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Abstract 

Electronic systems have become highly complex, which results in a 
dramatic increase of both design and production cost. Recently a 
core-based system-on-chip (SoC) design methodology has been 
employed in order to reduce these costs. However, testing of SoCs 
has been facing challenges such as long test application time and 
high temperature during test. In this thesis, we address the problem 
of minimizing test application time for SoCs and propose three 
techniques to generate efficient test schedules.  

First, a defect-probability driven test scheduling technique is 
presented for production test, in which an abort-on-first-fail (AOFF) 
test approach is employed and a hybrid built-in self-test architecture 
is assumed. Using an AOFF test approach, the test process can be 
aborted as soon as the first fault is detected. Given the defect 
probabilities of individual cores, a method is proposed to calculate 
the expected test application time (ETAT). A heuristic is then 
proposed to generate test schedules with minimized ETATs. 

Second, a power-constrained test scheduling approach using test 
set partitioning is proposed. It assumes that, during the test, the 
total amount of power consumed by the cores being tested in parallel 
has to be lower than a given limit. A heuristic is proposed to 
minimize the test application time, in which a test set partitioning 
technique is employed to generate more efficient test schedules.  

Third, a thermal-aware test scheduling approach is presented, in 
which test set partitioning and interleaving are employed. A 
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constraint logic programming (CLP) approach is deployed to find the 
optimal solution. Moreover, a heuristic is also developed to generate 
near-optimal test schedules especially for large designs to which the 
CLP-based algorithm is inapplicable.  

Experiments based on benchmark designs have been carried out to 
demonstrate the applicability and efficiency of the proposed 
techniques. 
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Chapter 1 
 Introduction 

This thesis deals with testing of core-based systems-on-chip (SoCs). 
The main purpose of this work is to reduce the test application time 
(TAT) and consequently reduce the testing cost. In this thesis, three 
techniques for core-based SoC test scheduling are presented. We first 
propose an SoC test scheduling technique which utilizes the defect 
probabilities of individual cores to guide the test scheduling. Second, 
we propose a power constrained SoC test scheduling technique in 
order to minimize the TAT and at the same time avoid high power 
consumption during tests. Third, we propose a thermal-aware SoC 
test scheduling approach which minimizes the TAT as well as avoid 
high temperature during tests. 

In this chapter, we present the motivation of our work and 
formulate the problems. Thereafter, we summarize the main 
contributions of our work and give an overview of the thesis 
structure. 

1.1 Motivation 
The rapid advances of microelectronic technologies have enabled the 
design and manufacturing of highly complex systems. However, this 
evolution potentially leads to a dramatic increase of the system cost 
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due to high design complexity, long time-to-market, and high 
production costs.  

In recent years, a core-based SoC design methodology has been 
employed to reduce the design and production costs by integrating 
pre-designed and pre-verified intellectual property (IP) cores on a 
single silicon die. Although the cost of designing and manufacturing 
SoCs is reduced, the testing cost rises because of inefficient test 
access mechanism (TAM), large amount of test data, and long test 
application times. Therefore, how to efficiently generate, transport 
and apply test data for core-based SoCs becomes a major challenge to 
test engineers. 

One solution to reduce the testing cost is to reduce the TAT. With 
advanced design for test (DFT) techniques such as TAM and wrapper 
designs, the tests for individual IP cores can be applied concurrently 
and thus the TAT can be substantially reduced. However, reducing 
the TAT can be affected by power and temperature related problems. 

During test, more power is dissipated than in the normal 
functional mode because of a substantial increase of switching 
activity in the circuit. The test concurrency has to be restricted due 
to a limited power supply. Thus, the trade-off between the TAT and 
the power consumption has to be taken into account. Further, high 
power consumption during test can cause a high level of noises 
occurring in the circuits and this can potentially damage the devices 
under test (DUTs). Moreover, high power consumption can also 
result in excessive heat dissipation and high temperature which also 
potentially damages the chips. The power and thermal issues are 
even more severe to the design and test of new generations of 
integrated circuit (ICs) which employ deep sub-micrometer 
technology.  

Thus, advanced test scheduling techniques which reduce the TATs 
and at the same time take into account the power and thermal issues 
are strongly required for core-based SoC testing.  
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1.2 Problem Formulation  
In this thesis, we aim to minimize the TAT of core-based SoCs and 
we address three test scheduling problems concerning different 
trade-offs and constraints. The formulations of the three problems 
are as follows. 

The first problem that we deal with is how to minimize the TATs 
for high-volume production tests. More specifically, this problem is 
discussed in a context of testing core-based SoCs by using an abort-
on-first-fail (AOFF) test approach, which means that the test process 
is terminated as soon as a fault has been detected. Based on the 
AOFF test approach, the termination of the test process is considered 
as a random event which happens with a certain probability. Thus, 
in order to minimize the TAT for a high-volume production test, we 
need to minimize the expected test application time (ETAT), which is 
calculated according to a generated test schedule and the given 
defect probabilities of individual cores. In particular, we employ a 
hybrid built-in self-test (BIST) which combines both deterministic 
and pseudorandom tests for an IP core. Thus, the problem is 
formulated as the following: given the defect probabilities of IP cores 
and the test sets for the hybrid BISTs, generate a test schedule such 
that the ETAT is minimized. 

As demonstrated in the previous section, in order to shorten the 
TAT, concurrent testing can be employed, but the aggregate amount 
of power consumption has to be restricted. Thus, we address the 
second problem as the SoC test scheduling for the hybrid BIST in 
order to minimize the ETAT while keeping the aggregate amount of 
power consumption below a power constraint. In order to generate 
efficient test schedules, a test set can be partitioned into shorter sub-
test sequences. In this thesis, this method is referred to as the test 
set partitioning (TSP). Thus, the test scheduling problem is 
formulated as how to generate the test schedule for all test sub-
sequences such that the ETAT is minimized and the power 
constraint is hold.  
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The third problem that we tackle in this thesis is the test 
scheduling with limits on the temperatures of the CUTs and a limit 
on the bandwidth of the test-bus used for transporting test data. In 
order to avoid overheating the CUTs, an entire test set is partitioned 
into shorter test sub-sequences and cooling periods are introduced 
between test sub-sequences. Furthermore, the test sub-sequences 
partitioned from different test sets are interleaved in order to 
improve the efficiency of the test schedule. Thus, the test scheduling 
problem is formulated as how to generate test schedules for the 
partitioned and interleaved test sub-sequences such that the TAT is 
minimized while the temperature and bandwidth constraints are not 
violated. 

1.3 Contributions 
The main contributions of this thesis are as follows. First, we have 
proposed a defect probability driven SoC test scheduling technique 
based on the AOFF test approach. For this technique, we have 
defined the expected test application time (ETAT) as the cost 
function and we have proposed a heuristic to generate the test 
schedule with minimized ETAT. This approach assumes a test 
architecture designed for hybrid BISTs and the proposed technique is 
applicable to the testing of both combinational circuits and 
sequential circuits. 

Second, we have proposed a power-constrained SoC test scheduling 
technique using test set partitioning. In order to minimize the ETAT, 
we have proposed heuristics for test set partitioning and test 
scheduling under the power constraint. The proposed technique 
minimizes the ETAT and also avoids the power and thermal related 
problems. It is applicable to both BISTs and external tests. 

Third, we have proposed a thermal-aware SoC test scheduling 
technique using test set partitioning and interleaving. This 
technique assumes that a test bus is employed to transport test data, 
and the limit on the bandwidth of the test bus and the limits on the 
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temperatures of individual cores are given as constraints. In order to 
avoid overheating during tests, a test set is into test sub-sequences 
and cooling periods are introduced between consecutive test sub-
sequences. The partitioned test sets are further interleaved in order 
to reduce the TAT and to utilize the test bus efficiently. We have 
proposed two approaches to solve the constrained test scheduling 
problem. One approach is based on the constraint logic programming 
(CLP) and the other approach employs a heuristic. 

1.4 Thesis Overview 
The rest of the thesis is constructed as follows. Chapter 2 illustrates 
the background and related work in the area of core-based SoC 
testing and design for test. The principles of electronic systems 
design and test, core-based SoC design and test, hybrid BIST, AOFF 
test, as well as power- and thermal-aware test are demonstrated. 

Chapter 3 presents the first test scheduling technique, which 
utilizes the defect probabilities of individual cores for production test. 
The chapter starts with an introduction to the related work on 
defect-oriented test scheduling. Thereafter, the concept of the ETAT 
is presented and the approach to calculate the ETAT is illustrated. 
Based on the definition of the ETAT, a heuristic for test scheduling is 
presented. The chapter is concluded with experimental results 
demonstrating the efficiency of the proposed technique. 

In Chapter 4, we present the power constrained SoC test 
scheduling technique. The chapter starts with an short introduction 
to related work followed by a motivational example which 
demonstrates the importance of the addressed power-constrained 
test scheduling problem. Thereafter, the test set partitioning 
technique is presented and the proposed heuristics for test set 
partitioning and test scheduling are illustrated. Finally, 
experimental results are given in order to demonstrate the feasibility 
and efficiency of the proposed technique. 

  5 



Chapter 5 presents the thermal-aware SoC test scheduling 
technique. An introduction to related work is given at the beginning 
of the chapter and thereafter a motivational example is given to 
demonstrate the significance of the thermal-thermal test scheduling 
problem. The proposed CLP-based approach and heuristic-based 
approach are then illustrated in details and finally the chapter is 
concluded with experimental results. 

The thesis is concluded in Chapter 6 where possible directions of 
future work are also discussed. 
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Chapter 2 
 Background and 

Related Work 

In this chapter, the basic concepts of electronic systems design and 
test are presented, followed by a discussion on core-based SoC design 
and test. Thereafter, the background and related work on hybrid 
BIST, AOFF test, and power- and thermal-aware test are 
demonstrated. 

2.1 Electronic Systems Design 
In order to manage the design complexity of modern electronic 
systems, the electronic systems design has to be organized in a 
hierarchical approach which covers several levels of abstraction. 
Usually, the abstraction levels are referred to as system level, 
register-transfer (RT) level, logic level, circuit level, and physical 
level, from higher to lower levels respectively. Figure 2.1 illustrates 
the generic structure of the electronic systems design space, where 
the five hierarchical abstraction levels are categorized into three 
domains [Gaj83]. 
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Figure 2.1: Design space of electronic systems [Gaj83] 

In principle, the design space can be classified into three different 
domains, according to the perspective from which different designers 
look on their design tasks. As depicted in Figure 2.1, the three design 
domains are the behavioral domain, the structural domain, and the 
physical domain. In different domains, designers look at their design 
tasks in different perspective, as listed in Table 2.1. A design flow 
[Dev94] of electronic systems is also depicted in Figure 2.1 (see the 
arrows marked with numbers) and it is extended with details in 
Figure 2.2. 

Table 2.1: Design tasks from different perspective 
Abs. Level Behavioral Domain Structural Domain Physical Domain 

System Level Algorithm, Process CPU, Memory, Bus Board, MCM, SoC 

RT level RT Specification ALU, Register, MUX Macro-Cell, Chip 

Logic Level Boolean Equation Gate, Flip-Flop Standard-Cell/Sub-Cell 

Circuit Level Transistor Function Transistor Transistor Layout 
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Figure 2.2: Generic design flow of electronic systems [Dev94] 

Here, a synthesis step is referred to as a transformation of a design 
from a higher level of abstraction into a lower level of abstraction, or 
from the behavioral domain to the structural domain. Each step in 
the design flow is explained as follows, where the bullet numbers 
correspond to the numbers marked on the arrows in Figure 2.1 
[Gaj83]. 

(1) Behavioral Modeling: Also called system-level specification. The 
specification of a system is usually given as a description to the 
functionality of the system and a set of design constrains. In this 
phase, the system specification is analyzed and a behavioral 
description is written in a hardware description language or natural 
language. 

(2) High-Level Synthesis: Also called behavioral synthesis [Ell99]. 
In this phase the system-level specification is transformed into a 
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description of RT-level (RTL) components such as ALUs, registers, 
and multiplexers. The basic components in an RTL design usually 
correspond to operations in a behavioral specification. In order to 
obtain the RTL design, the high-level synthesis usually consists of 
the following steps [Ell99]: derivation of control/data-flow graph 
(CDFG), operation scheduling, resource allocation and binding, 
derivation of RTL data-path structure, and description of a controller 
which can be a finite state machine (FSM). 

(3) Logic Synthesis [Dev94]: Also called gate-level synthesis. In 
this phase, an RTL design is translated into a set of logic functions. 
Thereafter, the translated RTL design is optimized according to 
different requirements given by the designer and then mapped into a 
netlist of logic gates, using a technology library provided by a vendor. 

(4) Circuit Design: This step takes the optimized logic description 
as an input, and generates the transistor implementations of the 
circuit. 

(5) Layout Design: In this phase, the circuits are mapped onto the 
silicon implementation with a certain layout and placement design. 

As illustrated in Figure 2.2 [Dev94], when the logic netlist has 
been obtained, the testability improvement and test generation are 
done by a set of tools. However, the testability improvement and test 
generation at higher abstraction levels can be realized by using the 
state-of-the-art DFT and test generation (TG) techniques. After the 
chips are manufactured, they have to be tested by applying the 
acquired test package. After test, only the qualified products are 
delivered to customers. 

2.2 Electronic Systems Test 
Testing of a electronic system is an experiment in which the system 
is exercised and its resulting response is analyzed to ascertain 
whether it behaved correctly [Abr94]. In this thesis, an instance of an 
incorrect operation of the system being tested is referred to as an 
error [Abr94]. The errors can be further classified as design errors, 

10   



 
fabrication errors, fabrication defects, and physical failures, 
according the causes of the errors. In this thesis, testing targets 
fabrication defects. The different types of error are defined as follows 
[Abr94]. 

Design errors are usually incomplete or inconsistent specifications, 
incorrect mapping between different levels of design, violations of 
design rules, etc. Fabrication errors include wrong components, 
incorrect writing, shorts caused by improper soldering, etc. 
Fabrication defects are not directly attributed to human errors, 
rather, they result from an imperfect manufacturing process. 
Examples of common fabrication defects are shorts and opens in 
MOS ICs, improper doping profiles, mask alignment errors, and poor 
encapsulation. Physical failures occur during the lifetime of a system 
due to component wear-out and/or environmental factors. For 
example, aluminum connectors inside an IC package thin out with 
time and may break because of electron migration or corrosion. 
Environmental factors, such as temperature, humidity, and 
vibrations, accelerate the aging of components. Cosmic radiation and 
particles may induce failures in chips containing high-density 
random-access memories (RAMs). Some physical failures, referred to 
as “infancy failures”, appear early after fabrication. 

Fabrication errors, fabrication defects, and physical failures are 
collectively referred to as physical faults [Abr94]. According to their 
stability in time, physical faults can be classified as follows: (1) 
permanent faults, which are always present after their occurrence; 
(2) intermittent faults, which only exist during some time intervals; 
(3) transient faults, which are typically characterized by “one-time 
occurrence” and are caused by a temporary change in some 
environmental factor. 

In general, a direct mathematical treatment of testing and 
diagnosis is not applicable to physical faults [Abr94]. The solution is 
to deal with logical faults, which are a convenient representation of 
the effect of the physical faults on the operation of the system 
[Abr94]. A logic fault can be detected by observing an error caused by 
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it, which is usually referred to as a fault effect. The basic 
assumptions regarding the nature of logical faults are referred to as 
a fault model. Different fault models are proposed and employed to 
deal with different types of faults, such as static faults, delay faults, 
bridging faults, etc. A widely used fault model is the stuck-at fault 
model which represents that a single wire being permanently “stuck” 
at the logic one or logic zero. 

2.3 Core-based SoC Design and Test 
Design and manufacturing of integrated circuits have moved into the 
deep submicron technology regime. Scaling of process technology has 
enabled a dramatic increase of the integration density, which enables 
more and more functionalities to be integrated into a single chip. 
With the improving system performance, the design complexity has 
also been increasing steadily. A critical challenge to electronic 
engineers is that the shorter life cycle of an electronic system has to 
compete with its longer design cycle. Therefore, more efficient 
hierarchical design methodologies, such as the core-based SoC design 
[Mur96], [Zor98], have to be deployed in order to reduce the time-to-
market.  

A common approach to modern core-based SoC design reuses pre-
designed and pre-verified intellectual property (IP) cores that are 
provided by different vendors. It integrates the IP cores into the 
system and manufactures the system on a single silicon die. An 
example of an SoC design is shown in Figure 2.3. It consists of 
several cores with different functionalities and a user-defined logic 
(UDL), which are represented by rectangular blocks. The cores are 
usually processors (Microcontroller, DSP, etc.), memory blocks (ROM, 
RAM, EEPROM, Flash Memory, etc.), bus structure, peripherals 
interfaces (USB, FireWire, Ethernet, DMA, etc.), analog circuits 
(PWM, A/D-D/A, RF, etc.), and so on. The UDL components are used 
to glue the cores for the intended system. 
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DRAM CPU

ROM
ANALOG

SRAM

RF

UDL

DSP

FPU

 
Figure 2.3: An example of core-based SoC design 

In order to test individual cores in a SoC [Mur96], [Zor98], a test 
architecture consisting of certain resources has to be available. The 
test architecture for SoCs usually includes a test source, a test sink, 
and a test access mechanism (TAM). Figure 2.4 shows a typical 
example of an SoC test architecture. 

DRAM

CPU

ROM

SRAM

DSP
UDL

Test 
Sink

Test 
Source

TAM
TAM

Wrapper

Core 
Under 
Test

 
Figure 2.4. An example of SoC test architecture 

A test source is a test-pattern provider which can be either 
external or on-chip. A typical external test source is an automated 
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test equipment (ATE) which generates test patterns and stores them 
in its local memory. An on-chip test source can be a linear feedback 
shift register (LFSR), a counter, or a ROM/RAM which stores already 
generated test patterns.  

A test sink is a test response/signature analyzer that detects faults 
by comparing test responses/signatures with the correct ones. An 
ATE can be an external test sink that analyzes the test 
responses/signatures transported from the cores under test (CUTs). 
The test sink can also be integrated on the chip so that the test 
responses/signatures can be analyzed on-the-fly. 

A TAM is an infrastructure designed for test data transportation. 
It is often used to transport test patterns from the test source to 
CUTs and to transport test responses/signatures from CUTs to the 
test sink. A common design of the TAM can be a reusable functional 
bus infrastructure [Har99], such as the advanced microprocessor bus 
architecture (AMBA) [Fly97], or a dedicated test bus. A wrapper 
[Mar00] is a thin shell which surrounds a CUT in order to enable the 
switching between different test modes such as functional, internal, 
external test modes, etc. The TAM and the wrappers comprise a test 
access infrastructure for the CUTs of an SoC.  

An example of test architecture for external SoC test is depicted in 
Figure 2.5. In this example, a system of four cores is to be tested. An 
ATE consisting of a test controller and a local memory serves as an 
external tester. The generated test patterns and a test schedule are 
stored in the tester memory. When the test starts, the test patterns 
are transported to the cores through a test bus. When test patterns 
have been activated, the captured test responses are also transported 
to the ATE through the test bus. The external ATE can be replaced 
by an embedded tester which is integrated on the chip. The same test 
architecture is applicable for the system using an embedded tester, 
as illustrated in Figure 2.6.  
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Figure 2.5: An example of test architecture  

for external test using an ATE 
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Figure 2.6: An example of test architecture  
for external test using an embedded tester 

2.4 Hybrid Built-In Self-Test 
As the number of cores on a chip has been increasing along with the 
rapid advances of technology, the amount of required test data for 
SoC testing is growing dramatically. This demands a large quantity 
of memory to be used in an ATE, if an external test is employed. 
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Moreover, an external test is usually applied at relatively low speed 
due to the limited bandwidth of the bus used to transport the test 
data. Thus, a long test application time is required. 

One of the solutions to this problem is to use built-in self-test 
(B

ST, 
a 

ple of a test architecture for hybrid BIST is depicted in 
Fi

IST), which generates pseudorandom test patterns and compact 
test responses within the chip. Although BIST can be applied at high 
speed, it is considered less efficient than external test, regarding the 
fault coverage and test-sequence length. Due to the existence of 
random-pattern-resistant faults, BIST usually needs larger amount 
of test patterns in order to reach a certain level of fault coverage. 

In order to avoid the disadvantages of both external test and BI
hybrid approach has been proposed as a complement of the two 

types of tests, referred to as hybrid BIST [Hel92], [Tou95], [Sug00], 
[Jer00], [Jer03]. In hybrid BIST, a test set consists of both 
pseudorandom and deterministic test patterns. Such a hybrid 
approach reduces the memory requirements compared to the pure 
deterministic testing, while providing higher fault coverage and 
requires less amount of test data compared to the stand-alone BIST 
solution.  

An exam
gure 2.7. In this example, a system consisting of four cores is to be 

tested. An embedded tester consisting of a test controller and a local 
memory is integrated in the chip. The generated deterministic test 
patterns and a test schedule are stored in the local memory of the 
tester. When the test starts, the deterministic test patterns are 
transported to the cores through a test bus. Each core has a 
dedicated BIST logic that can generate and apply pseudorandom test 
patterns on-the-fly. We assume that the test controller is capable of 
controlling the process of both deterministic and pseudorandom tests 
according to the test schedule, meaning that it controls the times 
when the tests should be started, stopped, restarted, and terminated. 

16   



 

SoC
Embedded 

Tester Core 1 Core 2

Core 3 Core 4

Test Bus

Test 
Controller

Tester 
Memory

BIST BIST

BIST BIST

 
Figure 2.7. An example of test architecture for hybrid BIST 

In order to reduce the testing cost, core-based SoC test has 
received a wide variety of research interests [Mur96], [Cho97], 
[Aer98], [Var98], [Zor98], [Cha00], [Mur00], [Nic00], [Rav00], 
[Hua01], [Iye01], [Cot02], [Iye02], [Lar02], [Goe03], [Iye03], [Lar04b], 
[He06a] concerning advanced test architecture design , test resource 
allocation, and test scheduling. 

2.5 Abort-on-First-Fail Test 
Many proposed SoC test scheduling techniques assume that tests are 
applied to the completion [Hus91], [Mil94], [Kor02]. However, high-
volume production testing often employs an AOFF approach in which 
the test process is aborted as soon as a fault has been detected. The 
defected devices can be discarded directly or further diagnosed in 
order to find out the cause of the faults. Using the AOFF approach 
can lead to a substantial reduction of TAT, since a test does not have 
to be completed if faults are detected. The test cost can be reduced in 
terms of the reduced TAT. AOFF test is important to the early-stage 
of a production in which defects are more likely to appear and the 
yield is relatively low. When the AOFF test approach is employed, 
the defect probability of IP cores can be used for test scheduling in 
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order to generate efficient test schedules [Jia01], [Lar04a]. The 
defect probabilities of IP cores can be derived from statistical 
analysis of production processes or generated from inductive fault 
analysis. 

2.6 Power- and Thermal-Aware Test 
Production of integrated circuits has moved into the deep submicron 
technology regime. Scaling of process technology has enabled 
dramatically increasing the number of transistors, and therefore 
improving the performance of electronic chips. However, the rapid 
growth of integration density has posed critical challenges to the 
design and test of electronic systems, one of which is the power and 
thermal issue [Bor99], [Gun01], [Mah02], [Ska04].  

It is known that more power is consumed during testing than in 
normal functional mode [Zor93], [Pou00], [Shi04] and the circuits are 
therefore more stressed from the power consumption perspective. 
This is due to a larger amounts of switching activity caused by 
applying test patterns. High power dissipation results in several 
critical problems, one of which is the insufficient driving current due 
to a limited power supply. As a consequence, the circuit can become 
unreliable. Excessive power dissipation can cause ground noises 
which can damage the DUT. High power dissipation may also lead to 
high junction temperature which has large impacts on the integrated 
circuits [Vas06]. 

The performance of the integrated circuits is proportional to the 
driving current of CMOS transistors, which is a function of the 
carrier mobility. Increasing junction temperature decreases the 
carrier mobility and the driving current of the CMOS transistors, 
which consequently degrades the performance of circuits. 

In higher junction temperature, the leakage power increases. The 
increased leakage power in turn contributes to an increase of 
junction temperature. This positive feedback between leakage power 
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and junction temperature may result in thermal runaway and 
destroy the chip due to an excessive heat dissipation. 

The long term reliability and lifespan of integrated circuits also 
strongly depends on junction temperature. Failure mechanisms in 
CMOS integrated circuits, such as gate oxide breakdown and electro-
migration, are accelerated in high junction temperature. This may 
results in a drop of the long term reliability and lifespan of circuits. 

In order to prevent excessive power during test, some techniques 
have been explored. Low power test synthesis and design for test 
targeting RTL structures is one of the solutions, for example, low-
power scan chain design [Ger99], [Ros04], [Sax01], scan cell and test 
pattern reordering [Flo99], [Gir98], [Ros02]. Although low power 
DFT can reduce the power consumption, this technique usually adds 
extra hardware into the design and therefore it can increase the 
delay and the cost of every single chip. Power-constrained test 
scheduling which targets system-level DFT is another approach to 
tackle the problem [Cho97], [Cha00], [Iye02], [Lar04b], [Mur00], 
[Nic00], [Rav00]. It reduces the test application time while keeping 
the power consumption below a given power constraint so that the 
circuits can work in a common condition. 

Advanced cooling system can be one solution to the high 
temperature problems. However, the cost of the entire system has to 
face a substantial rise, and the size of the system is inevitably large. 
In order to test new generations of SoCs safely and efficiently, novel 
and advanced power and thermal management techniques are 
required. 
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Chapter 3 
 Defect-Probability Driven 

SoC Test Scheduling 

In this chapter, a test scheduling technique based on the AOFF 
approach is proposed for hybrid BIST. Defect probabilities of 
individual cores are used to calculate ETAT and a heuristic is 
proposed to minimize the ETAT. 

3.1 Introduction 
In [Jia01], a defect-oriented test scheduling approach was proposed 
to reduce the test times. Based on the defined cost-performance 
index, a sorting heuristic was developed to obtain the best testing 
order. In [Lar04a], a more accurate cost function using defect 
probabilities of individual cores was proposed. Based on the proposed 
cost function, a heuristic was also proposed to minimize the ETAT.  

In this chapter, we propose an approach to calculate the 
probability of a test process to be aborted at a certain moment when 
a test pattern has been applied and the test response/signature has 
been available [He04], [He05]. A heuristic [He04] is also proposed to 
minimize the ETAT. 
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3.2 Definitions and Problem Formulation 

3.2.1 Basic Definitions 

In this chapter, we employ the test architecture (see Figure 2.7) for 
hybrid BIST, in which all cores have their dedicated BIST logic and a 
test bus is used to transport deterministic test data from/to the 
embedded tester. Based on this test architecture, we assume that the 
pseudorandom test patterns for different cores can be concurrently 
applied, while the deterministic test patterns can only be applied 
sequentially. Figure 3.1 depicts a hybrid BIST test schedule for a 
system consisting of five cores, where TSi denotes the test set (TS) 
for core Ci (i = 1, 2, ... , 5). The white and grey rectangles represent 
the deterministic test sub-sequences (DTSs) and the pseudorandom 
test sub-sequences (PTSs), respectively. As illustrated in this 
example, deterministic test patterns are applied sequentially, while 
pseudorandom test patterns for different cores are applied in 
parallel. The test application time is 390, which is the longest test 
time among the five. 
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Figure 3.1: A test schedule of a hybrid BIST for five cores 
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Suppose that a system S, composed of n cores, C1, C2, ... , Cn 

employs a test architecture illustrated in Figure 2.7. In order to test 
a core, a set of test patterns are generated, usually referred to as test 
set or test sequence (TS). A test set can consist of deterministic test 
patterns (DTPs) and pseudorandom test patterns (PTPs). A subset of 
deterministic test patterns is referred to as a deterministic test sub-
sequence (DTS), and a subset of pseudorandom test patterns is 
referred to as a pseudorandom test sub-sequence (PTS). For each 
individual core Ci (1 ≤ i ≤ n), the generated test set/test sequence, the 
deterministic test sub-sequence, and the pseudorandom test sub-
sequence are denoted with TSi, DTSi, and PTSi, respectively. In the 
cases that more than one deterministic test sub-sequence or 
pseudorandom test sub-sequence is partitioned from the original test 
set, DTSiv and PTSiw respectively denotes the v-th deterministic test 
sub-sequence and the w-th pseudorandom test sub-sequence of TSi. 
Suppose that the number of deterministic test patterns and 
pseudorandom test patterns in TSi is di and ri, respectively. The j-th 
(1 ≤ j ≤ di) deterministic test pattern of DTSi is denoted with DTij. 
The k-th (1 ≤ k ≤ ri) pseudorandom test pattern of PTSi is denoted 
with PRik. 

In this thesis, the defect probability of a core, in short, core defect 
probability (CDP), is defined as the probability of the core having 
defects. We denote the defect probability of core Ci (1 ≤ i ≤ n) with 
CDPi. Similarly, the defect probability of a SoC, in short, system 
defect probability (SDP), is defined as the probability of the SoC 
having defects, meaning that some cores are defected. We assume 
that the defect probabilities of different cores in a SoC are 
independent. Then, the SDP is given by 

( )∏ =
−−=

n

i iCDPSDP
1

11  (3.1) 

We suppose that a test process can be terminated with a certain 
probability. The probability of the test process being aborted at a 
certain moment depends on the probability of an individual test 
being aborted due to the detection of faults, referred to as the 
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individual test failure probability (ITFP), and the probability of an 
individual test being passed with no faults detected, referred to as 
the individual test success probability (ITSP). 

3.2.2 Basic Assumptions 

We assume that the failure probabilities of individual tests (ITFPs) 
for IP cores in an SoC are independent, meaning that the probability 
of detecting faults in a core does not depend on that in another core. 
We also assume that the success probability of individual tests 
(ITSPs) for IP cores in an SoC are independent, meaning that the 
probability of detecting no faults in a core does not depend on that in 
another core.  

In this chapter, we assume that a deterministic test is 
contiguously applied. This means that such a scenario will not 
appear that a deterministic test is stopped at a certain moment and 
is restarted after the application of a pseudorandom test sub-
sequence for the same core. 

On the other hand, we assume that the application of a 
pseudorandom test can be stopped and restarted later when the 
deterministic test for the same core has been finished. This is 
because that pseudorandom tests are usually very long while 
dividing it into shorter test sub-sequences allows analyzing 
signatures more frequently. However, frequent switching between 
deterministic and pseudorandom tests for a core introduces 
overheads [Goe03]. Since we only stop a pseudorandom test at most 
once, very few overheads will be introduced and therefore are 
ignored.  

Further more, in this chapter, we schedule the deterministic tests 
for different cores sequentially and consecutively, due to the 
following concerns. First, deterministic test patterns are considered 
more efficient since usually a deterministic test pattern can cover 
more faults than a pseudorandom test pattern. Second, test effects 
can be observed at each test application cycle, which provides higher 
frequency on checking possibilities of test termination and thus can 
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shorten the test application time. Thus, it does not need to delay any 
deterministic test in order to insert a pseudorandom test.  

3.2.3 Possible Test Termination Moment 

When the AOFF approach is employed for a hybrid BIST, there are 
two possible scenarios regarding the termination of the test process. 
During the application of a deterministic test sub-sequence, the test 
response is captured as soon as a test pattern has been applied. By 
analyzing the obtained test response, the test can be aborted 
immediately, if faults are detected. On the other hand, during the 
application of a pseudorandom test sub-sequence, the signature is 
not available until all the pseudorandom test patterns in the sub-
sequence have been applied. By analyzing the obtained signature, 
the test can be aborted, if faults are detected. Therefore, using the 
AOFF approach, a test is possible to be terminated at every cycle of 
deterministic test applications, or at the end of contiguous 
pseudorandom test applications. This analysis leads to the notion of 
possible termination moment (PTTM). 

A PTTM is a time moment when the test process can be 
terminated due to a detection of faults. As demonstrated previously, 
a PTTM is the time moment immediately after a deterministic test 
pattern/pseudorandom test sub-sequence has been applied and the 
test response/signature has been analyzed.  

For a given test schedule, all PTTMs are fixed and easy to obtain. 
Figure 3.2 gives an example to illustrate PTTMs in a test schedule 
for a SoC with five cores. In this example, deterministic test patterns 
are depicted with white rectangles and pseudorandom test sub-
sequences are depicted with grey rectangles. The dashed lines in 
gray indicate the PTTMs when each DTP has been applied, e.g. 
PTTMs 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The dotted lines in black 
indicate the PTTMs when each PTS has been finished, e.g. PTTMs 4, 
5, 7, 9, 10, 12, and 13. Note that some of the PTTMs are considered 
identical, since they overlap at the same time moment, e.g. PTTMs 4, 
5, 7, 9, 10, and 12. 
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Figure 3.2: Possible test termination moments (PTTMs) 

From this discussion, we can see that a pseudorandom test sub-
sequence can be treated as a single test pattern, since they have the 
same effect on test termination. It should be noted that an 
application cycle of a test pattern differs in combinatorial circuits 
and sequential circuits. In a combinatorial circuit, applying a test 
pattern needs one clock cycle, whereas in sequential circuits, an 
application cycle of test patterns includes three phases, scan-in, 
application, and scan-out. 

3.2.4 Expected Test Application Time 

We consider the termination of the test process at a certain moment 
as a random event which happens with a certain probability. 
Therefore, the test application time (TAT) is a random variable, and 
its mathematical expectation, referred to as the expected test 
application time (ETAT), is the expected value of the actual TATs. 

Let Ax be the random event that the test process is aborted at 
PTTM x, and let T be the random event that the test process is 
passed at completion. Then, the ETAT is given by 
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where x is a PTTM, X is the set of all PTTMs, tx is the test 
application time by the moment x, L is the test application time by 
the completion moment, p[Ax] is the probability of the event Ax, and 
p[T] is the probability of the event T. 

In Equation (3.2), the ETAT is presented as a sum of two literals. 
The first literal corresponds to the situations in which the test 
process can be terminated at different PTTMs because at least one 
individual test has detected faults. The second literal corresponds to 
the case in which the test process is passed at completion without 
detection of any faults. Indeed, Equation (3.2) interprets the ETAT 
as the sum of the probabilistic TATs at different PTTMs. 

It should be noted that two different events Ax and Ay are 
exclusive, i.e. ∀x, y ∈ X, x≠ y, Ax ∩ Ay = ∅. Events Ax and T are also 
exclusive, i.e. ∀x ∈ X, Ax ∩ T = ∅. The reason is that, if the test 
process is terminated at a certain moment x (x ∈ X), it must have 
passed all the moments earlier than x and it will never go through 
any moments later than x. In another word, if Ax (x ∈ X) happens, 
any other event Ay (∀y ∈ X, y ≠ x) as well as T cannot happen. 

In order to know whether the test process is aborted or not at any 
PTTM x, we have to check every individual test to see if they have 
detected faults by the moment x. The test process is aborted at the 
PTTM x, if and only if both of the following two conditions are 
satisfied: (1) at least one of the tests that are stopped at PTTM x to 
analyze test responses/signatures detects faults, and (2) all the other 
tests that are not able to be stopped at PTTM x had not detect any 
faults until their latest passed PTTMs before x. Therefore, Ax is 
equivalent to the intersection of the following two events: one event 
is that at least one of those tests which are just stopped at PTTM x 
detect faults; and the other event is that those tests which are not 
able to be stopped at the moment x had not detected any faults until 
the latest PTTMs when they were stopped for a check. 
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Let Yx be the set of all individual tests that are stopped at PTTM x, 
let Zx be the set of all individual tests that are not able to be stopped 
at PTTM x, let Fx(y) be the event that the individual test y detects at 
least one fault at PTTM x, and let Px(z) be the event that the 
individual test z had not detected any faults until the latest PTTM 
before x when z was stopped to for a check. Then, event Ax is given by 

( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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IU I

xx Zz
x

Yy
xx zPyFA  (3.3) 

Figure 3.3 gives a example to explain the situation when the test 
process is aborted at PTTM 7. This means that, at the PTTM 7, at 
least one of the two partial tests TS3 and TS4 has detected faults, 
and the other partial tests TS1, TS2, and TS5 had not detect any 
faults until the latest moments when they were stopped for a check. 
More specifically, TS1 had not detected any faults until PTTM 4, TS2 
had not detect any faults since it has never stopped until the current 
PTTM, and TS5 had not detected any faults until PTTM 6.  

Let E be the set of all tests that are completed without detection of 
faults, and let P(e) be the event that the test e has not detected faults 
until completion. Then, event T is given by 

( )I
Ee

ePT
∈∀

=  (3.4) 

According to the definition of PTTM, at PTTM x, Yx should not be 
empty and at least one element in Yx should detect faults, otherwise 
the test process would have not been aborted at PTTM x. Moreover, 
for a test y ∈ Yx, it should be the currently checked DTP or PTS that 
detects the faults, and the DPT(s) and PTS(s) that were finished 
before x should not detect any faults, otherwise the test had already 
been aborted earlier. On the other hand, at PTTM x, all the tests in 
Zx should have not detect any faults so far, otherwise the test process 
would have been aborted earlier and would not have reached PTTM 
x. Table 3.1 lists the sets Yx and Zx at every PTTM x with respect to 
the example depicted in Figure 3.2. 
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Figure 3.3: An example illustrating the situation  
when the test process is aborted at PTTM 7 

Table 3.1: Yx and Zx at each PTTM x w.r.t. Figure 3.2 
x Yx Zx 
1 {TS1} ∅ 
2 {TS1} ∅ 
3 {TS1} ∅ 
4 {TS1, TS5} ∅ 
5 {TS3, TS5} {TS1} 
6 {TS5} {TS1, TS3} 
7 {TS3, TS4} {TS1, TS5} 
8 {TS4} {TS1, TS3, TS5} 
9 {TS2, TS4} {TS1, TS3, TS5} 

10 {TS1, TS2} {TS3, TS4, TS5} 
12 {TS4, TS5} {TS1, TS2, TS3} 
13 {TS2} {TS1, TS3, TS4, TS5} 

 
The set E includes all the individual tests. For the example 

depicted in Figure 3.2, E = {TS1, TS2, TS3, TS4, TS5}. 

  29 



We have assumed that the failure probabilities of individual tests 
are independent, and that the success probabilities of individual 
tests are independent. Thus, p[Ax], namely the probability of the test 
process being terminated at a PTTM x, is given by 
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and p[T], namely the probability of the test process being passed at 
completion without detecting any faults, is given by 
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Thus, the ETAT is represented as 
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where x is a PTTM, X is the set of all PTTMs, tx is the test 
application time by the moment x, L is the test application time by 
the completion moment, Yx is the set of all individual tests that are 
stopped at PTTM x, Zx is the set of all individual tests that are not 
able to be stopped at PTTM x, p[Fx(y)] is the probability of the 
individual test y detecting at least one fault at PTTM x, p[Px(z)] is 
the probability of individual test z detecting no faults until the latest 
PTTM before x when z was stopped for a check, and CDPi is the 
defect probability of core Ci. 

In this thesis, we define the incremental fault coverage (IFC) of a 
DTP/PTS as the percentage of the faults that are only detected by 

30   



 
this DTP/PTS and have not been detected by any previously applied 
test patterns from the same test set. 

Let y be individual test which detects faults at PTTM x, let v be the 
DTP/PTS which belongs to y and is finished exactly at PTTM x, and 
let IFC(v) be the incremental fault coverage of v. Then, p[Fx(y)] is 
given by 

( )[ ] ( ) ix CDPvIFCyFp ×=  (3.8) 

Let z be the individual test that is not able to be stopped at PTTM 
x, let CDPi be the defect probability of core Ci which test z is applied 
to, let w (0 < w < x) be the latest PTTM when test z was checked for 
test effects, let m (0 ≤ m ≤ di + ri) be the number of test patterns 
(deterministic or pseudorandom) that had been applied by PTTM w, 
and let vj be the j-th test pattern of test z. Then, p[Px(z)] is given by 

( )[ ] ( )∑
=

×−=
m

j
jix vIFCCDPzPp

1

1  (3.9) 

More details on how Equation (3.8) and Equation (3.9) are 
obtained can be found in Appendix B. 

3.2.5 Problem Formulation 

Thus, the ETAT has been completely formulated. Out objective is to 
generate an efficient test schedule with the minimized ETAT. We 
have proposed a heuristic that employs ETAT as the cost function to 
find a near-optimal solution, as presented in the following section. 

3.3 Proposed Heuristic 
The proposed heuristic is an iterative algorithm that generates a test 
schedule with a minimized ETAT. As demonstrated earlier, the test 
scheduling problem in the hybrid BIST and the AOFF context is 
essentially to schedule deterministic test sub-sequences efficiently, 
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as they are more efficient from both the test termination and the 
fault coverage perspectives.  

By changing the schedule of deterministic test sub-sequences, the 
incremental fault coverage of test patterns, the failed sets and the 
passed sets are also changed, and therefore the failing probabilities, 
the passing probabilities, and ultimately the ETAT alternate. 

It is natural to give an order to the deterministic test sub-
sequences such that the cores with higher defect probabilities are 
scheduled for deterministic test earlier. However, such a solution 
does not necessarily lead to the minimal ETAT. In addition to the 
defect probabilities of cores, more factors such as the efficiency of test 
patterns and the length of individual test sub-sequences have to be 
taken into account. We address the ETAT minimization problem as a 
combinatorial problem. Due to the problem complexity, we propose a 
heuristic in order to solve it efficiently. 

The proposed heuristic is an iterative algorithm. We construct two 
sets of deterministic test sub-sequences (DTSs) in the heuristic, 
namely the scheduled set S and the unscheduled set U. The 
scheduled set S is an ordered set which is supposed to include all 
DTSs when the algorithm is terminated. The DTSs in S are 
associated with a particular order O according to which the DTSs 
should be scheduled so that the ETAT of the generated test schedule 
is the minimum. The unscheduled set U is a complement set of S, 
with regard to the complete set of all DTSs, meaning that U always 
include the still unscheduled DTSs during any iteration of the 
heuristic.  

S is initialized as an empty set, while U is initialized with a 
complete set of all DTSs. At each iteration step, all DTSs in U are 
considered as candidates and only one of them is selected and 
inserted into S. The newly scheduled DTS is inserted at a selected 
position between the already scheduled DTSs in S, while the original 
order of the scheduled DTSs is kept unchanged.  

Suppose that at one iteration step, S consists of m (0 ≤ m < n) 
scheduled DTSs. The objective at this iteration step is to schedule 
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one more DTS from U to S, so that is S enlarged to (m + 1) DTSs. 
Since there are (n − m) candidate DTSs in U for selection and there 
are (m + 1) alternative position in S for insertion, there are in total 
(n − m) × (m + 1) different solutions for exploration.  

In order to illustrate how to explore and decide on alternative 
solutions, an example is given in Figure 3.4. In this example, we 
assume that there are five hybrid test sets in total (n = 5) and two 
have been temporarily scheduled through previous iteration steps 
(m = 2). From the depicted partial test schedule at this iteration step, 
we can see that S = [DTS1, DTS4] and U = {DTS2, DTS3, DTS5}. 
There are three different positions for a candidate to be inserted in S, 
namely INSPOS1, INSPOS2, and INSPOS3, indicated by the three 
short arrows. The heuristic explores all the nine alternative solutions 
each of which is identified by the pair (DTSi, INSPOSj). With each 
solution, the currently unscheduled DTS selected from U is inserted 
into S at the position INSPOSj. Thereafter all the DTSs in S are 
scheduled sequentially according the fixed order, and their 
corresponding PTSs are scheduled to the earliest available time. If a 
PTS is longer than the period reserved before the scheduled DTS for 
the same core starts, this PTS has to be stopped right before the DTS 
starts and restarted right after the DTS has been finished. For each 
explored partial test schedule, the expected partial test application 
time (EPTAT) is calculated. When all solutions have been explored, 
the solution with the minimal EPTAT is selected.  

  33 



0 98654321 7

TS1

TS2

TS3

TS4

TS5

PTS2

PTS3

PTS41

PTS5

PTS42

DTS5

DTS3

DTS4

DTS2

DTS1

t

PTSij

PTSij PR test sub-seq. (scheduled)DTSi DT test sub-seq. (scheduled)

DTSi DT test sub-seq. (unscheduled)

U

PR test sub-seq. (unscheduled)

PTS11

INSPOS1 INSPOS2 INSPOS3

 
Figure 3.4: Alternative solutions 

Figure 3.5 shows a test schedule assuming (DTS3, INSPOS2) has 
been selected as the best solution. Thus the updated S is [DTS1, 
DTS3, DTS4] and the updated U is {DTS2, DTS5}. This example also 
shows the range for calculating the EPTAT of a partial test schedule.  

DTS3

0 98654321 7

TS1 PTS11

TS2

TS3

TS4

TS5

PTS2

PTS31

PTS41

PTS5

PTS42

DTS5

DTS4

DTS2

DTS1

t

PTSij

PTSij PR test sub-seq. (scheduled)DTSi DT test sub-seq. (scheduled)

DTSi DT test sub-seq. (unscheduled)

U

PR test sub-seq. (unscheduled)

Partial Test Completion

EPTAT calculation range

 
Figure 3.5: Partial test schedule for the best solution 

The pseudo-code of the heuristic is given in Figure 3.6. Line 1 
initializes S with an empty set and line 2 initializes U with the 
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complete test set. Lines 3 to 19 are three nested loops that generate 
the test schedule. The outer loop (lines 3 to 19) moves one 
unscheduled DTS from U and inserts it into S (lines 17 to 18). The 
DTS to be moved from U is decided within the middle loop (lines 6 to 
15) which explores all alternative solutions. For each candidate in U 
(line 6), each possible position that a candidate in U can be inserted 
into S is explored within the inner loop (lines 7 to 15). For each 
alternative solution (line 7), the partial test schedule is generated 
(line 8) and the EPTAT of the generated partial test schedule  is 
calculated (line 9). Thereafter, the current EPTAT is compared to the 
minimal EPTAT obtained so far (line 10) and the best solution is 
updated if the current EPTAT is smaller (lines 11 to 14). The 
algorithm returns the generated test schedule with the minimal 
ETAT (line 20), when all the DTS in U have been moved into S. 

1: S := ∅; 
2: U := {DTS1, DTS2, ... , DTSn}; 
3: while (U ≠ ∅) loop    /* outer loop */ 
4:  Reset(EPTATmin); 
5:  IPS := GetInsPosSet(S); 
6:  for (∀ DTS ∈ U) loop    /* middle loop */ 
7:   for (∀ InsPos ∈ IPS) loop    /* inner loop */ 
8:    PartSchedcur := GenPartSched(S, DTS, InsPos); 
9:    EPTATcur := CalcETAT(PartSchedcur); 
10:    if (EPTATcur < EPTATmin) then 
11:     EPTATmin := EPTATcur; 
12:     DTSsel := DTS; 
13:     InsPossel := InsPos; 
14:    end if 
15:   end for 
16:  end for 
17:  Insert(S, DTSsel, InsPossel); 
18:  Remove(U, DTSsel); 
19: end while 
20: Return( GenFullSched(S) ); 

 
Figure 3.6: Pseudo-code of the proposed heuristic 
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The proposed heuristic has a polynomial time complexity of O(kn4), 
where n is the number of cores and k is the average number of 
deterministic test patterns generated for a core. 

3.4 Experimental Results 
We have done experiments for different designs of various numbers 
of cores. Designs with 5, 7, 10, 12, 15, 17, 20, 30, and 50 cores 
selected from the ISCAS’85 benchmark are used for our experiments. 
For each design of a particular number of cores, five different hybrid 
test sets are generated in order to test the chip. The hybrid test sets 
for a design are different in terms of different numbers of generated 
deterministic test patterns and pseudorandom test patterns 
consisting of the test sets. The defect probabilities of individual cores 
are randomly generated and allocated such that the defect 
probability of the SoC equals 0.6 (40% system yield). The 
experimental results are listed in Table 3.2, which lists the average 
values of five different experiments for each design. 

Table 3.2: Experimental results 
Random 

Scheduling 
Our  

Heuristic 
Simulated 
Annealing 

Exhaustive  
Search 

#cores 
ETAT CPU 

Time (s) ETAT CPU 
Time (s) ETAT CPU 

Time (s) ETAT CPU 
Time (s) 

5 248.97 1.1 228.85 0.6 228.70 1144.2 228.70 1.2 

7 261.38 64.4 232.04 1.4 231.51 1278.5 231.51 80.0 

10 366.39 311.8 312.13 6.6 311.68 3727.6 311.68 112592.6 

12 415.89 346.8 353.02 12.2 352.10 4266.8 n/a n/a 

15 427.34 371.6 383.40 25.2 381.46 5109.2 n/a n/a 

17 544.37 466.6 494.57 43.6 493.93 6323.8 n/a n/a 

20 566.13 555.4 517.02 85.4 516.89 7504.4 n/a n/a 

30 782.88 822.4 738.74 380.4 736.51 11642.4 n/a n/a 

50 1369.54 1378.0 1326.40 3185.0 1324.44 21308.8 n/a n/a 
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In order to demonstrate the efficiency of the proposed test 

scheduling technique on the reduction of the ETAT, we have done 
another set of experiments for comparison, in which a random 
scheduling algorithm is employed. The ETATs of the generated test 
schedules by using the random scheduling and our heuristic are 
listed in columns 2 and 4, respectively. It can be seen that the ETATs 
of the test schedules generated by our heuristic are 5% to 15% 
shorter than those produced by the random scheduling. 

As our heuristic can produce only a near optimal solution, 
experiments for estimating the accuracy of our solutions have also 
been performed. For this purpose, scheduling algorithms based on a 
simulated annealing strategy and exhaustive search are employed 
for comparison, if available. The ETATs of the generated test 
schedules by using the simulated annealing algorithm and 
exhaustive search are listed in columns 6 and 8, respectively. The 
CPU times of all the four approaches are listed in columns 3, 5, 7, 
and 9. By comparing the experimental results, it is clear that our 
heuristic is able to generate test schedules with ETATs very close to 
those produced by the simulated annealing algorithm and exhaustive 
search, while at the same time our heuristic has substantially 
shorter computation times. These comparisons on ETATs and CPU 
times are also illustrated in Figure 3.7 and Figure 3.8. 

3.5 Conclusions 
In this chapter, a test scheduling technique in the context of a hybrid 
BIST has been presented. In this technique, the AOFF approach is 
employed and the defect probabilities of individual cores are taken 
into account. A method to estimating the test application time is 
proposed, and based on the proposed method a heuristic is developed 
to minimize the expected test application times by generating 
efficient test schedules. Experimental results have shown the 
efficiency of the proposed technique. 

  37 



0

200

400

600

800

1000

1200

1400

5 7 10 12 15 17 20 30 50
Number of Cores

E
xp

ec
te

d 
Te

st
 A

pp
lic

at
io

n 
Ti

m
es

Random Scheduling Our Heuristic Simulated Annealing Exhaustive Search

 
Figure 3.7: Comparison of ETATs of different approaches 
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Figure 3.8: Comparison of CPU times of different approaches 
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Chapter 4 
 Power-Constrained 

SoC Test Scheduling 

In the previous chapter, we employ the AOFF-based defect-
probability driven test scheduling approach to minimize the ETAT. 
In that approach, the BISTs of all the IP cores can be applied 
concurrently. However, testing large number of core in parallel can 
result in power and thermal related problems. Thus, in this chapter, 
we present a power constrained SoC test scheduling approach which 
employs the test set partitioning to minimize the ETAT. 

4.1 Introduction 
The power-constrained test scheduling problem can be considered as 
a two-dimensional rectangular packing (RP) problem [Bak80], 
[Dyc90], [Dyc97], [Les04], [Les05], [Kor03], [Kor04] which is NP-
complete. In this thesis, a test sub-sequence composed of test 
patterns is considered as a rectangle, with the height corresponding 
to the maximum power consumption of the test patterns and the 
width the time duration of the test sub-sequence. 

In this chapter, we present a power constrained and defect-
probability driven test scheduling approach to minimize the TAT. 
The probability of a test termination is calculated according to the 
results of fault simulation and the given defect probabilities of the 
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CUTs. A test set partitioning technique which divides a test set into 
shorter test sub-sequences integrated in the test scheduling 
heuristic, in order to improve the efficiency of the test scheduling 
algorithm.  

The definitions in Chapter 3.2 and test architecture depicted in 
Figure 2.7 are also used for this chapter. We suppose that a 
deterministic test set is partitioned into ai (0 ≤ ai ≤ di, 1 ≤ i ≤ n) 
deterministic test sub-sequences, and a pseudo-random test set is 
partitioned into bi (0 ≤ bi ≤ ri, 1 ≤ i ≤ n) pseudorandom test sub-
sequences, where ai + bi > 0. Note that a test set is also a test sub-
sequence which originally has one partition (ai = di = 1 and/or 
bi = ri = 1). Thus, the term “test sub-sequence” is used to represent a 
test set as well, if not mentioned otherwise. 

We also employ a test pattern reordering technique proposed in 
[Ros02] as a pre-processing step for the test set partitioning. Test 
pattern reordering can reduce the power consumption of test 
patterns and make the power profiles smoother. For the test set 
partitioning, we have developed a heuristic to find an appropriate 
number of partitions such that the sum of the area sizes (the peak-
power consumption multiplied by the time duration) of all the 
partitions is as small as possible. 

4.2 Motivational Example 
We assume that the power consumption in the circuit by applying a 
test pattern is proportional to the total number of transitions 
between this test pattern and the preceding test pattern, occurring at 
all the primary inputs, primary outputs, and internal nodes. The 
peak-power consumption by applying a test sub-sequence is defined 
as the maximum power consumed by applying each of the test 
patterns belonging to the test sub-sequence (see Figure 4.4). 

Different test schedules can have a variety of test application 
times. Figure 4.1(a) shows an example of a power-constrained test 
schedule for five deterministic test sub-sequences (DTS) and five 
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pseudorandom test sub-sequences (PTS), which are illustrated with 
white and grey rectangles, respectively. Each test sub-sequence is 
depicted as a rectangle with a height and a width corresponding to 
the peak-power consumption and the time duration of the test sub-
sequence, respectively. The area size of a test sub-sequence is then 
equal to its peak-power consumption multiplied by the time duration. 
The constraint on the peak-power consumption is denoted with 
POWc. It should be noted that test sub-sequences belonging to the 
same core, such as DTS1 and PTS1, cannot be scheduled in parallel 
due to the test conflict. 

PTS1

PTS2
PTS3

DTS4

PTS4

DTS2

DTS5

DTS1
DTS3

PTS5

Test Completion
Power

POWC

0 Time

PTSij PR test sub-seq.DTSij DT test sub-seq.

 
(a) A test schedule without test set partitioning 
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0 Time
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(b) A test schedule with test set portioning 

Figure 4.1: Power-constrained test schedule w/o vs. with TSP 
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Comparing the size of the effective scheduled area occupied by all 
test sub-sequences to the size of the overall schedulable area 
confined by the line of peak-power constraint and the line of test 
completion time, one can find that the efficiency of the test schedule 
in Figure 4.1(a) is low since much of the space is wasted. One 
solution to improve the efficiency of the test schedule is to employ 
test set partitioning to decrease the granularities of test sub-
sequences. As shown in Figure 4.1(b), PTS1, PTS3, and PTS5 are 
partitioned into PTS11 and PTS12, PTS31 and PTS32, and PTS51 and 
PTS52, respectively. The partitioned test sub-sequences have a 
shorter time duration and/or a smaller peak-power consumption than 
the non-partitioned ones, thus can be scheduled at time moments 
which were not possible for the non-partitioned test sub-sequence 
due to its large area size. From this example, it can be observed that 
using test set partitioning can significantly improve the efficiency of 
the test schedule and shorten the test application time. 

4.3 Problem Formulation 
We use the same definitions as given in chapter 3.2. Figure 4.2 
depicts all the PTTMs in a power-constrained test schedule, where 
the dotted lines indicate the ending moments of single deterministic 
test patterns, and the dashed lines indicate the ending moments of 
pseudorandom test sub-sequences. Overlapped time moments are 
treated as identical PTTMs. 

In order to minimize the test application time in production tests, 
we need to minimize the ETAT through efficient test scheduling 
integrated with test set partitioning. Taking into account the peak-
power constraint, the test scheduling problem is similar to the 
classical two-dimensional rectangular packing problem. Our 
objective is to develop heuristics to find an efficient partitioning 
scheme and generate an efficient test schedule for all partitioned 
deterministic and pseudorandom test sub-sequences, so that the 
ETAT is minimized while the power constraint is satisfied. 
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Figure 4.2: PTTMs in a power-constrained test schedule 

4.4 Test Set Partitioning 
As in a rectangular packing problem, the sizes of test sub-sequences 
have a large impact on the final schedule. To divide test sub-
sequences into smaller partitions with shorter time duration and 
lower individual peak-power consumptions will lead to more efficient 
test scheduling, since the partitioned test sub-sequences have 
smaller granularities in terms of their area sizes and can be packed 
more tightly. Figure 4.3(a) shows a non-partitioned deterministic test 
sub-sequence for core Ci and Figure 4.3(b) shows its three partitions 
(DTSi1, DTSi2, and DTSi3). In Figure 4.3(b), the individual peak-
power consumptions of the first two partitions (DTSi1 and DTSi2) are 
lower than that of the non-partitioned test sub-sequence in Figure 
4.3(a). The grey rectangles with dashed line edges illustrate the 
reduced area sizes due to the partitioning. 

  43 
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(b)
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PTSi1 DTSi2

PTSi2 DTSi3

 
Figure 4.3: Test set partitioning and the time overheads 

Reordering test patterns is useful in order to reduce power 
consumption and can make the power profile of a test sub-sequence 
relatively smooth and easy to manipulate [Ros02]. Thus, for all 
deterministic tests, we have used test pattern reordering as a pre-
processing step for the test set partitioning. In Figure 4.4(a), the 
original power profile of a deterministic test sub-sequence is given. 
As a comparison, the power profile after the test pattern reordering 
is shown in Figure 4.4(b). It can be seen that, through reordering of 
the test patterns, the power profile is much smoother and the peak-
power consumption is reduced (39% lower for this example). 
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(a) Power profile before reordering test patterns 
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(b) Power profile after reordering test patterns 

Figure 4.4: Power profile before/after reordering test patterns 

Although test set partitioning can lead to smaller partitions, it 
introduces time overheads for the partitioned test sub-sequences 
when a test-per-scan approach is employed. This phenomenon occurs 
when deterministic test sub-sequences and pseudorandom test sub-
sequences belonging to the same core are interleaved, as in the 
example depicted in Figure 4.3. There, the three partitioned 
deterministic test sub-sequences (DTSi1, DTSi2, and DTSi3) are 
interleaved with two partitioned pseudorandom test sub-sequences 
(PTSi1 and PTSi2) for the same core Ci. The time overheads are 
indicated by the rectangles filled with slashed lines and situated at 
the left of PTSi1, DTSi2, PTSi2, and DTSi3. 
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The time overheads are due to the following fact. When a 
deterministic (pseudorandom) test is stopped and resumed later after 
a pseudorandom (deterministic) test has been applied, the pipeline 
consisting of three operations (scan-in, application, and scan-out, see 
Figure 4.5(a)) is interrupted and has to be refilled at the beginning of 
the latter partition (see Figure 4.5(b)). Thus, the time overhead 
added to the latter partition is equal to the time duration of the scan-
out operation, denoted with Lo in Figure 4.5. 

In Figure 4.3(b), the grey rectangles are the areas reduced from 
the non-partitioned test sub-sequence, while the rectangles filled 
with slashed lines are the areas added. Thus, we proposed a heuristic 
to find an appropriate number of partitions for a deterministic test 
set, such that the sum of the area sizes of all partitions is minimized. 

3rd Test Pattern2nd Test Pattern1st Test Pattern

Li+1+Lo Li+1
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Scan in Scan outApp.

Scan in Scan outApp.

1st Test 
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Li Lo1

1
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Scan in Scan outApp.
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Scan in Scan outApp.

1Li Lo

Li+1 Li+1  
(a) 
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Scan in Scan outApp.
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Figure 4.5: Pipeline in a test-per-scan approach 
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The heuristic for deterministic test set partitioning starts with the 

original non-partitioned test sub-sequence. Within each iteration 
step, one of the existing partitions is divided into two test sub-
sequences. The heuristic stops when no more partitions can be 
added, which means that every partitioned test sub-sequence has one 
and only one test pattern. Here the cost function is defined as the 
sum of the area sizes of all the partitioned test sub-sequences, and 
the objective is to find a partitioning scheme which has the lowest 
cost among all the explored solutions. 

At every iteration step, we have to decide which existing partition 
should be selected to be split into two test sub-sequences, and at 
which position (test pattern) the selected partition should be divided. 
With an exhaustive search among all possible solutions within this 
iteration step, the local optimal partitioning scheme with the lowest 
cost is obtained and one more partition is added. In the global range, 
among all the local optimal partitioning schemes with different 
number of partitions, the one with the lowest cost is acquired and 
accepted as the best solution. Figure 4.6 illustrates how the sum of 
the area sizes of all partitions distributed with different numbers of 
partitions. Usually the best partitioning scheme has a relatively 
small number of partitions in relation to the total number of test 
patterns in the test set. For example, in Figure 4.6, a test set with 
149 test patterns should be divided into 21 partitions such that the 
sum of their area sizes is minimized. 

When a pseudorandom test sub-sequence is divided into two 
partitions, two signatures are needed in order to obtain the test 
results at the end of both partitions, which means that an additional 
signature should be generated. Thus, extra memory is also needed to 
store this additional fault-free signature, and an extra time slot is 
needed to analyze the additionally generated signature. In this 
chapter, we have assumed that there exists sufficient memory to 
store the signatures and we ignore the extra time slots for the 
analysis of the additional signatures, since this time is very short, 
compared to the time duration of the pseudorandom test sub-
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sequence. We do not consider the impact of the increased complexity 
of the test controller either in this chapter. 
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Figure 4.6: Sum of area sizes w.r.t. number of partitions 

4.5 Proposed Heuristic 
Before the heuristic for test scheduling is presented, some basic 
principles for test set partitioning and test scheduling are 
summarized as follows. 

(1) Test sub-sequences belonging to the same core cannot be 
scheduled in parallel.  

(2) Deterministic test sub-sequences are scheduled sequentially 
since a single test bus is used, while pseudorandom test sub-
sequences are scheduled in parallel under the peak-power constraint.  

(3) The scheduling of deterministic test sub-sequences is performed 
before the scheduling of pseudorandom test sub-sequences, which 
means that deterministic test sub-sequences have higher scheduling 
priorities. This is because deterministic tests can be stopped after 
every test pattern, while pseudorandom tests can only be terminated 
at the end of the test sub-sequences, when the signatures are ready. 
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Additionally, deterministic test patterns are usually more efficient in 
detecting faults than pseudorandom test patterns.  

(4) Pseudorandom test sub-sequences are first sorted in a 
decreasing order of certain parameters like the defect probability of a 
core, the peak-power consumption and time duration of a test sub-
sequence. Thereafter, they are scheduled to the earliest possible time 
moment. Deterministic test sub-sequences, however, are scheduled 
in the order obtained by a defect-probability driven heuristic. 

Test set partitioning is integrated into the test scheduling 
approach in the following way. Deterministic test sets are partitioned 
statically, meaning that they are partitioned before being scheduled, 
according to the principles presented in the previous section. 
Pseudorandom test sets, on the other hand, are partitioned during 
the test scheduling. When it is impossible to schedule a 
pseudorandom test sub-sequence to the earliest time moment due to 
its large area size, the test sub-sequence is divided into two 
partitions such that the first one can be scheduled as expected, and 
the scheduling of the second one is performed later. 

Based on the basic principles described above, a heuristic has been 
developed to find an efficient test schedule for all test sub-sequences 
in an iterative way. One iteration step of the heuristic is illustrated 
with the example in Figure 4.7. Suppose that we have five 
deterministic test sub-sequences DTS1, DTS21, DTS22, DTS31, and 
DTS32, and three pseudorandom test sub-sequences PTS1, PTS2, and 
PTS3. Two deterministic test sub-sequences DTS31 and DTS1 have 
already been scheduled. In this iteration step, we have to decide 
which one out of the three unscheduled deterministic test sub-
sequences DTS21, DTS22, and DTS32 should be scheduled to which 
time moment among A, B, and C, as illustrated in Figure 4.7. After a 
deterministic test sub-sequence is scheduled to a time moment, the 
three pseudorandom test sub-sequences PTS1, PTS2, and PTS3 are 
scheduled to the rest of the space. Test set partitioning may be 
needed at this step. Thereafter, the expected partial test application 
time (EPTAT) is calculated within the range of the scheduled 
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deterministic test sub-sequences (see Figure 4.8). When all the 
possible nine solutions within the current iteration step have been 
explored, the solution with the smallest EPTAT is accepted and the 
three scheduled deterministic test sub-sequences are taken as a base 
for the next iteration step. The heuristic stops when no more 
unscheduled deterministic test sub-sequences are left, and the final 
test schedule is then obtained. Note that when a test sub-sequence is 
scheduled, the order of the already scheduled test sub-sequences 
should remain unchanged. 
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Sorted list of 
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PTSij PR test sub-seq. (unscheduled)
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POWC

 
Figure 4.7: Illustration of one iteration step of the heuristic 

Figure 4.8 shows a solution in which DTS22 is scheduled to time 
moment B. During the scheduling of pseudorandom test sub-
sequences, PTS2 is partitioned into two test sub-sequences PTS21 and 
PTS22. The EPTAT calculation range is from the beginning of DTS31 
till the end of DTS1. The gap between PTS3 and PTS22 is due to the 
fact that DTS22 and PTS22 cannot be scheduled concurrently due to 
the test conflict. 
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Figure 4.8: Illustration of one solution at the iteration step 

Formally, suppose that we have N deterministic test sub-
sequences altogether, and m (0 ≤ m < N) of them have already been 
scheduled at a certain iteration step. We need to schedule one more 
deterministic test sub-sequence selected from the set of (N − m) 
unscheduled deterministic test sub-sequences to an appropriate time 
moment, without disturbing the order of the scheduled test sub-
sequences. When a selected deterministic test sub-sequence has been 
scheduled to a time moment, all the pseudorandom test sub-
sequences are then scheduled into the rest of the space, with 
application of dynamic partitioning, if needed. The EPTAT of this 
solution is then calculated within the time range of the (m + 1) 
scheduled deterministic test sub-sequences. When all the 
(N − m) × (m + 1) possible solutions have been explored, the solution 
with the minimum EPTAT value is accepted. The new list of 
scheduled deterministic test sub-sequences is then used as a base for 
the next iteration step. Repeating this procedure from the initial 
state when m = 0 until all the deterministic and pseudorandom test 
sub-sequences are scheduled when m = N, we get the final optimized 
schedule. 
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The pseudo-code of the heuristic, given in Figure 4.9, has three 
major embedded loops. The outer loop (lines 1 to 19) increments the 
number of scheduled deterministic test sub-sequences, the middle 
loop (lines 4 to 17) selects every unscheduled deterministic test sub-
sequence, and the inner loop (lines 5 to 16) explores every possible 
time moment for scheduling. Inside the inner loop, the selected 
deterministic test sub-sequence is scheduled (line 6), thereafter 
pseudorandom test sets are partitioned if needed and then scheduled 
(lines 7 to 10). The EPTAT of the present schedule is then calculated 
(line 11) and compared to the minimum EPTAT for an acceptance 
decision (lines 12 to 15). The final test schedule is returned in the 
end (line 20). 

1: for (#SchedDTS := 0 to N-1) loop 
2:  Reset(EPTATmin); 
3:  m := #SchedDTS; 
4:  for (∀UnschedDTSij) loop 
5:   for (∀PTTM Tx) loop 
6:    Schedule(UnschedDTSij, Tx); 
7:    for (∀ pseudorandom test set PTSk ) loop 
8:     Partition(PTSk) if needed; 
9:     Schedule(PTSk); 
10:    end for; 
11:    EPTATcur := CalcEPTAT(); 
12:    if (EPTATcur < EPTATmin) then 
13:     EPTATmin := EPTATcur; 
14:     Solutionbest := Solutioncur; 
15:    end if; 
16:   end for; 
17:  end for; 
18:  Apply(Solutionbest); 
19: end for; 
20: Return(TestSchedulefinal); 

 
Figure 4.9: Pseudo-code of the heuristic for test scheduling 
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4.6 Experimental Results 
For the experiments, ISCAS’89 benchmarks were used and the test-
per-scan approach was utilized. All cores were redesigned to insert 
one single scan chain, and the STUMPS architecture is used for 
BIST. 

In the first set of experiments, the proposed test set partitioning 
and test scheduling technique was employed. We did experiments for 
5 groups of designs. Each group had five different designs which had 
the same number of cores of different types, but the cores were 
assigned with different defect probabilities. The numbers of cores 
were 5, 10, 20, 30, and 50 for each group, respectively. For each 
design we used three different levels of peak-power constraints. The 
experimental results in Table 4.1 represent the average values from 
15 experiments (5 different designs with the same number of cores 
multiplied by 3 different peak-power constraints). The defect 
probabilities of individual cores were generated randomly, while 
keeping the system defect probability at the value 0.6, i.e. 40% 
system yield. 

Table 4.1: Different approaches using test set partitioning 
BLD Our Heuristic SA 

# Cores 
ETAT CPU Time 

(s) ETAT CPU Time 
(s) ETAT CPU Time 

(s) 

5 7783 0.01 6247 2.5 6126 276.0 

10 10590 0.02 7983 26.9 7732 568.7 

20 20081 0.04 14239 293.9 14808 301.5 

30 28578 0.06 21117 493.4 22290 503.9 

50 50562 0.11 37463 4372.9 40074 4409.3 
 

In order to show the efficiency of our heuristic, a classical bottom-
left-decreasing (BLD) scheduling algorithm [Les05] is taken for 
comparison. It sorts deterministic and pseudorandom test sub-
sequences decreasingly by their area sizes (the peak-power 
consumption multiplied by the time duration), and then schedules 
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them using the bottom-left strategy. As shown in Table 4.1, by 
employing our heuristic, the ETAT can be reduced around 20% to 
29% compared to the BLD scheduling algorithm, with an acceptable 
increase of execution time. On the other hand, in order to show the 
accuracy of our heuristic to find a near-optimal test schedule, we also 
compared our heuristic with a simulated annealing (SA) algorithm. 
For small designs with 5 and 10 cores, the SA algorithm reached the 
imposed termination condition in an acceptable time and is supposed 
to return a solution close to the optimal solution. For large designs 
with 20, 30, and 50 cores, the SA algorithm took unacceptably long 
time to reach the termination condition. Thus, for these experiments, 
we let the SA algorithm run for a time equal to that needed by our 
heuristic. From Table 4.1, one can see that in small designs, the SA 
algorithm works just slightly better than our heuristic (2% to 3% 
lower ETAT), but has up to two orders of magnitude longer execution 
time than our heuristic. For the large designs, our heuristic found 
better solutions with 4% to 7% lower ETAT values, than the SA 
algorithm produced in the same amount of time. 

In the second set of experiments where the same designs were 
used, we intended to show the effect of test set partitioning. As a 
comparison, we used a defect-probability driven test scheduling 
heuristic which did not allow test set partitioning. For the sake of 
fairness, both the partitioned and non-partitioned heuristic used test 
pattern reordering, thus the advantage of the peak-power reduction 
by reordering test patterns did not play any role in this comparison. 
The experimental results are given in Table 4.2. As shown in the 
table, using test set partitioning can reduce the ETAT with amounts 
between 16% and 30%. The results are also illustrated in Figure 
4.10. 
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Table 4.2: Our heuristic (without/with test set partitioning) 
Without Test Set Partitioning With Test Set Partitioning 

# Cores 
ETAT CPU Time (s) ETAT CPU Time (s) 

5 8269 0.09 6247 2.5 

10 11357 0.86 7983 26.9 

20 18016 14.2 14239 293.9 

30 26710 68.6 21117 493.4 

50 44713 589.1 37463 4372.9 
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Figure 4.10: Our heuristic (without/with test set partitioning) 

4.7 Conclusions 
In this chapter, a power-constrained SoC test scheduling approach is 
presented in a production test environment. Different from other 
approaches, the defect probabilities of individual cores are utilized to 
drive the test scheduling and a test set partitioning approach is 
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employed. Based on the calculation of the ETAT, a heuristic for test 
set partitioning and test time minimization is used to generate 
efficient test schedules. Experimental results have shown that the 
proposed method is effective to shorten the test application time. 
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Chapter 5 
 Thermal-Aware 

SoC Test Scheduling 

In this chapter, we assume that a continuous test will increase the 
temperature of a core towards a limit beyond which the core may be 
damaged. We also assume a test architecture which employs a test 
bus to transport test data. Thus, we address the TAT minimization 
problem as how to generate the shortest test schedule such that the 
temperature limits of individual cores and the limit on the test-bus 
bandwidth are satisfied.  

5.1 Introduction 
Recently, thermal-aware testing [Tad00] has attracted many 
research interests. Liu et al. proposed a technique [Liu05] to evenly 
distribute the generated heat across the chip during tests, and 
therefore avoid high temperature. Rosinger et al. proposed an 
approach [Ros06] to generate thermal-safe test schedules with 
minimized test time by utilizing the core adjacency information to 
drive the test scheduling and reduce the temperature stress between 
cores. In this chapter, we propose a thermal-aware test scheduling 
technique [He06b], [He07] which employs test set partitioning and 
interleaving.  

  57 



 
In order to avoid overheating during tests, we partition the entire 

test set into shorter test sub-sequences and introduce a cooling 
period between two consecutive test sub-sequences, such that 
continuously applying a test sub-sequence will not drive the core 
temperature going beyond the limit. As the TAT substantially 
increases when long and/or many cooling periods are introduced, we 
interleave the test sub-sequences from different test sets in such a 
manner that a cooling period reserved for one core is utilized for the 
test transportation and application of another core.  

We provide two approaches to generate thermal-safe test schedules 
with minimized TAT: a CLP-based approach [He06b] and a heuristic-
based approach [He07]. The CLP-based approach generates the 
optimal test schedules in terms of the TAT, assuming regular 
partition length as well as regular cooling periods. The heuristic-
based approach explores alternative test set partitioning and 
interleaving schemes in which partitions and cooling periods have 
arbitrary length. 

5.2 Motivational Example 
When a long sequence of test patterns is continuously applied to a 
core, the temperature of this core may increase towards a certain 
limit beyond which the core will be damaged. Therefore, a test has to 
be stopped when the core temperature reaches the limit, and the test 
can be restarted later when the core has been cooled down. Thus, by 
partitioning a test set into shorter test sub-sequences and 
introducing cooling periods between them, we can avoid the 
overheating during test. Figure 5.1 illustrates a situation in which 
the entire test set is partitioned into four test sub-sequences, TS1, 
TS2, TS3, and TS4, and cooling periods are introduced between them. 
In this way, the temperature of the core remains under the imposed 
temperature limit. 
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Figure 5.1: An example of test set partitioning 

As we have assumed that a test bus is employed in the test 
architecture, the limit on the test-bus bandwidth becomes a 
constraint to the scheduling of the test sub-sequences. It is obvious 
that introducing long cooling periods between test sub-sequences can 
substantially increase the TAT. Intuitively, we can reduce the TAT 
by interleaving the partitioned test sets such that the cooling periods 
reserved for a core Ci are utilized to transport test data for another 
core Cj (j ≠ i), and thereafter to test the core Cj. By interleaving the 
partitioned test sets belonging to different cores, the test-bus 
bandwidth is more efficiently utilized. Figure 5.2 gives an example 
where two partitioned test sets are interleaved so that the test time 
is reduced with no need for extra bus bandwidth. 

  59 



 

Core 1
Core 2

Temperature

Time

Temp.  
Limit

Completion Time

Cooling (Core 1)

Testing 
(Core 2)

 
Figure 5.2: An example of test set interleaving 

In this chapter, we aim to minimize the TAT by generating an 
efficient test schedule which avoids violating the temperature limits 
of individual cores, and at the same time satisfies the test-bus 
bandwidth constraint. We consider each test sub-sequence as a 
rectangle, with its height representing the required test-bus 
bandwidth and its width representing the test time. Figure 5.3 gives 
a motivational example for our test time minimization problem. 
Suppose that three test sets, TS1, TS2, and TS3, are partitioned into 
5, 3, and 2 test sub-sequences, respectively. Note that the 
partitioning scheme which determines the length of test sub-
sequences and cooling periods has ensured that the temperature of 
each core will not violate the temperature limit, by using a 
temperature simulation. Figure 5.3(a) shows a feasible test schedule 
while Figure 5.3(b) depicts an alternative test schedule where a 
different partitioning and interleaving scheme is adopted. This 
example shows the possibility to find a shorter test schedule by 
exploring alternative solutions, where the number and length of test 
sub-sequences, the length of cooling periods, and the way that the 
test sub-sequences are interleaved are different. 
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(a) A feasible test schedule with regular partitioning scheme 
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(b) An alternative test schedule with irregular partitioning scheme 

Figure 5.3: A motivational example 

5.3 Problem Formulation 
Suppose that a system S, consisting of n cores C1, C2, ... , Cn, employs 
the test architecture for external test using an ATE, as depicted in 
Figure 2.5. In order to test core Ci, a test set TSi consisting of li 
generated test patterns is transported through the test bus and the 
dedicated TAM wires to/from core Ci, utilizing a bus bandwidth Wi. 
The test bus is designed to allow transporting several test sets in 
parallel but has a bandwidth limit BL (∀I, BL ≥ Wi). We assume that 
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continuously applying test patterns belonging to TSi may cause the 
temperature of core Ci go beyond a certain limit TLi so that the core 
can be damaged. In order to prevent overheating during tests, we 
allow partitioning a test set into a number of test sub-sequences and 
introducing a cooling period between two partitioned test sub-
sequences, such that no test sub-sequence drives the core 
temperature higher than the limit and the core temperature is kept 
within a safe rage. The problem that we address is how to generate a 
test schedule for system S such that the TAT is minimized while the 
bus bandwidth constraint is satisfied and the temperatures of all 
cores during tests remains below the corresponding temperature 
limits. The formal problem formulation is given in Figure 5.4. 

Input: 
{TSi | i = 1, 2, ... , n},  
{Wi | i = 1, 2, ... , n},  
Test-bus bandwidth limit BL,  
Temperature limit of each individual core {TLi | i = 1, 2, ... , n} 
 
Output: 
Test schedule with the minimized test application time (TAT) 
 
Subject to the following two constraints: 
1. At any time moment t before the test completion, the total amount of 
utilized test-bus bandwidth BW(t) is less than or equal to the bandwidth 
limit BL, i.e. BW(t) := ΣBWi(t) ≤ BL. 
2. At any time moment t before the test completion, the temperature 
TMi(t) of every individual core Ci is less than or equal to the corresponding 
temperature limit TLi, i.e. ∀i, TMi(t) ≤ TLi. 

 
Figure 5.4: Problem formulation 

The formulated problem has high complexity. In order to reduce 
the optimization time so that optimal solutions can be found in an 
reasonable time even for large designs, we can restrict the 
exploration space. Thus we restrict the length of the test sub-
sequences belonging to the same test set to be identical. Moreover, 
we restrict the length of the cooling periods between the test sub-
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sequences from the same test set to be identical. By adding these 
restrictions, the complexity of the test controller can be reduced since 
less states of the test schedule are needed to store in a memory. 
Thus, the test scheduling problem can be modeled and solved by 
using CLP.  

Although formulating the test scheduling problem as a CLP model 
by restricting the exploration space have the advantages 
demonstrated above, it also leads to trade-offs. The restrictions on 
the regularity of test sub-sequence and cooling periods can result in 
less efficient test schedules and, as a consequence, longer TATs. We 
provide an alternative way to reduce the long optimization time due 
to the high problem complexity. We assumes that the test sub-
sequences and cooling periods can have arbitrary length and we 
propose a low-complexity heuristic to find near-optimal solutions 
under the less restricted and more realistic assumptions. Due to the 
high complexity of the formulated problem, the CLP-based approach 
is not applicable. 

5.4 Overall Solution Strategy 
We propose a strategy to solve the formulated problem in two major 
steps, as illustrated in Figure 5.5. First, we generate an initial 
partitioning scheme for every test set by using temperature 
simulation and the given temperature limits. Second, the test 
scheduling algorithm explores test schedules by selecting alternative 
partitioning schemes, interleaving test sub-sequences, and squeezing 
them into a two-dimensional space, constrained by the test-bus 
bandwidth. 
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Figure 5.5: The overall solution strategy 

In order to generate thermal-safe partitioning schemes, we have 
used a temperature simulator HotSpot [Ska04], [Hua04], [Hua07] to 
simulate instantaneous temperatures of individual cores during 
tests. HotSpot assumes a circuit packaging configuration widely used 
in modern IC designs, and it computes a compact thermal model 
[Hua04] based on the analysis of three major heat flow paths existing 
in the assumed packaging configuration [Hua04]. Given the floorplan 
of the chip and the power consumption profiles of the cores, HotSpot 
calculates the instantaneous temperatures and estimates the steady-
state temperatures for each unit. In this thesis, we assume that the 
temperature influences between cores are negligible since the heat 
transfer in the vertical direction dominates the transferring of 
dissipated heat. This assumption has been validated by examining 
simulations with HotSpot. 

When generating the initial thermal-safe partitioning scheme, we 
have assumed that a test set TSi is started when the core is at the 
ambient temperature TMamb. Then we start the temperature 
simulation, and record the time moment th1 when the temperature of 
core Ci reaches the given temperature limit TLi. Knowing the latest 

Chip Floorplan FLP Temperature Simulation 

Test Scheduling with Test-Set 
Repartitioning & Interleaving 

Test-Bus Bandwidth 
Requirements {Wi} 

Test-Bus Bandwidth 
Limit BL 

Initial Thermal-Safe 
Partitioning Schemes {PSi0} 

Optimized Test Schedule 
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test pattern that has been applied by the time moment th1, we can 
easily obtain the length of the first thermal-safe test sub-sequence 
TSi1 that should be partitioned from the test set TSi. Then the 
temperature simulation continues while the test process on core Ci 
has to be stopped until the temperature goes down to a certain 
degree. It is obvious that a relatively long time is needed in order to 
cool down a core to the ambient temperature, as the temperature 
decreases slowly at a lower temperature level (see the dashed curve 
in Figure 5.6). Thus, we let the temperature of core Ci go down only 
until the slope of the temperature curve reaches a given value k, at 
time moment tc1. Note that the value of k can be experimentally set 
by the designer. At this moment, we have obtained the duration of 
the first cooling period di1 = tc1 – th1. Restarting the test process from 
time moment tc1, we repeat this heating-and-cooling procedure 
throughout the temperature simulation until all test patterns 
belonging to TSi are applied. Thus we have generated the initial 
thermal-safe partitioning scheme, where test set TSi is partitioned 
into m test sub-sequences {TSij | j = 1, 2, ... , m} and between every 
two consecutive test sub-sequences, the duration of the cooling period 
is {dij | j = 1, 2, ... , m-1}, respectively. Figure 5.6 depicts an example 
of partitioning a test set into four thermal-safe test sub-sequences 
with three cooling periods added in between. 

Temperature

Time

TLi

TMamb

Test Completion

TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

k

th1 tc1 th2 tc2 tc3th3 th4

 
Figure 5.6: An example of initial partitioning scheme 
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5.5 CLP-based Approach 
er to restrict the exploration space 

ce the initial thermal-safe partitioning scheme is obtained
cuses on the problem of how to schedule all the test sub-sequences 

such that the TAT is minimized under the constraint on the test-bus 
bandwidth. Since we consider each test sub-sequence as a rectangle, 
the problem of generating a test schedule with minimized TAT while 
satisfying the constraint on the test-bus bandwidth can be 
formulated as a rectangular packing problem. However, our test 
scheduling problem is not a classical RP problem, due to the fact that 
the number of test sub-sequences, the length of the sub-sequences, 
and the cooling periods are not constant. This makes our problem 
even more difficult to be solved. 

Interleaving test sub-sequences belonging to different test sets can 
introduce time overheads [Goe03], [He06a] when the test controller 
stops one test and switches to another test. Therefore, partitioning a 
test set into more test sub-sequences may lead to a longer TAT, since 
more time overheads and more cooling periods are introduced into 
the test schedule. On the other hand, partitioning a test set into 
more test sub-sequences results in a shorter average length of the 
individual test sub-sequences, which in principle can be packed in a 
more compact way and thus lead to shorter TATs. Thus, we need a 
global optimization algorithm, in which different numbers and 
lengths of test sub-sequences as well as different cooling periods are 
explored. We have proposed a heuristic to generate optimized test 
schedules by scheduling test sub-sequences with test set 
repartitioning and interleaving. 

Based on the overall solution strategy, we propose two approaches 
to solve the test scheduling, a CLP-based approach and a heuristic-
based approach. 

As demonstrated previously, in ord
as well as to reduce the complexity of the test controller, we assume 
that the test partitions in the same test set have identical time 
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durations except the first and the last test sequence. Why first test 
sub-sequence is usually longer than the other in the same test set is 
because that we assumed that the CUT is at the ambient 
temperature when the first test sequence starts, and that the first 
test sequence is partitioned such that it can be continuously applied 
until the core temperature reaches the temperature limit. For the 
same reason, the cooling spans between two consecutive test 
sequences from the same test set also have identical length. 

5.5.1 Concepts of CLP 

s framework which merges two declarative 

clarative programming language, CLP is flexible and 
ex

5.5.2 CLP Model 

p scheme has three parameters, the number of 

CLP i  a programming 
programming paradigms, constraint solving and logic programming 
[Jaf87]. CLP defines the relationships between entities as 
constraints, and incorporates constraint solving methods into a logic 
based language. Some key features of CLP include: (1) constraints 
are employed to describe the queries and answers which are the 
inputs and outputs of a program; (2) new variables and constraints 
are dynamically generated during execution of the program; (3) in 
each state of execution, all constraints are globally tested for 
satisfiability, and the results of the test are used to control the 
execution. 

As a de
pressive. It allows programmers focusing on the formulation of 

problems, instead of being stuck in the implementation details. 
Therefore, it has been widely used in many optimization techniques 
for a large variety of applications. Some CLP tools also provide 
solvers to find the optimal solution using branch and bound or 
exhaustive search. We use CHIP [Hen91] for our CLP-based 
approach to solve the thermal-safe test scheduling problem.  

Each artitioning 
partitions mi, the time duration of the first test sequence li1, and the 
cooling span di between two consecutive test sequences. Each test 
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starts at time ti which is equal to the starting time of the first 
partition in the same test set. 

( )nitt ii ≤≤= 11  (5.1) 

The number of partitions and the test start time is decided during 
the optimization. The start time tij and finishing time eij of the test 
sub-sequence TSij can be calculated as follows. Note that oi is the 
time overhead. 

( )nimjodltt iiijijiij ≤≤≤≤+++ −− 1,21,1,  (5.2) =

( )nimjlte iijijij ≤≤≤≤+= 1,1  (5.3) 

The last test sub-sequence in each test set is special since its 
fin

,

ishing time is the end of the whole test set. Thus the finishing 
time ei of the test set TSi is  

e
imii e=  (5.4) 

and the TAT for testing all cores is the maximum finishing time of all 
single tests. 

{ }ini
eTAT

≤≤
=

1
max  (5.5) 

TAT is the cost function of our optimization problem, and our 
ob

 

(5.6) 

where px is the number of concurrent test sequences at the time 

jective is to find the optimal solution {(mi*, ti*) | i = 1, 2, ... , n} such 
that the TAT is minimized, subject to the following two constraints: 
(1) at any time moment x, the total amount of test bus bandwidth
used by the concurrent test sequences is less than the bandwidth 
limit, i.e.  

BLWTATx
xp

k
k ≤≤∀ ∑

=1

,  

moment x;  
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(2) at any time moment x, the temperature of each core should be 
less than the temperature limit, i.e. 

ixi TLTM ≤,  (5.7) 

where TMi,x is the temperature of core Ci at the time moment x, and 
TLi is the temperature limit of core Ci.  

We assume that when a test starts, the CUT is at the ambient 
temperature, denoted with TA. The test set has to be partitioned into 
a number of test sequences if the CUT reaches its temperature limit 
before the entire test is completed. When partitioning a test set into 
test sequences, the length of each test sequence and the number of 
test sub-sequences depend on the length of the cooling span between 
two consecutive test sequences. This is because of the following facts. 
A longer cooling span leads to a lower temperature at which the 
succeeding test sequence will be started. Thus, with the partitioning 
schemes that have longer cooling spans, a test set can be partitioned 
into fewer number of test sequences but each test sequence is longer. 
It is important to find a possible interval of the number of partitions 
for each test set, since our optimization algorithm explores 
alternative partitioning schemes in which the number of partitions 
varies between the minimum and the maximum values in this 
interval. We denote the interval of the number of partitions for a test 
set TSi with Ii (1 ≤ i ≤ n), and Ii = [Ii,min, Ii,max]. 

As demonstrated in the previous section, we use the temperature 
simulation to find the interval Ii (1 ≤ i ≤ n) for each test set. We 
define the number of partitions obtained by using this approach as 
the minimum value of the exploration interval Ii, denoted with Ii,min. 
In order to find the maximum value of the exploration interval Ii, 
denoted with Ii,max, we have done experiments for different designs 
and we have found out that the actual numbers of partitions in the 
optimal solutions are close to the minimum values Ii,min. Thus we 
consider the maximum value Ii,max = K + Ii,min, where K is a constant 
fixed by the designer. Thereafter, the obtained exploration interval 
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Ii = [Ii,min, Ii,max] (i = 1, 2, ... , n) for TSi is taken as an input to the 
optimization algorithm. 

For each test set TSi (1 ≤ i ≤ n), two variables have to be decided by 
the CLP solver: one is the number of partitions, denoted with mi, and 
the other is the starting time of the test, denoted with ti. The two sets 
of variables for all test sets compromise the decision variables of our 
optimization problem. The finishing time of a test is equal to its 
starting time plus the durations of all its test sequences and all the 
cooling spans between two consecutive test sequences, given as 
follows. 

( )1
1

−×++= ∑
=

ii

m

j
iii mdlte

i

 (5.8) 

During the optimization, the decision variables are instantiated 
and test schedules that satisfy the constraints are explored. The 
solver finds the optimal solution which has the minimal total test 
application time. The minimal TAT formulated in the CLP model is 

}}{max{min
max,min,,01min iImILtni
eTAT

iiii ≤≤≤≤≤≤
=  (5.9) 

where L is a constant configured in the CLP model.  

5.5.3 Experimental Results 

We have used the ISCAS’89 benchmarks as cores for the SoC designs 
to our experiments. Table 5.1 shows the experimental results for five 
different SoC designs. The number of cores composing each 
generated SoC is listed in the first column of Table 5.1. For each SoC 
design, test patterns are generated for all cores in the design, and 
the switching activities are calculated for each test pattern. We used 
the approach in [Sam06] to obtain the power consumption values, 
taking the switching activities of test patterns as inputs. HotSpot is 
used to find the total number of partitioning schemes for each SoC 
design, which are listed in the second column of Table 5.1. The 
imposed temperature limit is 90°C. 
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We used the developed CLP formulation to generate the optimal 

test schedule by selecting the number of partitions and the start time 
for each test. The third column of Table 5.1 is the problem size of 
each design, which is the number of partitioning schemes multiplied 
by the number of cores. The total test time of the optimal solution for 
each design is shown in the fourth column and the optimization time 
is listed in the fifth column. 

When the test schedule for a design has been generated, we run 
the HotSpot temperature simulator for the generated test schedules 
to check if the temperatures of the cores go over the upper limit. The 
simulation results confirm that the temperatures of cores are below 
the upper limit. 

Table 5.1: Experimental results for five different designs 

# Cores # Partitioning 
Schemes Problem Size TAT  

(# Clock Cycles) CPU Time (s) 

4 7 28 2775 2.141 

12 8 96 8306 35.359 

24 20 400 9789 47.500 

36 20 720 10017 120.219 

48 20 960 10941 881.766 
 

We also did experiments to see how the optimization result is 
impacted by the given total number of partitioning schemes. In Table 
5.2, four different number of partitioning schemes have been given to 
the optimization algorithm for the same design consisting of 6 cores. 
The optimal solution is the same in the three cases where the total 
number of partitioning schemes is 7, 10, and 15, respectively. In the 
case that the number of partitioning schemes is only 5, the total test 
time of the obtained solution is larger than those in the other three 
cases. This experiment shows that, for this design, the best solution 
does not correspond to the partitioning scheme found among the five 
alternative partitioning schemes, as indicated in the first line in 
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Table 5.2. If we introduce 2 additional alternative partitioning 
schemes (see the second row of Table 5.2), a better solution is found. 
However, more additional alternatives, up to 15, do not lead to better 
solutions. The reason why a larger TAT can occur with a partitioning 
scheme that has less number of partitions is interpreted as follows. 
When a test set is partitioned into more test sub-sequences, the test 
sub-sequences as well as the cooling periods are shorter. Although 
the time overhead in this case is larger, the entire TAT a test can be 
still shorter. During test scheduling, various partitioning schemes 
are explored and the optimal solution does not necessarily 
correspond to the partitioning schemes with minimal number of 
partitions. 

Table 5.2: Experimental results for one design  
with different number of partitioning schemes 

# Cores # Partitioning 
Schemes Problem Size TAT 

(# Clock Cycles) CPU Time (s) 

5 30 9574 10.156 

7 42 9570 26.031 

10 60 9570 31.875 
6 

15 90 9570 39.797 

5.6 Heuristic-based Approach 
As demonstrated previously, although using the CLP-based approach 
can provide the optimal solution and also can reduce the complexity 
of the test controller, the efficiency of the test schedules are limited 
due to the restrictions on the regularity of test sub-sequences and 
cooling periods. Alternatively, we assume the test sub-sequences and 
cooling periods can have arbitrary length and propose a heuristic-
based approach to solve the thermal-aware test schedule problem. 
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5.6.1 Motivational Example 

We have proposed a heuristic to do the test scheduling with test set 
repartitioning and interleaving. Since the order in which the test 
sets are considered for test scheduling has a large impact on the final 
test schedule, we construct an iterative algorithm to obtain a good 
scheduling consideration order (SCO) for all partitioned test sets, 
and thereafter schedule the test sub-sequences according to the 
obtained SCO. 

Figure 5.7 shows a simple example illustrating the impact of the 
scheduling consideration order on the test schedule of three test sets, 
TS1, TS2, and TS3, each of which is partitioned into two test sub-
sequences. Figure 5.7(a) and Figure 5.7(b) depict the test schedules 
when the test sets are considered for scheduling in the order of {TS1, 
TS2, TS3} and {TS3, TS2, TS1} respectively. It is obvious that using 
the second SCO results in a shorter test schedule. Note that in this 
example the test sets are scheduled to the earliest available time 
moments. 

It should also be noted that the scheduling consideration order 
refers to the precedence of partitioned test sets to be considered for 
scheduling. However, when a test set is taken into account for 
scheduling, we do not schedule all the test sub-sequences of this test 
set at one time. Instead, we always take the first unscheduled test 
sub-sequence of the currently considered test set for scheduling, and 
thereafter take the first unscheduled test sub-sequence of the next 
test set into account. Thus, in this example, the overall scheduling 
consideration order (OSCO) for all test sub-sequences of all test sets 
is {TS11, TS21, TS31, TS12, TS22, TS32} and {TS31, TS21, TS11, TS32, 
TS22, TS12}, for the case of Figure 5.7(a) and Figure 5.7(b) 
respectively. The main concern of not scheduling all test sub-
sequences of one test set at one time is to avoid generating low 
efficient test schedules due to unnecessarily long cooling periods, 
inappropriate partition length, and inefficient test-set interleaving. 
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(a) Test schedule with the SCO {TS1, TS2, TS3} 
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(b) Test schedule with the SCO {TS3, TS2, TS1} 

Figure 5.7: Illustration of SCO affecting test schedule length 

5.6.2 Heuristic 

The basic idea of the proposed heuristic is to iteratively construct a 
queue that finally consists of all partitioned test sets in a particular 
order. The pseudo-code of the proposed heuristic (ALG. 5.1) is 
depicted in Figure 5.8, denoted with. Note that, inside the heuristic, 
a scheduling algorithm (ALG. 5.2) is invoked, and its pseudo-code is 
given in Figure 5.11. 
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ALG. 5.1: HEURISTIC for test scheduling 
1: Set of test sets :: U := {TSi | i = 1, 2, … , n}; 
2: Queue of test sets :: Q := ∅; 
3: Queue of test sets :: Qbest := ∅; 
4: for (∀TS ∈ U) loop    /* outer loop */ 
5: ηmax := 0; 
6: Q := Qbest; 
7: for (∀POS in Q) loop    /* inner loop */ 
8:  Insert(TS, Q, POS); 
9:  Schedcur = SCHEDULE(Q); 
10:  η = CalcEfficiency(Schedcur); 
11:  if (η > ηmax) then 
12:   ηmax := η; 
13:   TSbest := TS; 
14:   Qbest := Q; 
15:  end if 
16:  Remove(TS, Q); 
17: end for 
18: Remove(TSbest, U); 
19: end for 
20: SCHEDULE(Qbest); 

 
Figure 5.8: Pseudo-code of the heuristic for test scheduling 

Given the set of all test sets U = {TSi | i = 1, 2, ... , n} (line 1), the 
heuristic iteratively selects test sets and inserts them into a queue Q 
(lines 2 to 19). The positions of the test sets in Q represent the order 
in which the test sets are considered for test scheduling (SCO). The 
closer to the queue head, the earlier to be considered. 

The heuristic starts with an empty queue Q = Ø (line 2). At each 
iteration step (lines 5 to 18), the objective is to select one test set TSk 
from U, and insert it into Q at a certain position POS, such that the 
|Q| + 1 test sets are put in a good order while the precedence 
between test sets excluding the newly inserted one remains 
unchanged. The algorithm terminates when all test sets in U have 
been moved into Q, and thereafter it schedules the partitioned test 
sets according to the SCO obtained in Qbest (line 20). 
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For each iteration step, there are |U| alternative test sets for 

selection, where |U| is the current number of test sets remaining in 
U. For each selected test set, there are |Q| + 1 alternative positions 
which the selected test set can be inserted to, where |Q| is the 
current number of test sets that have already been inserted into Q 
throughout previous iteration steps. Thus, at one iteration step, 
there are |U| × (|Q| + 1) alternative solutions, in which a selected 
test set is associated with an insertion position in Q. 

The example depicted in Figure 5.9 illustrates a situation in which 
3 test sets have been inserted in Q (TS3, TS8, and TS6) and 5 test 
sets remain in U (TS1, TS2, TS4, TS5, and TS7). For each test set in 
U, there are 4 positions for insertion, which the arrows point to. In 
this example, there are 20 alternative solutions for consideration. 
Note that each test set in the example has already been partitioned 
into a number of test sub-sequences, and the scheduling algorithm 
takes every individual test sub-sequence for scheduling (see ALG. 
5.2). 

Q

U

TS3 TS8 TS6

TS1 TS2 TS5 TS7TS4

 
Figure 5.9: An example illustrating alternative solutions 

We evaluate the obtained scheduling consideration order by the 
efficiency of the generated partial test schedule, the higher efficiency, 
the better the SCO. The partial test schedule is generated (line 9) by 
the scheduling algorithm ALG. 5.2. Based on the test-schedule 
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efficiency defined below, we explore different solutions and make 
decisions according to the efficiency of the generated partial test 
schedules. 

We define the efficiency of a test schedule, denoted with η, as 
follows. Suppose x is the size of the area covered by all scheduled test 
sub-sequences, and y is the total area size constrained by the bus 
bandwidth limit and the completion time moment of the test 
schedule. The efficiency of the test schedule is the value of x / y. A 
larger value of η indicates a better test schedule.  

Figure 5.10 illustrates how the efficiency of a test schedule is 
calculated. In the example, a test schedule is given as the area 
covered by slashed lines. x is the size of the area covered by the 
actual test schedule, and y is the size of the area covered by the large 
rectangle surrounded by thick lines. 

By calculating and comparing the efficiencies of the alternative 
partial test schedules (line 10), the best solution that obtains the 
maximum efficiency is chosen. The maximum efficiency, the chosen 
test set, and the entire queue, are recorded in ηmax, TSbest, Qbest, 
respectively (lines 12 to 14). The iteration terminates when all test 
sets in U have been moved into Q. The obtained Qbest consists of all 
test sets in the best SCO, in which the test sets will be considered for 
scheduling (line 20). 
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Figure 5.10: Calculation of test schedule efficiency 

The algorithm (ALG. 5.2) that schedules a queue of test sets is 
depicted in Figure 5.11, from lines 21 to 34. Given a queue Q of test 
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sets, the scheduling algorithm takes the first unscheduled test sub-
sequence from every test set for scheduling, in a round-robin fashion. 
More concretely, the strategy of the scheduling algorithm is 
explained as follows. According to the SCO given in Q, the scheduler 
considers one test set at a time for scheduling. When considering 
each test set, the scheduler only schedules the first unscheduled test 
sub-sequence, and thereafter turns to consider the next test set. 
When one round is finished for all the test sets in Q, the scheduler 
takes the next round for consideration of scheduling test sub-
sequences of all the test sets, in the same SCO. This procedure 
repeats until all test sub-sequences are scheduled. 

ALG. 5.2: SCHEDULE(Queue of test sets :: Q) 
21: for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop    /* outer loop */ 
22:  for (q = 1 to |Q|) loop    /* inner loop */ 
23:   Choose the q-th test set TSq in Q for scheduling; 
24:   if (TSq = ∅) then 
25:    Skip TSq and continue with the next test set; 
26:   else 
27:    Schedule the first unscheduled test sub-sequence TSq,j  
    to the earliest available time moment  
     tq,j := GetFinishingTime(TSq,j-1) + dq,j  
    where dq := InitialCoolingSpan(TSq); 
28:    if (Failed to schedule TSq,j to tq,j) then 
29:     Estimate the completion time te of the entire test set TSq by  
     either postponing TSq,j or repartitioning all the unscheduled  
     test sub-sequences in TSq; 
30:     Choose the solution that has a smaller te and schedule the  
     first unscheduled test sub-sequence; 
31:    end if 
32:   end if-then-else 
33:  end for 
34: end for 

 
Figure 5.11: Pseudo-code of the scheduling algorithm 

Figure 5.12 illustrates how the scheduling algorithm works with 
an example of three test sets, TS2, TS1, and TS3, sorted with the SCO 
of {TS2, TS1, TS3} in Q. The test set TS2 has been initially partitioned 
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into three test sub-sequences, TS21, TS22, and TS23. The rest two test 
sets, TS1 and TS3, are both partitioned into four test sub-sequences. 
The OSCO of all test sub-sequences is {TS21, TS11, TS31, TS22, TS12, 
TS32, TS23, TS13, TS33, TS14, TS34}, as indicated by the dashed 
arrows. 

Q

TS1 TS11 TS12 TS13 TS14

TS2 TS21 TS22 TS23

TS3 TS31 TS32 TS33 TS34

Queue 
Head

Queue 
Tail

SC
O

 
Figure 5.12: Illustration of the scheduling algorithm ALG. 5.2 

In the given pseudo-code depicted in Figure 5.11, the scheduling 
algorithm is constructed with two nested loops. The outer loop (lines 
21 to 34) selects the first unscheduled test sub-sequence for the 
current test set, while the inner loop (lines 22 to 33) selects a test set 
for scheduling according the its position in Q. The algorithm 
terminates when all the test sub-sequences have been scheduled. 
Note that the function GetNumOfPar(TS) in line 21 takes a test set 
TS as an input, and returns the number of test sub-sequences that 
the test set has been partitioned into. 

When scheduling a test sub-sequence TSq,j (the j-th test sub-
sequence of the q-th test set in Q, see line 23 to 27), the scheduler 
tries to schedule it to the earliest available time moment tq,j (line 27). 
The earliest time moment that a test sub-sequence can be scheduled 
to is the time moment when the required minimum cooling span 
succeeding the precedent test sub-sequence has finished. The 
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minimum cooling span dq,j is given by the initial partitioning scheme 
for the test set TSq (line 27). 

Although we would like to schedule a test sub-sequence to the 
earliest available time moment, there can be constraints that make 
this impossible. Such a constraint is the availability of test-bus 
bandwidth to be allocated for the required time duration in order to 
complete the entire test sub-sequence. In Figure 5.13, for example, it 
is impossible to schedule the test sub-sequence TSq,j at time moment 
tq,j, due to the insufficient space between the bandwidth limit BL and 
the area occupied by scheduled test sub-sequences (depicted with 
slashed lines). Actually, in this example, the earliest available time 
moment that TSq,j can be scheduled at is tp. 

 

BL

BW

0 Timetq,j

TSq,j

tp

Figure 5.13: An example of scheduling constraints 

When encountering such scheduling constraints, two alternatives 
can be considered. One is to postpone the entire test sub-sequence to 
a time moment that it can be successfully scheduled to. The other 
alternative is to split the test sub-sequence into smaller pieces such 
that the first piece can be squeezed into the available area. Figure 
5.14 illustrates both solutions for the same example given in Figure 
5.13, where the entire test sub-sequence TSq,j cannot be scheduled at 
time moment tq,j. In Figure 5.14(a), the solution is to postpone the 
entire test sub-sequence TSq,j to time moment tp, which means 
squeezing TSq,j into the dark grey rectangular area A1 that the 
dashed arrow points to. Figure 5.14(b) illustrates the alternative 
solution, where TSq,j is split into two pieces which can fit the dark 
grey rectangular areas S1 and S2, respectively. 
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(a) Postponing the entire test sub-sequence 
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(b) Splitting the test sub-sequence into smaller pieces 

Figure 5.14: Two solutions to schedule a test sub-sequence 

Both solutions can result in long test schedules. The first solution, 
which postpones the entire test sub-sequence, also delays the 
succeeding test sub-sequences. This can results in delaying the 
completion of the entire test set. As illustrated in Figure 5.14(a), the 
succeeding test sub-sequence TSq,j+1 is delayed and finishes at time 
moment te. The second solution, which splits the test sub-sequence 
into smaller pieces, also generates more partitions and introduces 
more time overheads (TO). In order to avoid these drawbacks, we 
repartition all the unscheduled test sub-sequences from the same 
test set, such that the total number of test sub-sequences will not 
increase dramatically due to the splitting. This is explained in Figure 
5.14(b). After splitting TSq,j into two pieces which fits in S1 and S2 
respectively, we also repartition the succeeding test sub-sequence 
TSq,j+1 such that its two pieces fit into S3 and S4. Note that due to the 
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splitting of TSq,j and TSq,j+1, time overheads (denoted with TO) are 
added between the repartitioned test sub-sequences. 

As demonstrated above, both solutions can be adopted when 
scheduling a test sub-sequence. In order to decide which solution 
should be employed, we estimate the completion time te for the entire 
test set (line 29), by assuming that all the unscheduled test sub-
sequences of this test set can be scheduled to their earliest available 
time moments. The solution that results in an earlier estimated 
completion time is chosen (line 30). In the example given in Figure 
5.14, the second solution should be chosen, since it leads to a smaller 
te. The scheduling algorithm terminates when all test sub-sequences 
of all test sets in Q have been scheduled (line 34).  

It should be noted that by scheduling test sub-sequences in the 
demonstrated manner, the test sets have been interleaved and the 
temperatures of cores under test will not be higher than the 
temperature limit. This is because that the test sub-sequences are 
not longer than those in the initial partitioning schemes, and the 
cooling periods are not shorter than those in the initial partitioning 
schemes. 

5.6.3 Experimental Results 

We have done experiments using SoC designs with randomly 
selected cores in the ISCAS’89 benchmarks. The designs for our 
experiments have 12 to 78 cores. With the first group of experiments, 
we demonstrate the impact on the TAT due to various degrees of 
flexibility of test set partitioning schemes. 

We compare our heuristic with other two scheduling algorithms. 
The first algorithm employs a fixed order in which all the test sets 
are sorted decreasingly according to the length of test sets in their 
initial partitioning schemes. Then it schedules the entire test set to 
the earliest available time moment, according to the obtained SCO. 
When scheduling the test sub-sequences of a test set, it keeps the 
regularity of the partitions and cooling periods given by the initial 
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partitioning scheme. For the sake of convenience, we call the first 
algorithm “equal-length scheduling algorithm”. 

The second algorithm also employs the fixed order according to the 
lengths of partitioned test sets (longest first). However, different 
from the equal-length scheduling algorithm, it schedules a test set in 
two phases. In the first phase, it schedules only the first partition of 
all test sets, according to the obtained SCO. This is due to the fact 
that the first test sub-sequence is usually much longer than the other 
ones of the same test set in the initial partitioning scheme (see 
Figure 5.6). Then, in the second phase, it schedules all the remaining 
test sub-sequences of every test set, according to the same SCO. 
Similar to the first algorithm, it schedules test sets to the earliest 
available time moment. When scheduling the test sub-sequences in 
the second phase, it keeps the regularity of all test partitions and 
cooling periods given by the initial partitioning scheme, and the first 
cooling period after the first test sub-sequence may not be shorter 
than that in the initial partitioning scheme. It can be seen that by 
separating the scheduling of a test set into two phases, the 
restriction on partitioning regularity is slightly relaxed, thus this 
algorithm has higher flexibility on test set partitioning schemes than 
the equal-length partitioning algorithm. We call the second 
scheduling algorithm “two-phase scheduling algorithm”. 

Compared to the equal-length scheduling and two-phase 
scheduling algorithm, our heuristic has the highest flexibility on test 
set partitioning schemes, since it allows repartitioning test sets and 
allows arbitrarily increasing cooling periods during the scheduling. 

Experimental results regarding the first group of experiments are 
shown in Table 5.3. The first column in the table lists the number of 
cores used in the designs. Columns 2, 4, and 6 show the test 
application times of the generated test schedules for the 
corresponding designs, by using the equal-length scheduling 
algorithm, the two-phase scheduling algorithm, and our heuristic, 
respectively. Columns 3, 5, and 7 list the CPU times for executing 
the corresponding algorithms. Columns 8 and 9 show the percentage 
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of TAT reduction by using our heuristic, against using the equal-
length scheduling algorithm and the two-phase scheduling 
algorithm, respectively. It can be seen that by eliminating 
restrictions on the regularity of partitioning schemes, the TAT is in 
average 30.6% and 20.5% shorter than that of the equal-length 
scheduling algorithm and the two-phase scheduling algorithm, 
respectively. 

Table 5.3: Our heuristic vs. equal-length scheduling algorithm, 
and vs. two-phase scheduling algorithm (to demonstrate the 

impact of eliminating the regularity restrictions) 

Equal-Length Two-Phase Our Heuristic TAT Gain (%) 

# Cores 
TAT CPU 

Time (s) TAT CPU 
Time (s) TAT CPU 

Time (s) 

from 
Equal-
Length 

from 
Two-
Phase 

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6% 

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3% 

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1% 

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7% 

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6% 

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9% 

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2% 

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6% 

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8% 

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9% 

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9% 

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2% 

AVG n/a n/a n/a n/a n/a n/a 30.6% 20.5% 
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The second group of experiments has been set up in order to see 

how efficient the test schedules are, which are generated by our 
heuristic. We compare our heuristic with other two algorithms, a 
straight forward algorithm (SF) and the simulated annealing based 
algorithm (SA). In this group of experiments, we assume the same 
flexibility for all the three algorithms, i.e. all of them employ flexible 
partitioning of test sets and arbitrary length of cooling periods. 

All the three algorithms employ the same scheduling algorithm 
(ALG. 5.2). The only difference between them is how they generate 
the SCO for all test sets. The straight forward algorithm sorts all test 
sets decreasingly by the lengths of the entire test sets with the initial 
partitioning schemes. According to the obtained SCO, the scheduler 
chooses each test set and schedules the first unscheduled test sub-
sequences to the earliest available time moment, until all test sub-
sequences of every test set are scheduled. 

The simulated annealing algorithm employs the same scheduling 
algorithm ALG. 2 to schedule the test sub-sequences, while the SCO 
of test sets is generated based on a simulated annealing strategy. 
When a randomly generated SCO is obtained, the scheduler is 
invoked to schedule the test sub-sequences according to the current 
SCO. During iterations, the best SCO that leads to the shortest test 
schedule is recorded and the algorithm returns this recorded solution 
when the stopping criterion is met. 

The experimental results are listed in Table 5.4. Column 1 lists the 
number of cores used in the designs for experiments. Column 2 
shows the TAT of the generated test schedule when the straight 
forward algorithm is employed, and column 3 lists the corresponding 
CPU times to obtain the test schedules. Similarly, columns 4 and 5 
are the TAT and CPU times for our heuristic, respectively (which are 
the same as the columns 6 and 7 in Table 5.3). Columns 6 and 7 list 
the TAT and execution times for the simulated annealing algorithm. 
In columns 7 and 8, the percentages of reduced TAT of the test 
schedules generated by our heuristic are listed, compared to those 
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generated by the straight forward algorithm and the simulated 
annealing algorithm, respectively. 

Table 5.4: Our heuristic vs. straight-forward algorithm, and 
vs. simulated annealing algorithm (to demonstrate the 
efficiency of test schedules generated by our heuristic) 

SF Our Heuristic SA TAT Gain (%) 
# Cores 

TAT CPU 
Time (s) TAT CPU 

Time (s) TAT CPU 
Time (s) from SF from SA 

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6% 

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5% 

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8% 

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5% 

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8% 

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3% 

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7% 

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9% 

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3% 

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1% 

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3% 

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2% 

AVG n/a n/a n/a n/a n/a n/a 13.4% -2.9% 
 

The comparison between our heuristic and the straight forward 
algorithm aims to show how much TAT can be reduced by a more 
advanced test scheduling technique. On the other hand, the 
comparison between our heuristic and the simulated annealing 
algorithm is to find out how close the generated test schedule is to a 
solution which is assumed to be close to the optimal one. In order to 
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generate a close-to-optimal solution, the SA algorithm has been run 
for very long optimization times. 

It can be seen that, when using our heuristic, the TAT is in 
average 13.4% shorter than those using the straight forward 
algorithm. The TAT is in average 2.9% longer than those using the 
simulated annealing algorithm which however needs much longer 
optimization times. 

5.7 Conclusions 
In this chapter, we have presented optimization approaches to 
minimize the total test time for core-based systems which have a 
temperature upper limit and a bus bandwidth limit. Based on the 
proposed test set partitioning and interleaving technique, we used 
constraint logic programming to solve the optimization problem and 
obtained the optimal solution. Nevertheless, the optimization times 
for large designs are excessively long. Therefore, a heuristic 
approach is also proposed. 

The proposed heuristic generates thermal-safe test schedules and 
minimizes the test application time. Based on the initial partitioning 
scheme generated by a temperature simulation guided procedure, 
the heuristic utilizes the flexibility of changing the length of test sub-
sequences and the cooling periods between test sub-sequences, and 
interleaves them to generate efficient test schedules. Experimental 
results have shown the efficiency of the presented approaches. 
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Chapter 6 
 Conclusions and 

Future Work 

This chapter concludes the thesis and discusses possible directions 
for future work. 

6.1 Conclusions 
The aim of the work presented in this thesis is to reduce the 
electronic testing cost. The major contribution of this thesis is that it 
proposes three test scheduling approaches to minimize the TAT with 
different considerations, including defect probability, power 
consumption, and temperature. 

The first approach we have proposed is the defect-probability 
driven test scheduling technique. It employs the AOFF approach and 
solves the test time minimization problem in a high-volume 
production test environment. A hybrid BIST technique and its 
corresponding test architecture have also been assumed. We have 
considered the TAT of such a test process as a random variable and 
have defined the ETAT as the mathematical expectation of the TAT. 
The proposed heuristic to minimize the ETAT.  

The second technique proposed in this thesis is a power-
constrained test scheduling approach. The main purpose of 
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introducing a power constraint at test scheduling is to prevent power 
and thermal related problems during test. We have considered the 
test scheduling problem under a given power constraint as a 
rectangle packing problem. In order to improve the efficiency of test 
schedules, we have introduced test set partitioning in the test 
scheduling approach. 

Finally we have prepared a test scheduling approach with 
temperature considerations. The presented approach has assumed 
that limits on temperature of individual cores and a limit on the test-
bus bandwidth are given. A test partitioning technique has been 
proposed in order to prevent overheating the cores by keeping tests 
periodically on and off with cooling periods inserted in between. 
Further, a test set interleaving technique has been proposed to 
improve the efficiency of the test schedules. Based on the test set 
partitioning and interleaving techniques, a CLP-based solution and a 
heuristic algorithm have been proposed to solve the test time 
minimization problem under the given temperature and bandwidth 
constraints.  

6.2 Future Work 
In the third approach, we have assumed that the heat transfer 
between the adjacent cores is negligible and therefore we ignore the 
temperature influences between the adjacent cores. However, this 
assumption has strongly dependency on the packaging configuration 
and the technology used in the manufacturing process. New process 
technologies and packaging configuration can change the situation of 
lateral heat flow in new generations of integrated circuits. Thus, we 
can extend our work on the thermal-aware test scheduling by 
considering the variation of the temperature dependencies between 
cores.  

In a long term, the test problems related to the process variation 
can be a possible direction for future work. When the CMOS process 
moves into sub-40 nanometer regime, the unreliability of the circuits 
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becomes large and unavoidable, and the testing of such circuits 
becomes very difficult since many fault models are not applicable any 
more. Power- and temperature-aware testing concerning the effects 
of process variation are very interesting topics for future work. 
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Appendix A 
 Abbreviations 

AMBA Advanced Microprocessor Bus Architecture 
AOFF Abort-on-First-Fail 
ATE Automated Test Equipment 
BIST Built-In Self-Test 
CDP Core Defect Probability 
CLP Constraint Logic Programming 
CUT Core Under Test 
DFT Design for Test 
DSP Digital Signal Processor 
DTP Deterministic Test Pattern 
DTS Deterministic Test Sub-sequence 
DUT Device Under Test 
EPATA Expected Partial Test Application Time 
ETAT Expected Test Application Time 
IFC Incremental Fault Coverage 
IP Intellectual Property 
ITFP Individual Test Failure Probability 
ITSP Individual Test Success Probability 
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LFSR Linear Feedback Shift Register 
MCM Multi-Chip Module 
MUX Multiplexer 
OSCO Overall Scheduling Consideration Order 
PTAT Partial Test Application Time 
PTP Pseudorandom Test Pattern 
PTS Pseudorandom Test Sub-sequence 
PTTM Possible Test Termination Moment 
RP Rectangle Packing 
RT Register-Transfer 
SA Simulated Annealing 
SCO Scheduling Consideration Order 
SDP System Defect Probability 
SoC System-on-Chip 
STUMPS Self-Testing Using MISR and Parallel SRSG 
TAM Test Access Mechanism 
TAT Test Application Time 
TFP Test Failing Probability 
TG Test Generation 
TP Test Pattern 
TPP Test Passing Probability 
TS Test Set/Test Sequence 
TSP Test Set Partitioning 
UDL User Defined Logic 
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Appendix B 
 Explanations 

This appendix gives detailed explanations to Equation (3.8) and 
Equation (3.9). 
Definition 1: Test set and test patterns. 
Suppose that a test has m test patterns to be applied in total, which 
can be deterministic test patterns or pseudorandom test patterns. 
We denote a test set with TS, and the j-th test pattern in TS with vj. 

{ } { mjj vvvvmjvTS ,,,,,1 21 LL=≤≤= }   

Definition 2: Incremental fault coverage of a test pattern. 
The incremental fault coverage of a test pattern v, denoted with 
IFC(v), is the ratio of the faults that can be detected by the test 
pattern v but cannot be detected by any preceding test patterns in 
the same test set, against the total number of faults that can be 
detected by the entire test set. Suppose that a test set TS can detect 
N faults in total, and the j-th test pattern vj in TS can detect nj faults 
that cannot be detected by any of the preceding test patterns 
{v1, v2, ... , vj–1} in TS. Let nj be the number of faults that can be 
detected by the j-th test pattern vj in TS but cannot not be detected 
by any preceding test patterns in TS, and N be the number of faults 
that can be detected by the test patterns in TS. The IFC of vj is 
defined as follows. 
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Definition 3: Failure and success of a test pattern. 
We define two random events regarding a test pattern: the failure of 
a test pattern and the success of a test pattern. The failure of the j-th 
(1 ≤ j ≤ m) test pattern, denoted with Fj, is defined as the test pattern 
detecting at least one fault. This implies that the test is aborted 
immediately. The success of the j-th (1 ≤ j ≤ m) test pattern, denoted 
with ¬Fj, is defined as the test pattern detecting no faults. This 
implies that the test is continued and the next test pattern is going 
to be applied. Obviously failure and success of a test pattern are 
complement events. Let D be the random event that a core under test 
is defected, then defect probability of a core is DP = p[D]. 
Definition 4: Conditional probability of the failure of the currently 
applied test pattern. 
Suppose that the j-th test pattern can detect nj incremental faults 
(1 ≤ j ≤ m). The following equation shows how to calculate the 
conditional probability that the j-th test pattern vj detects at least 
one fault provided that the preceding test patterns in the same test 
set did not detect any fault and the core is indeed defected.  
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It should be noted that only incremental faults are counted in this 
probability calculation. This is because that those faults covered by 
both vj and any preceding test patterns have no chance to be detected 
by vj in the real test process. According to the condition given in the 
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formula, those faults should have been detected by preceding test 
patterns before they were detected by vj. 
Definition 5: Termination and success of a test. 
The termination of a test at the j-th test pattern, denoted with Aj, is 
defined as the random event that the test is terminated immediately 
after the j-th test pattern vj has detected at least one fault. The 
success of a test at the j-th test pattern, denoted with Pj, is defined as 
the random event that the test is continued after the j-th test pattern 
vj is applied without detecting any faults.  

According to the definitions, Aj is equivalent to the intersection of 
the following events: the j-th test pattern detects at least one fault, 
the preceding test patterns did not detect any faults, and the core is 
actually defected. Similarly, Pj is equivalent to the intersection of two 
events: one is an conjunction of such events that all the j applied test 
patterns did not detect any faults and the core is actually defected, 
and the other is that the core is actually not defected. Aj and Pj are 
given by 
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Definition 6: Suppose that a test employs the abort-on-first-fail 
(AOFF) approach and the test can only be terminated when a test 
pattern has been applied and the test response or signature has been 
analyzed. Let p[Aj] be the probability of the test being aborted at a 
certain test pattern and let p[Pj] be the probability of the test 
succeeding at a certain test pattern. Then, p[Aj] and p[Pj] are given 
by the following two equations respectively. 
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The above two equations are obtained by using a mathematical 
induction, given as follows. 

Step 1: (Observations) 

 
[ ] [ ] [ ] [ ]

( ) DPvIFC

DP
N
nDpDFpDFpAp

×=

×=×=∩=

1

1
111 |

  

 

[ ] [ ] [ ] [ ]( ) [ ]

DP
N
n

DpDFpDpDFpDFp

×⎟
⎠
⎞

⎜
⎝
⎛ −=

×−=×¬=∩¬

1

111

1

|1|
  

 

[ ] ( )[ ] [ ] [ ]

( )

( ) DPvIFC

DP
N
nDPDP

N
n

DpDFpDDFpPp

×−=

×−=−+×⎟
⎠
⎞

⎜
⎝
⎛ −=

¬+∩¬=¬∪∩¬=

1

11

111

1

111   

Step 2: (Observations) 
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Step 3: (Observations) 
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Step (j – 1): Assume that 
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Step j: According to the assumptions given in Step (j – 1), we have 
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