
Power Constrained and Defect-Probability Driven
SoC Test Scheduling with Test Set Partitioning

Zhiyuan He, Zebo Peng, and Petru Eles
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{zhihe, zebpe, petel}@ida.liu.se

Abstract1
This paper presents a test scheduling approach for system-on-

chip production tests with peak-power constraints. An abort-on-
first-fail test approach is assumed, whereby the test is terminated
as soon as the first fault is detected. Defect probabilities of
individual cores are used to guide the test scheduling and the
peak-power constraint is considered in order to limit the test
concurrency. Test set partitioning is used to divide a test set into
several test sequences so that they can be tightly packed into the
two-dimensional space of power and time. The partitioning of test
sets is integrated into the test scheduling process. A heuristic has
been developed to find an efficient test schedule which leads to
reduced expected test time. Experimental results have shown the
efficiency of the proposed test scheduling approach.

1. Introduction and Related Work
Increasing requirements of advanced applications have driven

electronic systems to become more and more complex,
consequently leading to longer time-to-market and higher
production cost. In recent years, a system-on-chip (SoC)
approach to the design of such complex systems has been
proposed, which integrates pre-designed and pre-verified blocks,
referred to as intellectual property (IP) cores, into a single die.
Although the SoC design technique has decreased the design
complexity and shortened the design time, it has posed great
challenges to the testing of core-based systems [1]. A major
problem is how to efficiently generate, transport and apply large
quantities of test data to the cores.

One effective solution to reduce the testing cost is to shorten
the test application time by employing advanced test scheduling
techniques. In order to test IP cores in a SoC, a set of test
resources, such as test pattern sources and test sinks as well as a
test access mechanism (TAM), have to be available [2].
Depending on various TAM implementations, tests can be
applied in parallel or sequentially. It is known that increasing the
test concurrency can significantly reduce the test application time
and this can be achieved through elaborate test schedules.

SoC test scheduling has been studied recently and some
solutions have been proposed [3, 4]. Most of them assumed that
the tests run to their completion. However, in production tests, an
abort-on-first-fail (AOFF) test approach is often used, which
stops the test process as soon as a fault is detected, and discards
the faulty chip directly. When using the AOFF test approach, the
test application time can be reduced if faults are detected,

1 This work has been partially supported by the Swedish Foundation for
Strategic Research (SSF) under the Strategic Integrated Electronic Systems
Research (STRINGENT) program.

especially in the early stages of manufacturing when the yield is
low and defects are more likely to appear.

In our approach, it is assumed that several cores can be tested
concurrently by utilizing the BIST mechanism in the cores and/or
the external test infrastructure. Increasing the number of
concurrent tests can directly lead to the reduction of the test
application time. However, to maximize the test concurrency can
be impractical, because of either limited power supply or
potential damage to chips. It is known that testing usually
consumes more power than normal operations. Extremely high
power consumption may cause the chip to be overheated and
even burnt due to the high temperature. Therefore, a power
constraint is introduced to limit the total number of concurrent
tests, which is defined as the maximum total power consumption
that the chip can endure. In a SoC test framework, this means that
the sum of the powers consumed by concurrently applied tests
should never exceed the power constraint.

The power-constrained test scheduling problem is similar to
the classical two-dimensional rectangular packing problem [5, 6]
which is NP-complete. In our case, a test sequence composed of a
number of test patterns is considered as a rectangle, with the
height corresponding to the maximum power consumption of the
test patterns and the width the time duration of the test sequence.

In a production test environment, defect probabilities of
individual cores can be utilized for test scheduling in order to
minimize the test time [7-11]. Those defect probabilities can be
derived from the statistical analysis of the production process or
generated based on inductive fault analysis. In [9], Ingelsson et al.
proposed a test scheduling approach for external tests using
defect probabilities, which aims to minimize the expected test
time. In their work, test data are transported through TAM wires
dedicated to every individual core. The widths of the TAM wires
have a significant impact on the expected test time, and therefore
are taken into account for the test scheduling. Pass probabilities
of the individual test patterns are calculated through an assumed
probability distribution function.

In this paper, we present a defect-probability driven test
scheduling approach integrated with test set partitioning to
minimize the test application time. The differences between our
work and [9] are the following. (1) We have considered the
power consumption issue and introduced a power constraint to
limit the test concurrency. (2) A generic test architecture has been
assumed, where built-in self-tests (BISTs) and/or external tests
are utilized. (3) We have integrated the test set partitioning in the
test scheduling in order to improve the efficiency of the generated
test schedules. (4) The probabilities that the test process is
terminated at different time moments are calculated based on the
results of fault simulation, and hence are more accurate.

In our previous work [11], we presented a test scheduling
approach for test time minimization considering the power

3-9810801-0-6/DATE06 © 2006 EDAA

constraint and defect probabilities of cores. A heuristic was
proposed for test scheduling. The main contribution of this paper
is the development of a test set partitioning method to divide a
test set into several test sequences so that they can be packed into
a tight schedule. This test set partitioning method is also
integrated into the test scheduling approach, so that the efficiency
of the test schedule is improved and the test application time can
be further reduced. We have also used a test pattern reordering
technique proposed in [12] as a pre-processing for the test set
partitioning, which can reduce the power consumption of test
patterns and make the power profiles smoother. For the test set
partitioning, we have developed a heuristic to find an appropriate
number of partitions such that the sum of the area sizes (the peak-
power consumption multiplied by the time duration) of all the
partitions is as small as possible.

The rest of this paper is organized as follows. The next section
presents the assumed test architecture. In Section 3, a
motivational example is given to illustrate the power-constrained
test scheduling problem. Section 4 gives the problem formulation
and Section 5 presents the test set partitioning approach. In
Section 6, some basic partitioning and scheduling principles are
presented and the proposed heuristic for test scheduling is
demonstrated. Experimental results are shown in Section 7 and
the paper is concluded in Section 8.

2. Test Architecture
We have assumed a BIST architecture which is extended with

support to external tests. The cores are equipped with dedicated
BIST logics and a test bus can be used to transport deterministic
test patterns from external sources like an ATE or an on-chip
memory. Such a hybrid BIST architecture [13, 14] can utilize the
advantages of both pseudorandom and deterministically
generated tests.

Figure 1 gives an example of the assumed test architecture for
a five-core system. In this example, an embedded tester
consisting of a test controller and a tester memory is integrated on
the chip. Deterministic test patterns are applied from the tester
memory to one core at a time. All the cores have their dedicated
BIST logics that can apply pseudorandom tests concurrently. We
have also assumed that a test bus connecting all cores, such as the
advanced microcontroller bus architecture (AMBA) [15], is used
for test data transportation.

SoC

Embedded
Tester

Test
Controller

Tester
Memory

Core 2
BIST

Core 5
BIST

Core 4
BIST

Core 3
BIST

Core 1
BIST

Test Bus

Figure 1. An example of the assumed test architecture

The assumed test architecture provides flexibility for system
integrators to use our approach for different purposes. For
example, in order to reduce the silicon area size, the on-chip
tester can be substituted by an external ATE, or it can be
eliminated if only BIST is required.

Suppose that a system S, consisting of n cores C1, C2, ... , Cn,
has the test architecture depicted in Figure 1. For every individual
core Ci (i = 1, 2, ... , n), a defect probability DP(Ci), defined as
the probability that the core has defects, is given. In order to test
core Ci, a deterministic test set DTi consisting of di (di ≥ 0)

deterministic test patterns and a pseudorandom test set consisting
of ri (ri ≥ 0) pseudorandom test patterns are applied to Ci, where
di + ri > 0. Further more, a test set can be partitioned into a
number of test sequences. Suppose that deterministic test set DTi
is partitioned into ai (0 ≤ ai ≤ di) deterministic test sequences, and
pseudorandom test set PRi is partitioned into bi (0 ≤ bi ≤ ri)
pseudorandom test sequences, where ai + bi > 0. With DTij
(j = 1, 2, ... , ai) we denote the j-th deterministic test sequence for
core Ci, and with PRik (k = 1, 2, ... , bi) the k-th pseudorandom test
sequence for core Ci. Note that a test set is also a test sequence
which originally has one partition (ai = di = 1 and/or bi = ri = 1),
so the term “test sequence” is used to indicate a test set as well, if
not mentioned otherwise.

3. Motivational Example
The power consumption of a test pattern is proportional to the

total amount of switching activities between the precedent test
pattern and itself, which equals to the number of state transitions
at all the primary inputs and outputs plus the number of state
transitions at all the internal nodes in the circuit, during the
application of the test pattern2. The peak-power consumption of a
test sequence is defined as the maximum power consumption of
the test patterns in the test sequence. Figure 2 depicts the power
profile of a test sequence and its peak-power consumption.

Time Duration

Pe
ak

-P
ow

er

C
on

su
m

pt
io

n

Test Patterns
Figure 2. Peak-power consumption of a test sequence

Different test schedules can lead to different test application
time. Figure 3(a) shows an example of a power-constrained test
schedule for five deterministic test sequences DTi (i = 1, 2, …, 5)
and five pseudorandom test sequences PRi (i = 1, 2, … , 5),
illustrated with white and grey rectangles, respectively. Each test
sequence is depicted as a rectangle with a height and a width
corresponding to the peak-power consumption and the time
duration of the test sequence, respectively. The area size of a test
sequence is then equal to its peak-power consumption multiplied
by the time duration. The peak-power constraint is denoted with
POWc. Note that test sequences belonging to the same core, like
DT1 and PR1, cannot be scheduled concurrently due to the test
conflict.

PR1

PR2 PR3

DT4

PR4

DT2

DT5
DT1

DT3

PR5

Completion

Power

POWC

0 Time

PR32

DT4

PR4

DT2DT1
DT3

PR52

DT5

Power

POWC

0 Time
Completion

PR31

PR51 PR11

PR2

PR12

Deterministic test sequence
Pseudorandom test sequence

Deterministic test sequence
Pseudorandom test sequence

(a) (b)

Figure 3. Power-constrained test schedule examples

Comparing the size of the effective scheduled area occupied
by all test sequences to the size of the overall schedulable area
restricted by the power constraint line and completion time line,

2 We have assumed that a low-power scan chain technique is used [16] when a
test-per-scan approach is employed.

one can find that the efficiency of the test schedule in Figure 3(a)
is low since much of the space is wasted. One solution to improve
the efficiency of the test schedule is to employ test set
partitioning to decrease the granularities of test sequences. As
shown in Figure 3(b), PR1, PR3, and PR5 are partitioned into PR11
and PR12, PR31 and PR32, and PR51 and PR52, respectively. The
partitioned test sequences have shorter time duration and/or
smaller peak-power consumption than the non-partitioned test
sequence, thus can be scheduled at the time moments which were
not possible for the non-partitioned test sequence due to its large
area size. From the above example, it can be observed that using
test set partitioning can significantly improve the efficiency of the
test schedule and shorten the test time.

4. Problem Formulation
With the AOFF test approach, the test application time

depends on two factors, one is the elapsed test time when a fault
is detected, and the other is the probability to detect the fault.
Given the defect probabilities of individual cores and the result of
fault simulation, we can calculate the incremental fault coverage
of every single test pattern, and the probability that the test aborts
at every possible termination time moment [11]. Further, the
expected total test time (ETTT), defined as the mathematical
expectation of the test application time, is computed based on the
calculated probabilities and used as a cost function for test time
minimization.

A deterministic test can abort at the end of any deterministic
test pattern, since the test response is available for every single
test pattern. A pseudorandom test, on the other hand, can only
abort at the end of the entire test sequence, when the signature is
available. Here we define a possible test termination moment
(PTTM) as the time moment when a deterministic test pattern or a
pseudorandom test sequence has been applied, and the test
response or signature has been analyzed. For every PTTM, the
elapsed time is known, and we can calculate the probability that
the test aborts at this particular time moment. Figure 4 illustrates
all the possible test termination moments in a test schedule, where
the dotted lines stand for the ending moments of deterministic test
patterns, and the dashed lines indicate the ending moments of
pseudorandom test sequences. Note that some of these moments
overlap and therefore are treated as identical PTTMs.

PR21 PR3

DT4

Power

POWC

0 Time

PR11

PR4

DT2DT1
DT3

PR22

PR5

PR12

DT5

Possible Test Termination Moments

Deterministic test sequence
Pseudorandom test sequence

Figure 4. Illustration of possible test termination moments

A generic formula for the ETTT calculation is given in
Equation 1 which is presented as a sum of two literals. The first
literal corresponds to the test abortion case where tests are
terminated because faults are detected. The second literal
corresponds to the test completion case where all tests are passed
to their completion. For the test abortion case, at every possible
test termination moment x∈X, we calculate the test abortion
probability p(Ax) and the elapsed test time tx, where Ax denotes the
random event that the test has been aborted at PTTM x. Similarly,
for the test completion case, we calculate the test completion

probability p(E) and the test completion time l, where E denotes
the random event that all tests are carried out to their completion
without detecting any fault. More detailed explanations of the
ETTT calculation can be found in [11].

()() (EplAptETTT
Xx

xx ×+×=)∑
∈∀

(1)

In order to minimize the test application time in production
tests, we need to minimize the ETTT through efficient test
scheduling integrated with test set partitioning. Taking into
account the peak-power constraint, the test scheduling problem is
similar to the classical two-dimensional rectangular packing
problem [5, 6]. In this paper, our objective is to develop heuristics
to find an efficient partitioning scheme and an efficient test
schedule for all partitioned deterministic and pseudorandom test
sequences, so that the ETTT is minimized while the power
constraint is satisfied.

5. Test Set Partitioning
As in a rectangular packing problem, the sizes of test

sequences have a large impact on the final schedule. To divide
test sequences into smaller partitions with shorter time duration
and lower individual peak-power consumptions will lead to more
efficient test scheduling, since the partitioned test sequences have
smaller granularities in terms of their area sizes and can be
packed more tightly. Figure 5(a) shows a non-partitioned
deterministic test sequence for core Ci and Figure 5(b) shows its
three partitions (DTi1, DTi2, and DTi3). In Figure 5(b), the
individual peak-power consumptions of the first two partitions
(DTi1 and DTi2) are lower than that of the non-partitioned test
sequence in Figure 5(a). The grey rectangles with dashed line
edges illustrate the reduced area sizes due to the partitioning.

(c)

DTi1 DTi2
PRi1

DTi3PRi2

(b)

(a)

Figure 5. Illustration of test set partitioning and time overheads

Reordering test patterns is useful to reduce power
consumption and can make the power profile of a test sequence
relatively smooth and easy to manipulate [12]. Thus, for all
deterministic tests, we have used test pattern reordering as a pre-
processing for the test set partitioning. In Figure 6(a), the original

0

320

 0

194

320

(a) before reordering (b) after reordering
Figure 6. Power profiles before and after test pattern reordering

power profile of a deterministic test sequence is given. As a
comparison, the power profile after test pattern reordering is
shown in Figure 6(b). It can be seen that, through reordering the
test patterns, the power profile is much smoother and the peak-
power consumption is reduced (39% lower for this example).

Although test set partitioning can lead to smaller partitions, it
can however introduce time overheads for the partitioned test
sequences when a test-per-scan approach is employed. This
phenomenon occurs when deterministic test sequences and
pseudorandom test sequences belonging to the same core are
interleaved, as in the example in Figure 5(c). There the three
partitioned deterministic test sequences (DTi1, DTi2, and DTi3) are
interleaved with two partitioned pseudorandom test sequences
(PRi1 and PRi2) for the same core Ci. The time overheads are
indicated by the rectangles filled with slashed lines and situated at
the left of PRi1, DTi2, PRi2, and DTi3.

The time overheads are due to the following fact. When a
deterministic (pseudorandom) test is stopped and resumed later
after a pseudorandom (deterministic) test has been applied, the
pipeline consisting of three operations (scan-in, application, and
scan-out, see Figure 7(a)) is interrupted and has to be refilled at
the beginning of the latter partition (see Figure 7(b)). Thus, the
time overhead added to the latter partition is equal to the time
duration of the scan-out operation, denoted with Lo in Figure 7.

In Figure 5(b), the rectangles in grey are the areas reduced
from the non-partitioned test sequence, while the rectangles filled
with slashed lines are the areas added. Thus, we proposed a
heuristic to find an appropriate number of partitions for a
deterministic test set, such that the sum of the area sizes of all the
partitions is minimized.

3rd Test Pattern2nd Test Pattern1st Test Pattern

Li+1+Lo Li+1

4th Test Pattern

Scan in Scan outApp.

Scan in Scan outApp.

1st Test
Pattern

2nd Test
Pattern

3rd Test
Pattern

Li Lo1

1

4th Test
Pattern

Li Lo

Scan in Scan outApp.

1Li Lo

Scan in Scan outApp.

1Li Lo

Li+1 Li+1
(a)

3rd Test Pattern2nd Test Pattern1st Test Pattern 4th Test Pattern...

Scan in Scan outApp.

Scan in Scan outApp.

1st Test
Pattern

2nd Test
Pattern

Li Lo1

1Li Lo

3rd Test
Pattern

4th Test
Pattern

Scan in Scan outApp.

1Li Lo

Scan in Scan outApp.

1Li Lo

Li+1 Li+1Li+1+Lo Li+1+Lo
(b)

Figure 7. Pipeline in a test-per-scan approach

The heuristic for deterministic test set partitioning starts with
the original non-partitioned test sequence. Within each iteration
step, one of the existing partitions is divided into two test
sequences. The heuristic stops when no more partitions can be
added, which means that every partitioned test sequence has one
and only one test pattern. Here the cost function is defined as the
sum of the area sizes of all the partitioned test sequences, and the
objective is to find a partitioning scheme which has the lowest
cost among all the explored solutions.

At every iteration step, we have to decide which existing
partition should be selected to be split into two test sequences,
and at which position (test pattern) the selected partition should

be divided. With an exhaustive search among all possible
solutions within this iteration step, the local optimal partitioning
scheme with the lowest cost is obtained and one more partition is
added. In the global range, among all the local optimal
partitioning schemes with different number of partitions, the one
with the lowest cost is acquired and accepted as the best solution.
Figure 8 illustrates how the sum of the area sizes of all partitions
distributed with different numbers of partitions. Usually the best
partitioning scheme has a relatively small number of partitions in
relation to the total number of test patterns in the test set. For
example, in Figure 8, a test set with 149 test patterns should be
divided into 21 partitions such that the sum of their area sizes is
minimized.

555000

580000

605000

630000

655000

680000

705000

730000

755000

780000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of partitions

Su
m

 o
f t

he
 a

re
a

si
ze

s
of

 a
ll

pa
rt

iti
on

s

(21, 566326)

Figure 8. Sum of the area sizes for different number of partitions

When a pseudorandom test sequence is divided into two
partitions, two signatures are needed in order to obtain the test
results at the end of both partitions, which means that an
additional signature should be generated. Thus, extra memory is
also needed to store this additional fault-free signature, and an
extra time slot is needed to analyze the additionally generated
signature. In this paper, we have assumed that there exists
sufficient memory to store the signatures and we ignore the extra
time slots for the analysis of the additional signatures, since this
time is very short, compared to the time duration of the
pseudorandom test sequence. We do not consider the impact of
the increased complexity of the test controller either in this work,
even though this could be an interesting issue to take into account
[17].

6. Proposed Heuristic for Test Scheduling
Before the heuristic for test scheduling is presented, some

basic partitioning and scheduling principles are summarized as
follows: (1) Test sequences belonging to the same core cannot be
scheduled in parallel. (2) Deterministic test sequences are
scheduled sequentially since a single test bus is used, while
pseudorandom test sequences are scheduled in parallel under the
peak-power constraint. (3) The scheduling of deterministic test
sequences is performed before the scheduling of pseudorandom
test sequences, which means that deterministic test sequences
have higher scheduling priorities. This is because deterministic
tests can be stopped after every test pattern, while pseudo-random
tests can only be terminated at the end of the test sequences, when
the signatures are ready. Additionally, deterministic test patterns
are usually more efficient in detecting faults than pseudorandom
test patterns. (4) Pseudorandom test sequences are first sorted in a
decreasing order by certain parameters like the defect probability
of a core, the peak-power consumption and time duration of a test
sequence [11]. Thereafter, they are scheduled to the earliest time
moment if available. Deterministic test sequences, however, are
scheduled in the order obtained by a defect-probability driven
heuristic.

Test set partitioning is integrated into the test scheduling
approach in the following way. Deterministic test sets are
partitioned statically, meaning that they are partitioned before
being scheduled, with the heuristic demonstrated in Section 5.
Pseudorandom test sets, on the other hand, are partitioned during
the test scheduling. When it is impossible to schedule a
pseudorandom test sequence to the earliest time moment due to
its large area size, the test sequence is divided into two partitions
such that the smaller one can be scheduled as expected, and the
scheduling of the other one is performed later.

Based on the basic principles described above, a heuristic has
been developed to find an efficient test schedule for all test
sequences in an iterative way. One iteration step of the heuristic
is illustrated with an example in Figure 9. Suppose we have five
deterministic test sequences DT1, DT21, DT22, DT31, and DT32, and
three pseudorandom test sequences PR1, PR2, and PR3. Two
deterministic test sequences DT31 and DT1 have already been
scheduled. In this iteration step, we have to decide which one out
of three unscheduled deterministic test sequences DT21, DT22, and
DT32 should be scheduled to which time moment among A, B, and
C, as depicted in Figure 9. After a deterministic test sequence is
scheduled to a time moment, the three pseudorandom test
sequences PR1, PR2, and PR3 are scheduled to the rest of the
space, and test set partitioning may be needed during the
scheduling. Thereafter, the partial expected total test time
(PETTT) is calculated within the time range of the scheduled
deterministic test sequences (see Figure 10). When all the
possible 9 solutions within the current iteration step have been
explored, the solution with the lowest PETTT value is accepted
and the three scheduled deterministic test sequences are taken as
a base for the next iteration step. The heuristic stops when no
more unscheduled deterministic test sequences are left, and the
final test schedule is then obtained. Note that when a test
sequence is scheduled, the order of those already scheduled test
sequences should remain unchanged.

Figure 10 shows a solution that DT22 is scheduled to time
moment B. During the scheduling of pseudorandom test
sequences, PR2 is partitioned into two test sequences PR21 and
PR22. The PETTT calculation range is from the beginning of DT31
till the end of DT1. The gap between PR3 and PR22 shows that
DT22 and PR22 cannot be scheduled concurrently due to the test
conflict.

Formally, suppose that we have N deterministic test sequences
all together, and m (0 ≤ m < N) of them have been scheduled at a
certain iteration step. We need to schedule one more deterministic
test sequence selected from the set of N − m unscheduled
deterministic test sequences to an appropriate time moment,
without disturbing the order of the scheduled test sequences.
When a selected deterministic test sequence has been scheduled
to a time moment, all the pseudorandom test sequences are then
scheduled into the rest of the space, with application of dynamic
partitioning, if needed. The PETTT of this solution is then
calculated within the time range of the m + 1 scheduled
deterministic test sequences. When all the (N − m) × (m + 1)
possible solutions have been explored, the solution with the
minimum PETTT value is accepted. The new list of scheduled
deterministic test sequences is then used as a base for the next
iteration step. Repeating this procedure from the initial state when
m = 0 until all the deterministic and pseudorandom test sequences
are scheduled when m = N, we get the final optimized schedule.

The pseudo-code of the heuristic, given in Figure 11, has three
major embedded loops. The outer loop (line 1-19) increments the
number of scheduled deterministic test sequences, the middle

loop (line 4-17) selects every unscheduled deterministic test
sequence, and the inner loop (line 5-16) explores every possible
time moment for scheduling. Inside the inner loop, the selected
deterministic test sequence is scheduled (line 6), thereafter
pseudorandom test sets are partitioned if needed and then
scheduled (line 7-10). The PETTT of the present schedule is then
calculated (line 11) and compared to the minimum PETTT for an
acceptance decision (line 12-15). The final test schedule is output
in the end (line 20).

DT31

DT1

DT22

DT21

DT32

PR2

PR1

PR3

Power

POWC

0 Time

1

2

3

Sorted list of unscheduled
pseudorandom test sequences

Unscheduled pseudorandom test sequence
Unscheduled deterministic test sequence
Scheduled deterministic test sequence

A B C
Figure 9. Illustration of one iteration step of the heuristic

Scheduled pseudorandom test sequence with NO contribution to the partial ETTT

Unscheduled deterministic test sequenceScheduled deterministic test sequence
Scheduled pseudorandom test sequence with contribution to the partial ETTT

DT1

PR3

PR1 PR22

DT31

Partial ETTT
 calculation range

DT22

DT21

DT32

Power

POWC

0 Time

PR21

Figure 10. A solution in the iteration step

 1 for (# of scheduled DT test sequences = 0 to N-1) do // Outer loop
 2 Minimum_PETTT = a large value;
 3 m = number of scheduled DT test sequences;
 4 for (every unscheduled DT test sequence DTij) do // Middle loop
 5 for (every possible scheduling time moment Tx) do // Inner loop
 6 Schedule DTij to Tx;
 7 for (every PR test set PRk) do
 8 Partition PRk if needed;
 9 Schedule PRk;
10 end for;
11 Current_PETTT = PETTT();
12 if (Current_PETTT < Minimum_PETTT) do
13 Minimum_PETTT = Current_PETTT;
14 Record the current solution as the best solution;
15 end if;
16 end for; // Inner loop stops here
17 end for; // Middle loop stops here
18 Accept the best solution for this iteration;
19 end for; // Outer loop stops here
20 Output the final test schedule;

Figure 11. Pseudo-code of the heuristic

7. Experimental Results
For the experiments, ISCAS’89 benchmarks were used and the

test-per-scan approach was utilized. All cores were redesigned to
insert one single scan chain, and the STUMPS architecture is
used for BIST.

In the first set of experiments, test set partitioning was
employed. We did experiments for 5 groups of designs. Each
group had 5 different designs which had the same number of
cores of different types, but the cores were assigned with different
defect probabilities. The numbers of cores were 5, 10, 20, 30, and
50 for each group, respectively. For each design we used 3
different levels of peak-power constraints. The experimental

results in Table 1 were the average values from 15 experiments (5
different designs with the same number of cores multiplied by 3
different peak-power constraints). The defect probabilities of
individual cores were generated randomly, while keeping the
system defect probability at the value 0.6 (i.e. 40% system yield).

Table 1. Experimental results of different approaches with test set partitioning
Number of

Cores 5 10 20 30 50
 ETTT CPU

Time (s) ETTT CPU
Time (s) ETTAT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU Time

(s)
BLD

Scheduling
7783 0.01 10590 0.02 20081 0.04 28578 0.06 50562 0.11

Our
Heuristic

6247 2.5 7983 26.9 14239 293.9 21117 493.4 37463 4372.9

SA 6126 276.0 7732 568.7 14808 301.5 22290 503.9 40074 4409.3

In order to show the efficiency of our heuristic, a classical

bottom-left-decreasing (BLD) scheduling algorithm is taken for
comparison. It sorts deterministic and pseudorandom test
sequences decreasingly by their area sizes (the peak-power
consumption multiplied by the time duration), and then schedules
them using the bottom-left strategy. As shown in Table 1, by
employing our heuristic, the ETTT can be reduced around 20% to
29% compared to the BLD scheduling algorithm, with an
acceptable increase of execution time. On the other hand, in order
to show the accuracy of our heuristic to find a near-optimal test
schedule, we also compared our heuristic with a simulated
annealing (SA) algorithm. For small designs with 5 and 10 cores,
the SA algorithm reached the imposed termination condition in an
acceptable time and is supposed to return a solution close to the
optimal solution. For large designs with 20, 30, and 50 cores, the
SA algorithm took unacceptably long time to reach the
termination condition. Thus, for these experiments, we let the SA
algorithm run for a time equal to that needed by our heuristic.
From Table 1, one can see that in small designs, the SA algorithm
works just slightly better than our heuristic (2% to 3% lower
ETTT), but has up to two orders of magnitude longer execution
time than our heuristic. For the large designs, our heuristic found
better solutions with 4% to 7% lower ETTT values, than the SA
algorithm that reached in the same amount of time.

In the second set of experiments where the same designs were
used, we intended to show the effect of test set partitioning. As a
comparison, we used a defect-probability driven test scheduling
heuristic which did not allow test set partitioning. For the sake of
fairness, both the partitioned and non-partitioned heuristic used
test pattern reordering, thus the advantage of the peak-power
reduction by reordering test patterns did not play any role in this
comparison. The experimental results are given in Table 2. As
shown in the Table, using test set partitioning can reduce the
ETTT with amounts between 16% and 30%. The results are also
illustrated in Figure 12.

Table 2. Comparison of our heuristic with one without test set partitioning
Number of

Cores 5 10 20 30 50
 ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT CPU

Time (s)
NON-

Partitioned
8269 0.09 11357 0.86 18016 14.2 26710 68.6 44713 589.1

Partitioned 6247 2.5 7983 26.9 14239 293.9 21117 493.4 37463 4372.9

8. Conclusions
In this paper, a power-constrained SoC test scheduling

approach is presented in a production test environment. Different
from other approaches, the defect probabilities of individual cores
are utilized to drive the test scheduling and a test set partitioning
approach is employed. Based on the calculation of the ETTT, a
heuristic for test set partitioning and test time minimization is

used to generate an efficient test schedules. Experimental results
have shown that the proposed method is effective to shorten the
test application time.

8269
11357

18016

26710

44713

14239

21117

7983
6247

37463

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5 10 20 30 50
Number of Cores

Ex
pe

ct
ed

 T
ot

al
 T

es
t T

im
e

(E
TT

T) NON-Partitioned
Partitioned

Figure 12. Comparison of our heuristic with one without partitioning

References
[1] B. T. Murray, and J. P. Hayes. Testing ICs: Getting to the core of

the problem. IEEE Trans. on Computer, Vol. 29, No. 11, 1996, pp.
32-38.

[2] Y. Zorian, E. J. Marinissen, and S. Dey. Testing Embedded Core-
Based System Chips. Int. Test Conf., 1998, pp. 130-143.

[3] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y.
Zaidan, and S. M. Reddy. Resource Allocation and Test Scheduling
for Concurrent Test of Core-based SOC Design. Asian Test Symp.,
2001, pp. 265-270.

[4] E. Larsson, and Z. Peng. An Integrated Framework for the Design
and Optimization of SOC Test Solutions. J. of Electronic Testing;
Theory and Applications, Vol. 18, No. 4/5, 2002, pp. 385-400.

[5] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest. Orthogonal
Packings in Two Dimensions. SIAM J. of Computing, Vol. 9, Issue
4, 1980, pp. 846-855.

[6] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive
Approaches to 2D Rectangular Perfect Packings, Elsevier
Information Processing Letters, Vol. 90, Issue 1, 2004, pp. 7-14.

[7] W. J. Jiang, and B. Vinnakota. Defect-Oriented Test Scheduling.
IEEE Trans. on VLSI Systems, Vol. 9, No. 3, 2001, pp. 427-438.

[8] E. Larsson, J. Pouget, and Z. Peng. Defect-Aware SOC Test
Scheduling. VLSI Test Symp., 2004, pp. 359-364.

[9] U. Ingelsson, S. K. Goel, E. Larsson, and E. J. Marinissen. Test
scheduling for modular SOCs in an abort-on-fail environment.
European Test Symp., 2005. pp. 8-13.

[10] Z. He, G. Jervan, Z. Peng, and P. Eles. Hybrid BIST Test
Scheduling Based on Defect Probabilities. Asian Test Symp., 2004,
pp. 230-235.

[11] Z. He, G. Jervan, Z. Peng, and P. Eles. Power-Constrained Hybrid
BIST Test Scheduling in an Abort-on-First-Fail Test Environment.
EUROMICRO Conf. on Digital System Design, 2005, pp. 83-86.

[12] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, Power Profile
Manipulation: A New Approach for Reducing Test Application
Time Under Power Constraints, IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 21, No. 10, 2002, pp. 1217-1225.

[13] M. Sugihara, H. Date, and H. Yasuura. Analysis and Minimization
of Test Time in a Combined BIST and External Test Approach.
Design, Automation and Test in Europe, 2000, pp, 134-140.

[14] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin. Test Time
Minimization for Hybrid BIST of Core-Based Systems. Asian Test
Symp., 2003, pp. 318-323.

[15] D. Flynn. AMBA: Enabling Reusable On-Chip Designs. IEEE
Micro, Vol. 17, No. 4, 1997, pp. 20-27.

[16] S. Gerstendorfer, and H. J. Wunderlich. Minimized power
consumption for scan-based BIST. Int. Test Conf., 1999, pp. 77-84.

[17] S. K. Goel, and E. J. Marinissen. Control-Aware Test Architecture
Design for Modular SOC Testing. European Test Workshop, 2003,
pp. 57-62.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

