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Abstract1 
This paper presents a method for power-constrained 

system-on-chip test scheduling in an abort-on-first-fail 
environment where the test is terminated as soon as a fault is 
detected. We employ the defect probabilities of individual 
cores to guide the scheduling, such that the expected total test 
time is minimized and the peak power constraint is satisfied. 
Based on a hybrid BIST architecture where a combination of 
deterministic and pseudorandom test sequences is used, the 
power-constrained test scheduling problem can be formulated 
as an extension of the two-dimensional rectangular packing 
problem and a heuristic has been proposed to calculate the 
near optimal order of different test sequences. The method is 
also generalized for both test-per-clock and test-per-scan 
approaches. Experimental results have shown that the 
proposed heuristic is efficient to find a near optimal test 
schedule with a low computation overhead. 

 

1. Introduction 
The complexity of electronic systems is continuously 

increasing, raising the cost and prolonging the production 
period of such systems. A significant proportion in the total 
cost is related to testing and therefore the reduction of the test 
cost contributes a lot to the overall cost reduction. 

During recent years we have seen an advent of complex 
electronic systems where multiple pre-designed and pre-
verified blocks, usually referred to as cores, are integrated 
into one single die. Such complex system-on-chip (SoC) 
designs pose great challenges to the test engineers since 
inefficient test methodologies may significantly increase the 
testing time of the system [1]. 

To test individual cores in a SoC, a set of test resources, 
such as test pattern source and sink together with an 
appropriate test access mechanism (TAM), have to be 
available [2]. Depending on the TAM architecture, the tests 
can be scheduled in parallel or sequentially. In this context, 
efficient scheduling can have significant impact on the 
reduction of total test time. 

In a production test environment, an abort-on-first-fail 
(AOFF) approach is usually utilized. It means that the test 
process is stopped as soon as a fault is detected. This 
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approach leads to the reduction of test time and also 
production costs, as faulty dies can be eliminated before 
completing the entire test process. It should be noted here, 
that this approach has especially high significance during the 
early phases of the production, when the yield is low and 
defects are more likely to appear. 

In this paper we propose a heuristic for test scheduling in 
an abort-on-first-fail test environment, considering defect 
probabilities of individual cores. These defect probabilities 
are usually derived from statistical analysis of the production 
process or generated based on inductive fault analysis. We 
assume a hybrid built-in self-test (BIST) architecture, where 
the test set is composed of internally generated pseudorandom 
test patterns and externally applied deterministic test patterns. 

In our earlier work [3] we have proposed a method for 
concurrent test scheduling using a test-per-clock approach 
based on defect probabilities such that the Estimated Total 
Test Time (ETTT) is minimized. The approach, however, did 
not take into account the power consumption of tests. 
Scheduling too many tests concurrently might simply burn the 
circuit. Therefore in this paper we propose a heuristic for 
hybrid BIST test scheduling, such that the peak power 
constraint of the system is not exceeded and the ETTT is 
minimized. 

The rest of this paper is organized as follows. In the next 
section the backgrounds and motivation of our work are given. 
In Section 3 the power constrained test scheduling problem is 
formulated based on the hybrid BIST architecture in the 
AOFF test environment and the calculation of estimated total 
test time is explained. Section 4 demonstrates the proposed 
heuristic. In section 5 the experimental results are presented 
and the paper is concluded in Section 6. 

2. Backgrounds and Motivation 
As the number of cores in a chip increases, the amount of 

total test data grows tremendously. This may pose serious 
problems because of the cost and technological limitations of 
the automated test equipment (ATE). One of the solutions to 
this problem is to use BIST and perform pseudorandom test 
pattern generation and test response compaction on the chip. 
However, due to several reasons, like very large numbers of 
test patterns and random pattern resistant faults, this approach 
may not be efficient. Therefore different approaches have 
been proposed to complement pseudorandom test patterns 
with deterministic test patterns which are applied from an 
ATE or on-chip memory. These approaches are generally 



referred to as hybrid BIST [4, 5] which can reduce memory 
requirements compared to pure deterministic test, and can 
provide higher fault coverage and shorter test application time 
compared to the stand-alone BIST solution. 

In the current approach we have assumed that all cores 
have their own dedicated BIST logic that can carry out 
pseudo-random tests concurrently. The deterministic tests, on 
the other hand, are applied from external source to one core at 
a time. We have also assumed that an AMBA-like test bus [6] 
is used for test data transportation. An example of a multi-
core system with such a test architecture is given in Figure 1. 
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Figure 1. AMBA bus-based hybrid BIST architecture 

The SoC test scheduling problem has been studied recently 
[7, 8]. In most of these approaches, an assumption has been 
made that all tests are applied to the completion. However, in 
a production environment, a test can be aborted as soon as a 
fault has been detected. Therefore the likelihood of a core to 
fail during the test should be considered to improve the 
efficiency of the test scheduling [9, 10]. 

In this paper an abort-on-first-fail test scheduling approach 
in a hybrid BIST environment is proposed, taking into 
account the power constraints. During the scheduling process 
we use the defect probability of individual cores to calculate 
the expected total test time. In our earlier work [3] we 
proposed a heuristic for AOFF test scheduling using test-per-
clock approach without considering power constraints. In this 
paper, a generic method for ETTT calculation is proposed 
such that both test-per-clock and test-per-scan approaches can 
be employed. A new AOFF test scheduling heuristic is also 
proposed to minimize the ETTT without violating the power 
constraint. 

3. Problem Formulation 
Suppose that a system S, consisting of n cores C1, C2, ..., 

Cn , has a test architecture as depicted in Figure 1. For every 
individual core Ci (1 ≤ i ≤ n), a deterministic test sequence 
DTi and a pseudorandom test sequence PRi is given, 
consisting of deterministic and pseudorandom test patterns, 
respectively. With DTij (1 ≤ j ≤ di) we denote the j-th 
deterministic test pattern, and with PRij (1 ≤ j ≤ ri) the j-th 
pseudorandom test pattern, where di and ri are respectively the 
total number of deterministic and pseudorandom test patterns 
for core Ci. For every individual core Ci a defect probability 
DF(Ci) defined as the probability of a core to be detected 
faulty during production tests is given. 

Based on the given hybrid BIST architecture, 
pseudorandom tests can be generated and applied to all cores 

in parallel, thus reducing the total test time. However, testing 
consumes more power than normal operations, and may cause 
the chip to burn if too many tests are applied concurrently. 
Hence there exists a peak power constraint POWc defining the 
amount of instant power a circuit can tolerate without getting 
damaged. In a SoC testing framework this means that at any 
time the total power of the concurrent test sequences should 
be below POWc. 

Efficient test scheduling which decides the order and 
starting time of test sequences can lead to the reduction of test 
time and consequently test cost. Figure 2 shows an example 
of a test schedule for five deterministic test sequences DTi 
(1 ≤ i ≤ 5) and five pseudorandom test sequences PRi 
(1 ≤ i ≤ 5). The peak power constraint is denoted with POWc. 
The height and width of a rectangle in Figure 2 indicate the 
peak power and the length of a test sequence, respectively. 
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Figure 2. An example of power constrained test schedules 

Note that test sequences belonging to the same core, like 
DT5 and PR5, cannot be scheduled concurrently due to the test 
conflict. 

In an AOFF environment we have two possible scenarios 
where tests can be aborted prematurely. During deterministic 
test application, the fault effect can be observed and analyzed 
at the end of every individual test pattern. Thus the test 
process can be aborted as soon as a fault is detected. On the 
other hand, if a fault is detected by a pseudorandom test 
sequence, the fault effect can only be analyzed at the end of 
the entire test sequence, when the signature is available. In 
our approach we can treat deterministic test patterns and 
pseudorandom test sequences in a similar way, since 
pseudorandom test sequence can be treated as a single test 
pattern with a length corresponding to the length of the 
particular pseudorandom test sequence. Therefore in the 
following discussion, a “test pattern” is used to denote both 
individual deterministic test patterns and pseudorandom test 
sequences, if not mentioned otherwise. It is also important to 
note that if a test-per-clock approach is assumed, the 
application time of a test pattern is one clock cycle, while 
with a test-per-scan approach, it equals to the period of an 
entire scan cycle. 

The precedent discussion leads us to a set of possible test 
termination points: after every individual deterministic test 
pattern and at the end of every pseudorandom test sequence, 
as illustrated in Figure 3. The possible test termination points 
in deterministic test sequences are marked with gray lines and 
the test termination points at the end of pseudorandom test 
sequences are marked with black dotted lines in Figure 3. 
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Figure 3. Possible test termination points 

Note that some of these points overlap and therefore are 
treated as one identical possible test termination point. 

We are interested in the expected total test time (ETTT) as 
the expectation of the total test application time in the AOFF 
environment. In Equation 1, we give a generic formula for 
ETTT calculation. In contrast to the formula presented in [3], 
this formula can be used for both test-per-clock and test-per-
scan approach. 
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Equation 1 is presented as the sum of two literals. The first 
corresponds to the situation when a test is terminated 
prematurely and the second one corresponds to the case where 
all tests are passed to the completion. At every possible test 
termination point x∈X, we can calculate a test abortion 
probability p(Ax) together with a test length tx at this test 
termination point x. With Ax we denote the event that the test 
has been aborted at test termination point x. Similarly we can 
also calculate the probability p(T) that no faults are detected 
and all tests (T) are exercised till their completion. The length 
of the complete test set is denoted with L. 

At every test termination point x∈X we can distinguish 
two different sets of tests – the tests that have failed and the 
tests that have passed. The failed set Yx consists of all test 
patterns y that have finished exactly at this point. They are 
supposed to detect at least one fault otherwise the test would 
not have been stopped at this point. The passed set Zx consists 
of all test sequences that have successfully finished before 
this point x. They are all supposed to be passed otherwise the 
test would have been aborted before this point. This leads us 
to the following formula: 
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Here Fy is an event that the test pattern y detects at least 
one fault and Pz is an event that the test sequence z is passed. 
Thus the event Ax can be described as an event at test 
termination point x, such that any of the test patterns in the 
failed test set Yx detect at least one fault, and all test sequences 
in the passed test set Zx have passed. Please note that if a test 
pattern is included to the failed set then all other patterns 
testing the same core (including both the pseudorandom 
patterns and deterministic patterns) should be removed from 
the passed set, since the probability of these patterns passing 
the test has been already considered due to the use of 
incremental fault coverage (see Equation 6 below). 

We assume that defect occurrences in different cores are 
independent of each other. Thus we can calculate the 
probability that the test is terminated at a possible termination 
point x as follows:  
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Similarly we can also calculate the probability p(T) that no 
faults are detected and all tests are exercised till their 
completion, as follows:  
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where DP(C) denotes the defect probability of core C. 
This leads us to the refined version of Equation 1: 
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The probability of the event that at least one fault is 
detected by a test pattern y∈Yx at the test termination point x 
can be calculated as 

( ) ( ) ( )CDPyIFCFp y ×=  (6)
where the incremental fault coverage IFC(y) of a single test 
pattern y is defined as a percentage of the faults only detected 
by y and not detected by any previous test pattern. 

Similarly the probability of the event that no faults are 
detected by a test sequence z∈Zx can be calculated as 
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where n is the total number of test patterns in the test 
sequence z∈Zx, and vj is the j-th test pattern. 

In order to shorten the total test application time in the 
AOFF environment we have to reduce the ETTT. When a 
peak power constraint is taken into account, the test 
scheduling problem is similar to the classical two-dimensional 
rectangular packing problem [11, 12] which is NP complete. 
However, the need to take into account the given core defect 
probability and the test conflict constraints makes it different 
form the classical rectangular packing problem. Our objective 
is to use a heuristic to find a near optimal test schedule for 
both deterministic and pseudorandom test sequences so that 
the ETTT of the entire system is minimized while the power 
constraint is not exceeded. 

4. Proposed Heuristic for Test Scheduling 
Since usually deterministic test sequences are more 

efficient in detecting faults, it is natural to give them higher 
scheduling priority than pseudorandom test sequences. In this 
work, deterministic test sequences are scheduled sequentially 
as soon as possible. When all the deterministic test sequences 
have been scheduled, pseudorandom test sequences are 
scheduled into the rest of the space under the power constraint, 
as many in parallel as possible. 

The scheduling of pseudorandom test sequences can 
employ a similar principle developed for the two-dimensional 
rectangular packing problem [11, 12]. Here we use the 
Bottom-Left-Decreasing (BLD) approach [12] to sort 
pseudorandom test sequences before scheduling them. First, 



all the pseudorandom test sequences are sorted decreasingly 
by core defect probability. Then they are divided into several 
groups each of which has test sequences sorted decreasingly 
by the ratio of the peak power to the sequence length. Sorted 
pseudorandom test sequences are thereafter scheduled with 
the Bottom-Left (BL) strategy. Different from the classical 
two-dimensional rectangular packing problem, here test 
sequences do not have to be moved to the “left” since in the 
power dimension the position of a test sequence does not have 
any impact on the schedule. Thus pseudorandom test 
sequences are scheduled to the first available time moment. 

Based on the principles described above, a heuristic is 
proposed to find a near optimal scheduling order for 
deterministic test sequences in an iterative way. Starting from 
the initial state that no test sequence is scheduled, one 
deterministic test sequence is scheduled per iteration step 
until all the deterministic test sequences are scheduled. At 
every iteration step, an unscheduled deterministic test 
sequence is selected to be inserted into the scheduled list. 
Then all pseudorandom test sequences are scheduled into the 
rest of the space and the partial ETTT is calculated within the 
range of scheduled deterministic test sequences. By exploring 
different solutions, a newly scheduled list with minimum 
partial ETTT is generated in this iteration step. The heuristic 
terminates when all the deterministic test sequences have 
been scheduled with an near optimal order and all the 
pseudorandom test sequences have been scheduled into the 
rest of the space under the power constraint. 

5. Experimental Results 
We performed two sets of experiments. In the first set, all 

the designs of cores were obtained from ISCAS’85. In the 
second set, ISCAS’89 benchmarks were used and all cores 
were redesigned in order to include a scan chain. For 
simplicity we assumed that all flip-flops are connected into 
one single scan chain and the STUMPS architecture was used 
for BIST. 

For both cases we made experiments with 5 different 
design sizes, from 5 to 50 cores. For each design size we used 
5 different SoC designs (different cores with different defect 
probability), and for every design we used 5 different levels 
of peak power constraint. The experimental results listed in 
Table 1 and Table 2 are the average of 25 experiments. The 
defect probabilities for individual cores are generated 
randomly, while keeping the total system defect probability at 
the value 0.6 (40% system yield). 

Table 1. Experimental results of systems containing combinatorial cores 
Number of 

Cores 5 10 20 30 50 
 ETTT CPU  

Time (s) ETTT CPU 
Time (s) ETTT CPU 

Time (s) ETTT CPU 
Time (s) ETTT CPU Time 

(s) 
BLD 

Scheduling 440 <0.1 975 <0.1 1465 0.2 1695 <0.1 2820 0.2 
Our 

Heuristic 377 0.7 884 16.8 1277 211.3 1534 947.4 2446 7306.7
SA 354 204.0 770 571.2 1111 2899.3 1289 9447.9 2118 16511.6

Table 2. Exp. results of systems containing sequential cores with full scan 
Number of 

Cores 5 10 20 30 50 
 ETTT CPU  

Time (s) ETTT CPU 
Time (s) ETTT CPU 

Time (s) ETTT CPU  
Time (s) ETTT CPU 

Time (s)
BLD 

Scheduling 45025 0.1 101330 0.1 151570 <0.1 181193 0.1 261948 0.3 
Our 

Heuristic 37978 1.0 84258 12.7 128903 169.7 155202 740.3 226147 5561.6

SA 37045 4776.6 83525 4776.6 123451 7209.8 138668 9525.3 200056 12700.7

In order to show the efficiency of our heuristic, a classical 
bottom-left-decreasing scheduling algorithm is taken for 
comparison. It sorts both deterministic and pseudorandom test 
sequences decreasingly by the peak power times the test 
sequence length and schedules them using the bottom-left 
approach [12]. As shown in Tables 1 and Table 2, by 
employing our heuristic the ETTT can be reduced around 
10%-17% compared to the bottom-left-decreasing scheduling, 
with an acceptable increase of computation time. On the other 
hand, when compared with a simulated annealing algorithm, 
which generates near-optimal solutions, our heuristic has a 
significantly lower execution time. 

6. Conclusion 
In this paper a power constrained SoC test scheduling 

method based on hybrid BIST architecture is presented. 
Different from other approaches, the defect probability of a 
individual core is introduced and a peak power constraint is 
taken into account. Based on the calculation of ETTT in an 
AOFF environment, a scheduling heuristic for test time 
minimization is proposed to produce good solutions with low 
computational overhead. Experimental results have shown the 
proposed method is effective to shorten the total test time. 
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