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Abstract 1

High temperature has become a technological barrier to the 
testing of high performance systems-on-chip, especially 
when deep submicron technologies are employed. In order 
to reduce test time while keeping the temperature of the 
cores under test within a safe range, thermal-aware test 
scheduling techniques are required. In this paper, we 
address the test time minimization problem as how to 
generate the shortest test schedule such that the temperature 
limits of individual cores and the limit on the test-bus 
bandwidth are satisfied. In order to avoid overheating 
during the test, we partition test sets into shorter test sub-
sequences and add cooling periods in between, such that 
continuously applying a test sub-sequence will not drive the 
core temperature going beyond the limit. Further more, 
based on the test partitioning scheme, we interleave the test 
sub-sequences from different test sets in such a manner that 
a cooling period reserved for one core is utilized for the test 
transportation and application of another core. We have 
proposed a heuristic to minimize the test application time by 
exploring alternative test partitioning and interleaving 
schemes with variable length of test sub-sequences and 
cooling periods. Experimental results have shown the 
efficiency of the proposed heuristic. 

1. Introduction and related work 
Production of integrated circuits has moved into the deep 
submicron technology regime. Scaling of process 
technology has enabled dramatically increasing the number 
of transistors, and therefore improving the performance of 
electronic chips. However, the rapid growth of integration 
density has posed critical challenges to the design and test 
of electronic systems, one of which is the power and 
thermal issue [1], [2], [3], [4]. High temperature can be 
observed in most high-performance chips due to high power 
density and high heat dissipation. Overheating can decrease 
the carrier mobility of electrons and therefore reduces the 
driving current of CMOS transistors, which consequently 
degrades the circuit performance. The reliability and 
lifespan of integrated circuits also decrease at high 
temperatures. Advanced cooling solutions can partly solve 
the high temperature problem, however they increase the 
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system cost substantially. The thermal issue becomes even 
more severe in the case of electronic system testing than in 
normal functional mode, since testing dissipates more power 
and heat due to a substantial increase of switching activities 
[5], [6]. 

In recent years, a core based system-on-chip (SoC) 
design methodology has been employed to reduce design 
complexity by integrating pre-designed and pre-verified 
intellectual property cores. Although the cost of designing 
and manufacturing SoCs has been reduced, the testing cost 
rises because larger quantities of test data are required and 
longer test times are usually needed. In order to reduce the 
testing cost, research efforts have been devoted to 
developing advanced test architectures and approaches to 
test resource allocation and test scheduling [7], [8], [9], [10], 
[11], [12], [13], [14], [15]. However, in order to solve the 
problem related to the testing of new generations of SoCs, 
novel temperature aware techniques have to be developed. 

Recently, thermal-aware testing has attracted many 
research interests. Liu et al. proposed a technique to evenly 
distribute the generated heat across the chip during tests, 
and therefore avoid high temperature [16]. Rosinger et al. 
proposed an approach to generate thermal-safe test 
schedules with minimized test time by utilizing the core 
adjacency information to drive the test scheduling and 
reduce the temperature stress between cores [17]. In our 
previous work [18], we proposed a test set partitioning and 
interleaving technique, and employed constraint logic 
programming (CLP) to generate thermal-aware test 
schedules with the minimum test application time (TAT). 

In this paper, we assume that, for SoCs composed of 
cores with moderately large sizes, a continuous test will 
raise the temperature of a core towards a limit beyond which 
the core may be damaged. In order to avoid overheating 
during tests, we partition the entire test set into a number of 
test sub-sequences and introduce a cooling period between 
two consecutive test sub-sequences. As the test application 
time substantially increases when long cooling periods are 
introduced, we interleaved different partitioned test sets in 
order to generate a shorter test schedule. An alternative 
solution to the thermal-related problems during test is to 
reduce the clock frequency, but it cannot be applied to some 
types of tests, such as at-speed test, where the clock 
frequency should not be reduced.  

In [18], we restricted the length of test sub-sequences that 
belong to the same test set to be identical. Moreover, we 
also restricted the cooling periods between test sub-



sequences from the same test set to have equal length. The 
main purpose of these restrictions was to keep the size of 
the design space small and, by this, to reduce the 
optimization time, so that the CLP-based algorithm will be 
able to generate the optimal solutions in a reasonable time. 
However, this restriction has resulted in less efficient test 
schedules, and, by that, longer test application times. In this 
paper, we have eliminated this restriction so that both test 
sub-sequences and cooling periods can have arbitrary 
lengths. Since breaking the regularity of test sub-sequences 
and cooling periods dramatically increases the size of 
exploration space, the CLP-based test scheduling approach 
proposed in [18] is not feasible any more, especially for 
practical industrial designs. Therefore, new, low-complexity 
heuristics are needed which are able to produce efficient test 
schedules under the less restricted and more realistic 
assumptions of this paper. 

The rest of this paper is organized as follows. The next 
section presents the assumed basic test architecture. In 
Section 3, a motivational example is given to illustrate the 
thermal-safe test scheduling problem. Section 4 gives the 
problem formulation, and Section 5 demonstrates the overall 
solution strategy to solve the formulated problem. The 
proposed heuristic is illustrated in Section 6, and 
experimental results are presented in Section 7. The paper is 
concluded in Section 8. 

2. Basic test architecture 
We have assumed a test architecture using a test bus to 
transport test data between the tester and the cores under test. 
A tester can be either an external automatic test equipment 
(ATE) or an embedded tester integrated on the chip. Each 
core under test is connected to the test bus with a number of 
dedicated TAM wires. The test patterns, together with a 
generated test schedule, are stored in the tester memory. A 
test controller controls the entire test process according the 
test schedule, sending test patterns to and receiving test 
responses from the corresponding cores through the test bus 
and the TAM wires,. 

An example of the assumed test architecture is depicted 
in Figure 1. In this example, a system of four cores is to be 
tested. An ATE consisting of a test controller and a local 
memory serves as an external tester. The generated test 
patterns and a test schedule are stored in the tester memory. 
When the test starts, the test patterns are transported to the 
cores through a test bus. It should be noted that the ATE can 
be replaced by an embedded tester and the remaining parts 
of the test architecture are still applicable. 

 
Figure 1. An example of the assumed basic test architecture 

3. A motivational example 
When a long sequence of test patterns is continuously 
applied to a core, the temperature of this core may increase 
towards a certain limit beyond which the core will be 
damaged. Therefore, a test has to be stopped when the core 
temperature reaches the limit, and the test can be restarted 
later when the core has been cooled down. Thus, by 
partitioning a test set into shorter test sub-sequences and 
introducing cooling periods between them, we can avoid the 
overheating during test. Figure 2 illustrates a situation in 
which the entire test set is partitioned into four test sub-
sequences, TS1, TS2, TS3, and TS4, and cooling periods are 
introduced between the them. In this way, the temperature 
of the core remains under the imposed temperature limit. 
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Figure 2. An example of test set partitioning 

As we have assumed that a test bus is employed in the 
test architecture, the limit on the test-bus bandwidth 
becomes a constraint to the scheduling of the test sub-
sequences. It is obvious that introducing long cooling 
periods between test sub-sequences can substantially 
increase the test application time. Intuitively, we can reduce 
the TAT by interleaving the partitioned test sets such that 
the cooling periods reserved for a core Ci are utilized to 
transport test data for another core Cj (j ≠ i), and thereafter 
to test the core Cj. By interleaving the partitioned test sets 
belonging to different cores, the test-bus bandwidth is more 
efficiently utilized. Figure 3 gives an example where two 
partitioned test sets are interleaved so that the test time is 
reduced with no need for extra bus bandwidth. 

 
Figure 3. An example of test set interleaving 
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In this paper, we aim to minimize the test application 
time by generating an efficient test schedule which avoids 
violating the temperature limits of individual cores, and, at 
the same time, satisfies the test-bus bandwidth constraint. 
Based on the proposed test set partitioning and interleaving 
technique, we have eliminated the restriction that the 
lengths of test sub-sequences from the same test set should 
be identical. We have also eliminated the restriction that the 
cooling periods between test sub-sequences from the same 
test set should be identical. Thus the TAT can be further 
reduced by finding more elaborate test schedules. 

In this paper, we consider each test sub-sequence as a 
rectangle, with its height representing the required test-bus 
bandwidth and its width representing the test time. Figure 4 
gives a motivational example for our test time minimization 
problem. Suppose that three test sets, TS1, TS2, and TS3, are 
partitioned into 5, 3, and 2 test sub-sequences, respectively. 
Note that the partitioning scheme which determines the 
length of test sub-sequences and cooling periods has 
ensured that the temperature of each core will not violate the 
temperature limit, by using a temperature simulation. Figure 
4(a) shows a feasible test schedule under the regularity 
assumption (identical test sub-sequence length an identical 
cooling periods for each core). In Figure 4(b), an alternative 
test schedule is depicted, where the test sub-sequence and 
the cooling periods can have arbitrary lengths. This example 
shows the possibility to find a shorter test schedule by 
exploring alternative solutions, where the number and 
length of test sub-sequences, the length of cooling periods, 
and the way that the test sub-sequences are interleaved are 
different from those in Figure 4(a). 

 
(a) A feasible test schedule with regular partitioning scheme 

 
(b) An alternative test schedule with  

irregular partitioning scheme 
Figure 4. A motivational example 

 

4. Problem formulation 
Suppose that a system S, consisting of n cores C1, C2, ... , Cn, 
employs the test architecture illustrated in Figure 1. In order 
to test core Ci, a test set TSi consisting of li generated test 
patterns is transported through the test bus and the dedicated 
TAM wires to/from core Ci, utilizing a bus bandwidth Wi. 
The test bus is designed to allow transporting several test 
sets in parallel but has a bandwidth limit BL 
(BL ≥ Wi, i = 1, 2, ... , n). We assume that continuously 
applying test patterns belonging to TSi may cause the 
temperature of core Ci go beyond a certain limit TLi so that 
the core can be damaged. In order to prevent overheating 
during tests, we allow partitioning a test set into a number of 
test sub-sequences and introducing a cooling period 
between two partitioned test sub-sequences, such that no 
test sub-sequence drives the core temperature higher than 
the limit and the core temperature is kept within a safe range. 
The problem that we address in this paper is to generate a 
test schedule for system S such that the test application time 
(TAT) is minimized while the bus bandwidth constraint is 
satisfied and the temperatures of all cores during tests 
remains below the corresponding temperature limits. The 
formal problem formulation is given in Figure 5. 

Input: 
{TSi | i = 1, 2, ... , n},  
{Wi | i = 1, 2, ... , n},  
Test-bus bandwidth limit BL,  
Temperature limit of each individual core {TLi | i = 1, 2, ... , n} 
 
Output: 
Test schedule with the minimized test application time (TAT) 
 
Subject to the following two constraints: 
1. At any time moment t before the test completion, the total amount 
of utilized test-bus bandwidth BW(t) is less than or equal to the 
bandwidth limit BL, i.e. BW(t) := ΣBWi(t) ≤ BL. 
2. At any time moment t before the test completion, the temperature 
TMi(t) of every individual core Ci is less than or equal to the 
corresponding temperature limit TLi, i.e. ∀i, TMi(t) ≤ TLi. 
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Figure 5. Problem formulation 

5. Overall solution strategy 
We have proposed an overall solution strategy to solve the 
formulated problem in two major steps, as illustrated in 
Figure 6. In the first step, we generate an initial partitioning 
scheme for every test set by using temperature simulation 
and the given temperature limits. In the second step, we 
employ the proposed test scheduling algorithm to explore 
alternative test schedules with respect to different 
partitioning and interleaving schemes for the test sets. The 
test sub-sequences are squeezed into a two-dimensional 
plane constrained by the bandwidth limit of the test bus such 
that the test application time is minimized.  
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Figure 6. Illustration of our solution to the formulated problem 

In order to generate thermal-safe partitioning schemes, 
we have used a temperature simulator, HotSpot [4], [22], 
[23], [24], to simulate instantaneous temperatures of 
individual cores during tests. HotSpot assumes a circuit 
packaging configuration widely used in modern IC designs, 
and it computes a compact thermal model [24] based on the 
analysis of three major heat flow paths existing in the 
assumed packaging configuration [23], [24]. Given the 
floorplan of the chip and the power consumption profiles of 
the cores, HotSpot calculates the instantaneous temperatures 
and estimates the steady-state temperatures for each unit. In 
this paper, we assume that the temperature influences 
between cores are negligible, since the heat transfer in the 
vertical direction dominates the transferring of dissipated 
heat. This has been demonstrated in [18] with the results of 
temperature simulation using HotSpot. 

When generating the initial thermal-safe partitioning 
scheme, we have assumed that a test set TSi is started when 
the core is at the ambient temperature TMamb. Then we start 
the temperature simulation, and record the time moment th1 
when the temperature of core Ci reaches the given 
temperature limit TLi. Knowing the latest test pattern that 
has been applied by the time moment th1, we can easily 
obtain the length of the first thermal-safe test sub-sequence 
TSi1 that should be partitioned from the test set TSi. Then the 
temperature simulation continues while the test process on 
core Ci has to be stopped until the temperature goes down to 
a certain degree. It is obvious that a relatively long time is 
needed in order to cool down a core to the ambient 
temperature, as the temperature decreases slowly at a lower 
temperature level (see the dashed curve in Figure 7). 
Moreover, from the temperature simulation results, it is 
observed that the cooling periods are usually much longer 
than the application times of the test sub-sequences, even if 
the cooling periods are stopped at the same temperatures 
that the preceding test sub-sequences are started from. Thus, 
we let the temperature of core Ci go down only until the 
slope of the temperature curve reaches a given value k 1, at 
time moment tc1. At this moment, we have obtained the 
duration of the first cooling period di1 = tc1 – th1. Restarting 

                                                           

Chip Floorplan FLP

1 The value of k can be experimentally set by the designers.

the test process from time moment tc1, we repeat this 
heating-and-cooling procedure throughout the temperature 
simulation until all test patterns belonging to TSi are applied. 
Thus we have generated the initial thermal-safe partitioning 
scheme, where test set TSi is partitioned into m test sub-
sequences {TSij | j = 1, 2, ... , m} and between every two 
consecutive test sub-sequences, the duration of the cooling 
period is {dij | j = 1, 2, ... , m-1}, respectively. Figure 7 
depicts an example of partitioning a test set into four 
thermal-safe test sub-sequences with three cooling periods 
added in between. 

Temperature Simulation 

 
Figure 7. An example of generating initial partitioning scheme 

Once the initial thermal-safe partitioning scheme is 
obtained, the rest of the paper focuses on how to schedule 
all the test sub-sequences such that the test application time 
is minimized under the constraint on the test-bus bandwidth. 
In this paper, since we consider each test sub-sequence as a 
rectangle, the problem of generating a test schedule with 
minimized TAT while satisfying the constraint on the test-
bus bandwidth can be formulated as a rectangular packing 
(RP) problem [19], [20], [21]. However, our test scheduling 
problem is not a classical RP problem, due to the fact that 
the number of test sub-sequences, the length of the sub-
sequences, and the cooling periods are not constant. This 
makes our problem even more difficult to be solved. 

Interleaving test sub-sequences belonging to different test 
sets can introduce time overheads [25], [15], when the test 
controller stops one test and switches to another. Therefore, 
partitioning a test set into more test sub-sequences may lead 
to a longer test application time, since more time overheads 
and more cooling periods are introduced into the test 
schedule. On the other hand, partitioning a test set into more 
test sub-sequences results in a shorter average length of the 
individual test sub-sequences, which in principle can be 
packed in a more compact way and thus lead to shorter test 
application times. Thus, we need a global optimization 
algorithm, in which different numbers and lengths of test 
sub-sequences as well as variant cooling periods are 
explored. We have proposed a heuristic to generate 
optimized test schedules by scheduling test sub-sequences 
with test set repartitioning and interleaving. 
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6. Heuristic for test scheduling 
We have proposed a heuristic to do the test scheduling with 
test set repartitioning and interleaving. Since the order in 
which the test sets are considered for test scheduling has a 
large impact on the final test schedule, we construct an 
iterative algorithm to obtain a good scheduling 
consideration order (SCO) for all partitioned test sets, and 
thereafter schedule the test sub-sequences according to the 
obtained SCO. 

Figure 8 shows a simple example illustrating the impact 
of different scheduling consideration order on the test 
schedule of three test sets, TS1, TS2, and TS3, each of which 
is partitioned into two test sub-sequences. Figure 8(a) and 
Figure 8(b) respectively depicts the test schedule when the 
test sets are considered for scheduling in the order of {TS1, 
TS2, TS3} and {TS3, TS2, TS1}. It is obvious that using the 
second SCO results in a shorter test schedule. Note that in 
this example the test sets are scheduled to the earliest 
available time moments. 

It should also be noted that the scheduling consideration 
order refers to the precedence of partitioned test sets to be 
considered for scheduling. However, when a test set is taken 
into account for scheduling, we do not schedule all the test 
sub-sequences of this test set at one time. Instead, we 
always take the first unscheduled test sub-sequence of the 
currently considered test set for scheduling, and thereafter 
take the first unscheduled test sub-sequence of the next test 
set into account. Thus, in this example, the overall 
scheduling consideration order (OSCO) for all test sub-
sequences of all test sets is {TS11, TS21, TS31, TS12, TS22, TS32} 
and {TS31, TS21, TS11, TS32, TS22, TS12}, for the case of 
Figure 8(a) and Figure 8(b) respectively. The main concern 
of not scheduling all test sub-sequences of one test set at 
one time is to avoid generating low efficient test schedule 
due to unnecessarily long cooling periods, inappropriate 
partition length, and inefficient test-set interleaving. 

 
(a) Test schedule with the SCO {TS1, TS2, TS3} 

 
(b) Test schedule with the SCO {TS3, TS2, TS1} 

Figure 8. Illustration of how SCO affects test schedule length 

The basic idea of the proposed heuristic is to iteratively 
construct a queue that finally consists of all partitioned test 
sets in a particular order. The pseudo-code of the proposed 
heuristic is depicted in Figure 9, denoted with ALG. 1. Note 
that, inside the heuristic, a scheduling algorithm (denoted 
with ALG. 2) is invoked, and its pseudo-code is given in 
Figure 10. 

ALG. 1. HEURISTIC for test scheduling 
01    Set of test sets :: U := {TSi | i = 1, 2, … , n}; 
02    Queue of test sets :: Q := Ø; 
03    Queue of test sets :: Qbest := Ø; 
04    for (∀TS ∈ U) loop    /* outer loop */ 
05        ηmax := 0; 
06        Q := Qbest; 
07        for (∀POS in Q) loop    /* inner loop */ 
08            Insert(TS , Q , POS); 
09            SCHEDULE(Q); 
10            Calculate the efficiency η of the current partial test schedule; 
11            if (η > ηmax) then 
12                ηmax := η; 
13                TSbest := TS; 
14                Qbest := Q; 
15            end if 
16            Remove(TS , Q); 
17        end for 
18        Remove(TSbest , U); 
19    end for 
20    SCHEDULE(Qbest); 

 
Figure 9. Pseudo-code of the heuristic for test scheduling 

ALG. 2. SCHEDULE(Queue of test sets :: Q) 
21    for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop /* outer loop */ 
22        for (q = 1 to |Q|) loop    /* inner loop */ 
23            Choose the q-th test set TSq in Q for scheduling; 
24            if (TSq = Ø) then 
25                Skip TSq and continue with the next test set; 
26            else 
27                Schedule the first unscheduled test sub-sequence TSq,j  
                        to the earliest available time moment  
                                tq,j := GetFinishingTime(TSq,j-1) + dq,j  
                                where dq := InitialCoolingSpan(TSq); 
28                if (FAILED to schedule TSq,j to tq,j) then 
29                    Estimate the completion time te of the entire test set TSq 
                            by either postponing TSq,j or repartitioning all the  
                            unscheduled test sub-sequences in TSq; 
30                    Choose the solution that has a smaller te and  
                            schedule the first unscheduled test sub-sequence; 
31                end if 
32            end if-then-else 
33        end for 
34    end for 

 
Figure 10. Pseudo-code of the scheduling algorithm 

Given a set of all test sets U = {TSi | i = 1, 2, ... , n} (line 
1), the heuristic iteratively selects test sets and inserts them 
into a queue Q (line 2 to 19). The positions of the test sets in 
Q represents the order in which the test sets are considered 
for test scheduling (SCO), the closer to the queue head, the 
earlier to be considered. 

The heuristic starts with an empty queue Q = Ø (line 2). 
At each iteration step (line 5 to 18), the objective is to select 
one test set TSk from U, and insert it into Q at a certain 
position POS, such that the |Q| + 1 test sets are put in a good 
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order while the precedence between test sets excluding the 
newly inserted one remains unchanged. The algorithm 
terminates when all test sets in U have been moved into Q, 
and thereafter it schedules the partitioned test sets according 
to the SCO obtained in Qbest (line 20). 

For each iteration step, there are |U| alternative test sets 
for selection, where |U| is the current number of test sets 
remaining in U. For each selected test set, there are |Q| + 1 
alternative positions which the selected test set can be 
inserted to, where |Q| is the current number of test sets that 
have already been inserted into Q throughout previous 
iteration steps. Thus, at one iteration step, there are 
|U| × (|Q| + 1) alternative solutions, in which a selected test 
set is associated with an insertion position in Q. 

The example depicted in Figure 11 illustrates a situation 
that 3 test sets have been inserted in Q (TS3, TS8, and TS6) 
and 5 test sets remain in U (TS1, TS2, TS4, TS5, and TS7). For 
each test set in U, there are 4 positions for insertion, which 
the arrows point to. In this example, there are 20 alternative 
solutions for consideration. Note that each test set in the 
example has already been partitioned into a number of test 
sub-sequences, and the scheduling algorithm takes every 
individual test sub-sequence for scheduling (see ALG. 2). 

 
Figure 11. An example illustrating alternative solutions 

We evaluate the obtained scheduling consideration order 
by the efficiency of the generated partial test schedule, the 
higher efficiency, the better the SCO. The partial test 
schedule is generated (line 9) by the scheduling algorithm 
ALG. 2. Based on the test-schedule efficiency defined 
below, we explore different solutions and make decisions 
according to the efficiency of the generated partial test 
schedules. 

We define the efficiency of a test schedule, denoted with 
η, as follows. Suppose x is the size of the area covered by all 
scheduled test sub-sequences, and y is the total area size 
constrained by the bus bandwidth limit and the completion 
time moment of the test schedule. The efficiency of the test 
schedule is the value of x / y. The larger value of η 
represents the better test schedule.  

Figure 12 illustrates how the efficiency of a test schedule 
is calculated. In the example, a test schedule is given as the 
area covered by slashed lines. By calculating x as the size of 
the area covered by the actual test schedule, and y as the size 
of the area covered by the large rectangle surrounded by 
thick lines, we get η = x / y. 

By calculating and comparing the efficiencies of the 
alternative partial test schedules (line 10), the best solution 
that obtains the maximum efficiency is chosen. The 
maximum efficiency, the chosen test set, and the entire 
queue, are recorded in ηmax, TSbest, Qbest, respectively (line 12 
to 14). The iteration terminates when all test sets in U have 
been moved into Q. The obtained Qbest consists of all test 
sets in the best SCO, in which the test sets will be 
considered for scheduling (line 20). 
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Figure 12. Illustration of calculating test schedule efficiency 

The algorithm (ALG. 2) that schedules a queue of test 
sets is depicted in Figure 10, from line 21 to 34. Given a 
queue Q of test sets, the scheduling algorithm takes the first 
unscheduled test sub-sequence from every test set for 
scheduling, in a round-robin fashion. More concretely, the 
strategy of the scheduling algorithm is explained as follows. 
According to the SCO given in Q, the scheduler considers 
one test set at a time for scheduling. When considering each 
test set, the scheduler only schedules the first unscheduled 
test sub-sequence, and thereafter turns to consider the next 
test set. When one round is finished for all the test sets in Q, 
the scheduler takes the next round for consideration of 
scheduling test sub-sequences of all the test sets, in the same 
SCO. This procedure repeats until all test sub-sequences are 
scheduled. 

Q
TS3 TS8 TS6

Figure 13 illustrates how the scheduling algorithm works 
with an example of three test sets, TS2, TS1, and TS3, sorted 
with the SCO of {TS2, TS1, TS3} in Q. The test set TS2 has 
been initially partitioned into three test sub-sequences, TS21, 
TS22, and TS23. The rest two test sets, TS1 and TS3, are both 
partitioned into four test sub-sequences. The OSCO of all 
test sub-sequences is {TS21, TS11, TS31, TS22, TS12, TS32, TS23, 
TS13, TS33, TS14, TS34}, which is given by the dashed arrows. 

 
Figure 13. Illustration of the scheduling algorithm ALG. 2 
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In the given pseudo-code depicted in Figure 10, the 
scheduling algorithm is constructed with two nested loops. 
The outer loop (line 21 to 34) selects the first unscheduled 
test sub-sequence for the current test set, while the inner 
loop (line 22 to 33) selects a test set for scheduling 
according to its position in Q. The algorithm terminates 
when all the test sub-sequences have been scheduled. Note 
that the function GetNumOfPar(TS) in line 21 takes a test 
set TS as an input, and returns the number of test sub-
sequences that the test set has been partitioned into. 

When scheduling a test sub-sequence TSq,j (the j-th test 
sub-sequence of the q-th test set in Q, see line 23 to 27), the 
scheduler tries to schedule it to the earliest available time 
moment tq,j (line 27). The earliest time moment that a test 
sub-sequence can be scheduled to is the time moment when 
the required minimum cooling span succeeding the 
precedent test sub-sequence has finished. The minimum 
cooling span dq,j is given by the initial partitioning scheme 
for the test set TSq (line 27). 

Although we would like to schedule a test sub-sequence 
to the earliest available time moment, there can be 
constraints that make this impossible. Such a constraint is 
the availability of test-bus bandwidth to be allocated for the 
required time duration in order to complete the entire test 
sub-sequence. In Figure 14, for example, it is impossible to 
schedule the test sub-sequence TSq,j at time moment tq,j, due 
to the insufficient space between the bandwidth limit BL 
and the area occupied by scheduled test sub-sequences 
(depicted with slashed lines). Actually, in this example, the 
earliest available time moment that TSq,j can be scheduled at 
is tp. 

 
Figure 14. An example of scheduling constraints 

When encountering such scheduling constraints, two 
alternatives can be considered. One is to postpone the entire 
test sub-sequence to a time moment that it can be 
successfully scheduled to. The other alternative is to split 
the test sub-sequence into smaller pieces such that the first 
piece can be squeezed into the available area. Figure 15 
illustrates both solutions for the same example given in 
Figure 14, where the entire test sub-sequence TSq,j cannot be 
scheduled at time moment tq,j. In Figure 15(a), the solution 
is to postpone the entire test sub-sequence TSq,j to time 
moment tp, which means squeezing TSq,j into the dark grey 
rectangular area A1 that the dashed arrow points to. Figure 
15(b) illustrates the alternative solution, where TSq,j is split 
into two pieces which can fit the dark grey rectangular areas 
S1 and S2, respectively. 

 
(a) Postponing the entire test sub-sequence 

 
(b) Splitting the test sub-sequence into smaller pieces 

Figure 15. Two solutions to schedule a test sub-sequence 

Both solutions can result in long test schedules. The first 
solution, which postpones the entire test sub-sequence, also 
delays the succeeding test sub-sequences. This can result in 
delaying the completion of the entire test set. As illustrated 
in Figure 15(a), the succeeding test sub-sequence TSq,j+1 is 
delayed and finishes at time moment te. The second solution, 
which splits the test sub-sequence into smaller pieces, also 
generates more partitions and introduces more time 
overheads (TO). In order to avoid these drawbacks, we 
repartition all the unscheduled test sub-sequences from the 
same test set, such that the total number of test sub-
sequences will not increase dramatically due to the splitting. 
This is explained in Figure 15(b). After splitting TSq,j into 
two pieces which fits in S1 and S2 respectively, we also 
repartition the succeeding test sub-sequence TSq,j+1 such that 
its two pieces fits into S3 and S4. Note that due to the 
splitting of TSq,j and TSq,j+1, time overheads (denoted with 
TO) are added between the repartitioned test sub-sequences. 

As demonstrated above, both solutions can be adopted 
when scheduling a test sub-sequence. In order to decide 
which solution should be employed, we estimate the 
completion time te for the entire test set (line 29), by 
assuming that all the unscheduled test sub-sequences of this 
test set can be scheduled to their earliest available time 
moments. The solution that results in an earlier estimated 
completion time is chosen (line 30). In the example given in 
Figure 15, the second solution should be chosen, since it 
leads to a smaller te. The scheduling algorithm terminates 
when all test sub-sequences of all test sets in Q have been 
scheduled (line 34).  

It should be noted that by scheduling test sub-sequences 
in the demonstrated manner, the test sets have been 
interleaved and the temperatures of cores under test will not 
be higher than the temperature limit. This is because that the 
test sub-sequences are not longer than those in the initial 
partitioning schemes, and the cooling periods are not shorter 
than those in the initial partitioning schemes. 

S1
BL

BW

0 Timetq,j

TSq,j

S2 S3

tp te

Cooling+TO

TSq,j+1

S4
Cooling+TO

BL

BW

0 Timetq,j

TSq,j

tp

BL

BW

0 Timetq,j

TSq,j

A1

TSq,j+1

tp te

A2
Cooling+TO

Paper 5.2                                   INTERNATIONAL TEST CONFERENCE 7



7. Experimental results 
We have done experiments using SoC designs with 
randomly selected cores in the ISCAS’89 benchmarks. The 
designs for our experiments have 12 to 78 cores. We have 
used the approach proposed in [26] to obtain the power 
consumption values, taking the amounts of switching 
activity as inputs. HotSpot has been used for the 
temperature simulation and the imposed temperature limit 
for each core is set to 90°C. Temperature simulations have 
been done for the generated test schedules and the 
simulation results have confirmed that the temperatures of 
cores during the tests are below the imposed temperature 
limits. 

With the first group of experiments, we demonstrate the 
impact on test application time due to the different 
flexibility of test set partitioning schemes. 

We compare our heuristic with two other scheduling 
algorithms. The first algorithm employs a fixed order in 
which all the test sets are sorted decreasingly according to 
the length of test sets in their initial partitioning schemes. 
Then it schedules the entire test sets to the earliest available 
time moment, according to the obtained SCO. When 
scheduling the test sub-sequences of a test set, it keeps the 
regularity of the partitions and cooling periods given by the 
initial partitioning scheme. For the sake of convenience, we 
call the first algorithm “equal-length scheduling algorithm”. 

The second algorithm also employs the fixed order 
according to the lengths of partitioned test sets (longest 
first). However, different from the equal-length scheduling 
algorithm, it schedules a test set in two phases. In the first 
phase, it schedules only the first partition of all test sets, 
according to the obtained SCO. This is due to the fact that 
the first test sub-sequence is usually much longer than the 
other ones of the same test set in the initial partitioning 
scheme (see Figure 7). Then, in the second phase, it 
schedules all the remaining test sub-sequences of every test 
set, according to the same SCO. Similar to the first 
algorithm, it schedules test sets to the earliest available time 
moment. When scheduling the test sub-sequences in the 
second phase, it keeps the regularity of all test partitions and 
cooling periods given by the initial partitioning scheme, and 
the first cooling period after the first test sub-sequence may 
not be shorter than that in the initial partitioning scheme. It 
can be seen that by separating the scheduling of a test set 
into two phases, the restriction on partitioning regularity is 
slightly relaxed, thus this algorithm has higher flexibility on 
test set partitioning schemes than the equal-length 
partitioning algorithm. We call the second scheduling 
algorithm “two-phase scheduling algorithm”. 

Compared to the equal-length scheduling and two-phase 
scheduling algorithm, our heuristic has the highest 
flexibility on test set partitioning schemes, since it allows 
repartitioning test sets and allows arbitrarily increasing 
cooling periods during the scheduling. 

Experimental results regarding the first group of 
experiments are shown in Table 1. The first column in the 
table lists the number of cores used in the designs. Columns 
2, 4, and 6 show the test application times of the generated 

test schedules for the corresponding designs, by using the 
equal-length scheduling algorithm, the two-phase 
scheduling algorithm, and our heuristic, respectively. 
Columns 3, 5, and 7 list the CPU times for executing the 
corresponding algorithms. Columns 8 and 9 show the 
percentage of TAT reduction by using our heuristic, against 
using the equal-length scheduling algorithm and the two-
phase scheduling algorithm, respectively. It can be seen that 
by eliminating restrictions on the regularity of partitioning 
schemes, the TAT is in average 30.6% and 20.5% shorter 
than that of the equal-length scheduling algorithm and the 
two-phase scheduling algorithm, respectively. 
Table 1. Our heuristic vs. equal-length scheduling algorithm vs. 
two-phase scheduling algorithm (to demonstrate the impact of 

relaxing regularity restriction on test partitioning schemes) 

Equal-length Two-phase Our heuristic TAT gain (%)

#cores
TAT 

CPU 
Times 

(s) 
TAT 

CPU 
Times 

(s) 
TAT 

CPU 
Times 

(s) 

From 
Equal-
length

From 
Two-
phase

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6%

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3%

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1%

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7%

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6%

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9%

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2%

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6%

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8%

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9%

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9%

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2%

AVG N/A N/A N/A N/A N/A N/A 30.6% 20.5%

 
The second group of experiments has been set up in order 

to see how efficient the test schedules are, which are 
generated by our heuristic. We compare our heuristic with 
other two algorithms, a straight forward algorithm (SF) and 
the simulated annealing algorithm (SA). In this group of 
experiments, we assume the same flexibility for all the three 
algorithms, i.e. all of them employ flexible partitioning of 
test sets and arbitrary length of cooling periods. 

All the three algorithms employ the same scheduling 
algorithm (ALG. 2). The only difference between them is 
how they generate the SCO for all test sets. The straight 
forward algorithm sorts all test sets decreasingly by the 
lengths of the entire test sets with the initial partitioning 
schemes. According to the obtained SCO, the scheduler 
chooses each test set and schedules the first unscheduled 
test sub-sequences to the earliest available time moment, 
until all test sub-sequences of every test set are scheduled. 

The simulated annealing algorithm employs the same 
scheduling algorithm ALG. 2 to schedule the test sub-
sequences, while the SCO of test sets is generated based on 
a simulated annealing strategy. When a randomly generated 
SCO is obtained, the scheduler is invoked to schedule the 
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test sub-sequences according to the current SCO. During 
iterations, the best SCO that leads to the shortest test 
schedule is recorded and the algorithm returns this recorded 
solution when the stopping criterion is met. 

The experimental results are listed in Table 2. Column 1 
lists the number of cores used in the designs for experiments. 
Column 2 shows the test application time of the generated 
test schedule when the straight forward algorithm is 
employed, and column 3 lists the corresponding CPU times 
to obtain the test schedules. Similarly, columns 4 and 5 are 
the TAT and CPU times for our heuristic, respectively 
(which are the same as the columns 6 and 7 in Table 1). 
Columns 6 and 7 list the TAT and execution times for the 
simulated annealing algorithm. In columns 7 and 8, the 
percentage of reduced TAT of the test schedules generated 
by our heuristic are listed, compared to those generated by 
the straight forward algorithm and the simulated annealing 
algorithm, respectively. 

Table 2. Our heuristic vs. straight forward algorithm vs. 
simulated annealing algorithm (to show the efficiency of our 

heuristic in terms of generating efficient test schedules) 

SF Our heuristic SA TAT gain (%)

#cores 
TAT 

CPU 
Times 

(s) 
TAT 

CPU 
Times 

(s) 
TAT 

CPU 
Times 

(s) 

From 
SF 

From 
SA 

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6%

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5%

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8%

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5%

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8%

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3%

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7%

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9%

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3%

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1%

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3%

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2%

AVG N/A N/A N/A N/A N/A N/A 13.4% -2.9%

 
The comparison between our heuristic and the straight 

forward algorithm aims to show how much TAT can be 
reduced by a more advanced test scheduling technique. On 
the other hand, the comparison between our heuristic and 
the simulated annealing algorithm is to find out how close 
the generated test schedule is to a solution which is assumed 
to be close to the optimal one. In order to generate a close-
to-optimal solution, the SA algorithm has been run for long 
optimization times. 

It can be seen that, when using our heuristic, the TAT is 
in average 13.4% shorter than those using the straight 
forward algorithm. The TAT is in average 2.9% longer than 
those using the simulated annealing algorithm which 
however needs much longer execution times. 

8. Conclusions 
In this paper, we have proposed a heuristic to generate 
thermal-safe test schedules for systems-on-chip and 
minimize the test application time. Based on the initial 
partitioning scheme generated by a temperature simulation 
guided procedure, the heuristic utilizes the flexibility of 
changing the length of test sub-sequences and the cooling 
periods between test sub-sequences, and interleaves them to 
generate efficient test schedules. Experimental results have 
shown the efficiency of our heuristic. 
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