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Abstract1 
This paper presents a test scheduling approach for system-on-

chip production tests with peak-power constraints. An abort-on-
first-fail test approach is assumed, whereby the test is terminated 
as soon as the first fault is detected. Defect probabilities of 
individual cores are used to guide the test scheduling and the 
peak-power constraint is considered in order to limit the test 
concurrency. Test set partitioning is used to divide a test set into 
several test sequences so that they can be tightly packed into the 
two-dimensional space of power and time. The partitioning of test 
sets is integrated into the test scheduling process. A heuristic has 
been developed to find an efficient test schedule which leads to 
reduced expected test time. Experimental results have shown the 
efficiency of the proposed test scheduling approach. 

 

1. Introduction and Related Work 
Increasing requirements of advanced applications have driven 

electronic systems to become more and more complex, 
consequently leading to longer time-to-market and higher 
production cost. In recent years, a system-on-chip (SoC) 
approach to the design of such complex systems has been 
proposed, which integrates pre-designed and pre-verified blocks, 
referred to as intellectual property (IP) cores, into a single die. 
Although the SoC design technique has decreased the design 
complexity and shortened the design time, it has posed great 
challenges to the testing of core-based systems [1]. A major 
problem is how to efficiently generate, transport and apply large 
quantities of test data to the cores. 

One effective solution to reduce the testing cost is to shorten 
the test application time by employing advanced test scheduling 
techniques. In order to test IP cores in a SoC, a set of test 
resources, such as test pattern sources and test sinks as well as a 
test access mechanism (TAM), have to be available [2]. 
Depending on various TAM implementations, tests can be 
applied in parallel or sequentially. It is known that increasing the 
test concurrency can significantly reduce the test application time 
and this can be achieved through elaborate test schedules. 

SoC test scheduling has been studied recently and some 
solutions have been proposed [3, 4]. Most of them assumed that 
the tests run to their completion. However, in production tests, an 
abort-on-first-fail (AOFF) test approach is often used, which 
stops the test process as soon as a fault is detected, and discards 
the faulty chip directly. When using the AOFF test approach, the 
test application time can be reduced if faults are detected, 
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especially in the early stages of manufacturing when the yield is 
low and defects are more likely to appear. 

In our approach, it is assumed that several cores can be tested 
concurrently by utilizing the BIST mechanism in the cores and/or 
the external test infrastructure. Increasing the number of 
concurrent tests can directly lead to the reduction of the test 
application time. However, to maximize the test concurrency can 
be impractical, because of either limited power supply or 
potential damage to chips. It is known that testing usually 
consumes more power than normal operations. Extremely high 
power consumption may cause the chip to be overheated and 
even burnt due to the high temperature. Therefore, a power 
constraint is introduced to limit the total number of concurrent 
tests, which is defined as the maximum total power consumption 
that the chip can endure. In a SoC test framework, this means that 
the sum of the powers consumed by concurrently applied tests 
should never exceed the power constraint. 

The power-constrained test scheduling problem is similar to 
the classical two-dimensional rectangular packing problem [5, 6] 
which is NP-complete. In our case, a test sequence composed of a 
number of test patterns is considered as a rectangle, with the 
height corresponding to the maximum power consumption of the 
test patterns and the width the time duration of the test sequence. 

In a production test environment, defect probabilities of 
individual cores can be utilized for test scheduling in order to 
minimize the test time [7-11]. Those defect probabilities can be 
derived from the statistical analysis of the production process or 
generated based on inductive fault analysis. In [9], Ingelsson et al. 
proposed a test scheduling approach for external tests using 
defect probabilities, which aims to minimize the expected test 
time. In their work, test data are transported through TAM wires 
dedicated to every individual core. The widths of the TAM wires 
have a significant impact on the expected test time, and therefore 
are taken into account for the test scheduling. Pass probabilities 
of the individual test patterns are calculated through an assumed 
probability distribution function. 

In this paper, we present a defect-probability driven test 
scheduling approach integrated with test set partitioning to 
minimize the test application time. The differences between our 
work and [9] are the following. (1) We have considered the 
power consumption issue and introduced a power constraint to 
limit the test concurrency. (2) A generic test architecture has been 
assumed, where built-in self-tests (BISTs) and/or external tests 
are utilized. (3) We have integrated the test set partitioning in the 
test scheduling in order to improve the efficiency of the generated 
test schedules. (4) The probabilities that the test process is 
terminated at different time moments are calculated based on the 
results of fault simulation, and hence are more accurate. 

In our previous work [11], we presented a test scheduling 
approach for test time minimization considering the power 

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



constraint and defect probabilities of cores. A heuristic was 
proposed for test scheduling. The main contribution of this paper 
is the development of a test set partitioning method to divide a 
test set into several test sequences so that they can be packed into 
a tight schedule. This test set partitioning method is also 
integrated into the test scheduling approach, so that the efficiency 
of the test schedule is improved and the test application time can 
be further reduced. We have also used a test pattern reordering 
technique proposed in [12] as a pre-processing for the test set 
partitioning, which can reduce the power consumption of test 
patterns and make the power profiles smoother. For the test set 
partitioning, we have developed a heuristic to find an appropriate 
number of partitions such that the sum of the area sizes (the peak-
power consumption multiplied by the time duration) of all the 
partitions is as small as possible. 

The rest of this paper is organized as follows. The next section 
presents the assumed test architecture. In Section 3, a 
motivational example is given to illustrate the power-constrained 
test scheduling problem. Section 4 gives the problem formulation 
and Section 5 presents the test set partitioning approach. In 
Section 6, some basic partitioning and scheduling principles are 
presented and the proposed heuristic for test scheduling is 
demonstrated. Experimental results are shown in Section 7 and 
the paper is concluded in Section 8. 

2. Test Architecture 
We have assumed a BIST architecture which is extended with 

support to external tests. The cores are equipped with dedicated 
BIST logics and a test bus can be used to transport deterministic 
test patterns from external sources like an ATE or an on-chip 
memory. Such a hybrid BIST architecture [13, 14] can utilize the 
advantages of both pseudorandom and deterministically 
generated tests. 

Figure 1 gives an example of the assumed test architecture for 
a five-core system. In this example, an embedded tester 
consisting of a test controller and a tester memory is integrated on 
the chip. Deterministic test patterns are applied from the tester 
memory to one core at a time. All the cores have their dedicated 
BIST logics that can apply pseudorandom tests concurrently. We 
have also assumed that a test bus connecting all cores, such as the 
advanced microcontroller bus architecture (AMBA) [15], is used 
for test data transportation. 
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Figure 1. An example of the assumed test architecture 

The assumed test architecture provides flexibility for system 
integrators to use our approach for different purposes. For 
example, in order to reduce the silicon area size, the on-chip 
tester can be substituted by an external ATE, or it can be 
eliminated if only BIST is required. 

Suppose that a system S, consisting of n cores C1, C2, ... , Cn, 
has the test architecture depicted in Figure 1. For every individual 
core Ci (i = 1, 2, ... , n), a defect probability DP(Ci), defined as 
the probability that the core has defects, is given. In order to test 
core Ci, a deterministic test set DTi consisting of di (di ≥ 0) 

deterministic test patterns and a pseudorandom test set consisting 
of ri (ri ≥ 0) pseudorandom test patterns are applied to Ci, where 
di + ri > 0. Further more, a test set can be partitioned into a 
number of test sequences. Suppose that deterministic test set DTi 
is partitioned into ai (0 ≤ ai ≤ di) deterministic test sequences, and 
pseudorandom test set PRi is partitioned into bi (0 ≤ bi ≤ ri) 
pseudorandom test sequences, where ai + bi > 0. With DTij 
(j = 1, 2, ... , ai) we denote the j-th deterministic test sequence for 
core Ci, and with PRik (k = 1, 2, ... , bi) the k-th pseudorandom test 
sequence for core Ci. Note that a test set is also a test sequence 
which originally has one partition (ai = di = 1 and/or bi = ri = 1), 
so the term “test sequence” is used to indicate a test set as well, if 
not mentioned otherwise. 

3. Motivational Example 
The power consumption of a test pattern is proportional to the 

total amount of switching activities between the precedent test 
pattern and itself, which equals to the number of state transitions 
at all the primary inputs and outputs plus the number of state 
transitions at all the internal nodes in the circuit, during the 
application of the test pattern2. The peak-power consumption of a 
test sequence is defined as the maximum power consumption of 
the test patterns in the test sequence. Figure 2 depicts the power 
profile of a test sequence and its peak-power consumption. 
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Figure 2. Peak-power consumption of a test sequence 

Different test schedules can lead to different test application 
time. Figure 3(a) shows an example of a power-constrained test 
schedule for five deterministic test sequences DTi (i = 1, 2, …, 5) 
and five pseudorandom test sequences PRi (i = 1, 2, … , 5), 
illustrated with white and grey rectangles, respectively. Each test 
sequence is depicted as a rectangle with a height and a width 
corresponding to the peak-power consumption and the time 
duration of the test sequence, respectively. The area size of a test 
sequence is then equal to its peak-power consumption multiplied 
by the time duration. The peak-power constraint is denoted with 
POWc. Note that test sequences belonging to the same core, like 
DT1 and PR1, cannot be scheduled concurrently due to the test 
conflict. 
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Figure 3. Power-constrained test schedule examples 

Comparing the size of the effective scheduled area occupied 
by all test sequences to the size of the overall schedulable area 
restricted by the power constraint line and completion time line, 
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one can find that the efficiency of the test schedule in Figure 3(a) 
is low since much of the space is wasted. One solution to improve 
the efficiency of the test schedule is to employ test set 
partitioning to decrease the granularities of test sequences. As 
shown in Figure 3(b), PR1, PR3, and PR5 are partitioned into PR11 
and PR12, PR31 and PR32, and PR51 and PR52, respectively. The 
partitioned test sequences have shorter time duration and/or 
smaller peak-power consumption than the non-partitioned test 
sequence, thus can be scheduled at the time moments which were 
not possible for the non-partitioned test sequence due to its large 
area size. From the above example, it can be observed that using 
test set partitioning can significantly improve the efficiency of the 
test schedule and shorten the test time. 

4. Problem Formulation 
With the AOFF test approach, the test application time 

depends on two factors, one is the elapsed test time when a fault 
is detected, and the other is the probability to detect the fault. 
Given the defect probabilities of individual cores and the result of 
fault simulation, we can calculate the incremental fault coverage 
of every single test pattern, and the probability that the test aborts 
at every possible termination time moment [11]. Further, the 
expected total test time (ETTT), defined as the mathematical 
expectation of the test application time, is computed based on the 
calculated probabilities and used as a cost function for test time 
minimization. 

A deterministic test can abort at the end of any deterministic 
test pattern, since the test response is available for every single 
test pattern. A pseudorandom test, on the other hand, can only 
abort at the end of the entire test sequence, when the signature is 
available. Here we define a possible test termination moment 
(PTTM) as the time moment when a deterministic test pattern or a 
pseudorandom test sequence has been applied, and the test 
response or signature has been analyzed. For every PTTM, the 
elapsed time is known, and we can calculate the probability that 
the test aborts at this particular time moment. Figure 4 illustrates 
all the possible test termination moments in a test schedule, where 
the dotted lines stand for the ending moments of deterministic test 
patterns, and the dashed lines indicate the ending moments of 
pseudorandom test sequences. Note that some of these moments 
overlap and therefore are treated as identical PTTMs. 
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Figure 4. Illustration of possible test termination moments 

A generic formula for the ETTT calculation is given in 
Equation 1 which is presented as a sum of two literals. The first 
literal corresponds to the test abortion case where tests are 
terminated because faults are detected. The second literal 
corresponds to the test completion case where all tests are passed 
to their completion. For the test abortion case, at every possible 
test termination moment x∈X, we calculate the test abortion 
probability p(Ax) and the elapsed test time tx, where Ax denotes the 
random event that the test has been aborted at PTTM x. Similarly, 
for the test completion case, we calculate the test completion 

probability p(E) and the test completion time l, where E denotes 
the random event that all tests are carried out to their completion 
without detecting any fault. More detailed explanations of the 
ETTT calculation can be found in [11]. 
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In order to minimize the test application time in production 
tests, we need to minimize the ETTT through efficient test 
scheduling integrated with test set partitioning. Taking into 
account the peak-power constraint, the test scheduling problem is 
similar to the classical two-dimensional rectangular packing 
problem [5, 6]. In this paper, our objective is to develop heuristics 
to find an efficient partitioning scheme and an efficient test 
schedule for all partitioned deterministic and pseudorandom test 
sequences, so that the ETTT is minimized while the power 
constraint is satisfied. 

5. Test Set Partitioning 
As in a rectangular packing problem, the sizes of test 

sequences have a large impact on the final schedule. To divide 
test sequences into smaller partitions with shorter time duration 
and lower individual peak-power consumptions will lead to more 
efficient test scheduling, since the partitioned test sequences have 
smaller granularities in terms of their area sizes and can be 
packed more tightly. Figure 5(a) shows a non-partitioned 
deterministic test sequence for core Ci and Figure 5(b) shows its 
three partitions (DTi1, DTi2, and DTi3). In Figure 5(b), the 
individual peak-power consumptions of the first two partitions 
(DTi1 and DTi2) are lower than that of the non-partitioned test 
sequence in Figure 5(a). The grey rectangles with dashed line 
edges illustrate the reduced area sizes due to the partitioning. 
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Figure 5. Illustration of test set partitioning and time overheads 

Reordering test patterns is useful to reduce power 
consumption and can make the power profile of a test sequence 
relatively smooth and easy to manipulate [12]. Thus, for all 
deterministic tests, we have used test pattern reordering as a pre-
processing for the test set partitioning. In Figure 6(a), the original 
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Figure 6. Power profiles before and after test pattern reordering 



power profile of a deterministic test sequence is given. As a 
comparison, the power profile after test pattern reordering is 
shown in Figure 6(b). It can be seen that, through reordering the 
test patterns, the power profile is much smoother and the peak-
power consumption is reduced (39% lower for this example). 

Although test set partitioning can lead to smaller partitions, it 
can however introduce time overheads for the partitioned test 
sequences when a test-per-scan approach is employed. This 
phenomenon occurs when deterministic test sequences and 
pseudorandom test sequences belonging to the same core are 
interleaved, as in the example in Figure 5(c). There the three 
partitioned deterministic test sequences (DTi1, DTi2, and DTi3) are 
interleaved with two partitioned pseudorandom test sequences 
(PRi1 and PRi2) for the same core Ci. The time overheads are 
indicated by the rectangles filled with slashed lines and situated at 
the left of PRi1, DTi2, PRi2, and DTi3. 

The time overheads are due to the following fact. When a 
deterministic (pseudorandom) test is stopped and resumed later 
after a pseudorandom (deterministic) test has been applied, the 
pipeline consisting of three operations (scan-in, application, and 
scan-out, see Figure 7(a)) is interrupted and has to be refilled at 
the beginning of the latter partition (see Figure 7(b)). Thus, the 
time overhead added to the latter partition is equal to the time 
duration of the scan-out operation, denoted with Lo in Figure 7. 

In Figure 5(b), the rectangles in grey are the areas reduced 
from the non-partitioned test sequence, while the rectangles filled 
with slashed lines are the areas added. Thus, we proposed a 
heuristic to find an appropriate number of partitions for a 
deterministic test set, such that the sum of the area sizes of all the 
partitions is minimized. 
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Figure 7. Pipeline in a test-per-scan approach 

The heuristic for deterministic test set partitioning starts with 
the original non-partitioned test sequence. Within each iteration 
step, one of the existing partitions is divided into two test 
sequences. The heuristic stops when no more partitions can be 
added, which means that every partitioned test sequence has one 
and only one test pattern. Here the cost function is defined as the 
sum of the area sizes of all the partitioned test sequences, and the 
objective is to find a partitioning scheme which has the lowest 
cost among all the explored solutions. 

At every iteration step, we have to decide which existing 
partition should be selected to be split into two test sequences, 
and at which position (test pattern) the selected partition should 

be divided. With an exhaustive search among all possible 
solutions within this iteration step, the local optimal partitioning 
scheme with the lowest cost is obtained and one more partition is 
added. In the global range, among all the local optimal 
partitioning schemes with different number of partitions, the one 
with the lowest cost is acquired and accepted as the best solution. 
Figure 8 illustrates how the sum of the area sizes of all partitions 
distributed with different numbers of partitions. Usually the best 
partitioning scheme has a relatively small number of partitions in 
relation to the total number of test patterns in the test set. For 
example, in Figure 8, a test set with 149 test patterns should be 
divided into 21 partitions such that the sum of their area sizes is 
minimized. 
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Figure 8. Sum of the area sizes for different number of partitions 

When a pseudorandom test sequence is divided into two 
partitions, two signatures are needed in order to obtain the test 
results at the end of both partitions, which means that an 
additional signature should be generated. Thus, extra memory is 
also needed to store this additional fault-free signature, and an 
extra time slot is needed to analyze the additionally generated 
signature. In this paper, we have assumed that there exists 
sufficient memory to store the signatures and we ignore the extra 
time slots for the analysis of the additional signatures, since this 
time is very short, compared to the time duration of the 
pseudorandom test sequence. We do not consider the impact of 
the increased complexity of the test controller either in this work, 
even though this could be an interesting issue to take into account 
[17]. 

6. Proposed Heuristic for Test Scheduling 
Before the heuristic for test scheduling is presented, some 

basic partitioning and scheduling principles are summarized as 
follows: (1) Test sequences belonging to the same core cannot be 
scheduled in parallel. (2) Deterministic test sequences are 
scheduled sequentially since a single test bus is used, while 
pseudorandom test sequences are scheduled in parallel under the 
peak-power constraint. (3) The scheduling of deterministic test 
sequences is performed before the scheduling of pseudorandom 
test sequences, which means that deterministic test sequences 
have higher scheduling priorities. This is because deterministic 
tests can be stopped after every test pattern, while pseudo-random 
tests can only be terminated at the end of the test sequences, when 
the signatures are ready. Additionally, deterministic test patterns 
are usually more efficient in detecting faults than pseudorandom 
test patterns. (4) Pseudorandom test sequences are first sorted in a 
decreasing order by certain parameters like the defect probability 
of a core, the peak-power consumption and time duration of a test 
sequence [11]. Thereafter, they are scheduled to the earliest time 
moment if available. Deterministic test sequences, however, are 
scheduled in the order obtained by a defect-probability driven 
heuristic. 



Test set partitioning is integrated into the test scheduling 
approach in the following way. Deterministic test sets are 
partitioned statically, meaning that they are partitioned before 
being scheduled, with the heuristic demonstrated in Section 5. 
Pseudorandom test sets, on the other hand, are partitioned during 
the test scheduling. When it is impossible to schedule a 
pseudorandom test sequence to the earliest time moment due to 
its large area size, the test sequence is divided into two partitions 
such that the smaller one can be scheduled as expected, and the 
scheduling of the other one is performed later. 

Based on the basic principles described above, a heuristic has 
been developed to find an efficient test schedule for all test 
sequences in an iterative way. One iteration step of the heuristic 
is illustrated with an example in Figure 9. Suppose we have five 
deterministic test sequences DT1, DT21, DT22, DT31, and DT32, and 
three pseudorandom test sequences PR1, PR2, and PR3. Two 
deterministic test sequences DT31 and DT1 have already been 
scheduled. In this iteration step, we have to decide which one out 
of three unscheduled deterministic test sequences DT21, DT22, and 
DT32 should be scheduled to which time moment among A, B, and 
C, as depicted in Figure 9. After a deterministic test sequence is 
scheduled to a time moment, the three pseudorandom test 
sequences PR1, PR2, and PR3 are scheduled to the rest of the 
space, and test set partitioning may be needed during the 
scheduling. Thereafter, the partial expected total test time 
(PETTT) is calculated within the time range of the scheduled 
deterministic test sequences (see Figure 10). When all the 
possible 9 solutions within the current iteration step have been 
explored, the solution with the lowest PETTT value is accepted 
and the three scheduled deterministic test sequences are taken as 
a base for the next iteration step. The heuristic stops when no 
more unscheduled deterministic test sequences are left, and the 
final test schedule is then obtained. Note that when a test 
sequence is scheduled, the order of those already scheduled test 
sequences should remain unchanged. 

Figure 10 shows a solution that DT22 is scheduled to time 
moment B. During the scheduling of pseudorandom test 
sequences, PR2 is partitioned into two test sequences PR21 and 
PR22. The PETTT calculation range is from the beginning of DT31 
till the end of DT1. The gap between PR3 and PR22 shows that 
DT22 and PR22 cannot be scheduled concurrently due to the test 
conflict. 

Formally, suppose that we have N deterministic test sequences 
all together, and m (0 ≤ m < N) of them have been scheduled at a 
certain iteration step. We need to schedule one more deterministic 
test sequence selected from the set of N − m unscheduled 
deterministic test sequences to an appropriate time moment, 
without disturbing the order of the scheduled test sequences. 
When a selected deterministic test sequence has been scheduled 
to a time moment, all the pseudorandom test sequences are then 
scheduled into the rest of the space, with application of dynamic 
partitioning, if needed. The PETTT of this solution is then 
calculated within the time range of the m + 1 scheduled 
deterministic test sequences. When all the (N − m) × (m + 1) 
possible solutions have been explored, the solution with the 
minimum PETTT value is accepted. The new list of scheduled 
deterministic test sequences is then used as a base for the next 
iteration step. Repeating this procedure from the initial state when 
m = 0 until all the deterministic and pseudorandom test sequences 
are scheduled when m = N, we get the final optimized schedule. 

The pseudo-code of the heuristic, given in Figure 11, has three 
major embedded loops. The outer loop (line 1-19) increments the 
number of scheduled deterministic test sequences, the middle 

loop (line 4-17) selects every unscheduled deterministic test 
sequence, and the inner loop (line 5-16) explores every possible 
time moment for scheduling. Inside the inner loop, the selected 
deterministic test sequence is scheduled (line 6), thereafter 
pseudorandom test sets are partitioned if needed and then 
scheduled (line 7-10). The PETTT of the present schedule is then 
calculated (line 11) and compared to the minimum PETTT for an 
acceptance decision (line 12-15). The final test schedule is output 
in the end (line 20). 
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Figure 10. A solution in the iteration step 

 

  1  for (# of scheduled DT test sequences = 0 to N-1) do  // Outer loop 
  2      Minimum_PETTT = a large value; 
  3      m = number of scheduled DT test sequences; 
  4      for (every unscheduled DT test sequence DTij ) do  // Middle loop 
  5          for (every possible scheduling time moment Tx) do  // Inner loop
  6              Schedule DTij to Tx; 
  7              for (every PR test set PRk ) do 
  8                  Partition PRk if needed; 
  9                  Schedule PRk; 
10              end for; 
11              Current_PETTT = PETTT(); 
12              if (Current_PETTT < Minimum_PETTT) do 
13                  Minimum_PETTT = Current_PETTT; 
14                  Record the current solution as the best solution; 
15              end if; 
16          end for;  // Inner loop stops here 
17      end for;  // Middle loop stops here 
18      Accept the best solution for this iteration; 
19  end for;  // Outer loop stops here 
20  Output the final test schedule; 

Figure 11. Pseudo-code of the heuristic 

7. Experimental Results 
For the experiments, ISCAS’89 benchmarks were used and the 

test-per-scan approach was utilized. All cores were redesigned to 
insert one single scan chain, and the STUMPS architecture is 
used for BIST. 

In the first set of experiments, test set partitioning was 
employed. We did experiments for 5 groups of designs. Each 
group had 5 different designs which had the same number of 
cores of different types, but the cores were assigned with different 
defect probabilities. The numbers of cores were 5, 10, 20, 30, and 
50 for each group, respectively. For each design we used 3 
different levels of peak-power constraints. The experimental 



results in Table 1 were the average values from 15 experiments (5 
different designs with the same number of cores multiplied by 3 
different peak-power constraints). The defect probabilities of 
individual cores were generated randomly, while keeping the 
system defect probability at the value 0.6 (i.e. 40% system yield). 

Table 1. Experimental results of different approaches with test set partitioning 
Number of 

Cores 5 10 20 30 50 
 ETTT CPU  

Time (s) ETTT CPU 
Time (s) ETTAT CPU 

Time (s) ETTT CPU 
Time (s) ETTT CPU Time 

(s) 
BLD 

Scheduling 
7783 0.01 10590 0.02 20081 0.04 28578 0.06 50562 0.11 

Our 
Heuristic 

6247 2.5 7983 26.9 14239 293.9 21117 493.4 37463 4372.9

SA 6126 276.0 7732 568.7 14808 301.5 22290 503.9 40074 4409.3

 
In order to show the efficiency of our heuristic, a classical 

bottom-left-decreasing (BLD) scheduling algorithm is taken for 
comparison. It sorts deterministic and pseudorandom test 
sequences decreasingly by their area sizes (the peak-power 
consumption multiplied by the time duration), and then schedules 
them using the bottom-left strategy. As shown in Table 1, by 
employing our heuristic, the ETTT can be reduced around 20% to 
29% compared to the BLD scheduling algorithm, with an 
acceptable increase of execution time. On the other hand, in order 
to show the accuracy of our heuristic to find a near-optimal test 
schedule, we also compared our heuristic with a simulated 
annealing (SA) algorithm. For small designs with 5 and 10 cores, 
the SA algorithm reached the imposed termination condition in an 
acceptable time and is supposed to return a solution close to the 
optimal solution. For large designs with 20, 30, and 50 cores, the 
SA algorithm took unacceptably long time to reach the 
termination condition. Thus, for these experiments, we let the SA 
algorithm run for a time equal to that needed by our heuristic. 
From Table 1, one can see that in small designs, the SA algorithm 
works just slightly better than our heuristic (2% to 3% lower 
ETTT), but has up to two orders of magnitude longer execution 
time than our heuristic. For the large designs, our heuristic found 
better solutions with 4% to 7% lower ETTT values, than the SA 
algorithm that reached in the same amount of time. 

In the second set of experiments where the same designs were 
used, we intended to show the effect of test set partitioning. As a 
comparison, we used a defect-probability driven test scheduling 
heuristic which did not allow test set partitioning. For the sake of 
fairness, both the partitioned and non-partitioned heuristic used 
test pattern reordering, thus the advantage of the peak-power 
reduction by reordering test patterns did not play any role in this 
comparison. The experimental results are given in Table 2. As 
shown in the Table, using test set partitioning can reduce the 
ETTT with amounts between 16% and 30%. The results are also 
illustrated in Figure 12. 

Table 2. Comparison of our heuristic with one without test set partitioning 
Number of 

Cores 5 10 20 30 50 
 ETTT CPU  

Time (s) ETTT CPU 
Time (s) ETTT CPU 

Time (s) ETTT CPU  
Time (s) ETTT CPU 

Time (s)
NON-

Partitioned 
8269 0.09 11357 0.86 18016 14.2 26710 68.6 44713 589.1

Partitioned 6247 2.5 7983 26.9 14239 293.9 21117 493.4 37463 4372.9
 

8. Conclusions 
In this paper, a power-constrained SoC test scheduling 

approach is presented in a production test environment. Different 
from other approaches, the defect probabilities of individual cores 
are utilized to drive the test scheduling and a test set partitioning 
approach is employed. Based on the calculation of the ETTT, a 
heuristic for test set partitioning and test time minimization is 

used to generate an efficient test schedules. Experimental results 
have shown that the proposed method is effective to shorten the 
test application time. 
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Figure 12. Comparison of our heuristic with one without partitioning 
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