
Paper 5.2 INTERNATIONAL TEST CONFERENCE
1-4244-1128-9/07/$25.00 ©2007 IEEE

1

A Heuristic for Thermal-Safe SoC Test Scheduling

Zhiyuan He, Zebo Peng, and Petru Eles
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{zhihe, zebpe, petel}@ida.liu.se

Abstract 1

High temperature has become a technological barrier to the
testing of high performance systems-on-chip, especially
when deep submicron technologies are employed. In order
to reduce test time while keeping the temperature of the
cores under test within a safe range, thermal-aware test
scheduling techniques are required. In this paper, we
address the test time minimization problem as how to
generate the shortest test schedule such that the temperature
limits of individual cores and the limit on the test-bus
bandwidth are satisfied. In order to avoid overheating
during the test, we partition test sets into shorter test sub-
sequences and add cooling periods in between, such that
continuously applying a test sub-sequence will not drive the
core temperature going beyond the limit. Further more,
based on the test partitioning scheme, we interleave the test
sub-sequences from different test sets in such a manner that
a cooling period reserved for one core is utilized for the test
transportation and application of another core. We have
proposed a heuristic to minimize the test application time by
exploring alternative test partitioning and interleaving
schemes with variable length of test sub-sequences and
cooling periods. Experimental results have shown the
efficiency of the proposed heuristic.

1. Introduction and related work
Production of integrated circuits has moved into the deep
submicron technology regime. Scaling of process
technology has enabled dramatically increasing the number
of transistors, and therefore improving the performance of
electronic chips. However, the rapid growth of integration
density has posed critical challenges to the design and test
of electronic systems, one of which is the power and
thermal issue [1], [2], [3], [4]. High temperature can be
observed in most high-performance chips due to high power
density and high heat dissipation. Overheating can decrease
the carrier mobility of electrons and therefore reduces the
driving current of CMOS transistors, which consequently
degrades the circuit performance. The reliability and
lifespan of integrated circuits also decrease at high
temperatures. Advanced cooling solutions can partly solve
the high temperature problem, however they increase the

1 This work has been partially supported by the Swedish Foundation for
Strategic Research (SSF) under the Strategic Integrated Electronic Systems
Research (STRINGENT) program.

system cost substantially. The thermal issue becomes even
more severe in the case of electronic system testing than in
normal functional mode, since testing dissipates more power
and heat due to a substantial increase of switching activities
[5], [6].

In recent years, a core based system-on-chip (SoC)
design methodology has been employed to reduce design
complexity by integrating pre-designed and pre-verified
intellectual property cores. Although the cost of designing
and manufacturing SoCs has been reduced, the testing cost
rises because larger quantities of test data are required and
longer test times are usually needed. In order to reduce the
testing cost, research efforts have been devoted to
developing advanced test architectures and approaches to
test resource allocation and test scheduling [7], [8], [9], [10],
[11], [12], [13], [14], [15]. However, in order to solve the
problem related to the testing of new generations of SoCs,
novel temperature aware techniques have to be developed.

Recently, thermal-aware testing has attracted many
research interests. Liu et al. proposed a technique to evenly
distribute the generated heat across the chip during tests,
and therefore avoid high temperature [16]. Rosinger et al.
proposed an approach to generate thermal-safe test
schedules with minimized test time by utilizing the core
adjacency information to drive the test scheduling and
reduce the temperature stress between cores [17]. In our
previous work [18], we proposed a test set partitioning and
interleaving technique, and employed constraint logic
programming (CLP) to generate thermal-aware test
schedules with the minimum test application time (TAT).

In this paper, we assume that, for SoCs composed of
cores with moderately large sizes, a continuous test will
raise the temperature of a core towards a limit beyond which
the core may be damaged. In order to avoid overheating
during tests, we partition the entire test set into a number of
test sub-sequences and introduce a cooling period between
two consecutive test sub-sequences. As the test application
time substantially increases when long cooling periods are
introduced, we interleaved different partitioned test sets in
order to generate a shorter test schedule. An alternative
solution to the thermal-related problems during test is to
reduce the clock frequency, but it cannot be applied to some
types of tests, such as at-speed test, where the clock
frequency should not be reduced.

In [18], we restricted the length of test sub-sequences that
belong to the same test set to be identical. Moreover, we
also restricted the cooling periods between test sub-

sequences from the same test set to have equal length. The
main purpose of these restrictions was to keep the size of
the design space small and, by this, to reduce the
optimization time, so that the CLP-based algorithm will be
able to generate the optimal solutions in a reasonable time.
However, this restriction has resulted in less efficient test
schedules, and, by that, longer test application times. In this
paper, we have eliminated this restriction so that both test
sub-sequences and cooling periods can have arbitrary
lengths. Since breaking the regularity of test sub-sequences
and cooling periods dramatically increases the size of
exploration space, the CLP-based test scheduling approach
proposed in [18] is not feasible any more, especially for
practical industrial designs. Therefore, new, low-complexity
heuristics are needed which are able to produce efficient test
schedules under the less restricted and more realistic
assumptions of this paper.

The rest of this paper is organized as follows. The next
section presents the assumed basic test architecture. In
Section 3, a motivational example is given to illustrate the
thermal-safe test scheduling problem. Section 4 gives the
problem formulation, and Section 5 demonstrates the overall
solution strategy to solve the formulated problem. The
proposed heuristic is illustrated in Section 6, and
experimental results are presented in Section 7. The paper is
concluded in Section 8.

2. Basic test architecture
We have assumed a test architecture using a test bus to
transport test data between the tester and the cores under test.
A tester can be either an external automatic test equipment
(ATE) or an embedded tester integrated on the chip. Each
core under test is connected to the test bus with a number of
dedicated TAM wires. The test patterns, together with a
generated test schedule, are stored in the tester memory. A
test controller controls the entire test process according the
test schedule, sending test patterns to and receiving test
responses from the corresponding cores through the test bus
and the TAM wires,.

An example of the assumed test architecture is depicted
in Figure 1. In this example, a system of four cores is to be
tested. An ATE consisting of a test controller and a local
memory serves as an external tester. The generated test
patterns and a test schedule are stored in the tester memory.
When the test starts, the test patterns are transported to the
cores through a test bus. It should be noted that the ATE can
be replaced by an embedded tester and the remaining parts
of the test architecture are still applicable.

Figure 1. An example of the assumed basic test architecture

3. A motivational example
When a long sequence of test patterns is continuously
applied to a core, the temperature of this core may increase
towards a certain limit beyond which the core will be
damaged. Therefore, a test has to be stopped when the core
temperature reaches the limit, and the test can be restarted
later when the core has been cooled down. Thus, by
partitioning a test set into shorter test sub-sequences and
introducing cooling periods between them, we can avoid the
overheating during test. Figure 2 illustrates a situation in
which the entire test set is partitioned into four test sub-
sequences, TS1, TS2, TS3, and TS4, and cooling periods are
introduced between the them. In this way, the temperature
of the core remains under the imposed temperature limit.

Temperature

Time

Temp.
Upper
Limit

Completion Time

Figure 2. An example of test set partitioning

As we have assumed that a test bus is employed in the
test architecture, the limit on the test-bus bandwidth
becomes a constraint to the scheduling of the test sub-
sequences. It is obvious that introducing long cooling
periods between test sub-sequences can substantially
increase the test application time. Intuitively, we can reduce
the TAT by interleaving the partitioned test sets such that
the cooling periods reserved for a core Ci are utilized to
transport test data for another core Cj (j ≠ i), and thereafter
to test the core Cj. By interleaving the partitioned test sets
belonging to different cores, the test-bus bandwidth is more
efficiently utilized. Figure 3 gives an example where two
partitioned test sets are interleaved so that the test time is
reduced with no need for extra bus bandwidth.

Figure 3. An example of test set interleaving

TS1 TS2 TS3 TS4Cooling Cooling Cooling

SoCATE

Core 1 Core 2

Core 3 Core 4

Test Bus

Test
Controller

Tester
Memory

Core 1
Core 2

Temperature

Time

Temp.
Upper
Limit

Completion Time

Cooling (Core 1)

Testing
(Core 2)

Paper 5.2 INTERNATIONAL TEST CONFERENCE 2

In this paper, we aim to minimize the test application
time by generating an efficient test schedule which avoids
violating the temperature limits of individual cores, and, at
the same time, satisfies the test-bus bandwidth constraint.
Based on the proposed test set partitioning and interleaving
technique, we have eliminated the restriction that the
lengths of test sub-sequences from the same test set should
be identical. We have also eliminated the restriction that the
cooling periods between test sub-sequences from the same
test set should be identical. Thus the TAT can be further
reduced by finding more elaborate test schedules.

In this paper, we consider each test sub-sequence as a
rectangle, with its height representing the required test-bus
bandwidth and its width representing the test time. Figure 4
gives a motivational example for our test time minimization
problem. Suppose that three test sets, TS1, TS2, and TS3, are
partitioned into 5, 3, and 2 test sub-sequences, respectively.
Note that the partitioning scheme which determines the
length of test sub-sequences and cooling periods has
ensured that the temperature of each core will not violate the
temperature limit, by using a temperature simulation. Figure
4(a) shows a feasible test schedule under the regularity
assumption (identical test sub-sequence length an identical
cooling periods for each core). In Figure 4(b), an alternative
test schedule is depicted, where the test sub-sequence and
the cooling periods can have arbitrary lengths. This example
shows the possibility to find a shorter test schedule by
exploring alternative solutions, where the number and
length of test sub-sequences, the length of cooling periods,
and the way that the test sub-sequences are interleaved are
different from those in Figure 4(a).

(a) A feasible test schedule with regular partitioning scheme

(b) An alternative test schedule with

irregular partitioning scheme
Figure 4. A motivational example

4. Problem formulation
Suppose that a system S, consisting of n cores C1, C2, ... , Cn,
employs the test architecture illustrated in Figure 1. In order
to test core Ci, a test set TSi consisting of li generated test
patterns is transported through the test bus and the dedicated
TAM wires to/from core Ci, utilizing a bus bandwidth Wi.
The test bus is designed to allow transporting several test
sets in parallel but has a bandwidth limit BL
(BL ≥ Wi, i = 1, 2, ... , n). We assume that continuously
applying test patterns belonging to TSi may cause the
temperature of core Ci go beyond a certain limit TLi so that
the core can be damaged. In order to prevent overheating
during tests, we allow partitioning a test set into a number of
test sub-sequences and introducing a cooling period
between two partitioned test sub-sequences, such that no
test sub-sequence drives the core temperature higher than
the limit and the core temperature is kept within a safe range.
The problem that we address in this paper is to generate a
test schedule for system S such that the test application time
(TAT) is minimized while the bus bandwidth constraint is
satisfied and the temperatures of all cores during tests
remains below the corresponding temperature limits. The
formal problem formulation is given in Figure 5.

Input:
{TSi | i = 1, 2, ... , n},
{Wi | i = 1, 2, ... , n},
Test-bus bandwidth limit BL,
Temperature limit of each individual core {TLi | i = 1, 2, ... , n}

Output:
Test schedule with the minimized test application time (TAT)

Subject to the following two constraints:
1. At any time moment t before the test completion, the total amount
of utilized test-bus bandwidth BW(t) is less than or equal to the
bandwidth limit BL, i.e. BW(t) := ΣBWi(t) ≤ BL.
2. At any time moment t before the test completion, the temperature
TMi(t) of every individual core Ci is less than or equal to the
corresponding temperature limit TLi, i.e. ∀i, TMi(t) ≤ TLi.

Bandwidth

0 Time

Bandwidth Limit Test Completion

Figure 5. Problem formulation

5. Overall solution strategy
We have proposed an overall solution strategy to solve the
formulated problem in two major steps, as illustrated in
Figure 6. In the first step, we generate an initial partitioning
scheme for every test set by using temperature simulation
and the given temperature limits. In the second step, we
employ the proposed test scheduling algorithm to explore
alternative test schedules with respect to different
partitioning and interleaving schemes for the test sets. The
test sub-sequences are squeezed into a two-dimensional
plane constrained by the bandwidth limit of the test bus such
that the test application time is minimized.

TS32TS31

TS11 TS12 TS13

TS21 TS22 TS23

TS14 TS15

Bandwidth

0 Time

Bandwidth Limit

TS23TS21 TS22 TS24

TS11 TS12 TS13 TS14

Test Completion

TS31 TS32 TS33

Paper 5.2 INTERNATIONAL TEST CONFERENCE 3

Figure 6. Illustration of our solution to the formulated problem

In order to generate thermal-safe partitioning schemes,
we have used a temperature simulator, HotSpot [4], [22],
[23], [24], to simulate instantaneous temperatures of
individual cores during tests. HotSpot assumes a circuit
packaging configuration widely used in modern IC designs,
and it computes a compact thermal model [24] based on the
analysis of three major heat flow paths existing in the
assumed packaging configuration [23], [24]. Given the
floorplan of the chip and the power consumption profiles of
the cores, HotSpot calculates the instantaneous temperatures
and estimates the steady-state temperatures for each unit. In
this paper, we assume that the temperature influences
between cores are negligible, since the heat transfer in the
vertical direction dominates the transferring of dissipated
heat. This has been demonstrated in [18] with the results of
temperature simulation using HotSpot.

When generating the initial thermal-safe partitioning
scheme, we have assumed that a test set TSi is started when
the core is at the ambient temperature TMamb. Then we start
the temperature simulation, and record the time moment th1
when the temperature of core Ci reaches the given
temperature limit TLi. Knowing the latest test pattern that
has been applied by the time moment th1, we can easily
obtain the length of the first thermal-safe test sub-sequence
TSi1 that should be partitioned from the test set TSi. Then the
temperature simulation continues while the test process on
core Ci has to be stopped until the temperature goes down to
a certain degree. It is obvious that a relatively long time is
needed in order to cool down a core to the ambient
temperature, as the temperature decreases slowly at a lower
temperature level (see the dashed curve in Figure 7).
Moreover, from the temperature simulation results, it is
observed that the cooling periods are usually much longer
than the application times of the test sub-sequences, even if
the cooling periods are stopped at the same temperatures
that the preceding test sub-sequences are started from. Thus,
we let the temperature of core Ci go down only until the
slope of the temperature curve reaches a given value k 1, at
time moment tc1. At this moment, we have obtained the
duration of the first cooling period di1 = tc1 – th1. Restarting

Chip Floorplan FLP

1 The value of k can be experimentally set by the designers.

the test process from time moment tc1, we repeat this
heating-and-cooling procedure throughout the temperature
simulation until all test patterns belonging to TSi are applied.
Thus we have generated the initial thermal-safe partitioning
scheme, where test set TSi is partitioned into m test sub-
sequences {TSij | j = 1, 2, ... , m} and between every two
consecutive test sub-sequences, the duration of the cooling
period is {dij | j = 1, 2, ... , m-1}, respectively. Figure 7
depicts an example of partitioning a test set into four
thermal-safe test sub-sequences with three cooling periods
added in between.

Temperature Simulation

Figure 7. An example of generating initial partitioning scheme

Once the initial thermal-safe partitioning scheme is
obtained, the rest of the paper focuses on how to schedule
all the test sub-sequences such that the test application time
is minimized under the constraint on the test-bus bandwidth.
In this paper, since we consider each test sub-sequence as a
rectangle, the problem of generating a test schedule with
minimized TAT while satisfying the constraint on the test-
bus bandwidth can be formulated as a rectangular packing
(RP) problem [19], [20], [21]. However, our test scheduling
problem is not a classical RP problem, due to the fact that
the number of test sub-sequences, the length of the sub-
sequences, and the cooling periods are not constant. This
makes our problem even more difficult to be solved.

Interleaving test sub-sequences belonging to different test
sets can introduce time overheads [25], [15], when the test
controller stops one test and switches to another. Therefore,
partitioning a test set into more test sub-sequences may lead
to a longer test application time, since more time overheads
and more cooling periods are introduced into the test
schedule. On the other hand, partitioning a test set into more
test sub-sequences results in a shorter average length of the
individual test sub-sequences, which in principle can be
packed in a more compact way and thus lead to shorter test
application times. Thus, we need a global optimization
algorithm, in which different numbers and lengths of test
sub-sequences as well as variant cooling periods are
explored. We have proposed a heuristic to generate
optimized test schedules by scheduling test sub-sequences
with test set repartitioning and interleaving.

Test Scheduling with
Test Set Repartitioning

and Interleaving

Test Sets {TSi}

Bus Bandwidth
Utilizations {Wi}

Bus Bandwidth
Limit BL

Temperature Limits {TLi}

Optimized Test Schedule

Initial Thermal-Safe
Partitioning Schemes

Temperature

Time

TL

TMamb

Test Completion

k

TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

th1 tc1 th2 tc2 tc3th3 th4

Paper 5.2 INTERNATIONAL TEST CONFERENCE 4

6. Heuristic for test scheduling
We have proposed a heuristic to do the test scheduling with
test set repartitioning and interleaving. Since the order in
which the test sets are considered for test scheduling has a
large impact on the final test schedule, we construct an
iterative algorithm to obtain a good scheduling
consideration order (SCO) for all partitioned test sets, and
thereafter schedule the test sub-sequences according to the
obtained SCO.

Figure 8 shows a simple example illustrating the impact
of different scheduling consideration order on the test
schedule of three test sets, TS1, TS2, and TS3, each of which
is partitioned into two test sub-sequences. Figure 8(a) and
Figure 8(b) respectively depicts the test schedule when the
test sets are considered for scheduling in the order of {TS1,
TS2, TS3} and {TS3, TS2, TS1}. It is obvious that using the
second SCO results in a shorter test schedule. Note that in
this example the test sets are scheduled to the earliest
available time moments.

It should also be noted that the scheduling consideration
order refers to the precedence of partitioned test sets to be
considered for scheduling. However, when a test set is taken
into account for scheduling, we do not schedule all the test
sub-sequences of this test set at one time. Instead, we
always take the first unscheduled test sub-sequence of the
currently considered test set for scheduling, and thereafter
take the first unscheduled test sub-sequence of the next test
set into account. Thus, in this example, the overall
scheduling consideration order (OSCO) for all test sub-
sequences of all test sets is {TS11, TS21, TS31, TS12, TS22, TS32}
and {TS31, TS21, TS11, TS32, TS22, TS12}, for the case of
Figure 8(a) and Figure 8(b) respectively. The main concern
of not scheduling all test sub-sequences of one test set at
one time is to avoid generating low efficient test schedule
due to unnecessarily long cooling periods, inappropriate
partition length, and inefficient test-set interleaving.

(a) Test schedule with the SCO {TS1, TS2, TS3}

(b) Test schedule with the SCO {TS3, TS2, TS1}

Figure 8. Illustration of how SCO affects test schedule length

The basic idea of the proposed heuristic is to iteratively
construct a queue that finally consists of all partitioned test
sets in a particular order. The pseudo-code of the proposed
heuristic is depicted in Figure 9, denoted with ALG. 1. Note
that, inside the heuristic, a scheduling algorithm (denoted
with ALG. 2) is invoked, and its pseudo-code is given in
Figure 10.

ALG. 1. HEURISTIC for test scheduling
01 Set of test sets :: U := {TSi | i = 1, 2, … , n};
02 Queue of test sets :: Q := Ø;
03 Queue of test sets :: Qbest := Ø;
04 for (∀TS ∈ U) loop /* outer loop */
05 ηmax := 0;
06 Q := Qbest;
07 for (∀POS in Q) loop /* inner loop */
08 Insert(TS , Q , POS);
09 SCHEDULE(Q);
10 Calculate the efficiency η of the current partial test schedule;
11 if (η > ηmax) then
12 ηmax := η;
13 TSbest := TS;
14 Qbest := Q;
15 end if
16 Remove(TS , Q);
17 end for
18 Remove(TSbest , U);
19 end for
20 SCHEDULE(Qbest);

Figure 9. Pseudo-code of the heuristic for test scheduling

ALG. 2. SCHEDULE(Queue of test sets :: Q)
21 for (j = 1 to max{GetNumOfPar(∀TS ∈ Q)}) loop /* outer loop */
22 for (q = 1 to |Q|) loop /* inner loop */
23 Choose the q-th test set TSq in Q for scheduling;
24 if (TSq = Ø) then
25 Skip TSq and continue with the next test set;
26 else
27 Schedule the first unscheduled test sub-sequence TSq,j
 to the earliest available time moment
 tq,j := GetFinishingTime(TSq,j-1) + dq,j
 where dq := InitialCoolingSpan(TSq);
28 if (FAILED to schedule TSq,j to tq,j) then
29 Estimate the completion time te of the entire test set TSq
 by either postponing TSq,j or repartitioning all the
 unscheduled test sub-sequences in TSq;
30 Choose the solution that has a smaller te and
 schedule the first unscheduled test sub-sequence;
31 end if
32 end if-then-else
33 end for
34 end for

Figure 10. Pseudo-code of the scheduling algorithm

Given a set of all test sets U = {TSi | i = 1, 2, ... , n} (line
1), the heuristic iteratively selects test sets and inserts them
into a queue Q (line 2 to 19). The positions of the test sets in
Q represents the order in which the test sets are considered
for test scheduling (SCO), the closer to the queue head, the
earlier to be considered.

The heuristic starts with an empty queue Q = Ø (line 2).
At each iteration step (line 5 to 18), the objective is to select
one test set TSk from U, and insert it into Q at a certain
position POS, such that the |Q| + 1 test sets are put in a good

TS11
TS21

TS31

BL

BW

0 Time

Test Completion

TS12
TS22

TS32

BL

BW

0 Time

Test Completion

TS11 TS12
TS21 TS22

TS31 TS32

Paper 5.2 INTERNATIONAL TEST CONFERENCE 5

order while the precedence between test sets excluding the
newly inserted one remains unchanged. The algorithm
terminates when all test sets in U have been moved into Q,
and thereafter it schedules the partitioned test sets according
to the SCO obtained in Qbest (line 20).

For each iteration step, there are |U| alternative test sets
for selection, where |U| is the current number of test sets
remaining in U. For each selected test set, there are |Q| + 1
alternative positions which the selected test set can be
inserted to, where |Q| is the current number of test sets that
have already been inserted into Q throughout previous
iteration steps. Thus, at one iteration step, there are
|U| × (|Q| + 1) alternative solutions, in which a selected test
set is associated with an insertion position in Q.

The example depicted in Figure 11 illustrates a situation
that 3 test sets have been inserted in Q (TS3, TS8, and TS6)
and 5 test sets remain in U (TS1, TS2, TS4, TS5, and TS7). For
each test set in U, there are 4 positions for insertion, which
the arrows point to. In this example, there are 20 alternative
solutions for consideration. Note that each test set in the
example has already been partitioned into a number of test
sub-sequences, and the scheduling algorithm takes every
individual test sub-sequence for scheduling (see ALG. 2).

Figure 11. An example illustrating alternative solutions

We evaluate the obtained scheduling consideration order
by the efficiency of the generated partial test schedule, the
higher efficiency, the better the SCO. The partial test
schedule is generated (line 9) by the scheduling algorithm
ALG. 2. Based on the test-schedule efficiency defined
below, we explore different solutions and make decisions
according to the efficiency of the generated partial test
schedules.

We define the efficiency of a test schedule, denoted with
η, as follows. Suppose x is the size of the area covered by all
scheduled test sub-sequences, and y is the total area size
constrained by the bus bandwidth limit and the completion
time moment of the test schedule. The efficiency of the test
schedule is the value of x / y. The larger value of η
represents the better test schedule.

Figure 12 illustrates how the efficiency of a test schedule
is calculated. In the example, a test schedule is given as the
area covered by slashed lines. By calculating x as the size of
the area covered by the actual test schedule, and y as the size
of the area covered by the large rectangle surrounded by
thick lines, we get η = x / y.

By calculating and comparing the efficiencies of the
alternative partial test schedules (line 10), the best solution
that obtains the maximum efficiency is chosen. The
maximum efficiency, the chosen test set, and the entire
queue, are recorded in ηmax, TSbest, Qbest, respectively (line 12
to 14). The iteration terminates when all test sets in U have
been moved into Q. The obtained Qbest consists of all test
sets in the best SCO, in which the test sets will be
considered for scheduling (line 20).

BL

BW

0 Time

Test Completion Time Moment

Figure 12. Illustration of calculating test schedule efficiency

The algorithm (ALG. 2) that schedules a queue of test
sets is depicted in Figure 10, from line 21 to 34. Given a
queue Q of test sets, the scheduling algorithm takes the first
unscheduled test sub-sequence from every test set for
scheduling, in a round-robin fashion. More concretely, the
strategy of the scheduling algorithm is explained as follows.
According to the SCO given in Q, the scheduler considers
one test set at a time for scheduling. When considering each
test set, the scheduler only schedules the first unscheduled
test sub-sequence, and thereafter turns to consider the next
test set. When one round is finished for all the test sets in Q,
the scheduler takes the next round for consideration of
scheduling test sub-sequences of all the test sets, in the same
SCO. This procedure repeats until all test sub-sequences are
scheduled.

Q
TS3 TS8 TS6

Figure 13 illustrates how the scheduling algorithm works
with an example of three test sets, TS2, TS1, and TS3, sorted
with the SCO of {TS2, TS1, TS3} in Q. The test set TS2 has
been initially partitioned into three test sub-sequences, TS21,
TS22, and TS23. The rest two test sets, TS1 and TS3, are both
partitioned into four test sub-sequences. The OSCO of all
test sub-sequences is {TS21, TS11, TS31, TS22, TS12, TS32, TS23,
TS13, TS33, TS14, TS34}, which is given by the dashed arrows.

Figure 13. Illustration of the scheduling algorithm ALG. 2

Q

TS1 TS11 TS12 TS13 TS14

TS2 TS21 TS22 TS23

TS3 TS31 TS32 TS33 TS34

Queue
Head

Queue
Tail

SC
O

U
TS1 TS2 TS5TS4 TS7

Paper 5.2 INTERNATIONAL TEST CONFERENCE 6

In the given pseudo-code depicted in Figure 10, the
scheduling algorithm is constructed with two nested loops.
The outer loop (line 21 to 34) selects the first unscheduled
test sub-sequence for the current test set, while the inner
loop (line 22 to 33) selects a test set for scheduling
according to its position in Q. The algorithm terminates
when all the test sub-sequences have been scheduled. Note
that the function GetNumOfPar(TS) in line 21 takes a test
set TS as an input, and returns the number of test sub-
sequences that the test set has been partitioned into.

When scheduling a test sub-sequence TSq,j (the j-th test
sub-sequence of the q-th test set in Q, see line 23 to 27), the
scheduler tries to schedule it to the earliest available time
moment tq,j (line 27). The earliest time moment that a test
sub-sequence can be scheduled to is the time moment when
the required minimum cooling span succeeding the
precedent test sub-sequence has finished. The minimum
cooling span dq,j is given by the initial partitioning scheme
for the test set TSq (line 27).

Although we would like to schedule a test sub-sequence
to the earliest available time moment, there can be
constraints that make this impossible. Such a constraint is
the availability of test-bus bandwidth to be allocated for the
required time duration in order to complete the entire test
sub-sequence. In Figure 14, for example, it is impossible to
schedule the test sub-sequence TSq,j at time moment tq,j, due
to the insufficient space between the bandwidth limit BL
and the area occupied by scheduled test sub-sequences
(depicted with slashed lines). Actually, in this example, the
earliest available time moment that TSq,j can be scheduled at
is tp.

Figure 14. An example of scheduling constraints

When encountering such scheduling constraints, two
alternatives can be considered. One is to postpone the entire
test sub-sequence to a time moment that it can be
successfully scheduled to. The other alternative is to split
the test sub-sequence into smaller pieces such that the first
piece can be squeezed into the available area. Figure 15
illustrates both solutions for the same example given in
Figure 14, where the entire test sub-sequence TSq,j cannot be
scheduled at time moment tq,j. In Figure 15(a), the solution
is to postpone the entire test sub-sequence TSq,j to time
moment tp, which means squeezing TSq,j into the dark grey
rectangular area A1 that the dashed arrow points to. Figure
15(b) illustrates the alternative solution, where TSq,j is split
into two pieces which can fit the dark grey rectangular areas
S1 and S2, respectively.

(a) Postponing the entire test sub-sequence

(b) Splitting the test sub-sequence into smaller pieces

Figure 15. Two solutions to schedule a test sub-sequence

Both solutions can result in long test schedules. The first
solution, which postpones the entire test sub-sequence, also
delays the succeeding test sub-sequences. This can result in
delaying the completion of the entire test set. As illustrated
in Figure 15(a), the succeeding test sub-sequence TSq,j+1 is
delayed and finishes at time moment te. The second solution,
which splits the test sub-sequence into smaller pieces, also
generates more partitions and introduces more time
overheads (TO). In order to avoid these drawbacks, we
repartition all the unscheduled test sub-sequences from the
same test set, such that the total number of test sub-
sequences will not increase dramatically due to the splitting.
This is explained in Figure 15(b). After splitting TSq,j into
two pieces which fits in S1 and S2 respectively, we also
repartition the succeeding test sub-sequence TSq,j+1 such that
its two pieces fits into S3 and S4. Note that due to the
splitting of TSq,j and TSq,j+1, time overheads (denoted with
TO) are added between the repartitioned test sub-sequences.

As demonstrated above, both solutions can be adopted
when scheduling a test sub-sequence. In order to decide
which solution should be employed, we estimate the
completion time te for the entire test set (line 29), by
assuming that all the unscheduled test sub-sequences of this
test set can be scheduled to their earliest available time
moments. The solution that results in an earlier estimated
completion time is chosen (line 30). In the example given in
Figure 15, the second solution should be chosen, since it
leads to a smaller te. The scheduling algorithm terminates
when all test sub-sequences of all test sets in Q have been
scheduled (line 34).

It should be noted that by scheduling test sub-sequences
in the demonstrated manner, the test sets have been
interleaved and the temperatures of cores under test will not
be higher than the temperature limit. This is because that the
test sub-sequences are not longer than those in the initial
partitioning schemes, and the cooling periods are not shorter
than those in the initial partitioning schemes.

S1
BL

BW

0 Timetq,j

TSq,j

S2 S3

tp te

Cooling+TO

TSq,j+1

S4
Cooling+TO

BL

BW

0 Timetq,j

TSq,j

tp

BL

BW

0 Timetq,j

TSq,j

A1

TSq,j+1

tp te

A2
Cooling+TO

Paper 5.2 INTERNATIONAL TEST CONFERENCE 7

7. Experimental results
We have done experiments using SoC designs with
randomly selected cores in the ISCAS’89 benchmarks. The
designs for our experiments have 12 to 78 cores. We have
used the approach proposed in [26] to obtain the power
consumption values, taking the amounts of switching
activity as inputs. HotSpot has been used for the
temperature simulation and the imposed temperature limit
for each core is set to 90°C. Temperature simulations have
been done for the generated test schedules and the
simulation results have confirmed that the temperatures of
cores during the tests are below the imposed temperature
limits.

With the first group of experiments, we demonstrate the
impact on test application time due to the different
flexibility of test set partitioning schemes.

We compare our heuristic with two other scheduling
algorithms. The first algorithm employs a fixed order in
which all the test sets are sorted decreasingly according to
the length of test sets in their initial partitioning schemes.
Then it schedules the entire test sets to the earliest available
time moment, according to the obtained SCO. When
scheduling the test sub-sequences of a test set, it keeps the
regularity of the partitions and cooling periods given by the
initial partitioning scheme. For the sake of convenience, we
call the first algorithm “equal-length scheduling algorithm”.

The second algorithm also employs the fixed order
according to the lengths of partitioned test sets (longest
first). However, different from the equal-length scheduling
algorithm, it schedules a test set in two phases. In the first
phase, it schedules only the first partition of all test sets,
according to the obtained SCO. This is due to the fact that
the first test sub-sequence is usually much longer than the
other ones of the same test set in the initial partitioning
scheme (see Figure 7). Then, in the second phase, it
schedules all the remaining test sub-sequences of every test
set, according to the same SCO. Similar to the first
algorithm, it schedules test sets to the earliest available time
moment. When scheduling the test sub-sequences in the
second phase, it keeps the regularity of all test partitions and
cooling periods given by the initial partitioning scheme, and
the first cooling period after the first test sub-sequence may
not be shorter than that in the initial partitioning scheme. It
can be seen that by separating the scheduling of a test set
into two phases, the restriction on partitioning regularity is
slightly relaxed, thus this algorithm has higher flexibility on
test set partitioning schemes than the equal-length
partitioning algorithm. We call the second scheduling
algorithm “two-phase scheduling algorithm”.

Compared to the equal-length scheduling and two-phase
scheduling algorithm, our heuristic has the highest
flexibility on test set partitioning schemes, since it allows
repartitioning test sets and allows arbitrarily increasing
cooling periods during the scheduling.

Experimental results regarding the first group of
experiments are shown in Table 1. The first column in the
table lists the number of cores used in the designs. Columns
2, 4, and 6 show the test application times of the generated

test schedules for the corresponding designs, by using the
equal-length scheduling algorithm, the two-phase
scheduling algorithm, and our heuristic, respectively.
Columns 3, 5, and 7 list the CPU times for executing the
corresponding algorithms. Columns 8 and 9 show the
percentage of TAT reduction by using our heuristic, against
using the equal-length scheduling algorithm and the two-
phase scheduling algorithm, respectively. It can be seen that
by eliminating restrictions on the regularity of partitioning
schemes, the TAT is in average 30.6% and 20.5% shorter
than that of the equal-length scheduling algorithm and the
two-phase scheduling algorithm, respectively.
Table 1. Our heuristic vs. equal-length scheduling algorithm vs.
two-phase scheduling algorithm (to demonstrate the impact of

relaxing regularity restriction on test partitioning schemes)

Equal-length Two-phase Our heuristic TAT gain (%)

#cores
TAT

CPU
Times

(s)
TAT

CPU
Times

(s)
TAT

CPU
Times

(s)

From
Equal-
length

From
Two-
phase

12 1502 0.01 1390 0.01 1048 2.74 30.2% 24.6%

18 2761 0.02 2029 0.01 1535 5.41 44.4% 24.3%

24 3975 0.05 3571 0.02 2318 21.88 41.7% 35.1%

30 2831 0.01 2510 0.02 1915 32.41 32.4% 23.7%

36 3587 0.08 3368 0.08 2539 67.52 29.2% 24.6%

42 4845 0.03 4012 0.03 3334 101.39 31.2% 16.9%

48 4878 0.06 4513 0.06 3509 151.33 28.1% 22.2%

54 5696 0.06 5024 0.08 4290 244.36 24.7% 14.6%

60 6303 0.19 5504 0.13 4692 371.73 25.6% 14.8%

66 6868 0.34 5889 0.41 5069 511.88 26.2% 13.9%

72 7903 0.17 6923 0.22 5822 720.53 26.3% 15.9%

78 7900 0.72 6803 0.77 5769 987.75 27.0% 15.2%

AVG N/A N/A N/A N/A N/A N/A 30.6% 20.5%

The second group of experiments has been set up in order

to see how efficient the test schedules are, which are
generated by our heuristic. We compare our heuristic with
other two algorithms, a straight forward algorithm (SF) and
the simulated annealing algorithm (SA). In this group of
experiments, we assume the same flexibility for all the three
algorithms, i.e. all of them employ flexible partitioning of
test sets and arbitrary length of cooling periods.

All the three algorithms employ the same scheduling
algorithm (ALG. 2). The only difference between them is
how they generate the SCO for all test sets. The straight
forward algorithm sorts all test sets decreasingly by the
lengths of the entire test sets with the initial partitioning
schemes. According to the obtained SCO, the scheduler
chooses each test set and schedules the first unscheduled
test sub-sequences to the earliest available time moment,
until all test sub-sequences of every test set are scheduled.

The simulated annealing algorithm employs the same
scheduling algorithm ALG. 2 to schedule the test sub-
sequences, while the SCO of test sets is generated based on
a simulated annealing strategy. When a randomly generated
SCO is obtained, the scheduler is invoked to schedule the

Paper 5.2 INTERNATIONAL TEST CONFERENCE 8

test sub-sequences according to the current SCO. During
iterations, the best SCO that leads to the shortest test
schedule is recorded and the algorithm returns this recorded
solution when the stopping criterion is met.

The experimental results are listed in Table 2. Column 1
lists the number of cores used in the designs for experiments.
Column 2 shows the test application time of the generated
test schedule when the straight forward algorithm is
employed, and column 3 lists the corresponding CPU times
to obtain the test schedules. Similarly, columns 4 and 5 are
the TAT and CPU times for our heuristic, respectively
(which are the same as the columns 6 and 7 in Table 1).
Columns 6 and 7 list the TAT and execution times for the
simulated annealing algorithm. In columns 7 and 8, the
percentage of reduced TAT of the test schedules generated
by our heuristic are listed, compared to those generated by
the straight forward algorithm and the simulated annealing
algorithm, respectively.

Table 2. Our heuristic vs. straight forward algorithm vs.
simulated annealing algorithm (to show the efficiency of our

heuristic in terms of generating efficient test schedules)

SF Our heuristic SA TAT gain (%)

#cores
TAT

CPU
Times

(s)
TAT

CPU
Times

(s)
TAT

CPU
Times

(s)

From
SF

From
SA

12 1213 0.01 1048 2.74 992 148.31 13.6% -5.6%

18 1716 0.01 1535 5.41 1513 208.06 10.5% -1.5%

24 2632 0.01 2318 21.88 2234 229.94 11.9% -3.8%

30 2274 0.01 1915 32.41 1869 417.08 15.8% -2.5%

36 3161 0.01 2539 67.52 2494 540.48 19.7% -1.8%

42 3846 0.01 3334 101.39 3292 631.00 13.3% -1.3%

48 4328 0.01 3509 151.33 3485 898.77 18.9% -0.7%

54 4877 0.01 4290 244.36 4051 675.44 12.0% -5.9%

60 5274 0.01 4692 371.73 4457 2171.73 11.0% -5.3%

66 5725 0.01 5069 511.88 4917 2321.39 11.5% -3.1%

72 6538 0.01 5822 720.53 5689 1994.56 11.0% -2.3%

78 6492 0.01 5769 987.75 5702 3301.45 11.1% -1.2%

AVG N/A N/A N/A N/A N/A N/A 13.4% -2.9%

The comparison between our heuristic and the straight

forward algorithm aims to show how much TAT can be
reduced by a more advanced test scheduling technique. On
the other hand, the comparison between our heuristic and
the simulated annealing algorithm is to find out how close
the generated test schedule is to a solution which is assumed
to be close to the optimal one. In order to generate a close-
to-optimal solution, the SA algorithm has been run for long
optimization times.

It can be seen that, when using our heuristic, the TAT is
in average 13.4% shorter than those using the straight
forward algorithm. The TAT is in average 2.9% longer than
those using the simulated annealing algorithm which
however needs much longer execution times.

8. Conclusions
In this paper, we have proposed a heuristic to generate
thermal-safe test schedules for systems-on-chip and
minimize the test application time. Based on the initial
partitioning scheme generated by a temperature simulation
guided procedure, the heuristic utilizes the flexibility of
changing the length of test sub-sequences and the cooling
periods between test sub-sequences, and interleaves them to
generate efficient test schedules. Experimental results have
shown the efficiency of our heuristic.

References
[1] S. Borkar. “Design challenges of technology scaling”. IEEE

Micro, Vol. 19, Iss. 4, pp. 23-29, 1999.
[2] S. Gunther, F. Binns, D. M. Carmen, and J. C. Hall.

“Managing the impact of increasing microprocessor power
consumption”. Intel Technology Journal. 2001.

[3] R. Mahajan. “Thermal management of CPUs: A perspective
on trends, needs and opportunities”. Keynote presentation at
the 8th Int’l Workshop on THERMal INvestigations of ICs
and Systems (THERMINIC). 2002.

[4] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy, and D. Tarjan. “Temperature-aware
microarchitecture: Modeling and implementation”. ACM
Transactions on Architecture and Code Optimization (TACO).
Vol. 1, No. 1. pp. 94-125, Mar. 2004.

[5] B. Pouya and A. Crouch. “Optimization trade-offs for vector
volume and test power”. International Test Conference (ITC),
2000, pp. 873-881.

[6] C. Shi and R. Kapur. “How power-aware test improves
reliability and yield”. EE Times, September 15, 2004.
http://www.eetimes.com/showArticle.jhtml?articleID=47208
594.

[7] B. T. Murray, and J. P. Hayes. “Testing ICs: Getting to the
core of the problem”. IEEE Transactions on Computer, Vol.
29, pp. 32-39, Nov. 1996.

[8] Y. Zorian, E. J. Marinissen, and S. Dey. “Testing embedded
core-based system chips”. IEEE International Test
Conference (ITC), 1998, pp. 130-143.

[9] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O.
Samman, Y. Zaidan, and S. M. Reddy. “Resource allocation
and test scheduling for concurrent test of core-based SoC
design”. IEEE Asian Test Symposium (ATS), 2001, pp. 265-
270.

[10] E. Larsson, and Z. Peng. “An integrated framework for the
design and optimization of SoC test solutions”. Journal of
Electronic Testing; Theory and Applications (JETTA), Vol.
18, No. 4/5, pp. 385-400, 2002.

[11] J. Aerts, and E. J. Marinissen, “Scan chain design for test
time reduction in core-based ICs”, International Test
Conference (ITC), 1998, pp. 448-457.

[12] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test
access mechanism optimization, test scheduling, and test data
volume reduction for System-on-Chip”, IEEE Transactions
on Computer, Vol. 52, No. 12, Dec. 2003.

[13] P. Varma, and B. Bhatia, “A structured test re-use
methodology for core-based system chips”, International
Test Conference (ITC), 1998, pp. 294-302.

[14] R. Chou, K. Saluja, and V. Agrawal. “Scheduling tests for
VLSI systems under power constraints”. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 5(2):175-
184, June 1997.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 9

[15] Z. He, Z. Peng, and P. Eles. “Power constrained and defect-
probability driven SoC test scheduling with test set
partitioning”. Design Automation and Test in Europe
Conference (DATE), 2006, pp. 291-296.

[16] C. Liu, K. Veeraraghavant, and V. Iyengar. “Thermal-aware
test scheduling and hot spot temperature minimization for
core-based systems”. IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), 2005, pp.
552-560.

[17] P. Rosinger, B. M. Al-Hashimi, and K. Chakrabarty.
“Thermal-safe test scheduling for core-based System-on-
Chip integrated circuits”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. Vol. 25, No.
11, pp. 2502-2512, Nov. 2006.

[18] Z. He, Z. Peng, P. Eles, P. Rosinger, and B. M. Al-Hashimi.
“Thermal-aware SoC test scheduling with test set partitioning
and interleaving”. IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT), 2006, pp. 477-
485

[19] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest. “Orthogonal
packings in two dimensions”. SIAM Journal on Computing,
Vol. 9, No. 4, pp. 846-855, Nov. 1980.

[20] H. Dyckhoff, “A typology of cutting and packing problems”.
European Journal of Operational Research, Vol. 44, No. 2,
pp. 145-159. 1990

[21] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher.
“Exhaustive approaches to 2D rectangular perfect packings”,
Elsevier Information Processing Letters, Vol. 90, No. 1, pp.
7-14, Apr. 2004.

[22] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and
M. R. Stan. “HotSpot: Thermal modeling for CMOS VLSI
systems.” IEEE Transactions on Component Packaging and
Manufacturing Technology. 2005. (to appear).

[23] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. “Temperature-aware
microarchitecture.” International Symposium on Computer
Architecture, 2003, pp. 2-13.

[24] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S.
Ghosh, and S. Velusamy. “Compact thermal modeling for
temperature-aware design”. Design Automation Conference
(DAC), 2004. pp. 878-883.

[25] S. K. Goel, and E. J. Marinissen. “Control-aware test
architecture design for modular SoC testing”. European Test
Workshop (ETW), 2003. pp. 57-62.

[26] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng. “Cycle-
accurate test power modeling and its application to SoC test
scheduling”. IEEE International Test Conference (ITC), 2006,
pp. 1-10.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 10

	ITC07
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

