” in Proc. IEEE VLSI Test Symposium, 2004,
pp. 359–364.

[Lar04b] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng,
“Efficient test solutions for core-based designs,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 23, no. 5, pp. 758–775, May 2004.

[Les04] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher.
“Exhaustive approaches to 2D rectangular perfect
packings,” Information Processing Letters, vol. 90, no. 1,
pp. 7–14, Apr. 2004.

[Les05] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher,
“New heuristic and interactive approaches to 2D
rectangular strip packing,” Journal of Experimental
Algorithmics, vol. 10, pp. (1.2)1–18, Dec. 2005.

[Liu05] C. Liu, K. Veeraraghavant, and V. Iyengar, “Thermal-
aware test scheduling and hot spot temperature
minimization for core-based systems,” in Proc. IEEE
International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2005, pp. 552–560.

[Mah02] R. Mahajan, “Thermal management of CPUs: A
perspective on trends, needs and opportunities,” Keynote
presentation in the 8th International Workshop on Thermal
Investigations of ICs and Systems, Oct. 2002. [Online].
Available: http://tima.imag.fr/Conferences/therminic/
Therminic02/Posters/Rmahajan.pdf

[Mar00] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper
design for embedded core test,” in Proc. IEEE
International Test Conference, 2000, pp. 911–920

98

[Mil94] L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing
production test time to detect faults in analog circuits,”
IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 6, pp. 796-813, Jun.
1994.

[Mur00] V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, “A
comparison of classical scheduling approaches in power-
constrained block-test scheduling,” in Proc. IEEE
International Test Conference, 2000, pp. 882–891.

[Mur96] B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the
core of the problem,” IEEE Computer, vol. 29, no. 11, pp.
32–38, Nov. 1996.

[Nic00] N. Nicolici and B. M. Al-Hashimi, “Power conscious test
synthesis and scheduling for BIST RTL data paths,” in
Proc. IEEE International Test Conference, 2000, pp. 662–
671.

[Pou00] B. Pouya and A. Crouch. “Optimization trade-offs for
vector volume and test power,” in Proc. IEEE
International Test Conference, 2000, pp. 873–881.

[Rav00] C. P. Ravikumar, G. Chandra, and A. Verma,
“Simultaneous module selection and scheduling for power-
constrained testing of core based systems,” in Proc.
International Conference on VLSI Design, 2000, pp. 462–
467.

[Ros02] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Power
profile manipulation: A new approach for reducing test
application time under power constraints,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, no. 10, pp. 1217-1225, Oct. 2002.

 99

[Ros04] P. Rosinger, B. Al-Hashimi, and N. Nicolici, “Scan
architecture with mutually exclusive scan segment
activation for shift and capture power reduction,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 23, no. 7, pp. 1142–1154, Jul. 2004.

[Ros06] P. Rosinger, B. M. Al-Hashimi, and K. Chakrabarty,
“Thermal-safe test scheduling for core-based System-on-
Chip integrated circuits,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems. Vol. 25, no. 11,
pp. 2502–2512, Nov. 2006.

[Sam06] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng. “Cycle-
accurate test power modeling and its application to SoC
test scheduling,” in Proc. IEEE International Test
Conference, 2006, pp. 1–10.

[Sax01] J. Saxena, K. M. Butler, and L. Whetsel, “An analysis of
power reduction techniques in scan testing,” in Proc. IEEE
International Test Conference, 2001, pp. 670–677.

[Shi04] C. Shi and R. Kapur, “How power-aware test improves
reliability and yield,” EETimes, Sep. 15, 2004. [Online].
Available: http://www.eetimes.com/showArticle.jhtml?
articleID=47208594

[Ska04] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-aware
microarchitecture: Modeling and implementation,” ACM
Trans. Architecture and Code Optimization, vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[Sug00] M. Sugihara, H. Date, and H. Yasuura, “Analysis and
minimization of test time in a combined BIST and external
test approach,” in Proc. IEEE Design, Automation and
Test in Europe, 2000, pp. 134–140.

100

[Tad00] P. Tadayon, “Thermal challenges during microprocessor
testing,” Intel Technology Journal, vol. 4, no. 3, Aug. 2000.
[Online]. Available: ftp://download.intel.com/technology/itj/
q32000/pdf/thermal.pdf

[Tou95] N. A. Touba, and E. J. McCluskey, “Synthesis of mapping
logic for generating transformed pseudo-random patterns
for BIST,” in Proc. IEEE International Test Conference,
1995, pp. 674–682.

[Var98] P. Varma and B. Bhatia, “A structured test re-use
methodology for core-based system chips,” in Proc. IEEE
International Test Conference, 1998, pp. 294–302.

[Vas06] A. Vassighi and M. Sachdev, “Thermal and power
management of integrated circuits,” Springer, Jan. 4,
2006.

[Wan98] S. Wang and S. K. Gupta, “ATPG for heat dissipation
minimization during test application,” IEEE Trans.
Computers, vol. 47, no. 2, pp. 256–262, Feb. 1998.

[Zor93] Y. Zorian, “A distributed BIST control scheme for complex
VLSI devices,” in Proc. IEEE VLSI Test Symposium, 1993,
pp. 4–9.

[Zor98] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing
embedded-core based system chips,” in Proc. IEEE
International Test Conference, 1998, pp. 130–143.

 101

Appendix A
 Abbreviations

AMBA Advanced Microprocessor Bus Architecture
AOFF Abort-on-First-Fail
ATE Automated Test Equipment
BIST Built-In Self-Test
CDP Core Defect Probability
CLP Constraint Logic Programming
CUT Core Under Test
DFT Design for Test
DSP Digital Signal Processor
DTP Deterministic Test Pattern
DTS Deterministic Test Sub-sequence
DUT Device Under Test
EPATA Expected Partial Test Application Time
ETAT Expected Test Application Time
IFC Incremental Fault Coverage
IP Intellectual Property
ITFP Individual Test Failure Probability
ITSP Individual Test Success Probability

 103

LFSR Linear Feedback Shift Register
MCM Multi-Chip Module
MUX Multiplexer
OSCO Overall Scheduling Consideration Order
PTAT Partial Test Application Time
PTP Pseudorandom Test Pattern
PTS Pseudorandom Test Sub-sequence
PTTM Possible Test Termination Moment
RP Rectangle Packing
RT Register-Transfer
SA Simulated Annealing
SCO Scheduling Consideration Order
SDP System Defect Probability
SoC System-on-Chip
STUMPS Self-Testing Using MISR and Parallel SRSG
TAM Test Access Mechanism
TAT Test Application Time
TFP Test Failing Probability
TG Test Generation
TP Test Pattern
TPP Test Passing Probability
TS Test Set/Test Sequence
TSP Test Set Partitioning
UDL User Defined Logic

104

Appendix B
 Explanations

This appendix gives detailed explanations to Equation (3.8) and
Equation (3.9).
Definition 1: Test set and test patterns.
Suppose that a test has m test patterns to be applied in total, which
can be deterministic test patterns or pseudorandom test patterns.
We denote a test set with TS, and the j-th test pattern in TS with vj.

{ } { mjj vvvvmjvTS ,,,,,1 21 LL=≤≤= }

Definition 2: Incremental fault coverage of a test pattern.
The incremental fault coverage of a test pattern v, denoted with
IFC(v), is the ratio of the faults that can be detected by the test
pattern v but cannot be detected by any preceding test patterns in
the same test set, against the total number of faults that can be
detected by the entire test set. Suppose that a test set TS can detect
N faults in total, and the j-th test pattern vj in TS can detect nj faults
that cannot be detected by any of the preceding test patterns
{v1, v2, ... , vj–1} in TS. Let nj be the number of faults that can be
detected by the j-th test pattern vj in TS but cannot not be detected
by any preceding test patterns in TS, and N be the number of faults
that can be detected by the test patterns in TS. The IFC of vj is
defined as follows.

 105

() ()mjNn
N
n

vIFC j
j

j ≤≤<≤= 1,0

Definition 3: Failure and success of a test pattern.
We define two random events regarding a test pattern: the failure of
a test pattern and the success of a test pattern. The failure of the j-th
(1 ≤ j ≤ m) test pattern, denoted with Fj, is defined as the test pattern
detecting at least one fault. This implies that the test is aborted
immediately. The success of the j-th (1 ≤ j ≤ m) test pattern, denoted
with ¬Fj, is defined as the test pattern detecting no faults. This
implies that the test is continued and the next test pattern is going
to be applied. Obviously failure and success of a test pattern are
complement events. Let D be the random event that a core under test
is defected, then defect probability of a core is DP = p[D].
Definition 4: Conditional probability of the failure of the currently
applied test pattern.
Suppose that the j-th test pattern can detect nj incremental faults
(1 ≤ j ≤ m). The following equation shows how to calculate the
conditional probability that the j-th test pattern vj detects at least
one fault provided that the preceding test patterns in the same test
set did not detect any fault and the core is indeed defected.

[]

∑
−

=

−

=

−−

−−

−
=⎥

⎦

⎤
⎢
⎣

⎡
∩¬

−−−−
=

∩¬∩∩¬∩¬

1

1

1

1

121

121

|..

|

j

k
k

j
j

k
kj

jj

j

jjj

nN

n
DFFpei

nnnN
n

DFFFFp

I

L

L

It should be noted that only incremental faults are counted in this
probability calculation. This is because that those faults covered by
both vj and any preceding test patterns have no chance to be detected
by vj in the real test process. According to the condition given in the

106

formula, those faults should have been detected by preceding test
patterns before they were detected by vj.
Definition 5: Termination and success of a test.
The termination of a test at the j-th test pattern, denoted with Aj, is
defined as the random event that the test is terminated immediately
after the j-th test pattern vj has detected at least one fault. The
success of a test at the j-th test pattern, denoted with Pj, is defined as
the random event that the test is continued after the j-th test pattern
vj is applied without detecting any faults.

According to the definitions, Aj is equivalent to the intersection of
the following events: the j-th test pattern detects at least one fault,
the preceding test patterns did not detect any faults, and the core is
actually defected. Similarly, Pj is equivalent to the intersection of two
events: one is an conjunction of such events that all the j applied test
patterns did not detect any faults and the core is actually defected,
and the other is that the core is actually not defected. Aj and Pj are
given by

DFFAei

DFFFFA
j

k
kjj

jjjj

∩¬∩=

∩¬∩∩¬∩¬∩=
−

=

−−

I

L

1

1

121

..

()

DDFPei

DDFFFFP
j

k
kj

jjjj

¬∪⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩¬=

¬∪∩¬∩∩¬∩¬∩¬=

=

−−

I

L

1

121

..

Definition 6: Suppose that a test employs the abort-on-first-fail
(AOFF) approach and the test can only be terminated when a test
pattern has been applied and the test response or signature has been
analyzed. Let p[Aj] be the probability of the test being aborted at a
certain test pattern and let p[Pj] be the probability of the test
succeeding at a certain test pattern. Then, p[Aj] and p[Pj] are given
by the following two equations respectively.

 107

[] () DPvIFCAp jj ×=

[] ()∑
=

×−=
j

k
kj vIFCDPPp

1

1

The above two equations are obtained by using a mathematical
induction, given as follows.

Step 1: (Observations)

[] [] [] []

() DPvIFC

DP
N
nDpDFpDFpAp

×=

×=×=∩=

1

1
111 |

[] [] [] []() []

DP
N
n

DpDFpDpDFpDFp

×⎟
⎠
⎞

⎜
⎝
⎛ −=

×−=×¬=∩¬

1

111

1

|1|

[] ()[] [] []

()

() DPvIFC

DP
N
nDPDP

N
n

DpDFpDDFpPp

×−=

×−=−+×⎟
⎠
⎞

⎜
⎝
⎛ −=

¬+∩¬=¬∪∩¬=

1

11

111

1

111

Step 2: (Observations)

[] [] [] []

() DPvIFCDP
N
nDP

N
n

nN
n

DFpDFFpDFFpAp

×=×=×⎟
⎠
⎞

⎜
⎝
⎛ −×

−
=

∩¬×∩¬=∩¬∩=

2
21

1

2

112122

1

|

[] [] []
[]() []

DP
N
n

N
nDP

N
n

nN
n

DFpDFFp
DFpDFFpDFFp

×⎟
⎠
⎞

⎜
⎝
⎛ −−=×⎟

⎠
⎞

⎜
⎝
⎛ −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=

∩¬×∩¬−=
∩¬×∩¬¬=∩¬∩¬

121

1

2

112

11212

111

|1
|

108

[] ()[]
[] []

()

() ()() DPvIFCvIFC

DP
N
n

N
nDPDP

N
n

N
n

DpDFFp
DDFFpPp

×+−=

×⎟
⎠
⎞

⎜
⎝
⎛ +−=−+×⎟

⎠
⎞

⎜
⎝
⎛ −−=

¬+∩¬∩¬=
¬∪∩¬∩¬=

12

1212

12

122

1

111

Step 3: (Observations)

[] []
[] []

() DPvIFC

DP
N
nDP

N
n

N
n

nnN
n

DFFpDFFFp
DFFFpAp

×=

×=×⎟
⎠
⎞

⎜
⎝
⎛ −−×

−−
=

∩¬∩¬×∩¬∩¬=
∩¬∩¬∩=

3

312

12

3

12123

1233

1

|

[]
[] [

[]() []
]

DP
N
n

N
n

N
n

DP
N
n

N
n

nnN
n

DFFpDFFFp
DFFpDFFFp

DFFFp

×⎟
⎠
⎞

⎜
⎝
⎛ −−−=

×⎟
⎠
⎞

⎜
⎝
⎛ −−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−=

∩¬∩¬×∩¬∩¬−=
∩¬∩¬×∩¬∩¬¬=

∩¬∩¬∩¬

123

12

12

3

12123

12123

123

1

11

|1
|

[] ()[]
[] []

()

() () ()() DPvIFCvIFCvIFC

DP
N
n

N
n

N
n

DPDP
N
n

N
n

N
n

DpDFFFp
DDFFFpPp

×++−=

×⎟
⎠
⎞

⎜
⎝
⎛ ++−=

−+×⎟
⎠
⎞

⎜
⎝
⎛ −−−=

¬+∩¬∩¬∩¬=
¬∪∩¬∩¬∩¬=

123

123

123

123

1233

1

1

11

 109

Step (j – 1): Assume that

 [] DP
N
n

Ap j
j ×= −
−

1
1

 DP
N
nDFp

j

k

k
j

k
k ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎥

⎦

⎤
⎢
⎣

⎡
∩¬ ∑

−

=

−

=

1

1

1

1

1I

 [] ∑
−

=
− ×−=

1

1
1 1

j

k

k
j N

nDPPp

Step j: According to the assumptions given in Step (j – 1), we have

[]

() DPvIFCDP
N
n

DP
N
n

nN

n

DFpDFFp

DFFpAp

j
j

j

k

k
j

k
k

j

j

k
k

j

k
kj

j

k
kjj

×=×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

−
=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎥

⎦

⎤
⎢
⎣

⎡
∩¬=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬∩=

∑
∑

−

=
−

=

−

=

−

=

−

=

1

1
1

1

1

1

1

1

1

1

1

| II

I

DP
N
nDP

N
n

nN

n

DFpDFFp

DFpDFFpDFp

j

k

k
j

k

k
j

k
k

j

j

k
k

j

k
kj

j

k
k

j

k
kj

j

k
k

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∩¬−=

⎥
⎦

⎤
⎢
⎣

⎡
∩¬×⎥

⎦

⎤
⎢
⎣

⎡
∩¬¬=⎥

⎦

⎤
⎢
⎣

⎡
∩¬

∑∑
∑ =

−

=
−

=

−

=

−

=

−

=

−

==

1

1

1
1

1

1

1

1

1

1

1

1

11

111

|1

|

II

III

110

[]

[] ()

()∑∑

∑

==

==

=

×−=×−=

−+×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=¬+⎥

⎦

⎤
⎢
⎣

⎡
∩¬=

⎥
⎦

⎤
⎢
⎣

⎡
¬∪⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∩¬=

j

k
k

j

k

k

j

k

k
j

k
k

j

k
kj

vIFCDP
N
nDP

DPDP
N
nDpDFp

DDFpPp

11

11

1

11

11I

I

 □

 111

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Problem Formulation
	Contributions
	Thesis Overview

	Background and�Related Work
	Electronic Systems Design
	Electronic Systems Test
	Core-based SoC Design and Test
	Hybrid Built-In Self-Test
	Abort-on-First-Fail Test
	Power- and Thermal-Aware Test

	Defect-Probability Driven�SoC Test Scheduling
	Introduction
	Definitions and Problem Formulation
	Basic Definitions
	Basic Assumptions
	Possible Test Termination Moment
	Expected Test Application Time
	Problem Formulation

	Proposed Heuristic
	Experimental Results
	Conclusions

	Power-Constrained�SoC Test Scheduling
	Introduction
	Motivational Example
	Problem Formulation
	Test Set Partitioning
	Proposed Heuristic
	Experimental Results
	Conclusions

	Thermal-Aware�SoC Test Scheduling
	Introduction
	Motivational Example
	Problem Formulation
	Overall Solution Strategy
	CLP-based Approach
	Concepts of CLP
	CLP Model
	Experimental Results

	Heuristic-based Approach
	Motivational Example
	Heuristic
	Experimental Results

	Conclusions

	Conclusions and�Future Work
	Conclusions
	Future Work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

