
Power-Constrained Hybrid BIST Test Scheduling in an
Abort-on-First-Fail Test Environment

Zhiyuan He, Gert Jervan, Zebo Peng, Petru Eles
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{zhihe, gerje, zebpe, petel}@ida.liu.se

Abstract1
This paper presents a method for power-constrained

system-on-chip test scheduling in an abort-on-first-fail
environment where the test is terminated as soon as a fault is
detected. We employ the defect probabilities of individual
cores to guide the scheduling, such that the expected total test
time is minimized and the peak power constraint is satisfied.
Based on a hybrid BIST architecture where a combination of
deterministic and pseudorandom test sequences is used, the
power-constrained test scheduling problem can be formulated
as an extension of the two-dimensional rectangular packing
problem and a heuristic has been proposed to calculate the
near optimal order of different test sequences. The method is
also generalized for both test-per-clock and test-per-scan
approaches. Experimental results have shown that the
proposed heuristic is efficient to find a near optimal test
schedule with a low computation overhead.

1. Introduction
The complexity of electronic systems is continuously

increasing, raising the cost and prolonging the production
period of such systems. A significant proportion in the total
cost is related to testing and therefore the reduction of the test
cost contributes a lot to the overall cost reduction.

During recent years we have seen an advent of complex
electronic systems where multiple pre-designed and pre-
verified blocks, usually referred to as cores, are integrated
into one single die. Such complex system-on-chip (SoC)
designs pose great challenges to the test engineers since
inefficient test methodologies may significantly increase the
testing time of the system [1].

To test individual cores in a SoC, a set of test resources,
such as test pattern source and sink together with an
appropriate test access mechanism (TAM), have to be
available [2]. Depending on the TAM architecture, the tests
can be scheduled in parallel or sequentially. In this context,
efficient scheduling can have significant impact on the
reduction of total test time.

In a production test environment, an abort-on-first-fail
(AOFF) approach is usually utilized. It means that the test
process is stopped as soon as a fault is detected. This

1 This work has been partially supported by the Swedish Foundation for
Strategic Research (SSF) under the Strategic Integrated Electronic
Systems Research (STRINGENT) program.

approach leads to the reduction of test time and also
production costs, as faulty dies can be eliminated before
completing the entire test process. It should be noted here,
that this approach has especially high significance during the
early phases of the production, when the yield is low and
defects are more likely to appear.

In this paper we propose a heuristic for test scheduling in
an abort-on-first-fail test environment, considering defect
probabilities of individual cores. These defect probabilities
are usually derived from statistical analysis of the production
process or generated based on inductive fault analysis. We
assume a hybrid built-in self-test (BIST) architecture, where
the test set is composed of internally generated pseudorandom
test patterns and externally applied deterministic test patterns.

In our earlier work [3] we have proposed a method for
concurrent test scheduling using a test-per-clock approach
based on defect probabilities such that the Estimated Total
Test Time (ETTT) is minimized. The approach, however, did
not take into account the power consumption of tests.
Scheduling too many tests concurrently might simply burn the
circuit. Therefore in this paper we propose a heuristic for
hybrid BIST test scheduling, such that the peak power
constraint of the system is not exceeded and the ETTT is
minimized.

The rest of this paper is organized as follows. In the next
section the backgrounds and motivation of our work are given.
In Section 3 the power constrained test scheduling problem is
formulated based on the hybrid BIST architecture in the
AOFF test environment and the calculation of estimated total
test time is explained. Section 4 demonstrates the proposed
heuristic. In section 5 the experimental results are presented
and the paper is concluded in Section 6.

2. Backgrounds and Motivation
As the number of cores in a chip increases, the amount of

total test data grows tremendously. This may pose serious
problems because of the cost and technological limitations of
the automated test equipment (ATE). One of the solutions to
this problem is to use BIST and perform pseudorandom test
pattern generation and test response compaction on the chip.
However, due to several reasons, like very large numbers of
test patterns and random pattern resistant faults, this approach
may not be efficient. Therefore different approaches have
been proposed to complement pseudorandom test patterns
with deterministic test patterns which are applied from an
ATE or on-chip memory. These approaches are generally

referred to as hybrid BIST [4, 5] which can reduce memory
requirements compared to pure deterministic test, and can
provide higher fault coverage and shorter test application time
compared to the stand-alone BIST solution.

In the current approach we have assumed that all cores
have their own dedicated BIST logic that can carry out
pseudo-random tests concurrently. The deterministic tests, on
the other hand, are applied from external source to one core at
a time. We have also assumed that an AMBA-like test bus [6]
is used for test data transportation. An example of a multi-
core system with such a test architecture is given in Figure 1.

SoC

Embedded
Tester

Test
Controller

Tester
Memory

AMBA System Bus

Core 4

BIST

Core 5

BIST

Core 1

BIST

Core 2

BIST

Core 3

BIST

Figure 1. AMBA bus-based hybrid BIST architecture

The SoC test scheduling problem has been studied recently
[7, 8]. In most of these approaches, an assumption has been
made that all tests are applied to the completion. However, in
a production environment, a test can be aborted as soon as a
fault has been detected. Therefore the likelihood of a core to
fail during the test should be considered to improve the
efficiency of the test scheduling [9, 10].

In this paper an abort-on-first-fail test scheduling approach
in a hybrid BIST environment is proposed, taking into
account the power constraints. During the scheduling process
we use the defect probability of individual cores to calculate
the expected total test time. In our earlier work [3] we
proposed a heuristic for AOFF test scheduling using test-per-
clock approach without considering power constraints. In this
paper, a generic method for ETTT calculation is proposed
such that both test-per-clock and test-per-scan approaches can
be employed. A new AOFF test scheduling heuristic is also
proposed to minimize the ETTT without violating the power
constraint.

3. Problem Formulation
Suppose that a system S, consisting of n cores C1, C2, ...,

Cn , has a test architecture as depicted in Figure 1. For every
individual core Ci (1 ≤ i ≤ n), a deterministic test sequence
DTi and a pseudorandom test sequence PRi is given,
consisting of deterministic and pseudorandom test patterns,
respectively. With DTij (1 ≤ j ≤ di) we denote the j-th
deterministic test pattern, and with PRij (1 ≤ j ≤ ri) the j-th
pseudorandom test pattern, where di and ri are respectively the
total number of deterministic and pseudorandom test patterns
for core Ci. For every individual core Ci a defect probability
DF(Ci) defined as the probability of a core to be detected
faulty during production tests is given.

Based on the given hybrid BIST architecture,
pseudorandom tests can be generated and applied to all cores

in parallel, thus reducing the total test time. However, testing
consumes more power than normal operations, and may cause
the chip to burn if too many tests are applied concurrently.
Hence there exists a peak power constraint POWc defining the
amount of instant power a circuit can tolerate without getting
damaged. In a SoC testing framework this means that at any
time the total power of the concurrent test sequences should
be below POWc.

Efficient test scheduling which decides the order and
starting time of test sequences can lead to the reduction of test
time and consequently test cost. Figure 2 shows an example
of a test schedule for five deterministic test sequences DTi
(1 ≤ i ≤ 5) and five pseudorandom test sequences PRi
(1 ≤ i ≤ 5). The peak power constraint is denoted with POWc.
The height and width of a rectangle in Figure 2 indicate the
peak power and the length of a test sequence, respectively.

DT3

PR3

DT1DT4

DT2

Power

POWC

0 Time

PR1

PR2

PR5
PR4

DT5

Deterministic test sequence
Pseudorandom test sequence

Figure 2. An example of power constrained test schedules

Note that test sequences belonging to the same core, like
DT5 and PR5, cannot be scheduled concurrently due to the test
conflict.

In an AOFF environment we have two possible scenarios
where tests can be aborted prematurely. During deterministic
test application, the fault effect can be observed and analyzed
at the end of every individual test pattern. Thus the test
process can be aborted as soon as a fault is detected. On the
other hand, if a fault is detected by a pseudorandom test
sequence, the fault effect can only be analyzed at the end of
the entire test sequence, when the signature is available. In
our approach we can treat deterministic test patterns and
pseudorandom test sequences in a similar way, since
pseudorandom test sequence can be treated as a single test
pattern with a length corresponding to the length of the
particular pseudorandom test sequence. Therefore in the
following discussion, a “test pattern” is used to denote both
individual deterministic test patterns and pseudorandom test
sequences, if not mentioned otherwise. It is also important to
note that if a test-per-clock approach is assumed, the
application time of a test pattern is one clock cycle, while
with a test-per-scan approach, it equals to the period of an
entire scan cycle.

The precedent discussion leads us to a set of possible test
termination points: after every individual deterministic test
pattern and at the end of every pseudorandom test sequence,
as illustrated in Figure 3. The possible test termination points
in deterministic test sequences are marked with gray lines and
the test termination points at the end of pseudorandom test
sequences are marked with black dotted lines in Figure 3.

DT3

PR3

DT1DT4

DT2

Power

POWC

0 Time

PR1

PR2

PR5
PR4

DT5

Deterministic test sequence
Pseudorandom test sequence

Possible Test Termination Points
Figure 3. Possible test termination points

Note that some of these points overlap and therefore are
treated as one identical possible test termination point.

We are interested in the expected total test time (ETTT) as
the expectation of the total test application time in the AOFF
environment. In Equation 1, we give a generic formula for
ETTT calculation. In contrast to the formula presented in [3],
this formula can be used for both test-per-clock and test-per-
scan approach.

())()(TpLAptETTT
Xx

xx ×+×= ∑
∈∀

 (1)

Equation 1 is presented as the sum of two literals. The first
corresponds to the situation when a test is terminated
prematurely and the second one corresponds to the case where
all tests are passed to the completion. At every possible test
termination point x∈X, we can calculate a test abortion
probability p(Ax) together with a test length tx at this test
termination point x. With Ax we denote the event that the test
has been aborted at test termination point x. Similarly we can
also calculate the probability p(T) that no faults are detected
and all tests (T) are exercised till their completion. The length
of the complete test set is denoted with L.

At every test termination point x∈X we can distinguish
two different sets of tests – the tests that have failed and the
tests that have passed. The failed set Yx consists of all test
patterns y that have finished exactly at this point. They are
supposed to detect at least one fault otherwise the test would
not have been stopped at this point. The passed set Zx consists
of all test sequences that have successfully finished before
this point x. They are all supposed to be passed otherwise the
test would have been aborted before this point. This leads us
to the following formula:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∈∀∈∀
IU I

xx Zz
z

Yy
yx PFA (2)

Here Fy is an event that the test pattern y detects at least
one fault and Pz is an event that the test sequence z is passed.
Thus the event Ax can be described as an event at test
termination point x, such that any of the test patterns in the
failed test set Yx detect at least one fault, and all test sequences
in the passed test set Zx have passed. Please note that if a test
pattern is included to the failed set then all other patterns
testing the same core (including both the pseudorandom
patterns and deterministic patterns) should be removed from
the passed set, since the probability of these patterns passing
the test has been already considered due to the use of
incremental fault coverage (see Equation 6 below).

We assume that defect occurrences in different cores are
independent of each other. Thus we can calculate the
probability that the test is terminated at a possible termination
point x as follows:

() () ()() ()∏∏∏
∈∀∈∀∈∀∈∀

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

xxxx Zz
z

Yy
y

Zz
z

Yy
yx PpFpPpFpAp 11U (3)

Similarly we can also calculate the probability p(T) that no
faults are detected and all tests are exercised till their
completion, as follows:

;I
eZz

zPT
∈∀

= () ()()∏
=∈∀

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i
i

Zz
z CDPPpTp

e 1
1I

(4)

where DP(C) denotes the defect probability of core C.
This leads us to the refined version of Equation 1:

()() () ()()∏∑ ∏∏
=∈∀ ∈∀∈∀

−×+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−×=

n

i
i

Xx Zz
z

Yy
yx CDPLPpFptETTT

xx 1

111 (5)

The probability of the event that at least one fault is
detected by a test pattern y∈Yx at the test termination point x
can be calculated as

() () ()CDPyIFCFp y ×= (6)
where the incremental fault coverage IFC(y) of a single test
pattern y is defined as a percentage of the faults only detected
by y and not detected by any previous test pattern.

Similarly the probability of the event that no faults are
detected by a test sequence z∈Zx can be calculated as

() () ()∑
=

×−=
n

j
jz CDPvIFCPp

1
1 (7)

where n is the total number of test patterns in the test
sequence z∈Zx, and vj is the j-th test pattern.

In order to shorten the total test application time in the
AOFF environment we have to reduce the ETTT. When a
peak power constraint is taken into account, the test
scheduling problem is similar to the classical two-dimensional
rectangular packing problem [11, 12] which is NP complete.
However, the need to take into account the given core defect
probability and the test conflict constraints makes it different
form the classical rectangular packing problem. Our objective
is to use a heuristic to find a near optimal test schedule for
both deterministic and pseudorandom test sequences so that
the ETTT of the entire system is minimized while the power
constraint is not exceeded.

4. Proposed Heuristic for Test Scheduling
Since usually deterministic test sequences are more

efficient in detecting faults, it is natural to give them higher
scheduling priority than pseudorandom test sequences. In this
work, deterministic test sequences are scheduled sequentially
as soon as possible. When all the deterministic test sequences
have been scheduled, pseudorandom test sequences are
scheduled into the rest of the space under the power constraint,
as many in parallel as possible.

The scheduling of pseudorandom test sequences can
employ a similar principle developed for the two-dimensional
rectangular packing problem [11, 12]. Here we use the
Bottom-Left-Decreasing (BLD) approach [12] to sort
pseudorandom test sequences before scheduling them. First,

all the pseudorandom test sequences are sorted decreasingly
by core defect probability. Then they are divided into several
groups each of which has test sequences sorted decreasingly
by the ratio of the peak power to the sequence length. Sorted
pseudorandom test sequences are thereafter scheduled with
the Bottom-Left (BL) strategy. Different from the classical
two-dimensional rectangular packing problem, here test
sequences do not have to be moved to the “left” since in the
power dimension the position of a test sequence does not have
any impact on the schedule. Thus pseudorandom test
sequences are scheduled to the first available time moment.

Based on the principles described above, a heuristic is
proposed to find a near optimal scheduling order for
deterministic test sequences in an iterative way. Starting from
the initial state that no test sequence is scheduled, one
deterministic test sequence is scheduled per iteration step
until all the deterministic test sequences are scheduled. At
every iteration step, an unscheduled deterministic test
sequence is selected to be inserted into the scheduled list.
Then all pseudorandom test sequences are scheduled into the
rest of the space and the partial ETTT is calculated within the
range of scheduled deterministic test sequences. By exploring
different solutions, a newly scheduled list with minimum
partial ETTT is generated in this iteration step. The heuristic
terminates when all the deterministic test sequences have
been scheduled with an near optimal order and all the
pseudorandom test sequences have been scheduled into the
rest of the space under the power constraint.

5. Experimental Results
We performed two sets of experiments. In the first set, all

the designs of cores were obtained from ISCAS’85. In the
second set, ISCAS’89 benchmarks were used and all cores
were redesigned in order to include a scan chain. For
simplicity we assumed that all flip-flops are connected into
one single scan chain and the STUMPS architecture was used
for BIST.

For both cases we made experiments with 5 different
design sizes, from 5 to 50 cores. For each design size we used
5 different SoC designs (different cores with different defect
probability), and for every design we used 5 different levels
of peak power constraint. The experimental results listed in
Table 1 and Table 2 are the average of 25 experiments. The
defect probabilities for individual cores are generated
randomly, while keeping the total system defect probability at
the value 0.6 (40% system yield).

Table 1. Experimental results of systems containing combinatorial cores
Number of

Cores 5 10 20 30 50
 ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU Time

(s)
BLD

Scheduling 440 <0.1 975 <0.1 1465 0.2 1695 <0.1 2820 0.2
Our

Heuristic 377 0.7 884 16.8 1277 211.3 1534 947.4 2446 7306.7
SA 354 204.0 770 571.2 1111 2899.3 1289 9447.9 2118 16511.6

Table 2. Exp. results of systems containing sequential cores with full scan
Number of

Cores 5 10 20 30 50
 ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU

Time (s)
BLD

Scheduling 45025 0.1 101330 0.1 151570 <0.1 181193 0.1 261948 0.3
Our

Heuristic 37978 1.0 84258 12.7 128903 169.7 155202 740.3 226147 5561.6

SA 37045 4776.6 83525 4776.6 123451 7209.8 138668 9525.3 200056 12700.7

In order to show the efficiency of our heuristic, a classical
bottom-left-decreasing scheduling algorithm is taken for
comparison. It sorts both deterministic and pseudorandom test
sequences decreasingly by the peak power times the test
sequence length and schedules them using the bottom-left
approach [12]. As shown in Tables 1 and Table 2, by
employing our heuristic the ETTT can be reduced around
10%-17% compared to the bottom-left-decreasing scheduling,
with an acceptable increase of computation time. On the other
hand, when compared with a simulated annealing algorithm,
which generates near-optimal solutions, our heuristic has a
significantly lower execution time.

6. Conclusion
In this paper a power constrained SoC test scheduling

method based on hybrid BIST architecture is presented.
Different from other approaches, the defect probability of a
individual core is introduced and a peak power constraint is
taken into account. Based on the calculation of ETTT in an
AOFF environment, a scheduling heuristic for test time
minimization is proposed to produce good solutions with low
computational overhead. Experimental results have shown the
proposed method is effective to shorten the total test time.

References
[1] B. T. Murray, and J. P. Hayes. Testing ICs: Getting to the core

of the problem. IEEE Transactions on Computer, Vol. 29, No.
11, 1996, pp. 32-38.

[2] Y. Zorian, E. J. Marinissen, and S. Dey. Testing Embedded
Core-Based System Chips. IEEE International Test
Conference, 1998, pp. 130-143.

[3] Z. He, G. Jervan, Z. Peng, and P. Eles. Hybrid BIST Test
Scheduling Based on Defect Probabilities. IEEE Asian Test
Symposium, 2004, pp. 230-235.

[4] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin. Test
Time Minimization for Hybrid BIST of Core-Based Systems.
IEEE Asian Test Symposium, 2003, pp. 318-323.

[5] M. Sugihara, H. Date, and H. Yasuura. Analysis and
Minimization of Test Time in a Combined BIST and External
Test Approach. Design, Automation and Test in Europe, 2000,
pp, 134-140.

[6] D. Flynn. AMBA: Enabling Reusable On-Chip Designs. IEEE
Micro, Vol. 17, No. 4, 1997, pp. 20-27.

[7] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O.
Samman, Y. Zaidan, and S. M. Reddy. Resource Allocation
and Test Scheduling for Concurrent Test of Core-based SOC
Design. IEEE Asian Test Symposium, 2001, pp. 265-270.

[8] E. Larsson, and Z. Peng. An Integrated Framework for the
Design and Optimization of SOC Test Solutions. Journal of
Electronic Testing; Theory and Applications, Vol. 18, No. 4/5,
2002, pp. 385-400.

[9] W. J. Jiang, and B. Vinnakota. Defect-Oriented Test
Scheduling. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 9, No. 3, 2001, pp. 427-438.

[10] E. Larsson, J. Pouget, and Z. Peng. Defect-Aware SOC Test
Scheduling. IEEE VLSI Test Symposium, 2004, pp. 359-364.

[11] B. S. Baker, E.G. Coffman, Jr., and R. L. Rivest. Orthogonal
Packings in Two Dimensions. SIAM Journal of Computing,
Vol. 9, Issue 4, 1980, pp. 846-855.

[12] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher.
Exhaustive Approaches to 2D Rectangular Perfect Packings,
Elsevier Science Direct, Information Processing Letters, Vol.
90, Issue 1, 2004, pp. 7-14.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

